当前位置:文档之家› 2017届新人教B版 变化率与导数、导数的计算 配餐作业

2017届新人教B版 变化率与导数、导数的计算 配餐作业

2017届新人教B版     变化率与导数、导数的计算     配餐作业
2017届新人教B版     变化率与导数、导数的计算     配餐作业

配餐作业(十三) 变化率与导数、导数的计算

一、选择题

1.若f (x )=2xf ′(1)+x 2,则f ′(0)等于( ) A .2 B .0

C .-2

D .-4 解析:f ′(x )=2f ′(1)+2x ,

令x =1,则f ′(1)=2f ′(1)+2,得f ′(1)=-2, 所以f ′(0)=2f ′(1)+0=-4。 答案:D

2.(2016·济宁模拟)已知f (x )=x (2 014+ln x ),f ′(x 0)=2 015,则x 0=( )

A .e 2

B .1

C .ln2

D .e

解析:由题意可知f ′(x )=2 014+ln x +x ·1x =2 015+ln x 。由f ′(x 0)=2 015,得ln x 0=0,解得x 0=1。

答案:B

3.(2016·河南八市质检)已知函数f (x )=sin x -cos x ,且f ′(x )=12f (x ),则tan2x 的值是( )

A .-23

B .-43 C.43 D .34

解析:因为f ′(x )=cos x +sin x =12sin x -1

2cos x ,

所以tan x =-3,所以tan2x =2tan x

1-tan 2x =-61-9=34,故选D 。

答案:D

4.(2016·哈122中学期末)已知点P 在曲线y =4

e x +1

上,α为曲

线在点P 处的切线的倾斜角,则α的取值范围是( )

A.??????0,π4

B.????

??3π4,π C.?

??

??π2,3π4 D.?

???

??π4,π2 解析:∵y =4

e x +1,∴y ′=-4e x (e x +1)2=-4e x (e x )2+2e x +1

-4

e x +1

e x +2

≥-1(当且仅当e x =1

e x ,即x =0时取等号),∴-1≤tan α<0。又∵0≤α<π,∴3π

4≤α<π,故选B 。

答案:B

5.(2016·郑州质检)函数f (x )=e x cos x 在点(0,f (0))处的切线方程为( )

A .x +y +1=0

B .x +y -1=0

C .x -y +1=0

D .x -y -1=0

解析:∵f ′(x )=e x cos x +e x (-sin x )=e x (cos x -sin x ),∴f ′(0)=e 0(cos0-sin0)=1。

又∵f (0)=1,

∴f (x )在点(0,1)处的切线方程为y -1=x , 即x -y +1=0,故选C 。 答案:C

6.下面四个图象中,有一个是函数f (x )=13x 3+ax 2+(a 2-1)x +1(a ∈R )的导函数y =f ′(x )的图象,则f (-1)=( )

A.13 B .-23 C.73 D .-13或53

解析:∵f ′(x )=x 2+2ax +a 2-1, ∴f ′(x )的图象开口向上,则②④排除。

若f ′(x )的图象为①,此时a =0,f (-1)=5

3; 若f ′(x )的图象为③,此时a 2-1=0,

又对称轴x =-a >0,∴a =-1,∴f (-1)=-1

3。 答案:D 二、填空题

7.(2016·广东模拟)曲线y =-5e x +3在点(0,-2)处的切线方程为________。

解析:由y =-5e x +3得,y ′=-5e x ,所以切线的斜率k =y ′|x

=0

=-5,所以切线方程为y +2=-5(x -0),即5x +y +2=0。 答案:5x +y +2=0

8.(2016·邯郸模拟)曲线y =log 2x 在点(1,0)处的切线与坐标轴所

围三角形的面积等于________。

解析:∵y ′=1x ln2,∴k =1

ln2, ∴切线方程为y =1

ln2(x -1),

∴三角形面积为S △=12×1×1ln2=12ln2=1

2log 2e 。 答案:1

2log 2e

9.(2016·郑州模拟)曲线y =13x 3

+x 在点? ????1,43处的切线与坐标轴围成的三角形的面积为________。

解析:若y =1

3x 3+x ,则y ′|x =1=2,

即曲线y =13x 3+x 在点? ????1,43处的切线方程是y -43=2(x -1),它与坐标轴的交点是?

??

??13,0,?

?

?

??0,-23,

围成的三角形的面积为1

9。 答案:19 三、解答题

10.已知函数f (x )=x -2

x ,g (x )=a (2-ln x )(a >0)。若曲线y =f (x )与曲线y =g (x )在x =1处的切线斜率相同,求a 的值,并判断两条切线是否为同一条直线。

解析:根据题意有

曲线y =f (x )在x =1处的切线斜率为f ′(1)=3, 曲线y =g (x )在x =1处的切线斜率为g ′(1)=-a 。 所以f ′(1)=g ′(1),即a =-3。

曲线y =f (x )在x =1处的切线方程为y -f (1)=3(x -1),又f (1)=-1,

得:y +1=3(x -1), 即切线方程为3x -y -4=0。

曲线y =g (x )在x =1处的切线方程为y -g (1)=3(x -1)。 又g (1)=-6,得y +6=3(x -1),即切线方程为3x -y -9=0, 所以,两条切线不是同一条直线。

11.(2016·沧州模拟)已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R )。

(1)若函数f (x )的图象过原点,且在原点处的切线斜率为-3,求a ,b 的值;

(2)若曲线y =f (x )存在两条垂直于y 轴的切线,求a 的取值范围。 解析:f ′(x )=3x 2+2(1-a )x -a (a +2)。

(1)由题意得?

????

f (0)=b =0,f ′(0)=-a (a +2)=-3,

解得b =0,a =-3或a =1。

(2)因为曲线y =f (x )存在两条垂直于y 轴的切线,

所以关于x 的方程f ′(x )=3x 2+2(1-a )x -a (a +2)=0有两个不相等的实数根,

所以Δ=4(1-a )2+12a (a +2)>0, 即4a 2+4a +1>0,所以a ≠-1

2,

所以a 的取值范围为? ????-∞,-12∪? ??

