当前位置:文档之家› 固定管板式换热器毕业设计

固定管板式换热器毕业设计

固定管板式换热器毕业设计
固定管板式换热器毕业设计

绪论 (3)

第一章工艺计算 (9)

1.1初步估算传热面积 (9)

1.1.1热流量计算 (9)

1.1.2冷却水用量计算 (9)

1.1.3平均传热温差计算 (9)

1.1.4初算传热面积 (9)

1.2工艺结构及尺寸计算 (10)

1.2.1换热管参数计算 (10)

1.2.2壳程参数计算 (12)

1.2.3折流板选择及参数计算 (13)

1.2.4接管参数计算 (14)

1.3换热器核算 (15)

1.3.1传热面积校核 (15)

1.3.2管内表面传热系数 (16)

1.3.3传热面积校核 (17)

1.4换热器内压降的核算 (18)

1.4.1管程阻力计算 (18)

1.4.2壳程阻力 (19)

1.5工艺计算结果汇总 (20)

第二章强度计算 (21)

2.1换热器壁厚设计计算 (21)

2.1.1壳程壁厚设计计算 (21)

2.1.2管箱短节壁厚设计校核 (22)

2.1.3封头壁厚设计校核 (23)

2.1.4左端平盖封头的设计校核 (24)

2.2换热管失稳应力分析 (25)

2.3补强判别 (25)

2.3.1开孔补强计算方法判别 (26)

2.3.2开孔所需补强面积 (26)

2.4密封装置选型及设计 (30)

2.4.1垫片选型与设计 (30)

2.4.2压力容器法兰设计 (30)

2.4.3管法兰设计 (34)

2.5管板设计及校核 (34)

2.5.1管板计算的有关参数的确定 (34)

2.5.2计算各参数和系数 (35)

2.5.3管板的应力校核及评定 (39)

2.6 接管 (41)

2.7支座的设计计算及校核 (44)

2.7.1选型 (44)

2.7.2支座安装位置的确定 (45)

2.7.3鞍座主要尺寸的确定 (46)

2.7.4鞍式支座的计算及校核 (47)

2.7.5鞍座内力的分析 (49)

2.8拉杆 (50)

2.9定距管 (51)

2.10焊接结构设计 (51)

2.10.1焊接接头选择 (51)

2.10.2 焊接方法选择 (53)

2.10.3主要焊接结构 (53)

参考文献 (58)

致谢 (59)

绪论

目前压缩机被广泛应用在空分、冶金、化肥、化工、制药、动力站等领域。压缩机要实现等温压缩,效率优化,保证出口压力和温度指标,在压缩机出口处要配置压缩机出口冷却器。由于压缩机对各段间允许的压力损失和进口温度的严格要求,决定了压缩机出口冷却器设计选型的特殊性。压缩机出口冷却器几乎涵盖了所有管壳式换热器的结构形式。这正体现了它集各种形式换热器优点于一身的设计理念。由于其结构坚固,使用弹性大,适应性强,近些年来又对结构、工艺和材料等方面作了大量改进,使它的技术性能更趋于合理成为了应对多种机型,大跨度工况范围的必然选择

压缩机出口冷却器是换热设备的一类,用以冷却压缩机出口的热流体。通常用水或空气为冷却剂以除去热量。使流体温度达到流程规定的指标,以满足过程工艺条件的需要,同时也提高能源利用率的主要设备之一。

中国在“十二五”期间加大了对能源战略的调控力度,加快节能减排技术创新,大幅度提高了能源利用效率,增强可持续发展能力,确保实现资源节约型、环境友好型社会。作为一种节能设备,压缩机出口冷却器实现了热能的回收、转化利用,是工业生产中不可或缺的设备。据统计,在现代压缩机行业中所用冷却器的投资大约占设备总投资的绝大部分,在工艺设备部分更是被重点研究,并且压缩机出口冷却器具有压缩机之肺的形象比喻,它的冷却效果和可靠性直接影响压缩机的气动性能和整机效率。随着为压缩机配套的冷却器的增多,一个适应各种工况和不同机型的冷却器系列也自然形成。

近年来国内冷却器行业在节能增效、提高传热效率、减少传热面积、降低压降、提高装置热强度等方面的研究取得了显著成绩。基于石油、化工、电力、冶金、船舶、机械、食品、制药等行业对压缩机出口冷却器稳定的需求增长,我国冷却器行业在未来一段时期内将保持稳定增长,前瞻网预计2020年至2030年期间,我国冷却器产业将保持年均10-15%左右的速度增长,到2030年我国冷却器行业规模有望达到1500亿元。

(1)压缩机出口冷却器传热原理分类

1.直接接触式换热器

直接接触式换热器是温度不同的两种流体在被壁面分开的空间里流动,通过壁面的导热和流体在壁表面对流,两种流体之间进行换热。表面式换热器有管壳式、套管式和其他型式的换热器。

2.蓄热式换热器

蓄热式换热器通过固体物质构成的蓄热体,把热量从高温流体传递给低温流体,热介质先通过加热固体物质达到一定温度后,冷介质再通过固体物质被加热,使之达到热量传递的目的。蓄热式换热器有旋转式、阀门切换式等。

3.间壁式换热器

间壁式换热器是把两个表面式换热器由在其中循环的热载体连接起来的换

热器,热载体在高温流体换热器和低温流体之间循环,在高温流体接受热量,在低温流体换热器把热量释放给低温流体。

4.直接接触式换热器

直接接触式换热器是两种流体直接接触进行换热的设备,例如,冷水塔、气体冷凝器等。

(2)压缩机出口冷却器按结构分类

1.浮头式换热器

新型浮头式换热器浮头端结构,它包括圆筒、外头盖侧法兰、浮头管板、钩圈、浮头盖、外头盖及丝孔、钢圈等组成,其特征是:在外头盖侧法兰内侧面设凹型或梯型密封面,并在靠近密封面外侧钻孔并套丝或焊设多个螺杆均布,浮头处取消钩圈及相关零部件,浮头管板密封槽为原凹型槽并另在同一端面开一个以该管板中心为圆心,半径稍大于管束外径的梯型凹槽,且管板分程凹槽只与梯型凹槽相连通,而不与凹型槽相连通。

浮头式换热器的一端管板与壳体固定,而另一端的管板可在壳体内自由浮动,壳体和管束对膨胀是自由的,故当两张介质的温差较大时,管束和壳体之间不产生温差应力。浮头端设计成可拆结构,使管束能容易的插入或抽出壳体。(也可设计成不可拆的)。这样为检修、清洗提供了方便。但该换热器结构较复杂,而且浮动端小盖在操作时无法知道泄露情况。因此在安装时要特别注意其密封。

浮头换热器的浮头部分结构,按不同的要求可设计成各种形式,除必须考虑管束能在设备内自由移动外,还必须考虑到浮头部分的检修、安装和清洗的方便。

在设计时必须考虑浮头管板的外径Do。该外径应小于壳体内径Di,一般推荐浮头管板与壳体内壁的间隙b1=3~5mm。这样,当浮头出的钩圈拆除后,即可将管束从壳体内抽出。以便于进行检修、清洗。浮头盖在管束装入后才能进行装配,所以在设计中应考虑保证浮头盖在装配时的必要空间。

钩圈对保证浮头端的密封、防止介质间的串漏起着重要作用。随着浮头式换热器的设计、制造技术的发展,以及长期以来使用经验的积累,钩圈的结构形式也得到了不段的改进和完善。

钩圈一般都为对开式结构,要求密封可靠,结构简单、紧凑、便于制造和拆装方便。

浮头式换热器以其高度的可靠性和广泛的适应性,在长期使用过程中积累了丰富的经验,不断促进了自身的发展。故迄今为止在各种换热器中仍占主导地位。

2.固定管板式换热器

固定管板式换热器由两端管板和壳体构成。由于其结构简单,运用比较广泛。固定管板式换热器是一种实现物料之间热量传递的节能设备,是在石油、化工、石油化工、冶金、电力、轻工、食品等行业普遍应用的一种工艺设备。在炼油、化工装置中换热器占总设备数量的40%左右,占总投资的30%-45%。随着节能技术的发展,应用领域不断扩大,利用换热器进行高温和低温热能回收带来了显著的经济效益。

