当前位置:文档之家› SAE J2044_200908

SAE J2044_200908

SAE J2044_200908
SAE J2044_200908

__________________________________________________________________________________________________________________________________________ SAE Technical Standards Board Rules provide that:“This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user.”SAE reviews each technical report at least every five years at which time it may be reaffirmed, revised, or cancelled. SAE invites your written comments and suggestions. Copyright ? 2009 SAE International

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE. TO PLACE A DOCUMENT ORDER:

Tel: 877-606-7323 (inside USA and Canada) Tel: 724-776-4970 (outside USA) Fax: 724-776-0790

Email: CustomerService@https://www.doczj.com/doc/7569559.html, SAE WEB ADDRESS:

https://www.doczj.com/doc/7569559.html,

V R

Issued 1992-06 Revised 2009-08 Superseding

J2044 SEP2002

(R) Quick Connect Coupling Specification for Liquid Fuel and Vapor/Emissions Systems

RATIONALE

This revision is to encompass changes in fuel and emission technology and clarification of test procedures.

TABLE OF CONTENTS

1.SCOPE .......................................................................................................................................................... 2

2.REFERENCES .............................................................................................................................................. 32.1Applicable Publications ................................................................................................................................. 32.1.1SAE Publications ........................................................................................................................................... 32.1.2ASTM Publication .......................................................................................................................................... 32.2Related Publication ....................................................................................................................................... 32.2.1SAE Publication ............................................................................................................................................ 3

3.DEFINITIONS ............................................................................................................................................... 43.1Unexposed Coupling ..................................................................................................................................... 43.2Lot ................................................................................................................................................................. 43.3Dimensions ................................................................................................................................................... 4

4.SIZE DESIGNATION .................................................................................................................................... 4

5.TEST TEMPERATURES .............................................................................................................................. 4

6.FUNCTIONAL REQUIREMENTS ................................................................................................................. 46.1Leak Test (In-Process) .................................................................................................................................. 56.1.1Low Pressure Leak Test Procedure ............................................................................................................. 56.1.2Low Pressure Leak Acceptance Criteria ....................................................................................................... 56.1.3High Pressure Leak Test Procedure (Liquid Fuel Only) ............................................................................... 56.1.4High Pressure Test Acceptance Criteria ....................................................................................................... 56.1.5Vacuum Leak Test Procedure (Vapor Systems only at Customer’s Request) ............................................. 56.1.6Vacuum Test Acceptance Criteria ................................................................................................................ 56.2Assembly Effort ............................................................................................................................................. 86.2.1Test Procedure (New Parts) ......................................................................................................................... 86.2.2Test Procedure (Connectors after Section 7 Exposure) ............................................................................... 86.2.3Acceptance Criteria ....................................................................................................................................... 86.3Pull-Apart Effort ........................................................................................................................................... 106.3.1Test Procedure ............................................................................................................................................ 106.3.2

Acceptance Criteria (10)

SAE J2044 Revised AUG2009 Page 2 of 23 6.4Side Load Capability (12)

6.4.1Test Procedure (12)

6.4.2Acceptance Criteria (Side Load Leak Test) (12)

6.4.3Acceptance Criteria (Side Load Fracture Test) (12)

6.5Electrical Resistance (13)

6.5.1Test Procedure (13)

6.5.2Acceptance Criteria (13)

6.6Resistance to Evaporative Emissions (13)

7.DESIGN VERIFICATION/VALIDATION TESTING (13)

7.1Corrosion (13)

7.1.1Test Procedure (13)

7.1.2Acceptance Criteria (13)

7.2Zinc Chloride Resistance (14)

7.2.1Test Procedure (14)

7.2.2Acceptance Criteria (14)

7.3External Chemical and Environmental Resistance (14)

7.3.1Test Procedure, Fluid or Medium (14)

7.3.2Acceptance Criteria (15)

7.4Fuel Compatibility (15)

7.4.1Test Procedure (15)

7.4.2Test Fuels (15)

7.4.3Test Requirement (16)

7.4.4Acceptance Criteria (16)

7.5Life Cycle (16)

7.5.1Test Procedure (16)