??

-12,+∞。 12.(2016·临沂模拟)已知函数f (x )=1

3x 3-2x 2+3x (x ∈R )的图象为曲线C 。

(1)求过曲线C 上任意一点切线斜率的取值范围;

(2)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围。

解析:(1)由题意得f ′(x )=x 2-4x +3, 则f ′(x )=(x -2)2-1≥-1,

即过曲线C 上任意一点切线斜率的取值范围是[-1,+∞)。 (2)设曲线C 的其中一条切线的斜率为k ,

则由(2)中条件并结合(1)中结论可知,???

k ≥-1,

-1

k ≥-1,

解得-1≤k <0或k ≥1,

故由-1≤x 2-4x +3<0或x 2-4x +3≥1, 得x ∈(-∞,2-2]∪(1,3)∪[2+2,+∞)。

苏教版高中数学选修2-2《1.1.2 瞬时变化率——导数(2)》教案

教学目标: 1.理解并掌握瞬时速度的定义; 2.会运用瞬时速度的定义求物体在某一时刻的瞬时速度和瞬时加速度; 3.理解瞬时速度的实际背景,培养学生解决实际问题的能力. 教学重点: 会运用瞬时速度的定义求物体在某一时刻的瞬时速度和瞬时加速度. 教学难点: 理解瞬时速度和瞬时加速度的定义. 教学过程: 一、问题情境 1.问题情境. 平均速度:物体的运动位移与所用时间的比称为平均速度. 问题一平均速度反映物体在某一段时间段内运动的快慢程度.那么如何刻画物体在某一时刻运动的快慢程度? 问题二跳水运动员从10m高跳台腾空到入水的过程中,不同时刻的速度是不同的.假设t 秒后运动员相对于水面的高度为h(t)=-4.9t2+6.5t+10,试确定t=2s时运动员的速度. 2.探究活动: (1)计算运动员在2s到2.1s(t∈)内的平均速度. (2)计算运动员在2s到(2+?t)s(t∈)内的平均速度. (3)如何计算运动员在更短时间内的平均速度. 探究结论:

当?t →0时,v →-13.1, 该常数可作为运动员在2s 时的瞬时速度. 即t =2s 时,高度对于时间的瞬时变化率. 二、建构数学 1.平均速度. 设物体作直线运动所经过的路程为()s f t =,以0t 为起始时刻,物体在?t 时间内的平均速度为00()() ????f t t f t s v t t +-= =. v 可作为物体在0t 时刻的速度的近似值,?t 越小,近似的程度就越好.所以当 ?t →0时,v 极限就是物体在0t 时刻的瞬时速度. 三、数学运用 例1 物体作自由落体运动,运动方程为21 2 S gt =,其中位移单位是m ,时 间单位是s ,210m/s g =,求: (1) 物体在时间区间 s 上的平均速度;

苏教版数学高二- 选修2-2试题《瞬时变化率—导数—瞬时速度与瞬时加速度》(二)

1.1.3 瞬时变化率——导数 同步检测 (二) 一、基础过关 1.下列说法正确的是________(填序号). ①若f′(x 0)不存在,则曲线y =f(x)在点(x 0,f(x 0))处就没有切线; ②若曲线y =f(x)在点(x 0,f(x 0))处有切线,则f′(x 0)必存在; ③若f′(x 0)不存在,则曲线y =f(x)在点(x 0,f(x 0))处的切线斜率不存在; ④若曲线y =f(x)在点(x 0,f(x 0))处没有切线,则f′(x 0)有可能存在. 2.已知y =f(x)的图象如图所示,则f′(x A )与f′(x B )的大小关系是________. 3.已知f(x)=1x ,则当Δx→0时,f 2+Δx -f 2Δx 无限趋近于________. 4.曲线y =x 3+x -2在点P 处的切线平行于直线y =4x -1,则此切线方程为 ____________. 5.设函数f(x)=ax 3+2,若f′(-1)=3,则a =________. 6.设一汽车在公路上做加速直线运动,且t s 时速度为v(t)=8t 2+1,若在t =t 0时的加速度为6 m/s 2,则t 0=________ s. 二、能力提升 7.已知函数y =f(x)的图象在点M(1,f(1))处的切线方程是y =12 x +2,则f(1)+f′(1)=________. 8.若函数y =f(x)的导函数在区间上是增函数,则函数y =f(x)在区间上的图象可能是________.(填序号)

9.若曲线y=2x2-4x+P与直线y=1相切,则P=________. 10.用导数的定义,求函数y=f(x)=1 x 在x=1处的导数. 11.已知抛物线y=x2+4与直线y=x+10.求: (1)它们的交点; (2)抛物线在交点处的切线方程. 12.设函数f(x)=x3+ax2-9x-1(a<0),若曲线y=f(x)的斜率最小的切线与直线12x+y =6平行,求a的值. 三、探究与拓展 13.根据下面的文字描述,画出相应的路程s关于时间t的函数图象的大致形状: (1)小王骑车一路匀速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (2)小华早上从家出发后,为了赶时间开始加速; (3)小白早上从家出发后越走越累,速度就慢下来了.

高中数学变化率问题教案

§1.1.1变化率问题 教学目标 1.理解平均变化率的概念; 2.了解平均变化率的几何意义; 3.会求函数在某点处附近的平均变化率 教学重点:平均变化率的概念、函数在某点处附近的平均变化率; 教学难点:平均变化率的概念. 教学过程: 一.创设情景 为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关: 一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等; 二、求曲线的切线; 三、求已知函数的最大值与最小值; 四、求长度、面积、体积和重心等。 导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。 导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度. 二.新课讲授 (一)问题提出 问题1 气球膨胀率 我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢? ? 气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是33 4)(r r V π= ? 如果将半径r 表示为体积V 的函数,那么3 43)(π V V r = 分析: 3 43)(π V V r =, ⑴ 当V 从0增加到1时,气球半径增加了)(62.0)0()1(dm r r ≈- 气球的平均膨胀率为 )/(62.00 1) 0()1(L dm r r ≈-- ⑵ 当V 从1增加到2时,气球半径增加了)(16.0)1()2(dm r r ≈- 气球的平均膨胀率为 )/(16.01 2) 1()2(L dm r r ≈-- 可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了. 思考:当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少 ?

