当前位置:文档之家› 直升机旋翼技术

直升机旋翼技术

直升机旋翼技术
直升机旋翼技术

认识遥控直升机的旋翼头

认识遥控直升机的旋翼头 遥控直升机可说是所有遥控模型里头最为复杂的一个项目,各细节的关连性更是环环相扣,其中最复杂的结构莫过於旋翼头的设计,旋翼头也是性能的主要取决性,本章针对於主旋翼结构对性能的影响作深入的分析,直升机迷们不可错过! 决定性能的旋翼头 决定遥控直升机机体特性的几个要素里项,旋翼头所占的比例相当高。要如何分辨机体特性呢?遥控直升机不像飞机一样,可以从外形上直接分辨出特级机、练习机、象真机,直升机可就不一样了,同样的旋翼头,经过不同的设定与调整,可以让性能有截然不同的表现,就算是相同的直升机,也可以安稳的适合初学者,也可以灵活的对应3D飞行,旋翼头的变化可说是相当大的。相信有许多直升机模友们从直升机的种类,即使不曾亲身试飞过,就可以大约知道飞行的特征,对直升机性能的推断依据多半也是来自于旋翼头的造型设计,但是相信也有更多的朋友们对旋翼头的性能会有著『为什么不一样』的想法?但是想要深入研究,却又被复杂的结构打败。这一次我们就来说明一下关於旋翼头的性能取决做一个研究。 决定性能的四大要素 1、三角补偿角 2、贝尔希拉比率 3、修正率 4、避震橡胶 这四个要素的搭配,可决定大多数直升机的性格。实际上有人测试过,将J牌的旋翼头装在H牌的直升机上面,整体飞行起来的感觉就会比较接近於J牌的感觉。 一、三角补正角 一般玩家可以比较简单变更的一项。请参考图一,以目前市面上多数韵.型态多半是主旋翼夹片球头臂在主旋翼後方(三角补正角为正角度),接著要注意的是夹片球头的部分(图二) ,当夹片球头臂太短的时候,三角补偿角便会增加,当主旋翼高转速运转时执行动作,整体旋翼面的倾斜会使的旋翼夹片会受到三角补偿角的影响增大螺距角度,使的直升机的反应迅速加快执行动作,虽然这样可以增加机体的灵活度,但是你也会同时发现直升机变的更加难以操纵,因为既使是简单的停悬动作,只要风轻轻的吹向旋翼面,直升机主旋翼会做出些微的摆荡运动,但是很容易因为三角补偿角的关系而自行产生螺距角度的变化,造成直升机会出现类似打舵的现象,因此会变的难以控制。

浅谈直升机旋翼的种类和发展趋势

空版不知道是不是也包含直升机,在陆版的介绍看到包括陆航……但好歹直升机也飞的,就强插空版了…… 对直升机而言,重要的部件太多了,但旋翼无疑会被放在首位。直升机的升力,前飞、滚转、俯仰的操纵力,都需要靠旋翼实现。早期直升机采用铰接式旋翼,结构是机器复杂的,动部件太多,寿命不长,可靠性不高,维护性极差,……比较有代表的,CH53,有张“鬼斧”给的图,足见其复杂。 技术贴:浅谈直升机旋翼的种类和发展趋势!AH-66隐形直升机

后来转而坐弹性轴承,来代替过去的金属铰链,黑鹰是比较有代表性的。此外球柔、星形柔性等也就随之出现,海豚是星形柔性桨毂,EC155是球柔。这些旋翼还是大大简化了结构,寿命已经很不错。 UH60

但这些旋翼还不够简单,毕竟还有好多的轴承,于是有人想到用弹性变形来实现轴承的功能。无铰式旋翼就来了。山猫,Bo105,两个最具代表性。一个是消除耦合,一个是利用挥摆耦合,两个分别代表了两种设计思路。 山猫 Bo105

无铰式旋翼用弹性变形来代替铰链,可以预想,桨叶挥舞时对桨毂的力矩就很大,比铰接式大得多。所以这种旋翼直升机机体的响应很灵敏,于是有人想到了武装直升机,武直是需要反应更灵敏一些的。不过无铰式的初衷和最大好处是简化结构,灵敏不是其最大的功效,毕竟太灵敏--->一阶挥舞频率更高--->交叉导数更大--->驾驶员感觉的交叉耦合更大--->更难控制姿态--->飞行员说好累。 无铰式比起CH53那种已经极大简化了,不过这还不够,无铰式旋翼还有变距轴承,所以终极的目标是无轴承旋翼。EC135、MD900,Bell430、AH1Z这些都是,连倭奴的OH1、鹅毛的Ansat也都是。其实不难发现,这累机,重量不大,这是和目前的材料技术有关。做太大,桨毂尺寸大,弹性变形实现挥摆扭,载荷太高,寿命就得下来了。 看看具体的结构,喜欢用EC135说事儿: EC135

直升机原理详解真实完整版

发一套最完整的直升机原理(绝对完整,绝对精华) 这是我找到的最完整,最系统介绍直升机的原理及发展史的文章。转到这里,送给论坛里喜欢飞行,向往蓝天的朋友!! 自从莱特兄弟发明飞机以来,人们一直为能够飞翔蓝天而激动不已,同时又受起飞、着落所需的滑跑所困扰。在莱特兄弟时代,飞机只要一片草地或缓坡就可以起飞、着陆。不列颠之战和巴巴罗萨作战中,当时最高性能的“ 喷火 ”战斗机和 Me 109 战斗机也只需要一片平整的草地就可以起飞,除了重轰炸机,很少有必须用“正规”的混凝土跑道起飞、着陆的。今天的飞机的性能早已不能为这些飞机所比,但飞机的滑跑速度、重量和对跑道的冲击,使对起飞、着陆的跑道的要求有增无减,连简易跑道也是高速公路等级的。现代战斗机和其他高性能军用飞机对平整、坚固的长跑道的依赖,日益成为现代空军的致命的软肋。为了摆脱这一困境,从航空先驱的时代开始,人们就在孜孜不倦地研制能够象鸟儿一样腾飞的具有垂直/短距起落能力的飞机。 自从人们跳出模仿飞鸟拍翅飞行的谜思之后,依据贝努力原理的空气动力升力就成为除气球和火箭外所有动力飞行器的基本原理。机翼前行时,上下翼面之间的气流速度差造成上下翼面之间的压力差,这就是升力。所谓“机翼前行”,实际上就是机翼和空气形成相对速度。既然如此,和机身一起前行时,机翼可以造成升力,机身不动而机翼像风车叶一样打转转,和空气形成相对速度,也可以形成升力,这样旋转的“机翼”就成为旋翼,旋翼产生升力就是直升机可以垂直起落的基本原理。