7.5.2Vibration Frequency (16)

7.5.3Acceleration (16)

7.5.4Vibration Duration (17)

7.5.5Fluid Pressure (17)

7.5.6Fluid Flow (Liquid Fuel Quick Connect Couplings Only) (17)

7.5.7Test Duration (17)

7.5.8Test Cycles (18)

7.5.9Acceptance Criteria (19)

7.6Elevated Temperature Burst (20)

7.6.1Test Procedure (20)

7.6.2Acceptance Criteria (21)

8.DESIGN VERIFICATION/VALIDATION AND IN-PROCESS TESTING MATRIX (21)

9.NOTES (22)

9.1Marginal Indicia (22)

APPENDIX A PROCEDURE FOR MEASURING MATING TUBE ENDFORM BEAD WIDTH (23)

1. SCOPE

This SAE Recommended Practice defines the minimum functional requirements for quick connect couplings used for supply, return, and vapor/emission fuel system connections. This document also defines standard male tube end form dimensions, so as to guarantee interchangeability between all connector designs of the same male tube end form size. This document applies to automotive and light truck applications under the following conditions:

a. Gasoline and diesel fuel delivery systems or their vapor venting or evaporative emission control systems.

b. Operating pressure up to 500 kPa, 5 bar, (72 psig).

c.Operating vacuum down to–50kPa,–0.5bar(–7.2psi).

d.Operating temperatures from–40°C(–40°F)to115°C(239°F).

Quick connect couplings function by joining the connector to a mating tube end form, then pulling back to assure a complete connection. The requirements stated in this document apply to new connectors in assembly operations unless otherwise indicated. For service operations, the mating tube should be lubricated with SAE 30-weight oil before re-connecting.

Vehicle OEM fuel system specifications may impose additional requirements beyond the scope of this general SAE document. In those cases, the OEM specification takes precedence over this document.

2. REFERENCES

2.1 Applicable Publications

The following publications form a part of this specification to the extent specified herein. Unless otherwise specified, the latest issue of SAE publications shall apply.

2.1.1 SAE Publications

Available from SAE International, 400 PA 15096-0001, Tel: 877-606-7323 (inside

SAE J526 Welded Low-Carbon Steel Tubing

SAE J527 Brazed Double Wall Low-Carbon Steel Tubing

SAE J1645Fuel Systems and Components—Electrostatic Charge Mitigation

SAE J1681 Gasoline, Alcohol, and Diesel Fuel Surrogates for Materials Testing

SAE J1737 Test Procedure to Determine the Hydrocarbon Losses from Fuel Tubes, Hoses, Fittings, and Fuel Line Assemblies by Recirculation

SAE J2045 Performance Requirements for Fuel System Tubing Assemblies

SAE J2587 Optimized Fuel Tank Sender Closure

2.1.2 ASTM Publication

ASTM B 117 Method of Salt Spray (Fog) Testing

2.2 Related Publication

The following publication is provided for information purposes only and is not a required part of this specification.

2.2.1 SAE Publication

Available from SAE International, 400 PA 15096-0001, Tel: 877-606-7323 (inside

SAE J30 Fuel and Oil Hoses

3. DEFINITIONS

3.1 Unexposed Coupling

One that has not been used or deteriorated since manufacture.

3.2 Lot

A group of couplings that can be traced to a single assembly set-up or material lot. No more than one week production in

a lot.

3.3 Dimensions

Unless otherwise specified all dimensions are in millimeters (mm).

4. SIZE DESIGNATION

The size of quick connect couplings in this document are designated by three dimensions, and presented as x x , defined in Figure 1 below. Dimension designates the nominal male endform diameter. Dimension designates the tubing or hose size suited for the stem end of the coupling. Dimension designates the minimum straight length, of nominal diameter tubing, behind the male endform bead, required for proper installation and removal of the fitting.

EXAMPLE: 9.5 mm x 8 mm x 12 mm connector couples with a 9.5 mm male tube end, is inserted into an 8 mm flexible tube or hose and requires 12 mm clearance behind the bead on the tube end.

FIGURE 1 - CONNECTOR NOMENCLATURE

Details for standard coupling sizes and dimensions for standard tube end forms are shown in Table 1 and Figure 2.