变化率与导数教案

变化率与导数教案 Prepared on 24 November 2020

第三章 变化率和导数 3.1.1瞬时变化率—导数 教学目标: (1)理解并掌握曲线在某一点处的切线的概念 (2)会运用瞬时速度的定义求物体在某一时刻的瞬时速度和瞬时加速度 (3)理解导数概念 实际背景,培养学生解决实际问题的能力,进一步掌握在一点处的导数的定义及其几何意义,培养学生转化问题的能力及数形结合思想 教学过程:时速度我们是通过在一段时间内的平均速度的极限来定义的,只要知道了物体的运动方程,代入公式就可以求出瞬时速度了.运用数学工具来解决物理方面的问题,是不是方便多了.所以数学是用来解决其他一些学科,比如物理、化学等方面问题的一种工具,我们这一节课学的内容以及上一节课学的是我们学习导数的一些实际背景 一、复习引入 1、什么叫做平均变化率; 2、曲线上两点的连线(割线)的斜率与函数f(x)在区间[x A ,x B ]上的平均变化率 3、如何精确地刻画曲线上某一点处的变化趋势呢 下面我们来看一个动画。从这个动画可以看出,随着点P 沿曲线向点Q 运动,随着点P 无限逼近点Q 时,则割线的斜率就会无限逼近曲线在点Q 处的切线的斜率。 所以我们可以用Q 点处的切线的斜率来刻画曲线在点Q 处的变化趋势 二、新课讲解 1、曲线上一点处的切线斜率 不妨设P(x 1,f(x 1)),Q(x 0,f(x 0)),则割线PQ 的斜率为0 101) ()(x x x f x f k PQ --=, 设x 1-x 0=△x ,则x 1 =△x +x 0,

∴x x f x x f k PQ ?-?+= ) ()(00 当点P 沿着曲线向点Q 无限靠近时,割线PQ 的斜率就会无限逼近点Q 处切线斜率,即当△x 无限趋近于0时,x x f x x f k PQ ?-?+= ) ()(00无限趋近点Q 处切线斜率。 2、曲线上任一点(x 0,f(x 0))切线斜率的求法: x x f x x f k ?-?+= ) ()(00,当△x 无限趋近于0时,k 值即为(x 0,f(x 0))处切线的 斜率。 3、瞬时速度与瞬时加速度 (1)平均速度: 物理学中,运动物体的位移与所用时间的比称为平均速度 (2) 位移的平均变化率: t t s t t s ?-?+) ()(00 (3)瞬时速度:当无限趋近于0 时,t t s t t s ?-?+) ()(00无限趋近于一个常数,这个常 数称为t=t 0时的瞬时速度 求瞬时速度的步骤: 1.先求时间改变量t ?和位置改变量)()(00t s t t s s -?+=? 2.再求平均速度t s v ??= 3.后求瞬时速度:当t ?无限趋近于0,t s ??无限趋近于常数v 为瞬时速度 (4)速度的平均变化率: t t v t t v ?-?+) ()(00 (5)瞬时加速度:当t ?无限趋近于0 时,t t v t t v ?-?+) ()(00无限趋近于一个常数,这 个常数称为t=t 0时的瞬时加速度 注:瞬时加速度是速度对于时间的瞬时变化率

变化率与导数、导数的计算学案(高考一轮复习)

20XX 年高中数学一轮复习教学案 第二章 函数、导数及其应用 第11节 变化率与导数、导数的计算 一.学习目标: 1.了解导数概念的实际背景,理解导数的几何意义; 2.能根据导数定义,求函数y =c (c 为常数),y =x ,y =x 2,y =1 x 的导数; 3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数. 二.学习重、难点: 1.学习重点:能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数; 2.学习难点:理解导数的几何意义. 三.学习方法:讲练结合 四.自主复习: 1.导数的概念 (1)函数在x =x 0处的导数 函数y =f (x )在x =x 0处的瞬时变化率是__________________________=lim Δx →0 Δy Δx , 称其为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0 . (2)导函数:当上式中的x 0看作变量x 时,函数f ′(x )为f (x )的________. (3)导数的几何意义:f ′(x 0)是曲线y =f (x )在点P (x 0,f (x 0))处的________,相应的切线方程是_____________________.

2.基本初等函数的导数公式 3.运算法则 (1)[f(x)±g(x)]′=_________________; (2)[f(x)·g(x)]′=________________________; (3)[f(x) g(x) ]′=_______________________ (g(x)≠0).五.复习前测: 1.已知函数f(x)=sin x+ln x,则f′(1)的值为() A.1-cos1 B.1+cos1 C.cos1-1 D.-1-cos1