固定管板式换热器由管箱、壳体、管板、管子等零部件组成,其结构较紧凑,

排管较多,在相同直径下面积较大,制造较简单。

固定管板式换热器的结构特点是在壳体中设置有管束,管束两端用焊接或胀接的方法将管子固定在管板上,两端管板直接和壳体焊接在一起,壳程的进出口管直接焊在壳体上,管板外圆周和封头法兰用螺栓紧固,管程的进出口管直接和封头焊在一起,管束内根据换热管的长度设置了若干块折流板。这种换热器管程可以用隔板分成任何程数。

固定管板式换热器结构简单,制造成本低,管程清洗方便,管程可以分成多程,壳程也可以分成双程,规格范围广,故在工程上广泛应用。壳程清洗困难,对于较脏或有腐蚀性的介质不宜采用。当膨胀之差较大时,可在壳体上设置膨胀节,以减少因管、壳程温差而产生的热应力。

固定管板式换热器的特点是:旁路渗流较小;锻件使用较少,造价低;无内漏;传热面积比浮头式换热器大20%~30%。

固定管板式换热器的缺点是:壳体和管壁的温差较大,壳体和管子壁温差

t≤50℃,当t≥50℃时必须在壳体上设置膨胀节;易产生温差力,管板与管头之间易产生温差应力而损坏;壳程无法机械清洗;管子腐蚀后连同壳体报废,设备寿命较低。

3. U形管式换热器

U形管式换热器每根管子均弯成U形,流体进、出口分别安装在同一端的两侧,封头内用隔板分成两室,每根管子可自由伸缩,来解决热补偿问题。

结构简单,只有一个管板,密封面少,运行可靠,造价低;管束可抽出,管

间(壳程)清洗方便。质量轻,适用于高温和高压的场合。管程清洗困难,管程流体必须是洁净和不易结垢的物料,由于管子需要一定的弯曲半径,故管板利用率低;管束最内层间距大,壳程易短路;内层管子不能更换,因而抱人率高。U 形管式换热器适用于管、壳壁温差较大或壳程介质易结垢,而管程介质清洁不易结垢以及高温、高压、腐蚀性强的场合。一般高温、高压、腐蚀性强的介质走管内,可是高压空间减小,密封易解决,并可节约材料和减少热损失。

4.板式换热器

板式换热器(Plate Type Heat Exchanger),本成套设备由板式换热器、平衡槽、离心式卫生泵、热水装置(包括蒸汽管路、热水喷入器)、支架以及仪表箱等组成。用于牛奶或其它热敏感性液体之杀菌冷却。欲处理的物料先进入平衡槽,经离心式卫生泵送入换热器、经过预热、杀菌、保温、冷却各段,凡未达到杀菌温度的物料,由仪表控制气动回流阀换向、再回到平衡槽重新处理。物料杀菌温度由仪表控制箱进行自动控制和连续记录,以便对杀菌过程进行监视和检查。此设备适用于对牛奶预杀菌、巴式杀菌。

板式换热器的型式主要有框架式(可拆卸式)和钎焊式两大类,板片形式主要有人字形波纹板、水平平直波纹板和瘤形板片三种。

第一章 工艺计算

已知工艺设计参数列表1-1

表1-1 工艺设计参数表

壳程 管程 工作介质 氮气 水 流量3(m /h) 54877 入口温度()C ? 108 32 出口温度()C ? 40 40 工作压力(MPa)

1.0

0.4

1.1初步估算传热面积

1.1.1热流量计算

由m

V

ρ=

,335487711.55633829m V m h kg m kg h ρ==?=, 3,,633829

1.0510(10840)125713600

T m h p h Q q c T kW =???=

???-= 1.1.2冷却水用量计算

3,3

,1257110376.51355277/h 4.17410(4032)

T m c

p c Q q kg s kg c t ?====????- 1.1.3平均传热温差计算

按逆流算

o (10840)(4032)

28.04C 10840ln

4032

m t ---?=

=--

1.1.4初算传热面积

根据表1-2先假设2280/()K W m C ?=?则估算的传热面积为

3

'21257110160128028.04

T m Q S m K t ?===??

'21.15 1.1516011841S S m ==?=

表1-2列管式换热器中K 值大致范围

1.2工艺结构及尺寸计算

1.2.1换热管参数计算

(1)管子的选用

换热管的外表面积决定换热器传热面积的大小。在换热器中采用小直径管子可以使换热器的传热面积大,设备紧凑;但同时会使流体阻力大,易结垢,管内不易清洗。故一般处理脏、粘介质的换热器应选用较大的管径。本次设计考虑到苯为有毒液体,冷却水较硬易结垢,由于管径的大小影响管内流速的的大小和管内的压强降,因此选用管规格为φ25×2.5mm。 (2)管内流速选择

为了提高管程增加流体在换热器中的流速,将加大对流传热系数,减少污垢

在管子表面上沉积的可能性,即降低了污垢热阻,使总传热系数增大,从而可减小换热器的传热面积。但是流速增加,又使流体阻力增大,动力消耗就增多。因此,应选择适当流速。下表列出工业一般采用的流体流速范围。

表1-3工业一般流体流速

故先取管内流速为 2.8/i u m s = (3)管程数和传热管数计算 单程传热管数为 2

2376.5/995

442.80.7850.02 2.8

4

v i i

q N d u π

=

=

=?? 取443N = 所需传热管总长度为 1841

52.943.140.025443

o L m d N

s

π=

=

=??估

确定管子长度时应该考虑两个因素,一个是换热器的长径比;一个是管子的长度规格,管子的长度规格从1.5~12有多种,卧式换热器/610i L D =。 综上考虑取传热管长9l m =。 则管程数 52.9469

p L N l =

=≈, 取六管程 传热管总根数44362658n =?=根 (4)传热管排列和分程方法

换热管管板上的排列方式有正方形直列、正三角形排列、同心圆排列。正三角形排列比较紧凑,管板利用率高,管外流体湍动程度高,对流传热系数大,但管外清洗较困难;正方形排列便于机械清洗;同心圆排列用于小壳径换热器,外圆管布管均匀,结构更为紧凑。 本次设计内传热管按正三角形排列。

表1-4常用管心距(mm )

图1-1换热管排列方式

1.2.2壳程参数计算

(1)壳程数确定 平均传热温差校正系数如下:

211140320.10510832t t P T t --=

==--

1221

10840

8.54032

T T

R t t --===-- 1ln

ln

11P

R PR

-

ψ=--

10.105ln 8.5110.1058.50.841

-=--?= 平均传热温差:

o 32)23.61C 2.92m t -=

==-

由于平均温差校正系数大于0.8,同时壳程流体流量较大,故采用单壳程。(2)壳体直径计算

η=,则壳体直径

采用六管程结构,取管板利用率0.8

D mm

==?=

1.05 1.05321936.7

按卷制壳体的进级档取2000

=。

D mm

1.2.3折流板选择及参数计算

设置折流板的目的是为了提高壳程流体的流速,增加湍动程度,并使管程流体垂直冲刷管束,以改善传热,增大壳程流体的传热系数,同时减少结垢,而且在卧式换热器中还起支撑管束的作用。常见的折流板形式为弓形和圆盘—圆环形两种,其中弓形折流板有单弓形和双弓形,如下图所示:

图1-2折流板结构

折流板材质和形式的选择

根据本设计的要求,综合考虑材料的性能及经济性要求选用的材料为

Q235-B。选用单弓形折流板。

折流板的排列布置

一般应使管束两端的折流板尽可能靠近壳程进、出口管,其余折流板按等距离布置,对于卧式换热器,壳程为单相清洁液体时,折流板缺口应水平上下放置。

排列形式如下所示:

图1-3折流板排列方式

采用弓形折流板,切去圆缺高度 0.252000500h =?=mm

折流板间距 0.30.32000600B D ==?=)(mm 圆整取1500B mm =。 折流板数目 90001161500

B l N B =

-=-= 由参考文献查得,内径为2000mm ,间距为1500mm 时,取折流板厚度为20mm 。

表1-5折流板参数表

1.2.4接管参数计算

接管的选择与流体的流速和流量有关。冷凝器的管程进出口接管直径通常选用直径较大、管壁较厚的热轧无缝钢管,壳程流体出口接管选择冷轧无缝钢管。本次设计选用材料为Q235-B 的无缝钢管。因考虑到氮气流量过大采用两个接管输送氮气,取接管内流体流速130/u m

s =,则接管内径:

10.569D m =

== 取标准管φ610×10mm 。

管程流体进出口接管 取接管内液体流速2 2.5/u m s =, 则接管内径2D m =

=

取标准管φ475×9mm 。

初步选定卧式固定管板式换热器的规格如下:

表1-6 换热器的规格

1.3换热器核算

1.3.1传热面积校核

壳程传热膜系数

0.551/30.14

0'

0.36

Re (

)r e w

P d λ

μαμ= 传热管按正三角形排列时传热当量直径

2222)0.025)24240.0270.025

o e o d d m d ππ

ππ--=

==? 管程流体流通截面积

20.025

(1) 1.52000(1)0.8250.032

o o d S BD m t =-

=??-= 管程流体流速和雷诺数

54877

18/36000.825o u m s =

=?

5

0.0271811.55

Re 2893521.9510

e o

o o

d u ρμ-??=

=

=? 普朗特数

351.0510 1.95100.68250.030

po ro o

c P μ

λ-???=

==

黏度校正取0.14

()1w

μμ≈ 传热膜系数

1

0.55

2o 30.0300.362893520.68251391.7[C]0.027

o W m α=????=

1.3.2管内表面传热系数

0.80.40.023

Re i

i r i

P d λα=

管程流体流通截面积

222658

0.7850.020.41732

i S m =??

= 管程流体流速和雷诺数

376.5

0.67/994.30.4173

i u m s =

=?

0.020.67994.3Re 179560.000742i ??==

普朗特数

41740.000742

Pr 4.9630.624

i ?=

=

传热膜系数

0.80.42o 00.624

0.02317956 4.9633450.9[C]0.020

W m α=?

??= 污垢热阻和管壁热导率

污垢热阻往往对换热器的操作有很大影响,需要采取措施防止或减少污垢的积累或定期清洗。由表3-4查得管内侧污垢热阻20.0006/i R m C W ?=?,管外侧热阻200.0004/R m C W ?=?。管壁厚度0.0025b m =,碳钢在该条件下的热导率

45/()W m C λ?=?

表1-7污垢热阻Rd 的大致范围

总传热系数

0.0190.015

0.0172

m d m +=

=

2o 1

1

11

10.00250.0250.02510.0250.00040.0006397.1450.02250.023450.90.02=306C

o o o

o i o

m i i i

K d d d b R R d d d W m αλα=

++

++=

++?+?+?

1.3.3传热面积校核

3

'

212571101496.530628.04

T m Q S m K t ?===??

换热器的实际传热面积 23.140.025(90.1)26581857.0o S d l n m π=???=??-?=

换热器的面积裕度 ''18571496.5

100%20%1496.5

S S H S --==?= 所以该换热器的传热面积裕度符合要求。

1.4换热器内压降的核算

换热器管程及壳程的流动阻力,常常控制在一定允许范围内。若计算结果超过允许值时,则应修改设计参数或重新选择其他规格大换热器。按一般经验,对于液体常控制在104~105Pa 范围内,对于气体则以103~104Pa 为宜。此外,也可依据操作压力不同而有所差别,参考下表。

表1-8换热器操作允许压降△P

<105

(绝压) 0~105 (表压) 0.1P 0.5P

1.4.1管程阻力计算

换热管阻力

t p s i F N N P P P )(21?+?=? 其中1=s N ,6p N =,4.1=t F 。

直管阻力 2

2

1u d l P ρλ=?

由17956e R =,传热管相对粗糙度0.01查得摩擦系数0.036λ=。

2

19994.320.03632215.30.022P Pa ??=?

?= 2

2

2994.32335965.822

i u P Pa

ρ??==?=

(32215.35965.8)6 1.4320721.2i P Pa ?=+??=

1.4.2壳程阻力

筒体内阻力

''

12()o s s P P P N F ?=?+? 其中1=s N , 1.15s F =。

流体流经管束的阻力 2

)

1(2'

1

o

B c o u N n Ff P ρ+=? 其中0.3F =。

0.2280.2285Re 57233800.2307o f --==?=

1.1961.4c n ===

2

'1

11.55180.30.230761.4(111)922592

P Pa ??=???+?=

流体流过折流板缺口的阻力

2

2

'

2

220.711.5518(3.5)11(3.5)56998.72 2.22o B u B P N Pa D ρ???=-=?-?=

=(602533.6+372251.3) 1.151171000o P Pa ???=

由计算结果可知所选换热器合适。

1.5工艺计算结果汇总

表1-9换热器主要结构尺寸和计算结果

固定管板式换热器结构设计

固定管板式换热器的结构设计 摘要 换热器是化工、石油、动力、冶金、交通、国防等工业部门重要工艺设备之一,其正确的设置,性能的改善关系各部门有关工艺的合理性、经济性以及能源的有效利用与节约,对国民经济有着十分重要的影响。 换热器的型式繁多,不同的使用场合使用目的不同。其中常用结构为管壳式,因其结构简单、造价低廉、选材广泛、清洗方便、适应性强,在各工业部门应用最为广泛。 固定管板式换热器是管壳式换热器的一种典型结构,也是目前应用比较广泛的一种换热器。这类换热器具有结构简单、紧凑、可靠性高、适应性广的特点,并且生产成本低、选用的材料范围广、换热表面的清洗比较方便。固定管板式换热器能承受较高的操作压力和温度,因此在高温高压和大型换热器中,其占有绝对优势。 固定管板式换热器主要由壳体、换热管束、管板、前端管箱(又称顶盖或封头)和后端结构等部件组成。管束安装在壳体内,两端固定在管板上。管箱和后端结构分别与壳体两端的法兰用螺栓相连,检修或清洗时便于拆卸。换热器设计的优劣最终要看是否适用、经济、安全、运行灵活可靠、检修清理方便等等。一个传热效率高、紧凑、成本低、安全可靠的换热器的产生,要求在设计时精心考虑各种问题.准确的热力设计和计算,还要进行强度校核和符合要求的工艺制造水平。 关键词:换热器;固定管板式换热器;结构;设计

The Structural Design of Fixed Tube Plate Heat Exchanger Author : Chen Hui-juan Tutor : Li Hui Abstract Heat exchanger is one of the most important equipments which is used in the fields of chemical, oil, power, metallurgy, transportation, national defense industry. Its right setting and the improvements of performance play an important role in the rationality o technology, economy, energy utilization and saving, which has a very important impact on the national economy. The type of heat exchanger is various, the different use occasions and the purpose is are commonly used for the tube shell type structure, because of its simple structure, low cost and wide selection, easy to clean, strong adaptability, the most widely used in various industry departments. Fixed tube plate heat exchanger is a kind of typical structure of tube and shell heat exchanger, also is a kind of heat exchanger is applied more widely. This kind of heat exchanger has simple and compact structure, high reliability, the characteristics of wide adaptability, and the production of low cost, wide range of selection of materials, heat exchange surface cleaning more convenient. Fixed tube plate heat exchanger can operate under high pressure and temperature, therefore, the heat exchanger in high temperature and high pressure and large in its possession of absolute advantage. Fixed tube plate heat exchanger is mainly composed of shell, heat