中国小孩竹蜻蜓玩了有2,000 年了,流传到西方后,成为现代直升机的灵感/ 达·芬奇设计的直升机,到底能不能飞起来,很是可疑 旋翼产生升力的概念并不新鲜,中国儿童玩竹蜻蜓已经有2,000 多年了,西方也承认流传到西方的中国竹蜻蜓是直升机最初的启示。多才多艺的达·芬奇在15 世纪设计了一个垂直的螺杆一样的直升机,不过没有超越纸上谈兵的地步。1796 年,英国人George C ayley 设计了第一架用发条作动力、能够飞起来的直升机,50 年后的1842 年,英国人W.H. Philips 用蒸气机作动力,设计了一架只有9 公斤重的模型直升机。1878 年,意大利人Enrico Forlanini 用蒸气机制作了一架只有3.5 公斤重的模型直升机。1880 年,美国发明家托马斯·爱迪生着手研制用电动机驱动的直升机,但最后放弃了。法国人Paul C ornu 在1907 年制成第一架载人的直升机,旋翼转速每分钟90 转,发动机是一台24 马力的汽油机。Cornu 用旋翼下的“舵面”控制飞行方向和产生前进的推力,但Cornu 的直升机的速度和飞行控制能力很可怜。

国内外无人直升机的发展现状及应用分析

国内外无人直升机的发展现状及应用分析 在无人机里有一种特殊的无人直升机,它是指由无线电遥控飞行或自主控制飞行的无人驾驶、不载人的垂直起落旋翼飞行器。它依靠发动机驱动旋翼产生升力和操纵力,能垂直起落、空中悬停,能向任何一个方向灵活飞行。真正意义上的无人直升机以长航时、多任务、稳定性等为标志,与时下一些航模性质的无人机根本不在一个量级上。 无人直升机的多功能特性 无人直升机无论在现代战争还是经济建设、日常生活中都具有独特作用。以民用为例,无人直升机具有成本相对较低、无人员伤亡风险、生存能力强、机动性能好、使用方便等优势,广泛应用于包括:航空拍摄、航空摄影、地质地貌测绘、森林防火、地震调查、边境巡逻、应急救灾、禁毒、反恐、警用侦查巡逻、治安监控、消防航拍侦查、通信中继、城市规划等多个领域。近年来,无人机在民用市场的潜在需求也将逐步显现,我国民用无人机将进入快速发展期。 国外无人直升机的发展 无人直升机研制始于上世纪50年代初,美国、英国、德国等国家率先对无人直升机进行研究。当时美国为加强反潜搜索能力以应对前苏联庞大的潜艇威胁开始无人直升机研制,委托“螺旋动力”公司为美海军研发了第一架无人直升机——QH-50,该机为遥控无人直升机,先后交付近800架。上世纪70年代,美国陆军使用其改进型QH-50D在越南战场上执行战场侦察和炮兵目标观测任务,由于该机为遥控直升机,使用不甚方便,失事率也非常高,美军无奈于70年代末期取消了QH-50的订货计划,其任务使命由无人机代替,无人直升机在美国的研制呈萧条趋势。 在经历了试用、萧条、复苏之后,上世纪80至90年代,无人直升机的发展呈现出百家齐放的特点,出现了各种气动外形的无人直升机。国外无人直升机逐渐步入加速发展时期。上世纪90年代中后期,美国无人直升机研制呈迅猛发展趋势,各大直升机公司纷纷介入,也带动了全球无人直升机的研制热潮。2005年8月,美军颁布2005~2030年《无人机系统路线图》,该路线图表明美军今后将大力开发无人直升机,可以预见美军无人直升机的研制将步入正轨并快速发展,这也正是美国各大直升机公司纷纷涌入无人直升机领域的主要原因。无人直升机作为一种重要武器装备,其研制任务已由美国各大直升机公司全面接管,小公司承担无人直升机研制的时代在美国将一去不复返。 纵观历史,国外无人直升机发展趋势在创新构型、提升任务载荷和续航能力之外还具有其他特征。一是以信息支援任务为中心,作战任务进一步扩展,最终形成侦察、攻击任务综合一体化的无人直升机;二是无人机系统研制由“以平台为中心”向“以任务为中心”转变,充分考虑作战使用的特殊要求;三是不断提高智能化水平和自主飞行控制能力,具备故障隔离/排除故障、自动航路规划等智能控制能力;四是具备执行多任务的作战能力;五是采用钛合金、复合材料、模块化设计等新材料和新技术。

直升机旋翼头工作原理

解读直升机旋翼头的奥秘 遥控直升机可说是所有遥控模型里头最为复杂的一个项目,各细节的关连性更是环环相扣,其中最复杂的结构莫过於旋翼头的设计,旋翼头也是性能的主要取决性,本章针对於主旋翼结构对性能的影响作深入的分析,直升机迷们不可错过! 决定性能的旋翼头 决定遥控直升机机体特性的几个要素里项,旋翼头所占的比例相当高。要如何分辨机体特性呢?遥控直升机不像飞机一样,可以从外形上直接分辨出特级机、练习机、象真机,直升机可就不一样了,同样的旋翼头,经过不同的设定与调整,可以让性能有截然不同的表现,就算是相同的直升机,也可以安稳的适合初学者,也可以灵活的对应3D飞行,旋翼头的变化可说是相当大的。相信有许多直升机模友们从直升机的种类,即使不曾亲身试飞过,就可以大约知道飞行的特征,对直升机性能的推断依据多半也是来自于旋翼头的造型设计,但是相信也有更多的朋友们对旋翼头的性能会有著『为什么不一样』的想法?但是想要深入研究,却又被复杂的结构打败。这一次我们就来说明一下关於旋翼头的性能取决做一个研究。 决定性能的四大要素 1、三角补偿角 2、贝尔希拉比率 3、修正率 4、避震橡胶 这四个要素的搭配,可决定大多数直升机的性格。实际上有人测试过,将J牌的旋翼头装在H牌的直升机上面,整体飞行起来的感觉就会比较接近於J牌的感觉。 一、三角补正角 一般玩家可以比较简单变更的一项。请参考图一,以目前市面上多数韵.型态多半是主旋翼夹片球头臂在主旋翼後方(三角补正角为正角度),接著要注意的是夹片球头的部分(图二) ,当夹片球头臂太短的时候,三角补偿角便会增加,当主旋翼高转速运转时执行动作,整体旋翼面的倾斜会使的旋翼夹片会受到三角补偿角的影响增大螺距角度,使的直升机的反应迅速加快执行动作,虽然这样可以增加机体的灵活度,但是你也会同时发现直升机变的更加难以操纵,因为既使是简单的停悬动作,只要风轻轻的吹向旋翼面,直升机主旋翼会做出些微的摆荡运动,但是很容易因为三角补偿角的关系而自行产生螺距角度的变化,造成直升机会出现类似打舵的现象,因此会变的难以控制。 以主旋翼相同的旋转方向来说(顺时针) ,三角补正角的正数值(+)越大,机体越灵敏,但也越不安定。三角补正角负数值(-)越大则越安定,但反应也越迟钝。然而要获得一个折衷的办法,就是让三角补正角度为0度,三角补正角为0度的直升机最好掌握而且不失灵活度。而调整三角补正角的方式也很简单,只需要加长旋翼夹片上的球头长度就可以了,但是要注意旋翼夹片的强度喔!如果是塑胶品的话,建议用新品来改装,免得发生断裂的危险。 每一家厂牌的直升机旋翼头的支点不太一样,以遥控直升机为例,大约有五种型式的旋翼头,所以先确定好支点旋翼头的种类的位置,再来做相关的测量。这样才能够有效的发挥三角补正角的效果。