优秀教案21-变化率与导数

第三章 导数及其应用 3.1 变化率与导数(1) 教材分析 导数是微积分的核心概念之一.它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具,因而也是解决诸如运动速度、物种繁殖率、绿化面积增长率,以及用料最省、利润最大、效率最高等实际问题的最有力的工具.在本章,我们将利用丰富的背景与大量实例,学习导数的基本概念与思想方法;通过应用导数研究函数性质、解决生活中的最优化问题等实践活动,初步感受导数在解决数学问题与实际问题中的作用.教材安排导数内容时,学生是没有学习极限概念的.教材这样处理的原因,一方面是因为极限概念高度抽象,不适合在没有任何极限认识的基础上学习.所以,让学生通过学习导数这个特殊的极限去体会极限的思想,这为今后学习极限提供了认识基础.另一方面,函数是高中的重要数学概念,而导数是研究函数的有力工具,因此,安排先学习导数方便学生学习和研究函数.基于学生已经在高一年级的物理课程中学习了瞬时速度,因此,先通过求物体在某一时刻的平均速度的极限去得出瞬时速度,再由此抽象出函数在某点的平均变化率的极限就是瞬时变化率的的模型,并将瞬时变化率定义为导数,这是符合学生认知规律的. 课时分配 本节课的教学内容选自人教社普通高中课程标准实验教科书(A 版)数学选修1-1第三章第一节的《变化率与导数》,《导数的概念》是第2课时,主要讲解导数的概念及利用定义求导数. 教学目标 重点: 通过运动物体在某一时刻的瞬时速度的探求,抽象概括出函数导数的概念. 难点:使学生体会运动物体在某一时刻的平均速度的极限意义,由此得出函数在某点平均变化率的极限就是函数在该点的瞬时变化率,并由此得出导数的概念. 知识点:导数的概念. 能力点:掌握利用求函数在某点的平均变化率的极限实现求导数的基本步骤 教育点:通过导数概念的构建,使学生体会极限思想,为将来学习极限概念积累学习经验 自主探究点:通过导数概念的教学教程,使学生体会到从特殊到一般的过程是发现事物变化规律的重要 过程. 考试点:利用导数的概念求导数. 易错易混点:对0x ?→的理解,0,0,x x ?>?<0,0x x ?>?≠但0x ?≠. 拓展点:导数的几何意义. 教具准备 多媒体课件和三角板 课堂模式 学案导学

(完整版)变化率与导数、导数的计算知识点与题型归纳

1 ●高考明方向 1.了解导数概念的实际背景. 2.理解导数的几何意义. 3.能根据导数定义求函数 y =c (c 为常数),y =x ,y =x 2,y =x 3,y =1 x 的导数. 4.能利用基本初等函数的导数公式和导数的四则运算法则 求简单函数的导数. ★备考知考情 由近几年高考试题统计分析可知,单独考查导数运算的题目很少出现,主要是以导数运算为工具,考查导数的几何意义为主,最常见的问题就是求过曲线上某点的切线的斜率、方程、斜率与倾斜角的关系,以平行或垂直直线斜率间的关系为载体求参数的值,以及与曲线的切线相关的计算题.考查题型以选择题、填空题为主,多为容易题和中等难度题,如2014广东理科10、文科11. 2014广东理科10 曲线52-=+x y e 在点()0,3处的切线方程为 ; 2014广东文科11 曲线53=-+x y e 在点()0,2-处的切线方程为 ;

一、知识梳理《名师一号》P39 知识点一导数的概念 (1)函数y=f(x)在x=x0处的导数 称函数y=f(x)在x=x0处的瞬时变化 率lim Δx→0Δy Δx=lim Δx→0 f(x0+Δx)-f(x0) Δx 为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x =x0 . (2)称函数f′(x)=lim Δx→0f(x+Δx)-f(x) Δx为f(x)的导函数. 注意:《名师一号》P40 问题探究问题1 f′(x)与f′(x0)有什么区别? f′(x)是一个函数,f′(x0)是常数, f′(x0)是函数f′(x)在点x0处的函数值. 例.《名师一号》P39 对点自测1 1.判一判 (1)f′(x0)是函数y=f(x)在x=x0附近的平均变化率.() (2)f′(x0)与[f(x0)]′表示的意义相同.() (3)f′(x0)是导函数f′(x)在x=x0处的函数值.() 答案(1)×(2)×(3)√ 2

变化率和导数(三个课时教案)

第一章导数及其应用 第一课时:变化率问题 教学目标: 1.理解平均变化率的概念; 2.了解平均变化率的几何意义; 3.会求函数在某点处附近的平均变化率 教学重点:平均变化率的概念、函数在某点处附近的平均变化率; 教学难点:平均变化率的概念. 教学过程: 一.创设情景 为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关:一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等; 二、求曲线的切线; 三、求已知函数的最大值与最小值; 四、求长度、面积、体积和重心等。 导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度.

二.新课讲授 (一)问题提出 问题1 气球膨胀率 我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢? ? 气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是33 4)(r r V π= ? 如果将半径r 表示为体积V 的函数,那么343)(π V V r = 分析: 3 43)(π V V r =, ⑴当V 从0增加到1时,气球半径增加了 )(62.0)0()1(dm r r ≈- 气球的平均膨胀率为 )/(62.00 1) 0()1(L dm r r ≈-- ⑵当V 从1增加到2时,气球半径增加了 )(16.0)1()2(dm r r ≈- 气球的平均膨胀率为)/(16.01 2)1()2(L dm r r ≈-- 可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了. 思考:当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少? 1 212) ()(V V V r V r --

《变化率问题与导数的概念》导学案

第1课时变化率问题与导数的概念 a 1.通过物理中的变化率问题和瞬时速度引入导数的概念. 2.掌握利用求函数在某点的平均变化率的极限实现求导数的基本步骤. 3.通过构建导数概念,使学生体会极限思想,为将来学习极限概念积累学习经验. 4.通过导数概念的教学教程,使学生体会到从特殊到一般的过程是发现事物变化规律的重要过程. 借助多媒体播放2012年伦敦奥运会中国跳水运动员陈若琳夺得女子单人10米跳台冠军的视频.上节课我们已经学习了平均变化率的问题,我们知道运动员的平均速度不一定能够反映她在某一时刻的运动状态,而运动员在不同时刻的运动状态是不同的,我们需要借助于瞬时速度这样的量来刻画,那么我们如何才能求出运动员在某一时刻的瞬时速度呢? 问题1:根据以上情境,设陈若琳相对于水面的高度h (单位:m)与起跳后的时间t (单位:s) 存在函数关系h(t)=-4.9t2+6.5t+10,如果用她在某段时间内的平均速度描述其运动状态, 那么: (1)在0≤t≤0.5这段时间里,运动员的平均速度= . (2)在1≤t≤2这段时间里, 运动员的平均速度= . 问题2:函数y=f(x)从x1到x2的平均变化率公式是.如果用x1与增量Δx