换热器毕业设计论文.doc

第1章 浮头式换热器是管壳式换热器系列中的一种,它的特点是两端管板只有一端与外壳固定死,另一端可相对壳体滑移,称为浮头。浮头式换热器由于管束的膨胀不受壳体的约束,因此不会因管束之间的差胀而产生温差热应力,另外浮头式换热器的优点还在于拆卸方便,易清洗,在化工工业中应用非常广泛。本文对浮头式换热器进行了整体的设计,按照设计要求,在结构的选取上,即壳侧两程,管侧四程。首先,通过换热计算确定换热面积与管子的根数初步选定结构,然后按照设计的要求以及一系列国际标准进行结构设计,设计的前半部分是工艺计算部分,主要设根据设计传热系数、压强校核、壳程压降、管程压降的计算;设计的后半部分则是关于结构和强度的设计。主要是根据已经选定的换热器型式进行设备内各零部件(如壳体、折流板、管箱固定管板、分程隔板、拉杆、进出口管、浮头箱、浮头、支座、法兰、补强圈)的设计。 换热器是国民经济和工业生产领域中应用十分广泛的热量交换设备。随着现代新工艺、新技术、新材料的不断开发和能源问题的日趋严重,世界各国已普遍把石油化工深度加工和能源综合利用摆到十分重要的位置。换热器因而面临着新的挑战。换热器的性能对产品质量、能量利用率以及系统运行的经济性和可靠性起着重要的作用,有时甚至是决定性的作用。目前在发达的工业国家热回收率已达96%。换热设备在现代装置中约占设备总重30%左右,其中管壳式换热器仍然占绝对的优势,约70%。其余30%为各类高效紧凑式换热器、新型热管热泵和蓄热器等设备。其中板式、螺旋板式、板翅式以及各类高效传热元件的发展十分迅速。在继续提高设备热效率的同时,促进换热设备的结构紧凑性,产品系列化、标准化和专业化,并朝大型化的方向发展。浮头式换热器是管壳式换热器系列中的一种。换热管束包括换热管、管板、折流板、支持板、拉杆、定距管等。换热管可为普通光管,也可为带翅片的翅片管,翅片管有单金属整体轧制翅片管、双金属轧制翅片管、绕片式翅片管、叠片式翅片管等,材料有碳钢、低合金钢、不锈钢、铜材、铝材、钛材等。壳体一般为圆筒形,也可为方形。管箱有椭圆封头管箱、球形封头管箱和平盖管箱等。随着我国工业化和城镇化进程的加快,以及全球发展中国家经济的增长,国内市场和出口市场对换热器的需求量将会保持增长,客观上为我国换热器产业的快速发展提供了广阔的市场空间。从市场需求来看,在国家大力投资的刺激下,我国国民经济仍将保持较快发展。石油化工、能源电力、环境保护等行业仍然保持稳定增长,大型乙烯项目、大规模的核电站建设、大

固定管板式换热器课程设计

固定管板式换热器设计

目录 第一章绪论··3 1.1什么是管壳式换热器·3 1.2管壳式换热器的分类··3 第二章总体结构设计··4 2.1固定管板式换热器结构··4 第三章机械设计··4 3.1工艺条件 (4) 3.2设计计算 (4) (1)管子数n (5) (2)换热管排列形式··5 (3)管间距的确定 (5) (4)壳程选择··5 3.3 筒体··6 (1)换热器壳体内径的确定··6 (2)换热器封头的选择··6 3.4 折流板··6 (1)折流板切口高度的确定··6 (2)确定折流板间距··6 (3)折流板的排列方式··7 (4)折流板外径的选择··7 (5)折流板厚度的确定··7

(6)折流板的管孔确定··7 3.5 拉杆、定距管··7 (1)拉杆的直径和数量··7 (2)拉杆的尺寸··8 (3)拉杆的布置··9 (4)定距管··9 3.6、防冲板··9 3.7、接管··9 (1)接管的公称直径··9 (2)接管的壁厚确定··9 (3)接管高度的确定··9 3.8 法兰··10 (1)容器法兰的选用··10 (2)接管法兰··10 3.9 垫片的选用··11 3.10 管板的设计与计算··11 3.11 支座··12 3.12 圆筒节的设计··13 第四章列管式换热器机械结构设计··13 4.1 传热管与管板的连接··14 4.2 管板与壳体及管箱的连接··14 4.3 管法兰与接管连接··14

第五章强度计算··15 5.1 换热器壳体壁厚的计算··15 5.2 管箱短节··16 第六章安装制造··16 6.1 换热器制造··16 6.2 换热器安装··17 参考文献··18 心得体会··18

固定管板式换热器使用中的注意事项及工作原理

固定管板式换热器的注意事项及工作原理 固定管板式换热器在运行中应注意事项有: (1)换热器在新安装或检修完之后必须进行试压后才能使用。 (2)换热器在开工时要先通冷流后通热流,在停工时要先停热流后停冷流。以防止不均匀的热胀冷缩引起泄漏或损坏。 (3)固定管板式换热器不允许单向受热,浮动式换热器管、壳两侧也不允许温差过大。 (4)启动过程中,排气阀应保持打开状态,以便排出全部空气,启动结束后应关闭。 (5)如果使用碳氢化合物,在装入碳氢化合物之前要用惰性气体驱除换热器中的空气,以免发生爆炸。 (6)停工吹扫时,引汽前必须放净冷凝水,并缓慢通气,防止水击。换热器一侧通气时,必须把另一侧的放空阀打开,以免弊压损坏,关闭换热器时,应打开排气阀及疏水阀,防止冷却形成真空损坏设备。 (7)空冷器使用时要注意部分流量均匀,确保冷却效果。 (8)经常注意监视防止泄漏。 固定管板式换热器的工作原理:

图1 [固定管板式换热器]为固定管板式换热器的构造。A流体从接管1流入壳体内,通过管间从接管2流出。B流体从接管3流入,通过管内从接管4流出。如果A流体的温度高于B流体,热量便通过管壁由A流体传递给B流体;反之,则通过管壁由B流体传递给A流体。壳体以内、管子和管箱以外的区域称为壳程,通过壳程的流体称为壳程流体 (A流体)。管子和管箱以内的区域称为管程,通过管程的流体称为管程流体(B流体)。管壳式换热器主要由管箱、管板、管子、壳体和折流板等构成。通常壳体为圆筒形;管子为直管或U形管。为提高换热器的传热效能,也可采用螺纹管、翅片管等。管子的布置有等边三角形、正方形、正方形斜转45°和同心圆形等多种形式,前3 种最为常见。按三角形布置时,在相同直径的壳体内可排列较多的管子,以增加传热面积,但管间难以用机械方法清洗,流体阻力也较大。管板和管子的总体称为管束。管子端部与管板的连接有焊接和胀接两种。在管束中横向设置一些折流板,引导壳程流体多次改变流动方向,有效地冲刷管子,以提高传热效能,同时对管子起支承作用。折流板的形状有弓形、圆形和矩形等。为减小壳程和管程流体的流通截面、加快流速,以提高传热效能,可在管箱和壳体内纵向设置分程隔板,将壳程分为2程和将管程分为2程、4程、6程和8程等。

固定管板式换热器毕业设计

固定管板式换热器 毕业设计

河北化工医药职业技术学院毕业设计固定管板式换热器设计 专业班级 学号 姓名 指导教师 成绩

摘要 换热器是化工、石油、动力、冶金、交通、国防等工业部门重要工艺设备之一,其正确的设置,性能的改进关系各部门有关工艺的合理性、经济性以及能源的有效利用与节约,对国民经济有着十分重要的影响。换热器的型式繁多,不同的使用场合使用目的不同。其中常见结构为管壳式,因其结构简单、造价低廉、选材广泛、清洗方便、适应性强,在各工业部门应用最为广泛。 固定管板式换热器管束连接在管板上,管板与壳体焊接。其优点是结构简单、紧凑、能承受较高的压力,造价低,管程清洗方便,管子损坏时易堵管或更换;缺点是当管束与壳体的壁温或材料的线胀系数相差较大时,壳体与管束将会产生较大的热应力,这种换热器适用于壳侧介质清洁且不易结垢、并能进行清洗、管程与壳程两侧温差不大或温差较大但壳程压力不高的场合。 关键词:固定管板式换热器压力容器

