当前位置:文档之家› shape memory alloys reinforced composites materials

shape memory alloys reinforced composites materials

shape memory alloys reinforced composites materials
shape memory alloys reinforced composites materials

Strengthening mechanism of shape memory alloy reinforced

metal matrix composite

J.K.Lee a ,M.Taya

b,*

a

School of Mechanical and Automotive Engineering,Catholic University of Daegu,Gyeongsan,712-702Gyeongbuk,South Korea

b

Department of Mechanical Engineering,University of Washington,P.O.352600,Seattle,WA 98195,USA

Received 11December 2003;received in revised form 5April 2004;accepted 26April 2004

Available online 8June 2004

Abstract

A new three-dimensional model for the strengthening mechanism of metal matrix composites reinforced by TiNi shape memory alloy (SMA)?bers has been proposed.The predicted results by the present model are compared with the experimental and the predicted results by a one-dimensional model from the literature.

ó2004Acta Materialia Inc.Published by Elsevier Ltd.All rights reserved.

Keywords:Modeling;Strengthening mechanism;Fiber reinforced composites;Martensitic phase transformation;Shape memory alloys

1.Introduction

Shape memory alloys (SMA)have been well known to have three inherent properties such as shape memory e?ect (SME),superelasticity,and high damping capacity [1–3].Among these properties,SMA ?ber reinforced composites (SMA composites)[3]have been processed to use the SME of SMA to obtain better mechanical properties than unreinforced matrix materials such as yield stress and fracture toughness at high in-use tem-perature.Its enhancement of mechanical properties is due to the reverse transformation of SMA ?bers from martensite to austenite state,resulting in the compres-sive stress in the matrix,which in turn enhances the tensile properties of SMA-MMC [3].It is the compres-sive residual stress in the matrix that enhances the tensile properties of SMA composites,?ow stress [2,3],fracture toughness [3,4],and suppression of crack growth rate [5].

The SMA particle-and ?ber-reinforced metal matrix composites have been processed,and improved mechanical properties in terms of the yield stress,fatigue life,and damping capacity have been experimentally observed by several researchers [2–10].The experiments

were rigorously conducted by Hamada et al.[8]to examine the e?ect of ?ber volume fraction,prestrain,and matrix yield stress.In particular,the amount of prestrain in the composite was considered as a design parameter,which controls the phase transformation of SMA ?bers between martensite and austenite start temperatures to strengthen the composite.Several models to understand the strengthening mechanism of the SMA composite have been proposed,based on one-[8,9,11,12]and three-dimensional approaches [3,13,14].The three-dimensional models were focused on the particle reinforced composites,while the one-dimen-sional model was targeted for the continuous ?ber reinforced composites.The three-dimensional model for continuous ?ber composite was proposed [3],but their model approach assumed that ?bers are fully trans-formed from austenite to martensite at prestraining process,and vice versa above the austenite ?nish tem-perature.

In this paper,we present a new model for the con-tinuous SMA ?ber reinforced composite based on the three-dimensional approach,by which the increase in the yield stress of SMA ?ber/metal composite can be more accurately predicted.Eshelby’s equivalent inclu-sion method with Mori-Tanaka mean ?eld theory is used to compute the residual stresses and strains in both the matrix and ?ber generated by the shape memory e?ect,thermal strain,and the plastic deformation of the

*Corresponding author.Tel.:+1-206-685-2850;fax:+1-206-685-80847.

E-mail address:tayam@https://www.doczj.com/doc/7595338.html, (M.Taya).

1359-6462/$-see front matter ó2004Acta Materialia Inc.Published by Elsevier Ltd.All rights reserved.

doi:10.1016/j.scriptamat.2004.04.027

Scripta Materialia 51(2004)

443–447

https://www.doczj.com/doc/7595338.html,

matrix.Since the experiments by Hamada et al.[8]are more extensive,their experimental and analytical results have been chosen for comparison.The predicted results by the present model are compared with their experi-mental results and predicted results.

2.Analytical model

In the present model,we use a phenomenological model to describe the constitutive equations of SMA where exponential type is employed[15].It is noted that we express both stress and strain components by1·6 column vector,and all vectors are expressed in bold-face.

2.1.Preparation procedures of SMA composite[8]

The Ti–50.3at%Ni SMA?bers are hot pressed with 6061Al sheets under conditions of773K and54MPa. The SMA composites are cooled down and?at bar type tensile specimens are cut out from as-processed com-posites.The specimens are heat-treated for enhancing their yield stress at higher than293K to keep the TiNi ?bers in the austenite phase.The specimens are loaded and unloaded for prestraining at293K.In the?nal step, mechanical testing was conducted on the prestrained SMA/Al composite specimens at373K,which is higher than the austenite?nish temperature.

2.2.Basis of model

A three-dimensional model for computing the stress and strain in the SMA metal matrix composite(SMA-MMC)is made by using Eshelby’s inclusion method[16] with the Mori-Tanaka mean?eld theory[17].The ana-lytical model for the calculation of residual stresses and is shown in Fig.1,where continuous TiNi?bers are given a phase transformation strain of?bers,thermal mismatch strain of the?bers and matrix,and the plastic strain of the aluminum matrix.A stress r0with com-ponents r0001000

? is applied in the direc-tion of x3(along the?ber direction)for generating prestrain in the composite and making tensile test.

The phase transformation strain of the?bers by the shape memory e?ect can be expressed as

e TR?e TR n?àm fàm f1000 ?e TR n V TR;e1T

where e TR and m f denote the phase transformation strain from austenite to martensite and the Poisson’s ratio of the?ber,respectively.n is martensite volume fraction of ?bers,which is a function of a temperature and stress.n is expressed as the martensiticeA!MTand the reverse eM!ATtransformations,which are given as[15]

neT;r fT

A!M

?1àexp?a M?eM sàTTtb M?r f ;e2T

neT;r fT

M!A

?exp?a A?eA sàTTtb A?r f ;e3Twhere T and r f denote the temperature of the?bers and e?ective stress of?bers,respectively.The relations of a M?lne0:01T=eM sàM fT,b M?a M=C M,a A?lne0:01T=eA sàA fT,and b A?a A=C A are used,which are com-puted to be constants by material properties tabulated in Table1.

The thermal mismatch strain is generated during the cooling and heating processes due to both the mismatch of CTEs of the?bers and the matrix and temperature changes and is expressed as

e TE?a??111000 ?a?V TE;e4Twhere a??ea fàa mTD T,and a f,a m,and D T are the CTEs o

f the?ber and matrix,and the temperature change,respectively.a f depends on n and is assumed to be linear function of n.

The plastic strain in the matrix is generated during the loading process and is expressed as

e P?e P?à0:5à0:51000 ?e P V P;e5Twhere e P denotes the plastic strain along x3.The matrix obeys strain-hardening o

f power-low type as

r my?r my;0tKee PTn:e6T

444J.K.Lee,M.Taya/Scripta Materialia51(2004)443–447

Since the eigenstrain e P is de?ned in the matrix,àe P is superimposed over the whole composite domain so that the resulting problem can be reduced to the Eshelby’s elasticity problem where the eigenstrains,Eqs.(1),(4) and(5),are only given in the?ber domain of Fig.1(b).

By using Eshelby’s inclusion method with the Mori-Tanaka mean?eld theory,the average stress inside the ?bers can be expressed as

r0tr?C fáee ot eteàe TRte Pàe TET

?C máee ot eteàe?T;e7Twhere C is the sti?ness tensor,e is the total strain in the ?ber, e is the average elastic strain in the matrix domain, e?is the equivalent eigenstrain of the equivalent inclu-sion,and subscripts m and f refer to the matrix and?-ber,respectively.Young’s modulus of?bers E f depends on n and is also assumed to be linear function of n.