表示,平均变化率的公式是. 问题3:函数f(x)在x=x0处的瞬时变化率的定义:一般地,函数y=f(x)在x=x0处的瞬时变化率是=,我们称它为函数y=f(x)在x=x 0处的导数,记作f'(x0)或y',即f'(x0)== . 问题4:在导数的定义中,对Δx→0的理解是:Δx>0,Δx<0,但. 1.已知函数y=f(x)=x2+1,当x=2,Δx=0.1时,Δy的值为(). A.0.40 B.0.41 C.0.43 D.0.44 2.设函数f(x)在点x0附近有定义,且有f(x0+Δx)-f(x0)=aΔx+b(Δx)2(a,b为常数),则(). A.f'(x)=a B.f'(x)=b C.f'(x0)=a D.f'(x0)=b 3.一质点按规律s(t)=2t2运动,则在t=2时的瞬时速度为. 4.求y=2x2+4x在点x=3处的导数.

苏教版高中数学选修2-2《1.1.2 瞬时变化率——导数(3)》教案

教学目标: 1.通过大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,体会导数的思想及其内涵; 2.会求简单函数的导数,通过函数图象直观地了解导数的几何意义; 3.体会建立数学模型刻画客观世界的“数学化”过程,进一步感受变量数学的思想方法. 教学重点: 导数概念的实际背景,导数的思想及其内涵,导数的几何意义. 教学难点: 对导数的几何意义理解. 教学过程: 一、复习回顾 1.曲线在某一点切线的斜率. ()()PQ f x x f x k x +-=??(当?x 无限趋向0时,k PQ 无限趋近于点P 处切线斜率) 2.瞬时速度. v 在t 0的瞬时速度=00()()f t t f t t ??+- 当?t →0时. 3.物体在某一时刻的加速度称为瞬时加速度. x

v 在t 0的瞬时加速度= 00()()v t t v t t ??+- 当?t →0时. 二、建构数学 导数的定义. 函数y =f (x )在区间(a ,b )上有定义,x 0∈(a ,b ),如果自变量x 在x 0处 有增量△x ,那么函数y 相应地有增量△y =f (x 0+△x )-f (x 0);比值 y x ??就叫函数y =f (x )在x 0到(x 0+△x )之间的平均变化率,即00()()f x x f x y x x +?-?=??.如果当0x ?→时,y A x ?→?,我们就说函数y =f (x )在点x 0处可导,并把A 叫做函数y =f (x )在点x 0处的导数,记为0x x y =' , 0'000()()(),0x x f x x f x y y f x x x x =+?-?'===?→??当 三、数学运用 例1 求y =x 2+2在点x =1处的导数. 解 ?y =-(12+2)=2?x +(?x )2 y x ??=2 2()x x x ???+=2+?x ∴y x ??=2+?x ,当?x →0时,1x y '∣==2. 变式训练:求y =x 2+2在点x =a 处的导数. 解 ?y =-(a 2+2)=2a ?x +(?x )2 y x ??=2 2()a x x x ???+=2a +?x ∴y x ??=2a +?x ,当?x →0时,y '=2a . 小结 求函数y =f (x )在某一点处的导数的一般步骤: (1)求增量 ?y =f (x 0+?x )-f (x 0); (2)算比值 y x ??=00()()f x x f x x ??+-; (3)求0x x y '∣==y x ??,在?x →0时. 四、建构数学 导函数.

(word完整版)数学北师大版高中选修2-2北师大版高中数学选修2-2第二章《变化率与导数》教案

北师大版高中数学选修2-2第二章《变化率与导数》全部教案 §1变化的快慢与变化率 第一课时变化的快慢与变化率——平均变化率 一、教学目标:1、理解函数平均变化率的概念; 2、会求给定函数在某个区间上的平均变化率,并能根据函数的平均变化率判断函数在某区间上变化的快慢。 二、教学重点:从变化率的角度重新认识平均速度的概念,知道函数平均变化率就是函数在某区间上变化的快慢的数量描述。 教学难点:对平均速度的数学意义的认识 三、教学方法:探析归纳,讲练结合 四、教学过程 (一)、客观世界的一切事物,小至粒子,大至宇宙,始终都在运动和变化着。因此在数学中引入了变量的概念后,就有可能把运动现象用数学来加以描述了。由于函数概念的产生和运用的加深,也由于科学技术发展的需要,一门新的数学分支就继解析几何之后产生了,这就是微积分学。微积分学这门学科在数学发展中的地位是十分重要的,可以说它是继欧氏几何后,全部数学中的最大的一个创造。 从微积分成为一门学科来说,是在十七世纪,但是,微分和积分的思想在古代就已经产生了。公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、螺线下面积和旋转双曲体的体积的问题中,就隐含着近代积分学的思想。十七世纪,有许多科学问题需要解决,这些问题也就成了促使微积分产生的因素。归结起来,大约有四种主要类型的问题: 第一类是研究运动的时候直接出现的,也就是求即时速度的问题。 第二类问题是求曲线的切线的问题。 第三类问题是求函数的最大值和最小值问题。第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。 十七世纪的许多著名的数学家、天文学家、物理学家都为解决上述几类问题作了大量的研究工作,如法国的费尔玛、笛卡尔、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开普勒;意大利的卡瓦列利等人都提出许多很有建树的理论。为微积分的创立做出了贡献。 十七世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作。他们的最大功绩是把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题)。牛顿和莱布尼茨建立微积分的出发点是直观的无穷小量,因此这门学科早期也称为无穷小分析,这正是现在数学中分析学这一大分支名称的来源。牛顿研究微积分着重于从运动学来考虑,莱布尼茨却是侧重于几何学来考虑的。牛顿在1671年写了《流数法和无穷级数》,这本书直到1736年才出版,它在这本书里指出,变量是由点、线、面的连续运动产生的,否定了以前自己认为的变量是无穷小元素的静止集合。他把连续变量叫做流动量,把这些流动量的导数叫做流数。牛顿在流数术中所提出的中心问题是:已知连续运动的路径,求给定时刻的速度(微分法);已知运动的速度求给定时间内经过的路程(积分法)。德国的莱布尼茨是一个博才多学的学者,1684年,他发表了现在世界上认为是最早的微积分文献,这篇文章有一个很长而且很古怪的名字《一种求极大极小和切线的新方法,它也适用于分式和无理量,以及这种新方法的奇妙类型的计算》。就是这样一片说理也颇含糊的文章,却有划时代的意义。他以含有现代的微分符号和基本微分法则。1686年,莱布尼茨发表了第一篇积分学的文献。他是历史上最伟大的符号学者之一,他所创设的微积分符号,远远优于牛顿的符号,这对微积分的发展有极大的影响。现在我们使用的微积分通用符号就是当时莱布尼茨精心选用的。微积分学的创立,极大地推动了数学的发展,过去很多初等数学束手无策的问题,运用微积分,往往迎刃而解,显示出微积分学的非凡威力。 研究函数,从量的方面研究事物运动变化是微积分的基本方法。这种方法叫做数学分析。 本来从广义上说,数学分析包括微积分、函数论等许多分支学科,但是现在一般已习惯于把数学分析和微积分等同起来,数学分析成了微积分的同义词,一提数学分析就知道是指微积分。微积分的基本概念和内容包括微分学和积分学。 微分学的主要内容包括:极限理论、导数、微分等。 积分学的主要内容包括:定积分、不定积分等。 微积分是与应用联系着发展起来的,最初牛顿应用微积分学及微分方程为了从万有引力定律导出了开普勒行星运动三定律。此后,微积分学极大的推动了数学的发展,同时也极大的推动了天文学、力学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支中的发展。并在这些学科中有越来越广泛的应用,特别是