直升机飞行原理(图解)

飞行原理(图解) 直升机能够垂直飞起来的基本道理简单,但飞行控制就不简单了。旋翼可以产生升力,但谁来产生前进的推力呢?单独安装另外的推进发动机当然可以,但这样增加重量和总体复杂性,能不能使旋翼同时担当升力和推进作用呢?升力-推进问题解决后,还有转向、俯仰、滚转控制问题。旋翼旋转产生升力的同时,对机身产生反扭力(初中物理:有作用力就一定有反作用力),所以直升机还有一个特有的反扭力控制问题。 直升机主旋翼反扭力的示意图 没有一定的反扭力措施,直升机就要打转转/ 尾桨是抵消反扭力的最常见的方法 直升机抵消反扭力的方案有很多,最常规的是采用尾桨。主旋翼顺时针转,对机身就产生逆

时针方向的反扭力,尾桨就必须或推或拉,产生顺时针方向的推力,以抵消主旋翼的反扭力。 抵消反扭力的主旋翼-尾桨布局,也称常规布局,因为这最常见/ 典型的贝尔407 的尾桨主旋翼当然也可以顺时针旋转,顺时针还是逆时针,两者之间没有优劣之分。有意思的是,美、英、德、意、日直升机的主旋翼都是逆时针旋转,法、俄、中、印、波兰直升机都是顺时针旋转,英、德、意、日的直升机工业都是从美国引进许可证开始的,和美国采用相同的习惯可以理解,中、印、波兰是从前苏联和法国引进许可证开始的,和法、俄的习惯相同也可以理解,但美国和俄罗斯为什么从一开始选定不同的方向,法国为什么不和选美国一样的方向,而和俄罗斯一致,可能只是一个历史的玩笑。

各国直升机主旋翼旋转方向的比较尾桨给直升机的设计带来了很多麻烦。尾桨要是太大了,会打到地上,所以尾桨尺寸受到限制,要提供足够的反扭力,就需要提高转速,这样,尾桨翼尖速度就大,尾桨的噪声就很大。极端情况下,尾桨翼尖速度甚至可以超过音速,形成音爆。尾桨需要安装在尾撑上,尾撑越长,尾桨的力矩越大,反扭力效果越好,但尾撑的重量也越大。为了把动力传递到尾桨,尾撑内需要安装一根长长的传动轴,这又增加了重量和机械复杂性。尾桨是直升机飞行安全的最大挑战,主旋翼失去动力,直升机还可以自旋着陆;但尾桨一旦失去动力,那直升机就要打转转,失去控制。在战斗中,直升机因为尾桨受损而坠毁的概率远远高于因为其他部位被击中的情况。即使不算战损情况,平时使用中,尾桨对地面人员的危险很大,一不小心,附近的人员和器材就会被打到。在居民区或林间空地悬停或起落时,尾桨很容易挂上建筑物、电线、树枝、飞舞物品。 尾桨可以是推式,也可以是拉式,一般认为以推式的效率为高。虽然不管推式还是拉式,气流总是要流经尾撑,但在尾桨加速气流前,低速气流流经尾撑的动能损失较小。尾桨的旋转方向可以顺着主旋翼,也就是说,对于逆时针旋转的主旋翼,尾桨向前转(或者说,从右

直升机技术现状及发展趋势分析

直升机技术现状及发展趋势分析 【摘要】较其他飞行器不同,直升机具有空中悬停、垂直起降及低速机动等特点,因而在军事、搜救等多个领域均有重要的应用,是衡量一个国家综合实力的标志之一。本文重点就当前国内外直升机技术现状进行了分析,并针对未来直升机技术的发展趋势进行了展望。 【关键词】直升机技术;现状;发展趋势 纵观直升机技术的多年发展历史,自第一代到第四代直升机,各项性能指标的进步均得益于直升机技术的快速发展和进步,直升机各项技术的进步又离不开材料、加工、制造工艺技术的创新和发展。如今,直升机经典技术已发展成熟,为了满足特定使用需求,要求设计人员必须树立严谨的设计理念,掌握现代化先进设计技术,充分考虑到设计、制造、管理、成本等各方面因素,逐步提高我国直升机技术水平。 1.直升机技术现状分析 目前,全球直升机正处在一个快速发展阶段,军用及民用直升机市场需求,极大地推动了直升机技术的逐步发展和提高。为了满足军事作战需求,要求直升机具有多种作战功能,满足军事战术的需求;而在民用领域方面,直升机也有重要的应用,需要满足市场需求,同时最大限度地降低成本,因此,在研制新型直升机时,应关注装备的改进。就全球直升机技术而言,主要具有如下特点:(1)总气动设计技术日趋精细化、综合化与集成化,具有满足客户各方面需求的总体设计能力;(2)新一代旋翼系统技术全面实现了视情维护,直升机桨叶拥有无限寿命;(3)综合隐身技术大幅提高,新隐身材料及设计技术有了新进展,有效减小了直升机的红外、雷达、目视及声学特征,满足了直升机的生存性能;(4)直升机机体结构日趋模块化,极大地简化了机体结构,有效减少了各种零部件的数量,有助于维修及维护工作的开展;(5)关键部位采用了复合材料,极大地提升了其适坠性与抗击性能,延长了机体寿命;(6)发动机技术油耗越来越低,功重比日趋增大,并装备了现代化监控、数控及状态监控系统,提高了其有效载重,有助于在高温高原环境下使用;(7)现代化航电系统及设备的应用,满足了信息共享、多路传输等需求,加之现代化夜视传感器的应用,使得直升机全天候作战水平大幅提高;(8)新型高速设计技术满足了直升机高速飞行及各项作战任务的需求。 虽然经多年发展,我国直升机设计、制造、试飞、试验等硬件水平已经达到中上水平,具有一定的研发、生产技术基础。但由于产业总集成效果差,产业支撑技术基础薄弱,还未形成成熟的自主研发技术体系,设计水平及技术含量不高。对于直升机产品而言,我国直升机行业已形成了以AC310、311、312、313、352等为代表的谱系,但是,在30吨以上的重型直升机方面几乎仍为空白,在应对重大自然灾害时仍需借助国外先进重型直升机完成救助任务,国产直升机技术水平亟待提升。此外,目前我国能够在高温、高原环境下工作的直升机很少,必须