From the requirement that the integration of dis-turbed stress over the entire composite domain must vanish, e is given as

etfeeàe?T?0;e8Twhere f is the volume fraction of the?bers.

The total strain e in the?ber is related to e?through Eshelby’s tensor S as

e?Sáe?:e9TFrom Eqs.(7)–(9),the average stresses in the?ber and

matrix,h r i

f and h r i

m

,can be computed as

h r i

f

??ItRF ár0tREáee TRàe Pte TET;e10T

h r i

m ?Ià

f

1àf

RF

!

ár0à

f

1àf

REáe TR

à

àe Pte TE

á

;

e11T

where

RF?e1àfTC máeSàITáAáeC màC fTáCà1

m

;e12TRE?e1àfTC máeSàITáAáC f;e13TA?feC fàC mTá?e1àfTStf I tC m gà1:e14TIt is noted that bold face RF,RE,C i,and A are6·6 matrices.

The volume average of the strain so induced in the entire composite is given by

e c?Cà1

m

ár0tf e?te Pta m D T V TE;e15Twhere

e??Aá?eC màC fTáCà1

m

ár0tC fáee TRàe Pte TET :

e16TBased on the derived equations,the numerical ana-lysis has been conducted by incrementally changing applied load and temperature di?erence during loading, unloading,cooling,heating,and tensile processes.The detailed procedures for modeling are described in the following section.

2.3.Modeling concepts

A stress–temperature diagram of a TiNi shape memory alloy is shown in Fig.2,where M f,M s,A s,A f,

Table1

Material properties[8]

6061Aluminum TiNi?ber

w/o HT a w/HT Austenite Martensite Young’s modulus[GPa]706726.3

Poisson ratio0.330.43

CTE(·106)23.611 6.6

Yield stress(MPa)

r my;0(MPa)35245

K(MPa)44585

n0.490.2

Fiber volume fraction,f 5.3%and2.7%

Transformation strain0.06

Transformation A s?318K,M s?288K

Temperatures(K)A f?329K,M f?280K

a HT:heat treatment.

J.K.Lee,M.Taya/Scripta Materialia51(2004)443–447445

T rt,T pr,and T high denote martensite?nish,martensite start,austenite start,austenite?nish,room,high pro-cessing,and tensile test temperatures,respectively.M s, M f,A s,and A f lines are drawn and extended to the re-gion of the compressive stress[18].Also shown in Fig.2 is a typical path of the?bers in bold lines from pro-cessing to tensile test,where the end point of each pro-cess is numbered from0to4.

The process from0to1represents the cooling of the composite from T pr to T rt.Since the cooling rate is so slow,thermal residual stresses cannot be generated at the temperature above one-half of the melting temper-atureeT mTof the matrix,the temperature of1a,due to a high mobility of matrix dislocations at high tempera-ture.The e?ective temperature di?erence contributing to thermal residual stresses is assumed to be1T màT rt,160 K.During the cooling from1a to1b,?ber stress is not high enough to generate a transformation,so the com-posite deforms elastically only.Only e TE is introduced into the?ber domain.Upon further cooling from1b to 1,the martensitic transformation strain e TR and thermal mismatch strain e TE are introduced into the?ber do-main,where n is computed by Eq.(2)with e?ective?ber

stress h r i

f;33àh r i

f;11

and a decrement of temperature.

The process from1to2represents loading and unloading processes to prestrain the composite.By loading the composite,?bers are transformed from austenite into martensite through stress-induced trans-formations.During the loading process,e TR andàe P are introduced into the?ber domain,depending on the magnitude of applied stress.The e P is determined by an

e?ective matrix stress h r i

m;33àh r i

m;11

,the yield stress of

the matrix with work-hardening,and the increment of applied load.During the unloading,the composite de-forms elastically with?xed n.The strain in direction of x3at the end of unloading is de?ned as the prestrain, which comes from the plastic strain in the matrix and the phase transformation of?bers.

The process from2to3represents heating of the composite from room temperature to above austenite temperature,T high,which is in-use temperature,i.e.ten-sile testing temperature.After the prestraining at room temperature,the composite is?rst heated from293to 373K without any applied stress.During heating from2 to3a,the composite behaves elastically and the e TE is introduced into the?ber domain.Upon further heating from3a to3,the?bers are reverse transformed from martensite to austenite,depending on the amount of prestrain.The e TR and e TE are introduced into the?ber domain,where n is computed by Eq.(3)with e?ective ?ber stress and increment of temperature.

The process from3to4represents a tensile test of the composite at in-use temperature,during which the total matrix stress is determined by the sum of the residual stress after the heating and the stress of Eq.(10)gen-erated by an applied stress.The yield stress of the composite is de?ned as the applied stress,at which the e?ective stress of the matrix is equal to the matrix yield stress work-hardened by the sum of the plastic strain accumulated in the previous processes and a0.2%o?set strain.The only e P with magnitude of0.2%is introduced into the?ber domain as the eigenstrain.

3.Results and discussions

The material properties of the composite are tabu-lated in Table1,which are used for the present compu-tation.The matrix material behaves as strain-hardening of the power-law type,and the?bers deform super-elastically.The matrix materials are examined for the two cases:a no heat treatment and T-6heat treatment cases.

The yield stresses of the composite are predicted by the present model,which are compared with the exper-imental results by Hamada et al.[8]and their analytical results are also shown in Fig.3.Fig.3(a)and(b)show the heat-treated and non-heat-treated composites, respectively.The predictions by the present model show better agreement with the experimental results than

446J.K.Lee,M.Taya/Scripta Materialia51(2004)443–447

Hamada et al.did.The present model can predict well the yield stress of the composite as function of prestrain, volume fraction of SMA?bers,and matrix yield stress.

For analyzing the strengthening mechanism of the SMA composite,the composite with heat-treated ma-trix,f?5:3%,a prestrain of2.09%is selected.The yield stress of the matrix at the prestrain is computed to be284.9MPa by Eq.(6),while the yield stresses of the SMA composite are317.4and306.7MPa by the experiment and the present model,respectively.The increase of the composite yield stress by our model is 21.8MPa.The e?ective residual stress in the matrix before the tensile test is computed as)20.6MPa,which contributes to94.5%of the increase in the yield stress of the composite.The change of reverse-transformed vol-ume fraction of?bers before and after the heating is shown as a function of the prestrain in Fig.4,where about10%of?bers is fully reverse transformed.Since all the?bers are fully reverse transformed up to the prestrain of0.37%,the compressive residual stress in the matrix increases largely and the e?ect of the prestrain becomes dominant in this range.

4.Conclusion

A new three-dimensional model for explaining the strengthening mechanism of the SMA composite has been proposed,which incorporates Eshelby’s inclusion theory,Mori-Tanaka mean?eld theory,and the stress and temperature induced phase transformation of?bers in both tensile and compressive directions.The pre-dicted yield stresses of the SMA composite by the present model show good agreement with the experi-mental results by Hamada et al.[8],and shows better agreement than the one-dimensional model used by Hamada et al.[8].

References

[1]Liu Y,Li Y,Ramesh KT,Humbeeck JV.Scripta Mater

1999;41(1):89–95.

[2]Furuya Y,Sasaki A,Taya M.Mater Trans JIM1993;34:224.

[3]Taya M,Shimamoto A,Furuya Y.Proc ICCM-101995;5:275–82.

[4]Shimamoto A,Taya M.Trans JSME1997;63(605):26–31.

[5]Furuya Y,Taya M.Trans Jpn Inst Metals1996;60(12):1163–72.

[6]Porter GA,Liaw PK,Tiegs TN,Wu KH.Mater Sci Eng

2001;A314:186–93.