变化率与导数、导数的计算

第十一节变化率与导数、导数的计算 [备考方向要明了] 考什么怎么考 1.了解导数概念的实际背景. 2.理解导数的几何意义. 3.能根据导数定义求函数y=c(c为常 数),y=x,y=x2,y=x3, y= 1 x的导数. 4.能利用基本初等函数的导数公式和 导数的四则运算法则求简单函数的导 数. 1.对于导数的几何意义,高考要求较高,主要以选择 题或填空题的形式考查曲线在某点处的切线问题, 如2012年广东T12,辽宁T12等. 2.导数的基本运算多涉及三次函数、指数函数与对数 函数、三角函数等,主要考查对基本初等函数的导 数及求导法则的正确利用. [归纳·知识整合] 1.导数的概念 (1)函数y=f(x)在x=x0处的导数: 称函数y=f(x)在x=x0处的瞬时变化率 lim Δx→0 f(x0+Δx)-f(x0) Δx=lim Δx→0 Δy Δx为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即 f′(x0)=lim Δx→0 Δy Δx=lim Δx→0 f(x0+Δx)-f(x0) Δx. (2)导数的几何意义: 函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点P(x0,y0)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t的导数).相应地,切线方程为y-y0=f′(x0)(x-x0). (3)函数f(x)的导函数:

称函数f ′(x )=lim Δx →0 f (x +Δx )-f (x ) Δx 为f (x )的导函数. [探究] 1.f ′(x )与f ′(x 0)有何区别与联系? 提示:f ′(x )是一个函数,f ′(x 0)是常数,f ′(x 0)是函数f ′(x )在x 0处的函数值. 2.曲线y =f (x )在点P 0(x 0,y 0)处的切线与过点P 0(x 0,y 0)的切线,两种说法有区别吗? 提示:(1)曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,斜率为k =f ′(x 0)的切线,是唯一的一条切线. (2)曲线y =f (x )过点P (x 0,y 0)的切线,是指切线经过P 点.点P 可以是切点,也可以不是切点,而且这样的直线可能有多条. 3.过圆上一点P 的切线与圆只有公共点P ,过函数y =f (x )图象上一点P 的切线与图象也只有公共点P 吗? 提示:不一定,它们可能有2个或3个或无数多个公共点. 2.几种常见函数的导数 3.导数的运算法则 (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 4.复合函数的导数 复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.

瞬时变化率--导数

课题:瞬时变化率—导数 教学目标: (1)理解并掌握曲线在某一点处的切线的概念 (2)会运用瞬时速度的定义求物体在某一时刻的瞬时速度和瞬时加速度 (3)理解导数概念 实际背景,培养学生解决实际问题的能力,进一步掌握在一点处 的导数的定义及其几何意义,培养学生转化问题的能力及数形结合思想 一、复习引入 1、什么叫做平均变化率; 2、曲线上两点的连线(割线)的斜率与函数f(x)在区间[x A ,x B ]上的平均变化率 3、如何精确地刻画曲线上某一点处的变化趋势呢? 下面我们来看一个动画。从这个动画可以看出,随着点P 沿曲线向点Q 运动,随着点P 无限逼近点Q 时,则割线的斜率就会无限逼近曲线在点Q 处的切线的斜率。 所以我们可以用Q 点处的切线的斜率来刻画曲线在点Q 处的变化趋势 二、新课讲解 1、曲线上一点处的切线斜率 不妨设P(x 1,f(x 1)),Q(x 0,f(x 0)),则割线PQ 的斜率为0101)()(x x x f x f k PQ --= , 设x 1-x 0=△x ,则x 1 =△x +x 0, ∴x x f x x f k PQ ?-?+=)()(00 当点P 沿着曲线向点Q 无限靠近时,割线PQ 的斜率就会无限逼近点Q 处切线斜率,即当△x 无限趋近于0时,x x f x x f k PQ ?-?+=)()(00无限趋近点Q 处切线斜率。 2、曲线上任一点(x 0,f(x 0))切线斜率的求法: x x f x x f k ?-?+=)()(00,当△x 无限趋近于0时,k 值即为(x 0,f(x 0))处切线的斜率。 3、瞬时速度与瞬时加速度