目录 第一章绪论 (1) 1.1货叉与放箱的概 念 (1) 1.2货叉与放箱的分 类 (1) 第二章课程设计的内容和要求 (3) 2.1课程设计的内

容 (3) 2.2课程设计的控制要求 (3) 第三章硬件系统设计 (4) 3.1P L C控制的优 点 (4) 3.2P L C的发 展……………………………………………………………… 4 3.3PLC的选型及其特点 (7) 3.4所需硬件工具与仪器 (8) 第四章软件系统设计 (24) 4.1设计思 想 (4) 4.2P L C端子接 线 (4) 4.3P L C梯形 图 (4)

固定管板式换热器课设

江汉大学 课题名称: 固定管板式换热器设计 系别: 化学与环境工程学院 专业: 过控121班 学号: 122209104119 姓名: 库勇智 指导教师: 杨继军 时间: 2016年元月 课程设计任务书 设计题目:固定管板式换热器设计 一、设计目得: 1.实用国家最新压力容器标准、规范进行设计,掌握典型得过程装备 设计得全过程、 2.掌握查阅与综合分析文献资料得能力,进行设计方法与设计方案得 可行性研究与论证。 3.掌握软件强度设计计算,要求设计思路清晰,计算数据准确可靠,正 确掌握计算机操作与专业软件得实用。 4.掌握图纸得计算机绘图。 二、设计条件: 设计条件单

管口表 三、设计要求: 1。换热器机械设计计算及整体结构设计 2、绘制固定管板式换热器装配图(一张一号图纸) 3。管长与壳体内径之比在3-20之间 四、主要参考文献 1.国家质量监督检验检疫总局,GB150—2011《压力容器》,中国标

准出版社,2011。 2。国家质量监督检验检疫总局,TSG R0004-2009《固定式压力容器安全技术监察规程》,新华出版社,2009、 3.国家质量监督检验检疫总局,GB151—1999《管壳式换热器》,中国标准出版社,1999、 4、天津大学化工原理教研室,《化工原理》上册,姚玉英主编,天津科学技术出版社,2012、 5、郑津样,董其伍,桑芝富主编,《过程装备设计》,化学工业出版社,2010。 6。赵惠清,蔡纪宁主编,《化工制图》,化学工业出版社,2008。7.潘红良,郝俊文主编,《过程装备机械设计》,华东理工大学出版社,2006、 8。E.U、施林德尔主编,《换热器设计手册》第四卷,机械工业出版社,1989。 前言 换热设备就是用于两种或两种以上流体间、一种流体一种固体间、固体粒子间或者热接触且具有不同温度得同一种流体间热量(或焓)传递得装置。 换热器就是化工、石油、动力、冶金、交通、国防等工业部门重要工艺设备之一,其正确得设置,性能得改善关系各部门有关工艺得合理性、经济性以及能源得有效利用与节约,对国民经济有着十分重要得影响。在炼油、化工装置中换热器占总设备数量得40%左右,

固定管板式换热器课程设计

一 列管换热器工艺设计 1、根据已知条件,确定换热管数目和管程数: 选用.5225?φ的换热管 则换热管数目:5.737019 .014.35.2110 A 0≈??== d l n p π根 故738=n 根 管程数:对于固定板式换热器,可选单管程或双管程,为成本计,本设计采用单管程。 2、管子排列方式的选择 (1)采用正三角形排列 (2)选择强度焊接,由表1.1查的管心距t=25mm 。 表1.1 常用管心距 管外径/mm 管心距/mm 各程相邻管的管心距/mm 19 25 38 25 32 44 32 40 52 38 48 60 (3)采用正三角形排列,当传热管数超过127根,即正六边形的个数a>6时,最外层六边形和壳体间的弓形部分空间较大,也应该配置传热管。不同的a 值时,可排的管数目见表1.2。具体排列方式如图1,管子总数为779根。 表1.2 排管数目 正六角形的数目a 正三角形排列 六角形对角线上的管数b 六角形内的管数 每个弓形部分的管数 第一列 第二列 第三列 弓形部分的管数 管子总数 1 3 7 7 2 5 19 19 3 7 37 37 4 9 61 61 5 11 91 91 6 13 12 7 127 7 15 169 3 1 8 187 8 17 217 4 24 241 9 19 271 5 30 10 21

301 11 23 397 7 42 439 12 25 469 8 48 517 13 27 547 9 2 66 613 14 29 631 10 5 90 721 15 31 721 11 6 102 823 16 33 817 12 7 114 931 17 35 919 13 8 126 1045 18 37 1027 14 9 138 1165 19 39 1411 15 12 162 1303 20 41 1261 16 13 4 198 1459 21 43 1387 17 14 7 228 1616 22 45 1519 18 15 8 246 1765 23 47 1657 19 16 9 264 1921 图1.1折流板的管孔及换热管及拉杆分布 3、壳程选择 壳程的选择:简单起见,采用单壳程。 4、壳体内径的确定 换热器壳体内径与传热管数目、管心距和传热管的排列方式有关。壳体的内径需要圆整成标准尺寸。以400mm为基数,以100mm为进级档,必要时可以50mm为进级档。 对于单管程换热器,壳体内径公式0 b t+ - D d = ~ )3 2( )1 (

(完整版)固定管板式换热器毕业设计论文

优秀论文审核通过 未经允许切勿外传 新疆工程学院 毕业设计(论文) 2013 届 题目固定管板式换热器设计 专业设备维修技术 学生姓名韩向阳 学号 小组成员侯磊、张立东、蒋颖超 指导教师蔡香丽、薛风 完成日期

新疆工程学院教务处印制

新疆工程学院 毕业论文(设计)任务书班级化设备10-6班专业设备维修技术姓名韩向阳日期 2013.3.4 1、论文(设计)题目:固定管板式换热器设计 2、论文(设计)要求: (1)学生应在教师指导下按时完成所规定的内容和工作量,最好是独立完成。(2)选题有一定的理论意义与实践价值,必须与所学专业相关。 (3)主题明确,思路清晰。 (4)文献工作扎实,能够较为全面地反映论文研究领域内的成果及其最新进展。 (5)格式规范,严格按系部制定的论文格式模板调整格式。 (6)所有学生必须在5月15日之前交论文初稿。 3、论文(设计)日期:任务下达日期 2013.3.4 完成日期 2013.4.10 4、指导教师签字: 新疆工程学院 毕业论文(设计)成绩评定 报告

序 号 评分指标具体要求分数范围得分1 学习态度 努力学习,遵守纪律,作风严谨务实,按期完成规 定的任务。 0—10分 2 能 力 与 质 量 调研论 证 能独立查阅文献资料及从事其它形式的调研,能较 好地理解课题任务并提出实施方案,有分析整理各 类信息并从中获取新知识的能力。 0—15分 综合能 力 论文能运用所学知识和技能,有一定见解和实用价 值。 0—25分 论文(设 计)质量 论证、分析逻辑清晰、正确合理,0—20分 3 工作量 内容充实,工作饱满,符合规定字数要求。绘图(表) 符合要求。 0— 15分4 撰写质量 结构严谨,文字通顺,用语符合技术规范,图表清 楚,字迹工整,书写格式规范, 0— 15分 合计0—100分评语: 成绩: 评阅人(签名): 日期: 毕业论文答辩及综合成绩

固定管板式换热器课设报告

江汉大学 课题名称:固定管板式换热器设计 系别:化学与环境工程学院 专业:过控121班 学号: 122209104119 姓名:库勇智 指导教师:杨继军 时间: 2016年元月