[7]Armstrong WD,Lorentzen T.Scripta Mater1997;36(9):1037–43.

[8]Hamada K,Lee JH,Mizuuchi K,Taya M,Inoue K.Metall Mater

Trans1998;29A:1127–35.

[9]Armstrong WD,Lorentzen T,Brondsted P,Larsen PH.Acta

Mater1998;46(10):3455–66.

[10]Lee https://www.doczj.com/doc/7595338.html,p Struct2003;60:255–63.

[11]Yamada Y,Taya M,Watanabe R.Mater Trans JIM1993;34(3):

254–60.

[12]Cherkaoui M,Sun QP,Song GQ.Int J Solids Struct2000;37:

1577–94.

[13]Auricchio A,Mar?a S,Sacco https://www.doczj.com/doc/7595338.html,put Struct2003;81:2301–17.

[14]Lee WB,Jie M,Tang CY.J Mater Process Technol2001;116:219–

23.

[15]Tanaka K.Res Mechanica1986;18:251–63.

[16]Eshelby JD.Proc Roy Soc London1957;A241:376–96.

[17]Mori T,Tanaka K.Acta Metall1973;21:571–4.

[18]Tanaka K,Ohnami D,Watanabe T,Kosegawa J.Mech Mater

2002;34:279–98.

J.K.Lee,M.Taya/Scripta Materialia51(2004)443–447447

瑞文标准推理测验简介

瑞文标准推理测验简介 Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-

《瑞文标准推理测验(SPM)》简介瑞文标准推理测验(Raven’s Standard Progressive Matrices,简称SPM)是由英国心理学家瑞文(J. C. Raven)1938年编制的非言语智力测验。它的主要任务是要求被试根据一个大图形中的符号或图案的规律,将适当的图形填入大图形的空缺中,如下图所示。自其问世以来,许多国家对它做了修订,直到现在仍广泛使用,有着重要的理论意义与实用价值。 瑞文推理测验有三种类型:(1)标准推理测验(简称SPM,1938):适用于8岁到成人被试,有5个黑白系列;(2)儿童彩色渐进测验(Raven’s Color Progressive Matrices,简称CPM,1947),有三个系列;(3)高级推理测验(Raven’s Advanced Progressive Matrices,简称APM,1956),适用于高智力水平者。这三种推理测验在我国已修订发行。 瑞文测验在编制在理论上依据斯皮尔曼的智力二因素理论。该理论认为智力主要有两个因素构成,其一是一般因素,又称“G”因素,它可以渗入所有的智力活动中,每个人都具有这种能力,但在水平上有差异;另一因素是特殊因素,可用“S”表示,这种因素种类多,与特定任务高相关,例如音乐能力、数学、交际能力等。瑞文推理测验测量的是智力的一般因素(“G”因素),尤其与人的问题解决,清晰知觉和思惟,发现和利用自己所需信息,以及有效地适应社会生活的能力有关。

CS测试简介

测试目的 评估EUT 在共模射频(150kHz~80MHz)传导下的抗扰度测试标准 IEC61000-4-6 可参考GB17626.6 测试项目 Conducted Immunity 测试 测试要求 实验室环境要求 Temperature 15℃~35℃ Relative Humidity 25%~75% 大气压68(680) ~ 106(1060) kPa 隔音屏蔽室 仪器要求 CDN参数要求阻抗(至少要100欧姆) 0.15~26兆赫兹 150欧姆(±20欧姆) 26~80兆赫兹 150欧姆(+60/-45)

SG要求 选择测试注入法规则 测试原理 标准EN61000-4-6定义了传导抗扰度的测试方法. 第一,耦合方法.在EN61000-4-6定义的三种耦合方法,最好的方法是通过耦合/去耦(CDN)直接注入电压,这样插入损耗为零,因此只需要较小的功率. 第二,电缆射频注入测试要求远离EUT的电缆末端上的共模阻抗固定不变.所以,每一种类型的电缆都必须在其远端有一个共模去耦网络或阻抗稳固网络(ISN),以确保这一阻抗,并将任何辅助设备与电缆上的射频电流影响隔离开,并且,使用该网络将射频电压耦合到电缆上. 第三,传导抗扰度测试虽然不需要昂贵的电磁吸波屏蔽室设施,但当几根电缆连接到EUT上时,它能否反映EUT的真实情况还值得怀疑.所以,这种电压注入法不太适合按规定有很多电缆连接到其上的设备. 第四,对传导抗扰度测试的主要限制条件是频率.EUT尺寸远小于测试频率的波长时,射频能量的大部分被暴露在辐射场中的设备电缆所获得,因此传导测试可以反映真实情况.但随着频率的增大,以至于EUT尺寸接近半波长时,则电缆的主导作用减小,并且在较高频率上,场耦合路径与EUT尺寸的结构、内部电路及其电缆相互影响.所以标准EN61000-4-6规定上限频率在80~230MHz(相应设备尺寸约为0.6~2m). 根据电磁辐射环境,测试水平为1V、3V或10V.在设计的测试中,我们选择3V的测试水平。实际施加的信号需用1kHz正弦波进行80%深度的幅度调制.

《操作系统原理》算法总结

《操作系统原理》算法总结 一、进程(作业)调度算法 ●先来先服务调度算法(FCFS):每次调度是从就绪队列中,选择一个最先 进入就绪队列的进程,把处理器分配给该进程,使之得到执行。该进程一旦占有了处理器,它就一直运行下去,直到该进程完成或因发生事件而阻塞,才退出处理器。特点:利于长进程,而不利于短进程。 ●短进程(作业)优先调度算法(SPF):它是从就绪队列中选择一个估计运 行时间最短的进程,将处理器分配给该进程,使之占有处理器并执行,直到该进程完成或因发生事件而阻塞,然后退出处理器,再重新调度。 ●时间片轮转调度算法:系统将所有的就绪进程按进入就绪队列的先后次 序排列。每次调度时把CPU分配给队首进程,让其执行一个时间片,当时间片用完,由计时器发出时钟中断,调度程序则暂停该进程的执行,使其退出处理器,并将它送到就绪队列的末尾,等待下一轮调度执行。 ●优先数调度算法:它是从就绪队列中选择一个优先权最高的进程,让其 获得处理器并执行。 ●响应比高者优先调度算法:它是从就绪队列中选择一个响应比最高的进 程,让其获得处理器执行,直到该进程完成或因等待事件而退出处理器为止。特点:既照顾了短进程,又考虑了进程到达的先后次序,也不会使长进程长期得不到服务,因此是一个比较全面考虑的算法,但每次进行调度时,都需要对各个进程计算响应比。所以系统开销很大,比较复杂。 ●多级队列调度算法 基本概念: 作业周转时间(Ti)=完成时间(Tei)-提交时间(Tsi)

作业平均周转时间(T)=周转时间/作业个数 作业带权周转时间(Wi)=周转时间/运行时间 响应比=(等待时间+运行时间)/运行时间 二、存储器连续分配方式中分区分配算法 ?首次适应分配算法(FF):对空闲分区表记录的要求是按地址递增的 顺序排列的,每次分配时,总是从第1条记录开始顺序查找空闲分区 表,找到第一个能满足作业长度要求的空闲区,分割这个空闲区,一 部分分配给作业,另一部分仍为空闲区。 ?循环首次适应算法:每次分配均从上次分配的位置之后开始查找。 ?最佳适应分配算法(BF):是按作业要求从所有的空闲分区中挑选一个 能满足作业要求的最小空闲区,这样可保证不去分割一个更大的区域, 使装入大作业时比较容易得到满足。为实现这种算法,把空闲区按长 度递增次序登记在空闲区表中,分配时,顺序查找。 三、页面置换算法 ●最佳置换算法(OPT):选择以后永不使用或在最长时间内不再被访问 的内存页面予以淘汰。 ●先进先出置换算法(FIFO):选择最先进入内存的页面予以淘汰。 ●最近最久未使用算法(LRU):选择在最近一段时间内最久没有使用过 的页,把它淘汰。 ●最少使用算法(LFU):选择到当前时间为止被访问次数最少的页转换。 四、磁盘调度