1.1变化率与导数第1课时 精品教案

1.1变化率与导数 【课题】:1.1.1变化率问题 【教学目标】: (1)知识目标: ○1感受平均变化率广泛存在于日常生活之中,经历运用数学描述和刻画现实世界的过程。体会数学的博大精深以及学习数学的意义。○2理解平均变化率的意义,为后续建立瞬时变化率和导数的数学模型提供丰富的背景。 (2)情感目标:让学生充分体会到生活中处处有数学。 (3)能力目标:提高学生学习能力与探究能力、归纳表达能力。【教学重点】: 正确理解平均变化率; 【教学难点】: 平均变化率的概念。 【课前准备】:powerpoint 【教学过程设计】:

(基础题) 1.物体自由落体的运动方程是:()2 12 S t gt =,求1s 到2s 时的平均速度. 解:213 14.72 S S g m -= = ,211t t s -=,

则()21 21 14.7/S S v m s t t -= =- 2.水经过虹吸管从容器甲中流向容器乙,t s 后容器甲中水的体 积 (单位:3 cm ),计算第一个10s 内V 的平 均变化率。 注: (10)(0)100 V V -- 3.已知函数2 ()f x x =,分别计算()f x 在下列区间上的平均变 化率: (1)[1,3]; (2)[1,2]; (3)[1,1.1]; (4)[1,1.001]。 4.某婴儿从出生到第12个月的体重变化如图所示,试分别计算从出生到第3个月与第6个月到第12个月该婴儿体重的平均变化率。 (难题) 5.思考: (1)课本P4思考题 (2)在高台跳水运动中,运动员相对水面的高度h (单位:m )与起跳后的时间t (单位: s )存在函数关系h (t )=-4.9t 2+6.5t +10.计算运动员在65 049 t ≤≤这段时间里的平均速度, 并思考下面的问题: ○ 1运动员在这段时间里是静止的吗? ○ 2你认为用平均速度描述运动员的运动状态有什么问题吗? 答案: ○1不是. ○2不能客观描述运动员的运动状态. T(月) 3 9 12 t t V 1.025)(-? =

第1讲 变化率与导数、导数的计算

第1讲变化率与导数、导数的计算 [学生用书P39] 一、知识梳理 1.导数的概念 (1)函数y=f(x)在x=x0处的导数 一般地,称函数y=f(x)在x=x0处的瞬时变化率 lim Δx→0f(x0+Δx)-f(x0) Δx=lim Δx→0 Δy Δx为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x= x0,即f′(x0)=lim Δx→0Δy Δx =lim Δx→0 f(x0+Δx)-f(x0) Δx . (2)导数的几何意义 函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点P(x0,y0)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t的导数).相应地,切线方程为y-y0=f′(x0)(x-x0). (3)函数f(x)的导函数 称函数f′(x)=lim Δx→0f(x+Δx)-f(x) Δx 为f(x)的导函数. 2.基本初等函数的导数公式 原函数导函数 f(x)=c(c为常数)f′(x)=0 f(x)=x n(n∈Q*)f′(x)=nx n-1 f(x)=sin x f′(x)=cos_x f(x)=cos x f′(x)=-sin_x

3.(1)[f (x )±g (x )]′=f ′(x )±g ′(x ). (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ). (3)?? ?? ??f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )](g (x )≠0). 4.复合函数的导数 复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 常用结论 1.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数. 2.[af (x )+bg (x )]′=af ′(x )+bg ′(x ). 3.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”. 二、习题改编 1.(选修2-2P65A 组T2(1)改编)函数y =x cos x -sin x 的导数为( ) A .x sin x B .-x sin x C .x cos x D .-x cos x 解析:选B.y ′=x ′cos x +x (cos x )′-(sin x )′=cos x -x sin x -cos x =-x sin x . 2.(选修2-2P18A 组T6改编)曲线y =1-2 x +2在点(-1,-1)处的切线方程为________. 解析:因为y ′= 2 (x +2) 2,所以y ′|x =-1=2. 故所求切线方程为2x -y +1=0. 答案:2x -y +1=0 3.(选修2-2P7例2改编)有一机器人的运动方程为s =t 2+3 t (t 是时间,s 是位移),则该 机器人在t =2时的瞬时速度为________.

3.1 变化率与导数 教学设计 教案

教学准备 1. 教学目标 知识与技能 1.理解平均变化率的概念. 2.了解瞬时速度、瞬时变化率、的概念. 3.理解导数的概念 4.会求函数在某点的导数或瞬时变化率. 过程与方法 理解平均变化率的概念,了解平均变化率的几何意义,会计算函数在某个区间上的平均变化率. 情感、态度与价值观 感受数学模型刻画客观世界的作用,进一步领会变量数学的思想,提高分析问题、解决问题的能力. 2. 教学重点/难点 教学重点 平均变化率的概念. 教学难点 平均变化率概念的形成过程. 3. 教学用具 多媒体、板书 4. 标签 教学过程 教学过程设计

创设情景、引入课题 【师】十七世纪,在欧洲资本主义发展初期,由于工场的手工业向机器生产过渡,提高了生产力,促进了科学技术的快速发展,其中突出的成就就是数学研究中取得了丰硕的成果―――微积分的产生。 【师】人们发现在高台跳水运动中,运动员相对于水面的高度h(单位:米)与起跳后的时间t(单位:秒)存在函数关系h(t)=-4.9t2+6.5t+10. 如何用运动员在某些时间段内的平均速度粗略地描述其运动状态? 让学生自由发言,教师不急于下结论,而是继续引导学生:欲知结论怎样,让我们一起来观察、研探。 新知探究 1.变化率问题 探究1 气球膨胀率 【师】很多人都吹过气球,回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢? 气球的体积V(单位:L)与半径r(单位:dm)之间的函数关系是 如果将半径r表示为体积V的函数,那么 【分析】 (1)当V从0增加到1时,气球半径增加了 气球的平均膨胀率为 (2)当V从1增加到2时,气球半径增加了 气球的平均膨胀率为