课程设计任务书 设计题目:固定管板式换热器设计 一、设计目的: 1.实用国家最新压力容器标准、规范进行设计,掌握典型的过程装 备设计的全过程。 2.掌握查阅和综合分析文献资料的能力,进行设计方法和设计方案 的可行性研究和论证。 3.掌握软件强度设计计算,要求设计思路清晰,计算数据准确可靠, 正确掌握计算机操作和专业软件的实用。 4.掌握图纸的计算机绘图。 二、设计条件: 设计条件单 名称管程壳程 物料名称循环水甲醇 工作压力0.45Mpa 0.05Mpa 操作温度40℃70℃ 推荐钢材10,Q235-A,16MnR 换热面积60㎡ 推荐管长Φ=25 32-39㎡40-75㎡76-135㎡ 2m 2.5 3m

管口表 符号公称直径用途 a 200 冷却水金口 b 200 甲醇蒸汽进口 c 20 放气口 d 70 甲醇物料出口 e 20 排净物 f 200 冷却水出口 三、设计要求: 1.换热器机械设计计算及整体结构设计 2.绘制固定管板式换热器装配图(一张一号图纸) 3.管长与壳体内径之比在3-20之间 四、主要参考文献 1.国家质量监督检验检疫总局,GB150-2011《压力容器》,中国标准出版社,2011. 2.国家质量监督检验检疫总局,TSG R0004-2009《固定式压力容器安全技术监察规程》,新华出版社,2009. 3.国家质量监督检验检疫总局,GB151-1999《管壳式换热器》,中国标准出版社,1999. 4.天津大学化工原理教研室,《化工原理》上册,姚玉英主编,天津科学技术出版社,2012. 5.郑津样,董其伍,桑芝富主编,《过程装备设计》,化学工业出版社,

固定管板式换热器

固定管板式换热器的设计 学生:库勇智,化学与环境工程学院 指导教师:王小雨,江汉大学 摘要 换热器是用来在流体间交换热量的装置,在化学专业中具有非常重要的地位,被使用于化工各行业中。由于其中固定管板式换热器管板和壳体是一体构造,具有结构简单、造价十分便宜的优点,所以被普遍的使用。 这篇设计说明书上面着重说明了换热器的换热面积、各个设计压力和设计温度以及接管等数据参数。根据上面所给的数据和换热器类型来对换热器的各个零部件,即换热管根数,尺寸、排列方式,壳体和管箱、封头等等,最后校核、压力试验,根据工艺结构选出材料,最后作图。 本设计说明书的每一部分都是完全参照GB150-2011《压力容器》和GB151-2014《热交换器》中固定管板式换热器的有关标准来计算、校核和选型的。 关键词 管壳式换热器;固定管板式换热器;加热器

Abstract Heat exchanger is a device for exchanging heat between the fluids and in chemistry has a very important position, is used in the chemical industry. Because of the fixed tube plate heat exchanger tube plate and the shell is an integral structure, with has the advantages of simple structure, low cost advantages, so be widely use. The design specification above illustrates the change of the heat exchange area of the heat exchanger, each design pressure and temperature and over data parameters. According to the data given above and the heat exchanger type heat exchanger parts, i.e. the heat exchange tube number, size, arrangement, shell and tube box, head, and so on, finally checking, pressure test, selected according to process structure materials. Finally, drawing. The design specification is strictly according to GB150-2011< pressure container > and heat GB151-2014< exchanger is > fixed tube plate heat exchanger of the relevant provisions of the calculation, selection and checking. Key words Shell and tube heat exchanger ;fixed tube heat exchanger ;heater

板式换热器设计

南京工业大学 《材料工程原理B》课程设计 设计题目:板式换热器1-油处理能力17000公斤 /小时 专业:高分子材料与工程 班级:高材1001班 学号: 1102100124 姓名: 联系方式: 日期: 2013-1-5---2013-1-14 指导教师:张振忠 设计成绩:日期: 2013-1-14

目录 设计任务书 (3) (一)设计题目 (3) (二)设计任务及操作条件 (3) 第一章设计方案简介 (4) 1.1 板式换热器概述 (4) 1.2 确定设计原则 (7) 第二章板式换热器的工艺设计计算 (10) 2.1 设计计算步骤 (10) 2.2 工艺设计数据一览表 (11) 2.3 板式换热器设计计算 (12) 2.4 压降核算 (16) 2.5 换热器主要结构尺寸及计算结果一览表 (17) 第三章辅助设备的计算与选择 (19) 3.1 水泵的选择 (19) 3.2 油泵的选择 (19) 第四章附图 (21) 4.1 工艺流程图 (21) 4.2 主体设备工艺图 (22) 第五章设计小结 (24) 5.1 设计小结 (24) 5.2 参考文献 (25) 5.3 答辩及评语 (26)

设计任务书 (一)设计题目 板式换热器-油处理能力17000公斤/小时 (二)设计任务及操作条件 1、处理能力见下表 2、设备型式板式换热器 3、操作条件 (1)油:入口温度100℃,出口温度40℃ (2)冷却介质:冷却塔循环水,入口温度30℃,出口温度50℃。(3)油侧与水侧允许压强降:不大于5×105 Pa (4)油定性温度下的物性参数: 名称 ρ(kg/m3)Cp (KJ/ ㎏·℃) μ(Pa.s)λ(W/m·℃)油825 2.22 8.66×10-40.14 油的中性温度= 240 100+=70℃

固定管板式换热器课设论文

化工原理课程设计(论文) 煤油冷却器的设计 学院 专业 年级 学号 学生姓名 指导教师 2011年 11月

目录 一.任务书 (4) 1.1题目 1.2任务及操作条件 1.3列管式换热器的选择及设计要求 二.概述 (5) 2.1换热器概述 2.2固定管板式换热器 2.3设计背景及设计要求 三.物料数据的确定 (10) 3.1试算并初选换热器规格 3.2计算总传热系数 3.3计算传热面积 四.工艺结构尺寸 (13) 4.1.管径和管内流速 4.2.管程数和传热管数 4.3传热管排列和分程方法 4.4壳体内径 4.5折流板 4.6接管 4.7拉杆和定距管 4.8管板厚度

4.9封头 4.10缓冲挡板 4.11放气孔、排液孔 4.12膨胀节 4.13胀接 4.14密封垫圈 五.换热器核算 (20) 5.1壳程对流传热系数 5.2管程对流系数 5.3传热系数K 5.4传热面积 5.5计算压强降 六.工艺计算结果汇总表 (25) 七.后记 (26) 参考文献 (27)

煤油冷却器的设计 一.化工原理课程设计任务书 1.1设计题目:煤油冷却器的设计 1.2设计任务及操作条件 1.处理能力 19.6*104 吨/年煤油 2.设备型式列管式换热器 3.操作条件 a 煤油:入口温度145℃,出口温度 35℃ b 冷却介质:自来水,入口温度 30℃,出口温度 40℃ c 允许压强降:不大于105 pa d 煤油定性温度下的物性数据:密度为825kg/m3 ,粘度为7.15*10-4 pa*s,比热容为2.22kJ/(kg *℃),导热系数为0.14w/(m*℃) e 每年按330天计,每天24小时连续运行 1.3换热器的选择及设计要求 列管式换热器的形式主要依据换热器管程与壳程流体的温度差来确定。由于两流体的温差大于50 C,故选用带补偿圈的固定管板式换热器。这类换热器结构简单、价格低廉,但管外清洗困难,宜处理壳方流体较清洁及不易结垢的物料。因水的对流传热系数一般较大,并易结垢,故选择冷却水走换热器的管程,煤油走壳程。