操作系统原理答案(张丽芬)

第2章习题答案 2-9. (1)x<=3 运行顺序为Px,P3,P5,P6,P9 T=(x+(x+3)+(x+3+5)+(x+3+5+6)+(x+3+5+6+9))/5=x+ (2)3

作业4还未到,只能选作业3运行。 作业3运行到结束,再计算剩余的作业2和4: 作业2的响应比=(()+)/= 作业4的响应比=( /=2 选作业2运行。 作业2到完成。最后运行作业4。运行到,全部结束。 各个作业的周转时间计算如下: t1=2 t2== t3= t4== 各个作业的平均周转时间计算如下: T==(2++1+/4= 各个作业的平均带权周转时间计算如下: W=(2/2++1/+/4= 2-13.已知作业A,B,C,D,E需要的运行时间分别为10,6,2,4,8分钟,优先级分别为3,5,2,1,4。 (1)轮转法(假定时间片=2分钟) 作业完成的顺序为C,D,B,E,A 开始作业轮转一周需10分钟, 作业C的周转时间:Tc=10分钟(6分) C完成后,剩下四个作业,轮转一周需8分钟, 作业D的周转时间:Td=10+8×(4-2)/2=18分钟(16分) D完成后,剩下三个作业,轮转一周需6分钟, 作业B的周转时间:Tb=18+6×(6-2-2)/2=24分钟(22分) B完成后,剩下两个作业,轮转一周需4分钟, 作业E的周转时间:Te=24+4=28分钟(28分) E完成后,只剩下作业A, 作业A的周转时间:Ta=28+2=30分钟(30分) 平均周转时间:T=(10+18+24+28+30)/5=22分(分) (2)优先级调度法 作业完成顺序为:B,E,A,C,D Tb=6分,Te=6+8=14分,Ta=14+10=24分,Tc=24+2=26分, Td=26+4=30分。 平均周转时间:T=(6+14+24+26+30)/5=20分 第3章习题答案 3-7. 系统中有n+1个进程。其中A1、A2、…、An分别通过缓冲区向进程B发送消息。相互之间的制约关系为:发送进程A1、A2、…、An要互

CS测试简介

?测试目的 评估EUT 在共模射频(150kHz~80MHz)传导下的抗扰度 ?测试标准 IEC61000-4-6 可参考GB17626.6 ?测试项目 Conducted Immunity 测试 ?测试要求 ●实验室环境要求 Temperature 15℃~35℃Relative Humidity 25%~75% 大气压68(680) ~ 106(1060) kPa 隔音屏蔽室 ●仪器要求 CDN参数要求阻抗(至少要100欧姆) 0.15~26兆赫兹150欧姆(±20欧姆) 26~80兆赫兹150欧姆(+60/-45) SG要求 ●选择测试注入法规则 ?测试原理 标准EN61000-4-6定义了传导抗扰度的测试方法. 第一,耦合方法.在EN61000-4-6定义的三种耦合方法,最好的方法是通过耦合/去耦(CDN)直接注入电压,这样插入损耗为零,因此只需要较小的功率. 第二,电缆射频注入测试要求远离EUT的电缆末端上的共模阻抗固定不变.所以,每一种类型的电缆都必须在其远端有一个共模去耦网络或阻抗稳固网络(ISN),以确保这一阻抗,并将任何辅助设备与电缆上的射频电流影响隔离开,并且,使用该网络将射频电压耦合到电缆上. 第三,传导抗扰度测试虽然不需要昂贵的电磁吸波屏蔽室设施,但当几根电缆连接到EUT上时,它能否反映EUT的真实情况还值得怀疑.所以,这种电压注入法不太适合按规定有很多电缆连接到其上的设备. 第四,对传导抗扰度测试的主要限制条件是频率.EUT尺寸远小于测试频率的波长时,射频能量的大部分被暴露在辐射场中的设备电缆所获得,因此传导测试可以反映真实情况.但随着频率的增大,以至于EUT尺寸接近半波长时,则电缆的主导作用减小,并且在较高频率上,场耦合路径与EUT尺寸的结构、内部电路及其电缆相互影响.所以标准EN61000-4-6规定上限频率在80~230MHz(相应设备尺寸约为0.6~2m).

操作系统原理-进程调度实验报告

一、实验目的 通过对进程调度算法的设计,深入理解进程调度的原理。 进程是程序在一个数据集合上运行的过程,它是系统进行资源分配和调度的一个独立单位。 进程调度分配处理机,是控制协调进程对CPU的竞争,即按一定的调度算法从就绪队列中选中一个进程,把CPU的使用权交给被选中的进程。 进程通过定义一个进程控制块的数据结构(PCB)来表示;每个进程需要赋予进程ID、进程到达时间、进程需要运行的总时间的属性;在RR中,以1为时间片单位;运行时,输入若干个进程序列,按照时间片输出其执行序列。 二、实验环境 VC++6.0 三、实验内容 实现短进程优先调度算法(SPF)和时间片轮转调度算法(RR) [提示]: (1) 先来先服务(FCFS)调度算法 原理:每次调度是从就绪队列中,选择一个最先进入就绪队列的进程,把处理器分配给该进程,使之得到执行。该进程一旦占有了处理器,它就一直运行下去,直到该进程完成或因发生事件而阻塞,才退出处理器。 将用户作业和就绪进程按提交顺序或变为就绪状态的先后排成队列,并按照先来先服务的方式进行调度处理,是一种最普遍和最简单的方法。它优先考虑在系统中等待时间最长的作业,而不管要求运行时间的长短。 按照就绪进程进入就绪队列的先后次序进行调度,简单易实现,利于长进程,CPU繁忙型作业,不利于短进程,排队时间相对过长。 (2) 时间片轮转调度算法RR

原理:时间片轮转法主要用于进程调度。采用此算法的系统,其程序就绪队列往往按进程到达的时间来排序。进程调度按一定时间片(q)轮番运行各个进程. 进程按到达时间在就绪队列中排队,调度程序每次把CPU分配给就绪队列首进程使用一个时间片,运行完一个时间片释放CPU,排到就绪队列末尾参加下一轮调度,CPU分配给就绪队列的首进程。 固定时间片轮转法: 1 所有就绪进程按 FCFS 规则排队。 2 处理机总是分配给就绪队列的队首进程。 3 如果运行的进程用完时间片,则系统就把该进程送回就绪队列的队尾,重新排队。 4 因等待某事件而阻塞的进程送到阻塞队列。 5 系统把被唤醒的进程送到就绪队列的队尾。 可变时间片轮转法: 1 进程状态的转换方法同固定时间片轮转法。 2 响应时间固定,时间片的长短依据进程数量的多少由T = N × ( q + t )给出的关系调整。 3 根据进程优先级的高低进一步调整时间片,优先级越高的进程,分配的时间片越长。 多就绪队列轮转法: (3) 算法类型 (4)模拟程序可由两部分组成,先来先服务(FCFS)调度算法,时间片轮转。流程图如下:

操作系统原理及应用试题附答案

操作系统原理及应用试题附答案 第一部分选择题一、单项选择题(本大题共4小题,每小题2分,共8分) 1、从静态角度来看,进程由__________、数据集合、进程控制块及相关表格三部分组成。()A、JCB B、PCB C、程序段 D、I/O缓冲区 2、请求页式管理方式中,首先淘汰在内存中驻留时间最长的帧,这种替换策略是_____.()A、先进先出法(FIFO) B、最近最少使用法(LRU) C、优先级调度 D、轮转法 3、文件安全管理中,___________安全管理规定用户对目录或文件的访问权限。()A、系统级 B、用户级 C、目录级 D、文件级 4、排队等待时间最长的作业被优先调度,这种算法是___________。A、优先级调度 B、响应比高优先 C、短作业优先D、先来先服务第二部分非选择题 二、填空题(本大题共16小题,每小题1分,共16分) 5、常规操作系统的主要功能有:_处理机管理_、存贮管理、设备管理、文件管理以及用户界面管理。 6、操作系统把硬件全部隐藏起来,提供友好的、易于操作的用户界面,好象是一个扩展了的机器,即一台操作系统虚拟机。 7、进程管理的功能之一是对系统中多个进程的状态转换进行控制。 8、逻辑_文件是一种呈现在用户面前的文件结构。 9、操作系统中实现进程互斥和同步的机制称为同步机构_。 10、内存中用于存放用户的程序和数据的部分称为用户区(域)。 11、存贮器段页式管理中,地址结构由段号、段内页号和页内相对地址三部分组成。 12、在操作系统中,通常用户不使用设备的物理名称(或物理地址),而代之以另外一种名称来操作,这就是逻辑设备名。 13、在操作系统中,时钟常有两种用途:报告日历和时间,对资源使用记时。 14、库文件允许用户对其进行读取、执行,但不允许修改.

操作系统原理考题及答案

《操作系统原理》期末考试题 班级学号姓名 一、单项选择题(每题2分,共26分) 1.操作系统是一种()。 A. 系统软件 B. 系统硬件 C. 应用软件 D. 支援软件 2.分布式操作系统与网络操作系统本质上的不同在于()。 A.实现各台计算机这间的通信 B.共享网络中的资源 C.满足较在规模的应用 D.系统中多台计算机协作完成同一任务 3.下面对进程的描述中,错误的是()。 A.进程是动态的概念 B. 进程执行需要处理机 C.进程是指令的集合 D. 进程是有生命期的 4.临界区是指并发进程中访问共享变量的()段。 A.管理信息 B.信息存储 C.数据 D.程序 5.要求进程一次性申请所需的全部资源,是破坏了死锁必要条件中的哪一条()。 A.互斥 B.请求与保持 C.不剥夺 D.循环等待 6.以下哪种存储管理不可用于多道程序系统中()。 A.单一连续区存储管理 B.固定式区存储管理 D. 段式存储管理 C.可变分区存储管理7.在可变式分区存储管理

中,某作业完成后要收回其主存空间,该空间可能与 1 / 8 相邻空闲区合并,修改空闲区表,使空闲区数不变且空闲区起始地址不变的 情况是()。 A.无上邻空闲区也无下邻空闲区 B.有上邻空闲区但无下邻空闲区 C.有下邻空闲区但无上邻空闲区 D.有上邻空闲区也有下邻空闲 区 8.系统“抖动”现象的发生不是由()引起的。 A.置换算法选择不当 B.交换的信息量过大 C.主存容量不足 D.请求页式管理方案 9.在进程获得所需全部资源,唯却CPU时,进程处于()状态。 A.运行 B.阻塞 C.就绪 D.新建 10.要页式存储管理系统中,将主存等分成()。 A.块 B.页 C.段长 D.段 11.系统利用SPOOLING技术实现()。 A.对换手段 B.虚拟设备 C.系统调用 D.虚拟存储 12.设备从磁盘驱动器中读出一块数据的总时间为()。 A.等待时间+ 传输时间 B.传输时间 D.延迟时间+ 查找时间+ 传输时间 C.查找时间+ 传输时间 13.如果允许不同用户的文件可以具有相同的文件名,通常采用()

操作系统原理知识点总结

第一章绪论 1、操作系统是一组控制和管理计算机硬件和软件资源、合理的对各类作业进行调度以方便用户的程序集合 ※2、操作系统的目标:方便性、有效性、可扩展性、开发性 ※3、操作系统的作用:作为计算机硬件和用户间的接口、作为计算机系统资源的管理者、作为扩充机器 4、单批道处理系统:作业处理成批进行,内存中始终保持一道作业(自动性、顺序性、单道性) 5、多批道处理系统:系统中同时驻留多个作业,优点:提高CPU利用率、提高I/O设备和内存利用率、提高系统吞吐量(多道性、无序性、调度性) 6、分时技术特性:多路性、交互性、独立性、及时性,目标:对用户响应的及时性 7、实时系统:及时响应外部请求,在规定时间内完成事件处理,任务类型:周期性、非周期性或硬实时任务、软实时任务 ※8、操作系统基本特性:并发、共享、虚拟、异步性 并行是指两或多个事件在同一时刻发生。 并发是两或多个事件在同一时间间隔内发生。 互斥共享:一段时间只允许一个进程访问该资源 同时访问:微观上仍是互斥的 虚拟是指通过某种技术把一个物理实体变为若干个逻辑上的对应物。 异步是指运行进度不可预知。 共享性和并发性是操作系统两个最基本的特征 ※9、操作系统主要功能:处理机管理、存储器管理、设备管理、文件管理、用户管理 第二章进程的描述和控制 ※1、程序顺序执行特征:顺序性、封闭性、可再现性 ※2、程序并发执行特征:间断性、失去封闭性、不可再现性 3、前趋图:有向无循环图,用于描述进程之间执行的前后关系 表示方式: (1)p1--->p2 (2)--->={(p1,p2)| p1 必须在p2开始前完成} 节点表示:一条语句,一个程序段,一进程。(详见书P32) ※4、进程的定义: (1)是程序的一次执行过程,由程序段、数据段、程序控制块(PBC) 三部分构成,总称“进程映像” (2)是一个程序及其数据在处理机上顺序执行时所发生的活动 (3)是程序在一个数据集合上的运行过程 (4)进程是进程实体的运行过程,是系统进行资源分配和调度的 一个独立单位 进程特征:动态性、并发性、独立性、异步性 由“创建”而产生,由“调度”而执行;由得不到资源而“阻塞”,

操作系统原理与应用第2章文件管理

第2章文件管理习题解答 1.什么是文件和文件系统?文件系统有哪些功能? 【解答】文件是具有符号名而且在逻辑上具有完整意义的信息项的有序序列。 文件系统是指操作系统系统中实现对文件的组织、管理和存取的一组系统程序,它实现对文件的共享和保护,方便用户“按名存取”。 文件系统的功能“ (1)文件及目录的管理。如打开、关闭、读、写等。 (2)提供有关文件自身的服务。如文件共享机制、文件的安全性等。 (3)文件存储空间的管理。如分配和释放。主要针对可改写的外存如磁盘。(4)提供用户接口。为方便用户使用文件系统所提供的服务,称为接口。文件系统通常向用户提供两种类型的接口:命令接口和程序接口。不同的操作系统提供不同类型的接口,不同的应用程序往往使用不同的接口。 2.Linux文件可以根据什么分类?可以分为哪几类?各有什么特点? 【解答】在Linux操作系统中,文件可以根据内部结构和处理方式进行分类。 在Linux操作系统中,可以将文件分为普通文件、目录文件、特别文件三类。 各类文件的特点是: 普通文件:由表示程序、数据或正文的字符串构成的文件,内部没有固定的结构。这种文件既可以是系统文件,也可以是库文件或用户文件。 目录文件:由文件目录构成的一类文件。对它的处理(读、写、执行)在形式上与普通文件相同。 特别文件:特指各种外部设备,为了便于管理,把所有的输入/输出设备都按文件格式供用户使用。这类文件对于查找目录、存取权限验证等的处理与普通文件相似,而其他部分的处理要针对设备特性要求做相应的特殊处理。 应该指出,按不同的分类方式就有不同的文件系统。 3.什么是文件的逻辑结构?什么是文件的物理结构?Linux文件系统分别采用什么样的结构?有什么优点和缺点? 【解答】文件的逻辑结构:用户对文件的观察的使用是从自身处理文件中数据时采用的组织方式来看待文件组织形式。这种从用户观点出发所见到的文件组织方式称为文件的逻辑组织。 文件的物理结构:从系统的角度考察文件在实际存储设备上的存放形式,又称为文件的存储结构。 在Linux系统中,所有文件的逻辑结构都被看作是流式文件,系统不对文件进行格式处理。 在Linux系统中,文件的物理结构采用的是混合多重索引结构,即将文件所占用盘块的盘块号,直接或间接地存放在该文件索引结点的地址项中。 在Linux系统中,采用混合索引结构的优点是,对于小文件,访问速度快;对于大中