变化率问题和导数的概念

第一章导数及其应用 1.1变化率与导数 1.1.1变化率问题 1.1.2导数的概念 双基达标(限时20分钟) 1.已知函数f(x)=2x2-4的图象上一点(1,-2)及邻近一点(1+Δx,-2+Δy), 则Δy Δx等于 (). A.4 B.4x C.4+2Δx D.4+2(Δx)2 解析Δy Δx= f(1+Δx)-f(1) Δx= 2(1+Δx)2-2 Δx=4+2Δx. 答案 C 2.如果质点M按规律s=3+t2运动,则在一小段时间[2,2.1]中相应的平均速度是 ().A.4 B.4.1 C.0.41 D.3 解析v=(3+2.12)-(3+22) 0.1=4.1. 答案 B 3.如果某物体的运动方程为s=2(1-t2)(s的单位为m,t的单位为s),那么其在 1.2 s末的瞬时速度为 ().A.-4.8 m/s B.-0.88 m/s C.0.88 m/s D.4.8 m/s 解析物体运动在1.2 s末的瞬时速度即为s在1.2处的导数,利用导数的定义即可求得. 答案 A

4.已知函数y =2+1 x ,当x 由1变到2时,函数的增量Δy =________. 解析 Δy =? ? ???2+12-(2+1)=-12. 答案 -1 2 5.已知函数y =2 x ,当x 由2变到1.5时,函数的增量Δy =________. 解析 Δy =f (1.5)-f (2)=21.5-22=43-1=1 3. 答案 1 3 6.利用导数的定义,求函数y =1 x 2+2在点x =1处的导数. 解 ∵Δy =??????1(x +Δx )2+2-? ???? 1x 2+2=-2x Δx -(Δx )2(x +Δx )2·x 2, ∴Δy Δx =-2x -Δx (x +Δx )2·x 2 , ∴y ′=lim Δx →0 Δy Δx =lim Δx →0 -2x -Δx (x +Δx )2·x 2=-2 x 3, ∴y ′|x =1=-2. 综合提高 (限时25分钟) 7.已知函数y =f (x )=x 2+1,则在x =2,Δx =0.1时,Δy 的值为 ( ). A .0.40 B .0.41 C .0.43 D .0.44 解析 Δy =(2+0.1)2-22=0.41. 答案 B 8.设函数f (x )可导,则 lim Δx →0 f (1+Δx )-f (1) 3Δx 等于 ( ). A .f ′(1) B .3f ′(1) C.1 3f ′(1) D .f ′(3)

瞬时变化率——导数

1.1.2瞬时变化率——导数 1.结合实际背景理解函数的瞬时变化率——导数的概念及其几何意义.(重点、难点) 2.会求简单函数在某点处的导数及切线方程.(重点) 3.理解导数与平均变化率的区别与联系.(易错点) [基础·初探] 教材整理1曲线上一点处的切线 阅读教材P8~P9“例1”以上部分,完成下列问题. 设Q为曲线C上不同于P的一点,这时,直线PQ称为曲线的割线,随着点Q沿曲线C向点P运动,割线PQ在点P附近越来越逼近曲线C.当点Q无限逼近点P时,直线PQ最终就成为在点P处最逼近曲线的直线l,这条直线l称为曲线在点P处的切线. 判断正误: (1)直线与曲线相切,则直线与已知曲线只有一个公共点.() (2)过曲线外一点作已知曲线的切线有且只有一条.() 【答案】(1)×(2)× 教材整理2瞬时速度与瞬时加速度 阅读教材P11~P12,完成下列问题. (1)一般地,如果当Δt无限趋近于0时,运动物体位移S(t)的平均变化率S(t0+Δt)-S(t0) Δt无限趋近于一个常数,那么这个常数称为物体在t=t0时的瞬时速度,也就是位移对于时间的瞬时变化率. (2)一般地,如果当Δt无限趋近于0时,运动物体速度v(t)的平均变化率

v (t 0+Δt )-v (t 0) Δt 无限趋近于一个常数,那么这个常数称为物体在t =t 0时的瞬时加 速度,也就是速度对于时间的瞬时变化率. 1.判断正误: (1)自变量的改变量Δx 是一个较小的量,Δx 可正可负但不能为零.( ) (2)瞬时速度是刻画某物体在某一时间段内速度变化的快慢.( ) 【答案】 (1)√ (2)× 2.如果质点A 按规律s =3t 2运动,则在t =3时的瞬时速度为________. 【解析】 Δs Δt =3(3+Δt )2-3×3 2 Δt =18+3Δt , 当Δt →0时,Δs Δt =18+3×0=18. ∴质点A 在t =3时的瞬时速度为18. 【答案】 18 教材整理3 导数 阅读教材P 13~P 14,完成下列问题. 1.函数在一点处的导数及其几何意义 (1)导数 设函数y =f (x )在区间(a ,b )上有定义,x 0∈(a ,b ),若Δx 无限趋近于0时,比值Δy Δx =f (x 0+Δx )-f (x 0)Δx 无限趋近于一个常数A ,则称f (x )在x =x 0处可导,并称 该常数A 为函数f (x )在x =x 0处的导数,记作f ′(x 0). (2)导数的几何意义 导数f ′(x 0)的几何意义就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率. 2.导函数 若f (x )对于区间(a ,b )内任一点都可导,则f (x )在各点的导数也随着自变量x 的变化而变化,因而也是自变量x 的函数,该函数称为f (x )的导函数,记作f ′(x ).f (x )在x =x 0处的导数f ′(x 0)就是导函数f ′(x )在x =x 0处的函数值.

相关主题
文本预览
相关文档 最新文档