固定管板式换热器设计结构设计说明

固定管板式换热器设计结构设计 第一章绪论 1 研究的目的和意义 随着现代工业的发展,以能源为中心的环境、生态等问题日益加剧。世界各国在寻找新能源的同时,也更加注重了节能新途径的研发。强化传热技术的应用不但能节约能源、保护环境,而且能大大节约投资成本。换热器由于其在化工、石油、动力和原子能等工业部门的广泛应用,使得换热器的强化传热技术一直以来受到研究人员的重视,各种研究成果不断涌现[1]。 换热器是一种实现物料之间热量传递的节能设备,在石油、化工、冶金、电力、轻工、食品等行业应用普遍。在炼油、化工装置中换热器占总设备数量的40%左右,占总投资的30%一45%。近年来随着节能技术的发展,换热器的应用领域不断扩大,带来了 显著的经济效益[2]。 目前,在换热设备中,管壳式换热器使用量最大。因此对其进行研究就具有很大的意义。 换热器换热过程是为了实现下列目的:⑴通过减小设计传热面积来减小换热器的体积和质量⑵.提高已有换热器的换热能力⑶.使换

热器能在较低额温差下正常工作⑷.通过减小换热器的流体阻力来减少换热器的动力消耗 2 国内外发展状况 2.1管程强化传热研究进展 换热管是管壳式换热器的主要组成部分,以下是列举的集中国内外新型高效换热管以及它们的作用 2.1.1螺旋槽管 螺旋槽管是一种管壁上具有外凸和内凸的异形管,管壁上的螺旋槽能在有相变和无相变的传热中明显提高管内外的传热系数,起到双边强化的作用。根据在光管表面加工螺旋槽的类型螺旋槽管有单头和多头之分,其主要结构参数有槽深e、槽距p和槽旋角β。美国、英国、日本从1970年至1980年间对螺旋槽管进行了大量的研究[1] 2.1.2横纹管 华南理工大学曾研究过1974年前苏联提出的一种换热管,研究表明:在相同流速下,横纹管的流体阻力较单头螺旋槽管的流体阻力要小。[2] 2.1.3螺旋扁管 梁龙虎[3]经实验研究,表明螺旋扁管管内膜传热系数通常比普通圆管大幅度提高,在低雷诺数时最为明显,达2~3倍;随着雷诺数的

固定管板式换热器

固定管板式换热器 一 换热管 1换热管外径 取换热管外径为25*2.5。 2换热管数量及长度 *(0.1)A n d L π=- A 换热面积 D 换热管外径 l 换热管长度 A=402m 取安全系数1.125,1*1.12546A A == 140*1.125 248*(0.1) 3.14*0.02*(30.1)A n d L π==≈-- n=248 L=3

3布管 (1)换热管排列方式 采用正三角形排列 (2)换热管中心距 查阅课本139页表5-3确定换热管中心距是32mm 。 二换热器壳体 1换热器内径计算 0*(1)(2~3)*D t b d =-+ t 管心距 d 0 换热管外径 D 壳体内径 17.32281b === 0*(1)(2~3)*D t b d =-+ t=32mm 32*(17.322811)2*25572.32992 D =-+= 取D=600mm

2筒体壁厚计算 水蒸气工作压力1.27Mpa ,脱盐水工作压力1.28Mpa 。 材料选16MnR 工作温度T=150/170℃ 查阅课本32页确定设计设计温度T W =170/190℃ 脱盐水走壳程,水蒸气走管程。 *2*[]*c i t c p D p δσφ=- δ 圆筒的计算壁厚 c p 圆筒的计算压力 []t σ 许用应力 φ 焊接接头系数 []t σ 156 查阅课本32页确定c p =1.28+0.18=1.46Mpa GB150规定焊接接头系数容器受压元件焊接接头的工艺特点以及无损检测的抽查率确定,查阅课本38页确定φ=0.85。 * 1.46*600 3.322*[]*2*156*0.86 1.46 c i t c p D mm p δσφ==≈-- d C δδ=+ 查阅课本40也确定C 2=1.5mm 。 查阅课本39页确定C 1=0.3mm C= C 1 + C 2=1.8mm 3.321 1.8 5.121d C mm δδ=+=+= 元整后6n mm δ= (3)布管限定圆 查阅GB15132*L i D D b =-

板式换热器流道的选择方法与设计

板式换热器板片型式或波纹式应根据换热场合的实际需要而定。对流量大允许压降小的情况,应选用阻力小的板型,反之选用阻力大的板型。根据流体压力和温度的情况,确定选择可拆卸式,还是钎焊式。确定板型时不宜选择单板面积太小的板片,以免板片数量过多,板间流速偏小,传热系数过低,对较大的换热器更应注意这个问题。 流程和流道的选择 流程指板式换热器内一种介质同一流动方向的一组并联流道,而流道指板式换热器内,相邻两板片组成的介质流动通道。一般情况下,将若干个流道按并联或串联的费那个是连接起来,以形成冷、热介质通道的不同组合。 流程组合形式应根据换热和流体阻力计算,在满足工艺条件要求下确定。尽量使冷、热水流道内的对流换热系数相等或接近,从而得到最佳的传热效果。因为在传热表面两侧对流换热系数相等或接近时传热系数获得较大值。虽然板式换热器各板间流速不等,但在换热和流体阻力计算时,仍以平均流速进行计算。由于“U”形单流程的接管都固定在压紧板上,拆装方便。

在板式换热器的设计选型使,一般对压降有一定的要求,所以应对其进行校核。如果校核压降超过允许压降,需重新进行设计选型计算,直到满足工艺要求为止。ARD艾瑞德板式换热器(江阴)有限公司拥有世界上最先进的设计和生产技术以及最全面的换热器专业知识,一直以来ARD艾瑞德板式换热器(江阴)有限公司致力于为全球50多个国家和地区的石油、化工、工业、食品饮料、电力、冶金、造船业、暖通空调等行业的客户提供高品质的板式换热器,目前已有超过50,000台的板式换热器良好地运行于各行业,ARD艾瑞德板式换热器(江阴)有限公司已发展成为可拆式板式换热器领域的全球领导者。 ARD艾瑞德板式换热器(江阴)有限公司同时也是板式换热器配件(换热器板片和换热器密封垫)领域全球排名第一的供应商和维护商。能够提供世界知名品牌(包括:阿法拉伐/AlfaLaval、斯必克/SPX、安培威/APV、基伊埃/GEA、传特/TRANTER、舒瑞普/SWEP、桑德斯/SONDEX、艾普尔.斯密特/API.Schmidt、日阪/HISAKA、风凯/FUNKE、萨莫威孚/Thermowave、维卡勃Vicarb、东和恩泰 /DONGHWA、艾克森ACCESSEN、MULLER、FISCHER、REHEAT等)的所有型号的板式换热器板片和垫片。全球约有1/5的板式换热器正在使用ARD艾瑞德板式换热器(江阴)有限公司提供的换热器配件或接受ARD艾瑞德板式换热器(江阴)有限公司的维护服务(包括定期清洗、维修及更换配件等维护服务)。 无论您身在何处,无论您有什么特殊要求,ARD艾瑞德板式换热器(江阴)有限公司都能为您提供板式换热器领域的系统解决方案。

固定管板式换热器的设计

固定管板式换热器的设计 第一章.设计方案概述和简介 一、概述 在不同温度的流体间传递热能的装置称为热交换器,简称为换热器。化工生产中换热器的使用十分普遍,由于物料的性质、要求各不相同,换热器的种类很多。了解各种换热器的特点,根据工艺要求正确选用适当类型的换热器是非常重要的。 按照热量交换的方法不同,分为间壁式换热器、直接接触式换热器、蓄热式换热器三种。化工生产中绝大多数情况下不允许冷、热两流体在传热过程中发生混合,所以,间壁式换热器的应用最广泛。在换热器中至少要有两种温度不同的流体,一种流体温度较高,放出热量:另一种流体温度较低,吸收热量。换热器在化工、石油、动力、制冷、食品等行业中都有广泛应用,且它们是上述这些行业的通用设备,并占有十分重要的地位 二、列管式换热器的分类 1、 U型管换热器 U型管换热器结构特点是只有一块管板,换热管为U型,管子的两端固定在同一块管板上,其管程至少为两程。管束可以自由伸缩,当壳体与U型环热管由温差时,不会产生温差应力。U型管式换热器的优点是结构简单,只有一块管板,密封面少,运行可靠;管束可以抽出,管间清洗方便。其缺点是管内清洗困难;由于管子需要一定的弯曲半径,故管板的利用率较低;管束最内程管间距大,壳程易短路;内程管子坏了不能更换,因而报废率较高。此外,其造价比管定管板式高10%左右。 2、固定管板式换热器 固定管板式换热器主要是由筒体、封头、管板、换热管、管箱、折流板及法兰等组成,管束两端固定在管板上,管板和筒体之间是刚性连接在一起,相互之间无相对移动,换热器结构简单、制造方便、造价较低;在相同直径的壳体内可排列较多的换热管,而且每根换热管都可单独进行更换和管内清洗;但管外壁清洗较困难。当两种流体的温差较大时,会在壳壁和管壁中产生温差应力,一般当温差大于50摄氏度时就应考虑在壳体上设置膨胀节以减小温差应力。但当管、壳温差大于70摄氏度时,壳程压力超过0.6Mpa时,导致膨胀节过厚失去温差补偿作用。因此,固定管板式换热器适用于壳程流体清洁,不易结垢,管程常用要清洗,冷热流体温差不太大的场合。