图解直升机原理

图解直升机原理之一---涡轮轴发动机工作 原理 航空涡轮轴发动机 航空涡轮轴发动机,或简称为涡铀发动机,是一种输出轴功率的涡轮喷气发动机。法国是最先研制涡轴发动机的国家。50年代初,透博梅卡公司研制成一种只有一级离心式叶轮压气机、两级涡轮的单转于、输出轴功率的直升机用发动机,功率达到了206kW(280hp),成为世界上第一台直升机用航空涡轮轴发动机,定名为“阿都斯特—l”(Artouste—1)。首先装用这种发动机的直升机是美国贝尔直升机公司生产的Bell 47(编号为X H—13F),于1954年进行了首飞。 涡轴发动机的主要机件 与一般航空喷气发动机一样,涡轴发动机也有进气装置、压气机、燃烧室、涡轮及排气装置等五大机件,涡轴发动机典型结构如下图所示。

进气装置 由于直升机飞行速度不大,一般最大平飞速度在3 50km/h以下,故进气装置的内流进气道采用收敛形,以便气流在收敛形进气道内作加速流动,以改善气流流场的不均匀性。进气装置进口唇边呈圆滑流线,适合亚音速流线要求,以避免气流在进口处突然方向折转,引起气流分离,为压气机稳定工作创造一个好的进气环境。有的涡轴发动机将粒子分离器与进气道设计成一体,构成“多功能进气道”,以防止砂粒进入发动机内部磨损机件或者影响发动机稳定工作,这种多功能进气道利用惯性力场,使含有砂粒的空气沿着一定几何形状的

通道流动。由于砂粒质量较空气大,在弯道处使砂粒获得较大的惯性力,砂粒便聚集在一起并与空气分离,排出机外(见下图)。 压气机 压气机的主要作用是将从进气道进入发动机的空 气加以压缩,提高气流的压强,为燃烧创造有利条件。根据压气机内气体流动的特点,可以分为轴流式和离心式两种。轴流式压气机,面积小、流量大;离心式结构简单、工作较稳定。涡轴发动机的压气机,其结构形式几经演变,从纯轴流式、单级离心、双级离心到轴流与离心混装一起的组合式压气机。当前,直升机的

直升机操控原理

第六章 直升机的操纵原理
直升机不同于固定翼飞机,一般都没有在飞行中 供操纵的专用活动舵面。这是由于在小速度飞行 或悬停中,其作用也很小,因为只有当气流速度 很大时舵面或副翼才会产生足够的空气动力。单 旋翼带尾桨的直升机主要靠旋翼和尾桨进行操纵, 而双旋翼直升机靠两副旋翼来操纵。由此可见, 旋翼还起着飞机的舱面和副翼的作用。

直升机操纵原理
旋翼不仅提供升力同时也是直升机的主要操 纵面。
总距操纵杆:通过自动倾斜器改变旋翼桨叶 总距,控制直升机的升降运动。提杆,增大 总距,升力增大,直升机上升;压杆,减小 总距,直升机下降。
周期变距操纵杆:操纵周期变距操纵杆,使 自动倾斜器相应的倾斜,从而使桨叶的桨距 作每周一次的周期改变,造成旋翼拉力矢量 按相应的方向倾斜,达到控制直升机的前、 后(左、右)和俯仰(或横滚)运动。

直升机操纵原理
脚蹬:控制尾桨,实现航向操纵。 尾桨:平衡旋翼反扭矩、航向操纵。 垂尾:增加航向稳定性。 平尾:增加俯仰稳定性。

直升机操纵原理(续)

6.1 直升机操纵特点
直升机驾驶员座舱 操纵机构及配置直 升机驾驶员座舱主 要的操纵机构是: 驾驶杆(又称周期 变距杆)、脚蹬、 油门总距杆。此外 还有油门调节环、 直升机配平调整片 开关及其他手柄.

驾驶杆和脚蹬
驾驶杆位于驾驶员座椅前面,通过操纵线系与旋翼 的自动倾斜器连接。驾驶杆偏离中立位置表示:
向前——直升机低头并向前运动; 向后——直升机抬头并向后退; 向左——直升机向左倾斜并向左侧运动; 向右——直升机向右倾斜并向右侧运动。 脚蹬位于座椅前下部,对于单旋翼带尾桨的直升机
来说,驾驶员蹬脚蹬操纵尾桨变距改变尾桨推(拉) 力,对直升机实施航向操纵。