操作系统原理练习题附答案

《操作系统原理》练习题 一、填空题 1. 每个进程都有一个生命周期,这个周期从__(1)__开始,到__(2)__而结束。 2. 当一个进程独占处理器顺序执行时,具有两个特性:__(3)__和可再现性。 3. 并发进程中与共享变量有关的程序段称为__(4)__。 4. 一个进程或者由系统创建,或者由__(5)__创建。 5. 一个进程的静态描述是处理机的一个执行环境,被称为__(6)__。 6. 信号量的物理意义是:信号量大于0,其值为__(7)__;信号量小于0,其绝对值为__(8)__。 7. 系统有某类资源5个,供3个进程共享,如果每个进程最多申请__(9)__个该类资源,则系统是安全的。 8. 不可中断的过程称为__(10)__。 9. 操作系统中,进程可以分为__(11)__进程和__(12)__进程两类。 10. 操作系统为用户提供两种类型的使用接口,它们是__(13)__接口和__(14)__接口。 11. 批处理操作系统中,操作员根据作业需要把一批作业的有关信息输入计算机系统,操作系统选择作业并根据__(15)__的要求自动控制作业的执行。 12. 在批处理兼分时的系统中,往往由分时系统控制的作业称为前台作业,而由批处理系统控制的作业称为__(16)__作业。 13. 采用SPOOL技术的计算机系统中,操作员只要启动__(17)__程序工作,就可以把作业存放到__(18)__中等待处理。 14. 作业控制方式有__(19)__方式和__(20)__方式二种。 15. 对资源采用抢夺式分配可以防止死锁,能对处理器进行抢夺式分配的算法有__(21)__算法和__(22)__算法。 16. 因争用资源产生死锁的必要条件是互斥、__(23)__、不可抢占和__(24)__。 17. 死锁的形成,除了与资源的__(25)__有关外,也与并发进程的__(26)__有关。 18. 为破坏进程循环等待条件,从而防止死锁,通常采用的方法是把系统中所有资源类进行__(27)__,当任何一个进程申请两个以上资源时,总是要求按对应资源号__(28)__次序申请这些资源。 19. 内存管理的核心问题是如何实现__(29)__的统一,以及它们之间的__(30)__问题。 20. 页式存储管理中,处理器设置的地址转换机构是__(31)__寄存器。 21. 在页式和段式存储管理中,__(32)__存储管理提供的逻辑地址是连续的。 22. 实现地址重定位或地址映射的方法有两种:__(33)__和__(34)__。 23. 在响应比最高者优先的作业调度算法中,当各个作业等待时间相同时,__(35)__的作业将得到优先调度;当各个作业要求运行的时间相同时,__(36)__的作业得到优先调度。 24. 确定作业调度算法时应注意系统资源的均衡使用,即使CPU繁忙的作业和__(37)__的作业搭配使用。 25. 按照组织形式分类文件,可以将文件分为普通文件、目录文件和__(38)__。 26. 文件系统为用户提供了__(39)__的功能,以使得用户能透明地存储访问文件。 27. 文件名或记录名与物理地址之间的转换通过__(40)__实现。 28. 文件的__(41)__与文件共享、保护和保密紧密相关。

操作系统原理实验五

实验五线程的同步 1、实验目的 (1)进一步掌握Windows系统环境下线程的创建与撤销。 (2)熟悉Windows系统提供的线程同步API。 (3)使用Windows系统提供的线程同步API解决实际问题。 2、实验准备知识:相关API函数介绍 ①等待对象 等待对象(wait functions)函数包括等待一个对象(WaitForSingleObject ())和等待多个对象(WaitForMultipleObject())两个API函数。 1)等待一个对象 WaitForSingleObject()用于等待一个对象。它等待的对象可以为以下对象 之一。 ·Change ontification:变化通知。 ·Console input: 控制台输入。 ·Event:事件。 ·Job:作业。 ·Mutex:互斥信号量。 ·Process:进程。 ·Semaphore:计数信号量。 ·Thread:线程。 ·Waitable timer:定时器。 原型: DWORD WaitForSingleObject( HANDLE hHandle, // 对象句柄 DWORD dwMilliseconds // 等待时间 ); 参数说明: (1)hHandle:等待对象的对象句柄。该对象句柄必须为SYNCHRONIZE访问。 (2)dwMilliseconds:等待时间,单位为ms。若该值为0,函数在测试对象的状态后立即返回,若为INFINITE,函数一直等待下去,直到接收到 一个信号将其唤醒,如表2-1所示。 返回值: 如果成功返回,其返回值说明是何种事件导致函数返回。

Static HANDLE hHandlel = NULL; DWORD dRes; dRes = WaitForSingleObject(hHandlel,10); //等待对象的句柄为hHandlel,等待时间为10ms 2)等待对个对象 WaitForMultiple()bject()在指定时间内等待多个对象,它等待的对象与 WaitForSingleObject()相同。 原型: DWORD WaitForMultipleObjects( DWORD nCount, //句柄数组中的句柄数 CONST HANDLE * lpHandles, //指向对象句柄数组的指针 BOOL fWaitAll, //等待类型 DWORD dwMilliseconds //等待时间 ); 参数说明: (1)nCount:由指针 * lpHandles指定的句柄数组中的句柄数,最大数是MAXIMUM WAIT OBJECTS。 (2)* lpHandles:指向对象句柄数组的指针。 (3)fWaitAll:等待类型。若为TRUE,当由lpHandles数组指定的所有对象被唤醒时函数返回;若为FALSE,当由lpHandles数组指定的某一个 对象被唤醒时函数返回,且由返回值说明是由于哪个对象引起的函数 返回。 (4)dwMilliseconds:等待时间,单位为ms。若该值为0,函数测试对象的状态后立即返回;若为INFINITE,函数一直等待下去,直到接收到 一个信号将其唤醒。 返回值:、 如果成功返回,其返回值说明是何种事件导致函数返回。 各参数的描述如表2-2所示。

专科《操作系统原理及应用》

[试题分类]:专科《操作系统原理及应用》_08004260 [题型]:单选 [分数]:2 1.批处理最主要的一个缺点是()。 A.用户无法与程序交互 B.没有实现并发处理 C.CPU的利用率较低 D.一次只能执行一个程序 答案:A 2.磁盘空闲块常用的组织形式有三种,其中一种为()。 A.空闲块连续 B.空闲块索引 C.空闲块压缩 D.空闲块链 答案:D 3.常用的文件物理结构有三种,其中的一种形式是()。 A.记录文件 B.压缩文件 C.索引文件 D.流式文件 答案:C 4.批处理系统中,作业的状态可分为多种,其中一种为()。 A.提交 B.就绪 C.创建 D.等待 答案:A 5.并发执行的一个特点是()。 A.计算结果会出错 B.不会顺序执行 C.程序与计算不再一一对应 D.结果可再现