板式换热器设计毕业论文

板式换热器设计毕业论文 目录 前言 (1) 1章标题 (2) 1.1节标题 (3) 1.1.1小节标题 (4) 1.1.1.1小节子标题 (5) 1.2节标题 (6) 1.2.1小节标题 (7) 1.2.1.1小节子标题 (8) 2章标题 (9) 2.1节标题 (10) 2.1.1小节标题 (11) 2.1.1.1小节子标题 (12) 1绪论 1.1 板式换热器的学术背景及意义 目前板式换热器已成为高效、紧凑的热交换设备,大量地应用于工业中,它的发展已有一百多年的历史。 1878年德国人发明了半片式换热器,现在通常都称作板式换热器,它经过了50余年的发展,至20世纪30年代,由薄金属板压制的板片组装而成的板式换热器间世,并将该换热器应用于工业中,显示出了优异的性能,从此就迅速地得到了广泛的推广应用,成为紧凑、高效的换热设备之一。 板式换热器是以波纹板的新型高效换热器。国外早在20世纪20年代就作为工艺设备引入食品工业,40—50年代初开始用于化工领域。近十年来,板式换热器发展很迅速,现已广泛用于食品、制药、合成纤维、石油化工、动力机械、船舶、动力、供热等各行业。目前我国的板式换热器工厂,可制造单板传热面积从0.042m2至1.32m2,波纹形式为水平平直波纹、人字形波纹、球形波纹、锯齿形波纹、竖直形波纹的板式换热器。

由于板式换热器在制造上和使用上都有一些独特之处,所以在工业上一经使用成功之后就发展很快。到本世纪四十年代,已经有几个国家好几个厂生产出许多种不同形状和不同尺寸的板片。至于现在,世界上能生产板式换热器的工厂已经很多了,主要的生产厂不下三、四十个。几个主要生产厂一般都有该厂独特的板片波形。一般一个厂只生产有限几种尺寸的板片。然后组装成换热面积大小不同的换热器。因为从设计到制造成功一定波形的板片需要有较大的投资和较长的时间,所以一般生产工厂不轻易改变板片的波形。 早期的板式换热器大都用于食品工业,如牛奶、蛋液、啤酒等的加工过程中。这是由于早期扳片的单板面积较小,不能组成单台面积较大的换热器,所以只能用于处理物料流量较小的场合,随着单板面积的增大,能组成的单台板式换热器的面积也相应增大。现在各制造厂竞相增大单板面积和组成大型的板式换热器。 板式换热器今后的发展趋势是:提高操作温度和操作压力,加大处理量,扩大使用范围,研制采用新的结构材料的制造工业,而研制新的垫片材料易提高其使用温度和使用压力,将是其中的重点。 虽然板式换热器有很多优点,而其现在发展很快,但它们在结构与制造上尚存在问题。随着科学技术的飞速发展,板式换热器正不断完善,应用也日趋广泛。 21世纪我国的能源形势是紧张的,我国和世界的能源消耗随着人口的增长和工业化的进展将会快速增长;现在我们利用的主要一次能源(煤炭、石油、天然气和核能)之中,除煤炭之外,其余三项已逐渐枯竭,其价格不可避免将持续增长;目前尚没有发现能替代石油、天然气、核能的一次能源,作为有效替补的能源有太阳能和热核反应,但前者成本费高,后者尚有许多实质的问题没有解决,尚不能达到实用阶段;为了控制地球温室效应,化石燃料的使用受到了各国舆论的强烈反对。综上所述,在21世纪的上半个世纪之间,作为解决我国能源和环境问题的重要措施之一是如何有效地利用好一次能源,其中主要研究的内容是从一次能源转移至二次能源、三次能源的高效率化;各阶段利用技术的先进性和效率的提高;需求的平衡和能源的供给、消耗系统的改善等。上述所说内容的实质是热技术,当分析各项技术时,我们将发现,换热技术是关键工艺之一。 近几十年来,板式换热器的技术发展,可以归纳为以下几个方面。 1:研究高效的波纹板片。初期的板片是铣制的沟道板,至三四十年代,才用薄金属板压制成波纹板,相继出现水平平直波纹、阶梯形波纹、人字形波纹等形式繁多的波纹片。同一种形式的波纹,又对其波纹的断面尺寸——波纹的高度、节距、圆角等进行大量的研究,同时也发展了一些特殊用途的板片; 2:研究适用于腐蚀介质的板片、垫片材料及涂(镀)层; 3:研究提高使用压力和使用温度; 4:发展大型板式换热器; 5:研究板式换热器的传热和流体阻力; 6:研究板式换热器提高换热综合效率的可能途径。 1.2 我国设计制造应用情况 我国板式换热器的研究、设计、制造,开始于六十年代。1965年,兰州石油化工机器

化工原理课程设计说明书(换热器的设计)

中南大学 化工原理课程设计 2010年01月22日 题目设计说明书指导老师夏柳荫 学生姓名徐春波学院化学化工学院学生学号1503070127 专业班级制药0701班

目录 一、设计题目及原始数据(任务书) (3) 二、设计要求 (3) 三、列环式换热器形式及特点的简述 (3) 四、论述列管式换热器形式的选择及流体流动空间的选择 (8) 五、换热过程中的有关计算(热负荷、壳层数、总传热系数、传热 面积、压强降等等) (10) ①物性数据的确定 (14) ②总传热系数的计算 (14) ③传热面积的计算 (16) ④工艺结构尺寸的计算 (16) ⑤换热器的核算 (18) 六、设计结果概要表(主要设备尺寸、衡算结果等等) (22) 七、主体设备计算及其说明 (22) 八、主体设备装置图的绘制 (33) 九、课程设计的收获及感想 (33) 十、附表及设计过程中主要符号说明 (37) 十一、参考文献 (40)

一、设计题目及原始数据(任务书) 1、生产能力:17×104吨/年煤油 2、设备形式:列管式换热器 3、设计条件: 煤油:入口温度140o C,出口温度40 o C 冷却介质:自来水,入口温度30o C,出口温度40 o C 允许压强降:不大于105Pa 每年按330天计,每天24小时连续运行 二、设计要求 1、选择适宜的列管式换热器并进行核算 2、要进行工艺计算 3、要进行主体设备的设计(主要设备尺寸、横算结果等) 4、编写设计任务书 5、进行设备结构图的绘制(用420*594图纸绘制装置图一张:一主视图,一俯视图。一剖面图,两个局部放大图。设备技术要求、主要参数、接管表、部件明细表、标题栏。) 三、列环式换热器形式及特点的简述 换热器概述 换热器是将热流体的部分热量传递给冷流体的设备,以实现不同温度流体间的热能传递,又称热交换器。换热器是实现化工生产过程中热量交换和传递不可缺少的设备。

相关主题
文本预览
相关文档 最新文档