直升机空气动力学现状和发展趋势

直升机空气动力学现状 二级学院:航空维修工程学院 班级:航修六班 学号:14504604 姓名:李达伦 日期:2015年6月30日

直升机空气动力学现状 (航修六班14504604 李达伦) 摘要:直升机空气动力学是直升机技术研究及型号研制的基础性学科和先进学 科,本文概述了国外的直升机气动理论与方法研究、基于气动理论和方法的应用基础研究、直升机气动试验技术的研究现状。 关键词:空气动力学;直升机 Abstract:Aerodynamics of helicopter is a helicopter technological research and model development of basic disciplines and advanced subject. This paper summarizes the foreign helicopters gas dynamic theory and method of research, based on the aerodynamic theory and methods of applied basic research, helicopter aerodynamic test technology research status. Key word:Air dynamics; helicopter 1 前言 飞行器的设计和研制必须以其空气动力学为主要依据,这是飞行器研制区别 于其它武器平台的典型特征。直升机以旋翼作为主要的升力面、推力面和操纵面, 这种独特的构型和旋翼驱动方式,更使其气动特征具有复杂的非定常特征,其气 动分析和设计技术固定翼飞行器更具挑战性。 直升机气动研究是指认识直升机与空气之间作用规律、解释直升机飞行原 理、获取提升直升机飞行能力和效率的新知识、新原理、新方法的研究活动,其 主要任务是获得直升机的空气动力学特性[1]。由于直升机气动特征性直接决定了 型号飞行性能、振动特性、噪声水平,且是结构设计、寿命评估等的直接依据, 因此直升机气动研究是直升机技术研究的重要方面,更是型号研制的基础。尤其 是要实现舒适、安全、便利、快捷的直升机型号研制目标,直升机空气动力学将 体现其核心推动作用。 2 内容和范围 直升机空气动力学专业发展涵盖的内容和范围主要有直升机气动理论与方 法的研究、基于气动原理的应用基础研究以及气动特性试验研究三大内容。 直升机气动理论与方法的研究重点关注旋翼与周围空气相互作用现象及机 理的分析模型和方法,通过对气动理论和方法的研究,实现对直升机及其流场的 深入了解,以准确地计算其空气动力学特性。 气动应用研究是指基于气动理论和方法,以直升机研制为目标所展开的应用 基础研究,涵盖气动特性、气动弹性、气动噪声、结冰模拟、流动控制等应用领

直升机飞行原理

直升机与旋翼机的飞行原理 直升机的飞行原理 1. 概况 与普通飞机相比,直升机不仅在外形上,而且在飞行原理上都有所不同。一般来讲它没有固定的机翼和尾翼,主要靠旋翼来产生气动力。这里所说的气动力既包括使机体悬停和举升的升力,也包括使机体向前后左右各个方向运动的驱动力。直升机旋翼的桨叶剖面由翼型构成,叶片平面形状细长,相当于一个大展弦比的梯形机翼,当它以一定迎角和速度相对于空气运动时,就产生了气动力。桨叶片的数量随着直升机的起飞重量而有所不同。重型直升机的起飞重量在20t以上,桨叶的数目通常为六片左右;而轻、小型直升机,起飞重量在以下,一般只有两片桨叶。 直升机飞行的特点是: (1) 它能垂直起降,对起降场地要求较低; (2) 能够在空中悬停。即使直升机的发动机空中停车时,驾驶员可通过操纵旋翼使其自转,仍可产生一定升力,减缓下降趋势; (3) 可以沿任意方向飞行,但飞行速度较低,航程相对来说也较短。 2. 直升机旋翼的工作原理 直升机旋翼绕旋翼转轴旋转时,每个叶片的工作类同于一个机翼。旋翼的截面形状是一个翼型,如图所示。翼型弦线与垂直于桨毂旋转轴平面(称为桨毂旋转平面)之间的夹角称为桨叶的安装角,以表示,有时简称安装角或桨距。各片桨叶的桨距的平均值称为旋翼的总距。驾驶员通过直升机的操纵系统可以改变旋翼的总距和各片桨叶的桨距,根据不同的飞行状态,总距的变化范围约为2o~14o。

气流V 与翼弦之间的夹角即为该剖面的迎角。显然,沿半径方向每段叶片上产生的空气动力在桨轴方向上的分量将提供悬停时需要的升力;在旋转平面上的分量产生的阻力将由发动机所提供的功率来克服。 旋翼旋转时将产生一个反作用力矩,使直升机机身向旋翼旋转的反方向旋转。前面提到过,为了克服飞行力矩,产生了多种不同的结构形式,如单桨式、共轴式、横列式、纵列式、多桨式等。对于最常见的单桨式,需要靠尾桨旋转产生的拉力来平衡反作用力矩,维持机头的方向。使用脚蹬来调节尾桨的桨距,使尾桨拉力变大或变小,从而改变平衡力矩的大小,实现直升机机头转向(转弯)操纵。 3. 直升机旋翼的操纵 直升机的飞行控制与飞机的飞行控制不同,直升机的飞行控制是通过直升机旋翼的倾斜实现的。直升机的控制可分为垂直控制、方向控制、横向控制和纵向控制等,而控制的方式都是通过旋翼实现的,具体来说就是通过旋翼桨毂朝相应的方向倾斜,从而产生该方向上的升力的水平分量达到控制飞行方向的目的。 直升机体放在地面时,旋翼受其本身重力作用而下垂。发动机开车后,旋翼开始旋转,桨叶向上抬,直观地看,形成一个倒立的锥体,称为旋翼锥体,同时在桨叶上产生向上的升力。随着旋翼转速的增加,升力逐渐增大。当升力超过重力时,直升机即铅垂上升(图;若升力与重力平衡,则悬停于空中;若升力小于重力,则向下降落。 旋转旋翼桨叶所产生的拉力和需要克服阻力产生的阻力力矩的大小,不仅取决于旋翼的转速,而且取决于桨叶的桨距。从原理上讲,调节转速和桨距都可以调节拉力的大小。但是 桨毂旋转面 桨毂旋转轴线 前缘 后缘 b ? α V 图 直升机的旋翼 (a) (b)

世界直升机发展史

世界直升机发展史 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

世界直升机之最最大的直升机——米-26 米-26是世界上最大的现役直升机,其最大起飞重量为56吨,有效载重为20吨,空重为最大起飞重量的50%。旋翼有8片桨叶,是世界上桨叶最多的单旋翼直升机。 最早的直升机——FW-61 世界上第一架直升机出现于1936年,由德国科学家福克设计,被称为FW-61 。这是世界上第一架能够在空中盘旋的直升机。 最早的武装直升机——AH-1G 世界上第一种专用武装直升机是美国的AH-1G,绰号“休伊眼镜蛇”。该直升机由美国贝尔公司研制,主要用于为运输直升机护航和火力支援。1967年在越南战场首次投入使用。 最早的客运直升机——S-51 世界上最早把直升机作为客运业务的是英国,1950年英国把仿制的S-51直升机用在加的夫和利物浦的航线上,正是运送第一批旅客。 最快的直升机——“山猫” 1986年改进的“山猫”直升机创造了速度为千米/小时的绝对世界纪录。“山猫”可执行舰载反潜、攻击海面舰只、搜索和救援等海军任务;也可执行攻击、侦察、指挥、联络、货物和部队运送等陆军任务。 飞得最高的直升机——SA315B