6.下列选项()不是操作系统关心的。 A.管理计算机资源 B.提供用户操作的界面 C.高级程序设计语言的编译 D.管理计算机硬件 答案:C 7.当CPU执行用户程序的代码时,处理器处于()。 A.核心态 B.就绪态 C.自由态 D.用户态 答案:D 8.根据对设备占用方式的不同,设备分配技术中的一种是()。 A.动态分配 B.永久分配 C.静态分配 D.虚拟分配 答案:D 9.评价作业调度的性能时,衡量用户满意度的准确指标应该是()。 A.周转时间 B.平均周转时间 C.带权周转时间 D.平均带权周转时间 答案:C 10.在手工操作阶段,存在的一个严重的问题是()。 A.外部设备太少 B.用户使用不方便 C.计算机的速度不快 D.计算机的内存容量不大 答案:B 11.作业的处理一般分为多个作业步,连接成功后,下一步的工作是()。

操作系统原理课程设计报告

操作系统原理课程设计报告

系(院):计算机科学学院 专业班级: 姓名: 学号: 指导教师: 设计时间:2020.5.25——2020.5.30 设计地点:

一、课程设计目的 (4) 二、课程设计的任务和要求 (4) 三、模拟程序的描述: (5) 四、运行环境 (7) 五、算法原理 (8) 1)多级反馈队列调度算法 (13) 2)优先权调度算法 (14) 六、需求分析 (16) 七、总体设计 (17) 八、详细设计与实现[含代码和实现界面] (19) 九、主要代码分析: (26) 十、总结 (44)

一、课程设计目的 《操作系统原理》是计算机科学与技术专业的一门专业核心课程,也是研究生入学考试中计算机专业综合中所涉及的内容。该课程理论性强,纯粹的理论学习相对枯燥乏味,不易理解。通过课程设计,可加强学生对原理知识的理解。 二、课程设计的任务和要求 本次课程设计的题目是,时间片轮转调度算法的模拟实现。要求在充分理解时间片轮转调度算法原理的基础上,编写一个可视化的算法模拟程序。 具体任务如下: 1、根据需要,合理设计PCB结构,以适用于时间片轮转调度算法;

2、设计模拟指令格式,并以文件形式存储,程序能够读取文件并自动生成指令序列。 3、根据文件内容,建立模拟进程队列,并能采用时间片轮转调度算法对模拟进程进行调度。 三、模拟程序的描述: 模拟指令的格式:操作命令+操作时间 ● C :表示在CPU上计算 ●I :表示输入 ●O :表示输出 ●W :表示等待 ●H :表示进程结束 操作时间代表该操作命令要执行多长时间。这里假设I/O设备的数量没有限制,I和O设备都只有一类。 I,O,W三条指令实际上是不占有CPU的,执行这三条指令就应该将进程放入对应的等待队列(输入等待队列,输出等待队列,其他等待队列)。

操作系统原理与实践教程(第二版)第2章习题答案

第2章操作系统的界面 (1) 请说明系统生成和系统引导的过程。 解: 系统的生成过程:当裸机启动后,会运行一个特殊的程序来自动进行系统的生成(安装),生成系统之前需要先对硬件平台状况进行检查,或者从指定文件处读取硬件系统的配置信息,以便根据硬件选择合适的操作系统模块组,比较重要的信息通常有:CPU类型、内存大小、当前关联设备的类型和数量以及操作系统的重要功能选项和参数。按照这些信息的指示,系统生成程序就可以正确地生成所需的操作系统。 系统引导的过程:系统引导指的是将操作系统内核装入内存并启动系统的过程。主要包括初始引导、内核初始化、全系统初始化。初始引导工作由BIOS完成,主要完成上电自检,初始化基本输入输出设备,载入操作系统内核代码等工作。内核被载入内存后,引导程序将CPU控制权交给内核,内核将首先完成初始化功能,包括对硬件、电路逻辑等的初始化,以及对内核数据结构的初始化,如页表(段表)等。全系统初始化阶段要做的就是启动用户接口程序,对系统进行必要的初始化,使系统处于等待命令输入状态。 (2) 操作系统具有哪些接口?这些接口的作用是什么? 解: 操作系统为用户提供的接口有图形接口、命令接口和程序接口几种形式。 操作系统包括三种类型的用户接口:命令接口(具体又可分为联机命令接口与脱机命令接口)、程序接口及图形化用户接口。其中,命令接口和图形化用户接口支持用户直接通过终端来使用计算机系统,而程序接口则提供给用户在编制程序时使用。 (3) 请说明操作系统具有的共性服务有哪些不同类别,这些类别分别用于完成什么功能? 解:所有的操作系统都通过一些基本服务来帮助用户简单便捷地使用计算机各类资源,它们包括以下几个类别: 1.控制程序运行:系统通过服务将用户程序装入内存并运行该程序,并且要控制程序 在规定时间内结束。 2.进行I/O操作:用户是不能直接控制设备的,只能通过操作系统与外部设备进行交 互,由系统调用将结果显示在屏幕上或交给用户。 3.操作文件系统:为了保证实现“按名存取”,文件系统应该为用户提供根据文件名 来创建、访问、修改、删除文件的方法,以确保文件数据的安全可靠以及正确存取。 4.实现通信:操作系统需要提供多个程序之间进行通讯的机制,来控制程序的执行顺 序。 5.错误处理:操作系统通过错误处理机制,以便及时发现错误并采取正确的处理步骤, 避免损害系统的正确性和统一性。 (4) 系统调用的用途是什么? 解: 通常,在操作系统内核设置有一组用于实现各种系统功能的子程序(过程),并将它们提供给用户程序调用。每当用户在程序中需要操作系统提供某种服务时,便可利用一条系统调用命令,去调用所需的系统过程。这即所谓的系统调用。系统调用的主要类型包括: 1.进程控制类,主要用于进程的创建和终止、对子进程结束的等待、进程映像的替换、 进程数据段大小的改变以及关于进程标识符或指定进程属性的获得等; 2.文件操纵类,主要用于文件的创建、打开、关闭、读/写及文件读写指针的移动和

GBT 11049燃烧测试标准介绍

GB/T 11049燃烧测试标准介绍 GB/T 11049地毯燃烧性能室温片剂试验方法 GB/T 11049Burning behaviour of carpets-Tablet test at ambient temperature GB/T 11049 应用范围 GB/T 11049规定了地毯在控制的实验室条件下,以水平位置暴露于小火源时的表面燃烧性能试验方法。 GB/T 11049适用于各种组织结构和纤维组分的地毯。 GB/T 11049规定试样处于水平位置,其试验结果不适用以其他位置使用的地毯的燃烧性能。 GB/T 11049仅用于在控制的实验室条件下,地毯材料或组合系统对热和火焰的反应性能评定,而不能用于对地毯在实际着火条件下的易燃性的评价或规定。在贸易中,按照IS0 2859 抽样方案进行抽样,本方法可以作为一种满意的试验手段在商品验收试验中广泛应用。 GB/T 11049 参考标准 QB/T 1087 机制地毯物理试验的取样和试样的截取法(IS0 1957) IS0 139 纺织品的调试和试验用标准大气 IS0 2589 计数抽样操作程序和表格 GB/T 11049 测试原理 在规定条件下,将水平位置的试样暴露在小火源即六亚甲基四胺片剂(以下简称片剂)的作用中,并测量试验后的损毁长度和火焰蔓延时间。 GB/T 11049 测试要求 试验结果应以每块试样的最大损毁长度(mm) 表示。 GB/T 11049 类似标准 ISO 6925 Textile floor coverings-Burning behaviour - Tablet test at ambient temperature, IDT ISO 6925 铺地纺织品-燃烧性能-室温片剂测试 办理燃烧测试流程: 1、项目申请——向检测机构监管递交申请。 2、资料准备——根据要求,企业准备好相关的认证文件。 3、产品测试——企业将待测样品寄到实验室进行测试。 4、编制报告——认证工程师根据合格的检测数据,编写报告。 5、递交审核——工程师将完整的报告进行审核。 6、签发证书——报告审核无误后,颁发报告。