SA315B具有良好的高原性能,1969年在喜马拉雅山飞行表演期间,SA315B载2名驾驶员和140千克燃油,创下了在7500米高度起飞着陆的世界记录。1972年6月21日,该机在法国创造了12442米的直升机飞行绝对高度记录。 最“冷”的直升机——RAH-66 RAH-66“科曼奇”是美国研制的双座侦察/攻击、空战直升机,也是世界上第一种隐身直升机,RAH-66是一种最“冷”的直升机,它是把红外抑制技术综合运用到机体设计中的第一种直升机。 直升机最多的城市——圣保罗 世界上直升机最多的城市是圣保罗,该市拥有直升机达540架,停机坪220个。圣保罗已成为世界上增长最快的私人直升机市场,圣保罗正在筹建一座可以起降120架直升机的大型直升机机场。 直升机的跨越发展期 创建时间:2012年09月10日点击量:456 在过去的几十年里,世界直升机制造业迅猛发展。世界几大直升机公司为了抢占直升机市场份额而不断地进行竞争,直升机技术在竞争中得到了发展。由于在直升机设计上不断采用新结构、新材料和新工艺,所以直升机的性能得以不断地提高。 目前,直升机进入跨越发展期。新构型相继涌现,新技术不断发展,直升机在军民用领域应用日益广泛。为适应全球市场和用户不断增长的需求,许多着名的直升机科研、制造机构进行了重组,形成了一批具有强大竞争力的新的工业集团,世界直升机产业格局发生了重大变化。直升机研究、设计和制造新模式不断出现,大量新产品相继投放市场。例如,俄罗斯政府合并直升机工业,把直升机工

直升机传动系统

直升机是依靠旋翼作为升力和操纵机构的飞行器,其旋翼充当了固定翼飞机的机翼、副翼、升降舵和推进器的作用。根据反扭矩形式,直升机又可分为单旋翼带尾桨形式,共轴双旋翼,纵列式、横列式及倾转旋翼式。目前应用比较广泛的是单旋翼带尾桨形式直升机。直升机的旋转部件多,包括旋翼系统、操纵系统、主减速器、尾减速器、尾桨等部件。因此,整个直升机是在很多旋转系统及部件的协调运转中工作的。尤其是大旋翼,在飞行中一般处于非对称气流中,除了旋转运动外,还有挥舞、摆振方面的运动,成为直升机振动的主要来源。直升机的关键技术主要体现在直升机的旋转部件的设计技术上。 对于固定翼飞机,由于在高速飞行中工作,其机翼、机身、尾翼的气动外形非常重要,影响到飞机的飞行性能和操稳特性。而对于直升机,其气动特性主要体现在旋翼桨叶的几何特性、翼型、旋翼转速、旋翼实度、桨盘载荷等参数。由于直升机的速度较低,一般最大速度不超过350km/h,机身的气动外形对飞行性能的影响相对固定翼飞机来说较弱。因此,有人说直升机气动特性主要是旋翼气动特性。就直升机本体技术而言,传动系统和旋翼系统是直升机最重要的关键部件,反映了直升机技术的本质和特征。 传动系统 直升机的发动机所提供的动力要经过传动系统才能到达旋翼,从而驱动旋翼旋转。对于一般的直升机来说,其作用是将发动机的功率和转速按一定比例传递到旋翼、尾桨和各附件。直升机性能在很大程度上取决于传动系统的性能,传动系统性能好坏将直接影响直升机的性能和可靠性。 1 传动系统的结构 直升机传动系统的典型构成为“三器两轴”,即:主减速器、尾减速器、中间减速器、动力传动轴和尾传动轴。现代直升机的发动机多为涡轮轴发动机,其输入转速较高,意大利的A129输入转速最高,为27000r/min,所以要达到旋翼的设计转速必须经过主减速器减速。减速器的减速比一般比较大,例如美国武装直升机阿帕奇的总传动比为72.4,“黑鹰”直升机的总

直升机的发展历史

直升机的发展历史人类有史以来就向往着能够自由飞行。古老的神话故事诉说着人类早年的飞行梦,而梦想的飞行方式都是原地腾空而起,像现代直升机那样既能自由飞翔又能悬停于空中,并且随意实现定点着陆。例如哪阿拉伯人的飞毯,希腊神的战车,都是垂直起落飞行器。其中最有价值、最具代表性的是中国古代玩具“竹蜻蜓”和意大利人达·芬奇关于垂直起降航空器的画作。? 竹蜻蜓有据可查的历史记载于晋朝(265年—420年)葛洪所着的《抱朴子》一书中。它利用螺旋桨的空气动力实现垂直升空,演示了现代直升机旋翼的基本工作原理。《简明不列颠百科全书》第9卷写道:“直升机是人类最早的飞行设想之一,多年来人们一直相信最早提出这一想法的是达·芬奇,但现在都知道,中国人比中世纪的欧洲人更早做出了直升机玩具。”这种玩具于14世纪传到欧洲。“英国航空之父”乔治·凯利(1773年-1857年)曾制造过几个竹蜻蜓,用钟表发条作为动力来驱动旋转,飞行高度曾达27米。? 随着生产力的发展和人类文明的进步,直升机的发展史由幻想时期进入了探索时期。欧洲产业革命之后,机械工业迅速倔起,尤其是本世纪初汽车和轮船的发展,为飞行器

准备了发动机和可供借鉴的螺旋桨。经过航空先驱者们勇敢而艰苦的创造和试验,1903年莱特兄弟(Wright?brothers)制造的固定翼飞机飞行成功。在此期间,尽管在发展直升机方面,航空先驱们付出了相当的艰辛和努力,但由于直升机技术的复杂性和发动机性能不佳,它的成功飞行比飞机迟了30多年。? 20世纪初为直升机发展的探索期,多种试验性机型相继问世。试验机方案的多样性表明了探索阶段的技术不成熟性。经过多年实践,这些方案中只有纵列式和共轴双旋翼式保留了下来,至今仍在应用。双桨横列式方案未在直升机家族中延续,但在倾转旋翼飞机中得到了继承和发展。? 俄国人尤利耶夫另辟捷径,提出了利用尾桨来配平旋翼反扭矩的设计方案并于1912年制造出了试验机。这种单旋翼带尾桨式直升机成为至今最流行的形式。? 20世纪初的努力探索为直升机发展积累了宝贵的经验并使直升机的设计取得了显着进展,有多架试验机实现了短暂的垂直升空和短距飞行,但离实用还有很大距离。? 飞机工业的发展,使航空发动机的性能迅速提高,这为直升机设计的成功提供了重要条件。旋翼技术的第一次突破,归功于西班牙人Ciervao,他为了解决固定翼飞机的安全问题创造了“不失速”的飞机,这种飞机采用自转旋翼代替了机翼,自转旋翼机由此诞生。旋翼技术在自转旋翼机上

直升机旋翼结构

直升机旋翼结构 直升机的飞行原理 1. 概况 与普通飞机相比,直升机不仅在外形上,而且在飞行原理上都有所不同。一般来讲它没有固定的机翼和尾翼,主要靠旋翼来产生气动力。这里所说的气动力既包括使机体悬停和举升的升力,也包括使机体向前后左右各个方向运动的驱动力。直升机旋翼的桨叶剖面由翼型构成,叶片平面形状细长,相当于一个大展弦比的梯形机翼,当它以一定迎角和速度相对于空气运动时,就产生了气动力。桨叶片的数量随着直升机的起飞重量而有所不同。重型直升机的起飞重量在20t以上,桨叶的数目通常为六片左右;而轻、小型直升机,起飞重量在1.5t以下,一般只有两片桨叶。 直升机飞行的特点是: (1) 它能垂直起降,对起降场地要求较低; (2) 能够在空中悬停。即使直升机的发动机空中停车时,驾驶员可通过操纵旋翼使其自转,仍可产生一定升力,减缓下降趋势; (3) 可以沿任意方向飞行,但飞行速度较低,航程相对来说也较短。 2. 直升机旋翼的工作原理 直升机旋翼绕旋翼转轴旋转时,每个叶片的工作类同于一个

机翼。旋翼的截面形状是一个翼型,如图2.5.1所示。翼型弦线与垂直于桨毂旋转轴平面(称为桨毂 旋转平面)之间的夹角称为桨叶的安装角,以?表示,有时简称安装角或桨距。各片桨叶的桨距的平均值称为旋翼的总距。驾驶员通过直升机的操纵系统可以改变旋翼的总距和各片桨叶的桨距,根据不同的飞行状态,总距的变化范围约为2o~14o。 气流V 与翼弦之间的夹角即为该剖面的迎角α。显然,沿半径方向每段叶片上产生的空气动力在桨轴方向上的分量将提供悬停时需要的升力;在旋转平面上的分量产生的阻力将由发动机所提供的功率来克服。 旋翼旋转时将产生一个反作用力矩,使直升机机身向旋翼旋转的反方向旋转。前面提到过,为了克服飞行力矩,产生了多种不同的结构形式,如单桨式、共轴式、横列式、纵列式、多桨式等。对于最常见的单桨式,需要靠尾桨旋转产生的拉力来平衡反作用力矩,维持机头的方向。使用脚蹬来调节尾桨的桨距,使尾桨拉力变大或变小,从而改变平衡力矩的大小,实现直升机机头 图2.5.1 直升机的旋翼 (a) (b)

直升机技术

直升机技术的特点及发展趋势 直升机技术特点 直升机是一种以动力装置驱动的旋翼作为主要升力和推进力来源,能垂直起落及前后、左右飞行的旋翼航空器。直升机发动机驱动旋翼提供升力,把直升机举托在空中,主发动机同时也输出动力至尾部的小螺旋桨,机载陀螺仪能侦测直升机回转角度并反馈至尾桨,通过调整小螺旋桨的螺距可以抵消大螺旋桨产生的不同转速下的反作用力。通过称为“倾斜盘”的机构可以改变直升飞机的旋翼的桨叶角,从而实现旋翼周期变距,以此改变旋翼旋转平面不同位置的升力来实现改变直升机的飞行姿态,再以升力方向变化改变飞行方向。同时,直升机升空后发动机是保持在一个相对稳定的转速下,控制直升机的上升和下降是通过调整旋翼的总距来得到不同的总升力的,因此直升机实现了垂直起飞及降落。 直升机最大的技术特点是将旋翼作为升力主要来源。一般来说直升机结构主要包括:旋翼,尾桨,机身,起落架,发动机和操纵机构。直升机上飞和前飞的动力皆由旋翼提供,是直升机上最重要的空气动力部件。旋翼由桨叶、桨毂、铰链、桨轴等部件构成,按其结构形式,一般可分为跷跷板式,铰接式,无铰式,轴承式等。旋翼的作用主要有,产生向上的力以克服机重,产生向前的水平分力使直升机向前,产生其它分力及力矩保持直升机平衡或进行机动飞行,若发动机空中停车,能自转产生升力,确保安全着落。 直升机旋翼产生升力的原理为:旋翼向下排压空气,形成旋翼尾流,同时从上方吸入空气。气流受到旋翼作用力,被加速、增压;同时对旋翼施加反作用力,即是旋翼拉力。为研究旋翼空气动力,在直升机空气动力学中一般会做出滑流假定,即假定空气无粘性,不可压缩;将旋翼作为作用盘,认为其产生稳定均布的诱导速度;而受旋翼作用的气流被简化为一流管,气流无扭转诱导速度。在这种假定下,可由动量定理和动能定理计算出旋翼拉力,桨盘载荷,功率载荷等参数。 然而,滑流理论难以对建立桨叶气动外形、运动特性和空气动力特性之间的关系,为解决这一问题,需要引入叶素理论。叶素理论认为桨叶由连续布置的无

直升机飞行操控的基本原理

直升机飞行操控的基本原理

图 1 直升机飞行操纵系统- 概要图 (a)

(b) 图2 直升机操纵原理示意图 1.改变旋翼拉力的大小 2.改变旋翼拉力的方向 3.改变尾桨的拉力 飞行操纵系统包括周期变距操纵系统、总距操纵系统和航向操纵系统。如图2所示,周期变距操纵系统控制直升机的姿态(横滚和俯仰),总距操纵系统控制直升机的高度,航向操纵系统控制直升机的航向。 一、周期变距操纵系统 周期操纵系统用于操纵旋翼桨叶的桨距周期改变。当桨距周期改变时,引起桨叶拉力周期改变,而桨叶拉力的周期改变,又引起桨叶周期挥舞,最终使旋翼锥体相对于机身向着驾驶杆运动的方向倾斜,从而实现直升机的纵向(包括俯仰)及横向(包括横滚)运动。 纵向和横向操纵虽然都通过驾驶杆进行操纵,但二者是各自独立的。 周期变距操纵系统(见图3)包括右侧和左侧周期变距操纵杆(1)和(3)、可调摩擦装置(2)、橡胶波纹套(4)、俯仰止动件(5)、横滚连杆(7)、俯仰连杆(8)、横滚止动件及中立位置定位孔(9)、横滚拉杆(10)、横滚协调拉杆(11)、俯仰扭矩管轴组件(12)、总距拉杆(13)、与复合摇臂相连接的拉杆(14)、伺服机构(15)、伺服机构(横滚+总距)