《操作系统原理》考题及答案

《操作系统原理》期末考试题 、单项选择题(每题 分,共分) 1. 操作系统是一种( )。 A. 系统软件 B. 系统硬件 C. 应用软件 D. 支援软件 2. 分布式操作系统与网络操作系统本质上的不同在于( )。 A. 实现各台计算机这间的通信 B. 共享网络中的资 源 C.满足较在规模的应用 D. 系统中多台计算机协作完成同一任务 3. 下面对进程的描述中,错误的是( A.进程是动态的概念 B. C.进程是指令的集合 D. 4?临界区是指并发进程中访问共享变量的( )段。 5. 要求进程一次性申请所需的全部资源,是破坏了死锁必要条件中的哪一条 。 A.互斥 B. 请求与保持 C. 不剥夺 D. 循环等待 6. 以下哪种存储管理不可用于多道程序系统中( )。 A.单一连续区存储管理 B.固定式区存储管理 C.可变分区存储管理 D.段式存储管理 7. 在可变式分区存储管理中,某作业完成后要收回其主存空间,该空间可能与 相邻空闲区合 并,修改空闲区表,使空闲区数不变且空闲区起始地址不变的 )。 进程执行需要处理机 进程是有生命期的 A.管理信息 B.信息存储 C. 数据 D. 程序

情况是()。 A.无上邻空闲区也无下邻空闲区 C.有下邻空闲区但无上邻空闲区 8. 系统“抖动”现象的发生不是由 A.置换算法选择不当 C.主存容量不足 9. 在进程获得所需全部资源,唯却 A.运行 B.阻塞 10. 要页式存储管理系统中,将主存等分成( A.块 B.页B. D. B. D. CPU 时,有上邻空闲区但无下邻空闲区 有上邻空闲区也有下邻空闲 区)引起的。 交换的信息量过大 请求页式管理方案 进程处于( C.就绪 )。 C. 段长 状态。 D.新建 D.段

《操作系统原理》课程设计报告

《操作系统原理》 课程设计报告书 题目:进程控制模块的设计与实现专业:网络工程 学号:131007111 学生姓名:李亚豪 指导教师:刘双红 完成日期:2015-12-05

目录 第1章课题概述 (3) 1.1 设计要求 (3) 1.2 设计理论依据 (3) 第2章设计简介和内容 (6) 2.1 设计简介 (6) 2.2 设计内容 (6) 第3章详细设计 3.1 设计流程图 (7) 3.2 主要程序代码 (9) 第4章设计结果及分析 (10) 4.1 运行结果截图 (10) 4.2 运行结果分析............................................................... 错误!未定义书签。总结 (15)

第1章课题描述 1.1设计要求 1.叙述要详细。 2.要有条理。 3.各个功能分开阐述。 4.自己可以增加题目要求的功能模块。 5.可以增加自己对题目的理解。 1.2设计理论依据 根据作业控制块中的信息,审查系统能否满足用户作业的资源需求,以及按照一定的算法,从外存的后备队列中选取某些作业调入内存,并为它们创建进程、分配必要的资源。短作业优先调度算法,从后备队列中选择一个或若干个估计运行时间最短的作业,将它们调入内存运行。 第2章设计简介和内容 2.1设计简介 在多道程序环境下,将系统中的作业组织起来,为每个进入系统的作业建立档案以记录和作业相关的信息,按要求输入作业名、到达时间和服务时间,并为其建立作业控制块(JCB)挂入后备队列。进行作业调度时,在其后计算出各个作业的开始执行时间、完成时间、周转时间和平均周转时间,利用短作业优先算法进行作业调度,并按照由小到大的顺序显示出来。 2.2 设计内容 1)编写程序完成批处理系统中的作业调度,要求采用短作业优先的作业调度算法。实验具体包括:首先确定作业控制块的内容,作业控制块的组成方式;然后完成作业调度;最后编写主函数对所作工作进程测试。 2)创建作业控制块JCB,定义为结构体,为进入系统的作业建立档案,其中定义了作业名,作业到达时间,作业服务时间,作业开始执行时间,作业完成时间,作业周转时间,作业平均周转时间。 3)首先按各个作业完成时间由小到大排序。再用输入的到达时间与服务时间按一定算法算出各个作业的开始执行时间、完成时间、周转时间和作业平均周转时间。

软件产品验收测试标准

软件产品验收测试标准和流程 1. 验收测试简介 验收测试即由产品开发方按照需求文档中所有内容(或按合同及其它有效约定,对方承诺实现的需求)进行开发、内测完毕,提交版本符合验收测试标准,通过验收小组进行的测试。通过验收测试判断产品质量是否符合产品需求,功能实现是否正确并可以最终上线。 2. 验收测试目的 通过验收测试判断产品质量是否符合产品需求、功能实现是否正确,性能和安全性方面是否符合发布标准,并且产品可以最终上线。 3. 验收测试范围 3.1界面测试 所有页面浏览,连接的正确、所有功能按钮及界面显示正确 3.2功能测试 所有需求文档描述的功能实现正确 3.3性能测试 重点业务功能、性能能满足上线运营需求 3.4安全性测试 接口和数据调用等方面符合安全性规范;没有安全性漏洞 4. 验收测试流程 验收测试基本工作流程如下: 4.1. 准入条件检测 4.1.1文档 进入验收测试的文档准备齐全: a) 验收版本的需求文档(提交方提供):要求需求文档与最终提交验收测试的程序完全匹配; b) 验收版本的测试用例(提交方提供):要求测试案例覆盖最终版本的需求文档;

c) 验收版本的测试告(提交方提供):在测试报告书中说明测试总体情况,缺陷列表及修复情况; 4.1.2缺陷 要求开发方在合同双方约定的环境中对需要文档上提及的所有功能进行全面测试,且提交验收测试时,开发方发现的所有缺陷都已解决。 4.1.3测试环境 验收测试环境准备完成,与线上真实环境一致 4.1.4沟通和联系 1. 提交验收测试的开发方负责人联系方式及测试工程师联系方式齐全; 2. 提交验收测试缺陷的沟通渠道建立完毕,要求快捷、准确、反馈及时; 4.2 验收测试 4.2.1文档验收 进入标准:文档准备必须齐全且符合标准,可以进入文档验收流程 中断标准: 1. 需求文档并非最终版,需求文档上描述的功能程序并未实现 2. 测试用例与需求文档不匹配,测试用例中测试的模块在需求文档中不存在或者需求文档中的功能模块未在测试用例中体现 3. 测试报告书不完整,遗留缺陷不符合遗留缺陷允许限制的数量 退出标准: 文档符合标准并通过验收,进入程序验收流程 4.2.2程序功能验收 进入标准:文档验收流程结束 中断标准: 1. 出现A,B级缺陷 2. C级缺陷达到8个 3. 验收测试过程中,提交新的版本 退出标准: 验收测试合格,缺陷按照标准修复完成 通过标准: 要求验收测试结束后,未解决的缺陷达到以下要求时,才能验收通过: a) A级缺陷:0个; b) B级缺陷:0个; c) C级缺陷:小于等于总缺陷数的3%; d) D级缺陷:小于等于总缺陷数的5%个; e) E级缺陷:小于等于总缺陷数的15%个。 注:对于放弃处理的提案,必须提前经过我方同意。

相关主题
文本预览
相关文档 最新文档