(16)、伺服机构(俯仰+总距)(17)和可调拉杆(18)等组件。 1.右侧周期变距操纵杆3.左侧周期变距操纵杆 2.可调摩擦装置4.橡胶波纹套5.俯仰止动件6.复合摇臂 7.横滚连杆8.俯仰连杆9.横滚止动件及中立位置定位孔10.横滚拉杆11.横滚协调拉杆12.俯仰扭矩管轴组件1 3.总距拉杆1 4.与复合摇臂相连接的拉杆1 5.伺服机构1 6.伺服机构(横滚+总距)1 7.伺服机构(俯仰+总距)1 8. 可调拉杆 图 3 直升机周期变距操纵系统 (一)纵向操纵情况 当前推驾驶杆时,通过俯仰扭矩管轴组件(9)及俯仰连杆(8),使复合摇臂(6)上的纵向摇臂逆时针转动,通过其后的拉杆、摇臂,使左前侧纵向伺服机构下移,自动倾斜器固

直升机旋翼的工作原理

直升机旋翼的工作原理 旋翼既是产生升力的部件,又是产生拉力的部件。旋翼的桨叶剖面由翼形构成,每个叶片的平面形状细而长(相当于一个大展弦比的梯形直翼)。桨叶片的数目随直升机的起飞重量而有所不同。 直升机飞行的特点是: 直升机在悬停飞行中,直升机旋翼绕旋翼转轴旋转时,每个叶片的工作类同一个机翼。旋转旋翼桨叶所产生的拉力和需要克服阻力产生的阻力力矩的力矩大小,不仅取决于旋翼的转速,而且取决于桨叶的桨距φ。但是拉力的改变主要靠调节桨叶桨距来实现。但是,桨距变化将引起阻力力矩变化,所以在调节桨距的同时还要调节发动机油门,保持转速尽量靠近最有利转速工作。 通过与操纵系统的连接,旋翼叶片的桨距调节变化可以按两种方式进行。第一种方式是各叶片同时增大或减小桨距(简称总距操纵),从而产生直升机起飞、悬停、垂直上升或下降飞行所需要的拉力。第二种方式是周期性调节各个叶片的桨距(简称周期性桨距操纵)比如打算前飞,就将驾驶杆向前推,通过旋转斜盘将使各个叶片的桨距作周期变化。每个叶片转到前进方向时,它的桨距减小,产生的拉力也跟着下降,该桨叶向上挥舞的高度也减小;反之,当叶片转到后方时,它的桨距增大,产生的拉力也跟着增加,该桨叶向上挥舞的高度也增大。结果,各个叶片梢(叶端)运动轨迹构成的叶端轨迹平面或旋翼锥体,将向飞行前方倾斜,旋翼产生的总拉力也跟着向前倾斜,旋翼总拉力的一个分量就成为向前飞行的拉力,从而实现了向前飞行。 旋翼旋转时将产生一个反作用力矩,迫使直升机机身向旋翼旋转的反方向旋转,因此需要靠尾桨旋转产生的拉力来平衡反作用力矩,维持机头的方向。使用脚蹬来调节尾桨的桨距,使尾桨拉力变大或变小,从而改变平衡力矩的大小,实现直升机机头转向(转弯)操纵。

直升机的发展历史

直升机的发展历史 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

直升机的发展历史 人类有史以来就向往着能够自由飞行。古老的神话故事诉说着人类早年的飞行梦,而梦想的飞行方式都是原地腾空而起,像现代直升机那样既能自由飞翔又能悬停于空中,并且随意实现定点着陆。例如哪阿拉伯人的飞毯,希腊神的战车,都是垂直起落飞行器。其中最有价值、最具代表性的是中国古代玩具“竹蜻蜓”和意大利人达·芬奇关于垂直起降航空器的画作。 竹蜻蜓有据可查的历史记载于晋朝(265年—420年)葛洪所着的《抱朴子》一书中。它利用螺旋桨的空气动力实现垂直升空,演示了现代直升机旋翼的基本工作原理。《简明不列颠百科全书》第9卷写道:“直升机是人类最早的飞行设想之一,多年来人们一直相信最早提出这一想法的是达·芬奇,但现在都知道,中国人比中世纪的欧洲人更早做出了直升机玩具。”这种玩具于14世纪传到欧洲。“英国航空之父”乔治·凯利(1773年-1857年)曾制造过几个竹蜻蜓,用钟表发条作为动力来驱动旋转,飞行高度曾达27米。 随着生产力的发展和人类文明的进步,直升机的发展史由幻想时期进入了探索时期。欧洲产业革命之后,机械工业迅速倔起,尤其是本世纪初汽车和轮船的发展,为飞行器

准备了发动机和可供借鉴的螺旋桨。经过航空先驱者们勇敢而艰苦的创造和试验,1903年莱特兄弟(Wrightbrothers)制造的固定翼飞机飞行成功。在此期间,尽管在发展直升机方面,航空先驱们付出了相当的艰辛和努力,但由于直升机技术的复杂性和发动机性能不佳,它的成功飞行比飞机迟了30多年。 20世纪初为直升机发展的探索期,多种试验性机型相继问世。试验机方案的多样性表明了探索阶段的技术不成熟性。经过多年实践,这些方案中只有纵列式和共轴双旋翼式保留了下来,至今仍在应用。双桨横列式方案未在直升机家族中延续,但在倾转旋翼飞机中得到了继承和发展。俄国人尤利耶夫另辟捷径,提出了利用尾桨来配平旋翼反扭矩的设计方案并于1912年制造出了试验机。这种单旋翼带尾桨式直升机成为至今最流行的形式。 20世纪初的努力探索为直升机发展积累了宝贵的经验并使直升机的设计取得了显着进展,有多架试验机实现了短暂的垂直升空和短距飞行,但离实用还有很大距离。 飞机工业的发展,使航空发动机的性能迅速提高,这为直升机设计的成功提供了重要条件。旋翼技术的第一次突破,归功于西班牙人Ciervao,他为了解决固定翼飞机的安全问题创造了“不失速”的飞机,这种飞机采用自转旋翼代替了机翼,自转旋翼机由此诞生。旋翼技术在自转旋

相关主题
文本预览
相关文档 最新文档