NOTE: On metal or plastic tubing the OD is used to designate size. On flexible hose the ID is used to designate size.

5. TEST TEMPERATURES

Unless otherwise specified, all tests will be performed at room temperature 23 °C ± 2 °C (73.4 °F ± 4 °F).

6. FUNCTIONAL REQUIREMENTS

This section defines the minimum functional requirements for quick connector couplings used in flexible tubing fuel systems.

NOTE: New connector designs using the same materials as previously tested connectors may use the original results as surrogate data for 7.1 Corrosion, 7.2 Zinc Chloride Resistance, 7.3 External chemical and Environmental Resistance, and 7.4 Fuel Compatibility.

6.1 Leak Test (In-Process)

In accordance with stringent emissions regulations, including CARB PZEV, and safety regulations, quick connector couplings must be free of leaks and micro-leaks. Production leak testing is performed to assure conformance to the requirement. Compressed air leak testing is a proven technique which provides required leak sensitivity as well as a proof test for pressure resistance. Depending on the application, test conditions for Low Pressure (vapor), high pressure (liquid) and vacuum systems are described below.

NOTE: Leak test acceptance criteria for this document are in customary leak units of flow (cc/min) or mass flow (scc/min). In the fuel system industry, an alternate leak test criteria, based on units of equivalent channel dimension rather than flow rate, have been applied. For example, see SAEJ2587 for leak criteria for fuel pump module tank interface joint. The equivalent channel specification is especially appropriate for parts such as fuel tanks with large internal volume, with high deformation with applied pressure or vacuum and where use pressures are low. Leak tests for such parts include vacuum, pressure, and accumulation methods. It can be difficult to compare the indicated leak rates for various techniques, so an equivalent channel criteria is established. The equivalent channel dimension specification is based on test data indicating that fuel system micro-leaks will plug over time. Effectively, micro-leaks plug to a near zero hydrocarbon emission level. The high pressure leak tests defined in 6.1.3 have been demonstrated, with experiment and analysis, to satisfy an equivalent channel of

15 micron diameter and 3 mm length. No further testing is recommended to validate the equivalent channel

criteria. Standard leak rate conditions are defined as 101.325 kPa (14.696 psia) and 293 K (20 C).

6.1.1 Low Pressure Leak Test Procedure

a. Insert leak test pin, shown in Figure 3, into the connector.

b. Pressurize between the seals (for single seal connectors, the stem must be capped or sealed) with suitable air leak

test equipment to 69 kPa ± 7 kPa, 0.69 bar ± 0.07 bar (10 psig ± 1 psig).

6.1.2 Low Pressure Leak Acceptance Criteria

Maximum leak rate 2 scc/min (1.19 cc/min) at stabilization.

6.1.3 High Pressure Leak Test Procedure (Liquid Fuel Only)

a. Insert leak test pin, shown in Figure 3, into the connector.

b. Pressurize between the seals with suitable air leak test equipment to 1034 kPa ± 35 kPa, 10.34 bar ± 0.35 bar

(150 psig ± 5 psig).

6.1.4 High Pressure Test Acceptance Criteria

Maximum leak rate 5 scc/min (0.45 cc/min) at stabilization.

NOTE: Appropriate safety precautions should be taken when testing with high-pressure air. Not required for vapor/emission quick connector couplings. Vapor connectors are not generally used for high pressure applications.

6.1.5 Vacuum Leak Test Procedure (Vapor Systems only at Customer’s Request)

a. Insert leak test pin shown in Figure 3 into connector.

b.Apply a vacuum of7kPa(–1.02psig)with suitable vacuum leak test equipment.

6.1.6 Vacuum Test Acceptance Criteria

Maximum leak rate 2 scc/min (2.14 cc/min) at stabilization.

Stabilization can be determined by viewing a graphic output of actual leak rate. This will vary by connector size and leak test method. Permeation is not the same phenomenon as leaks. Permeation tests measure permeation rate.

TABLE 1 - STANDARD TUBE END-FORM DIMENSIONS

dependant on tubing wall thickness.For formed metal tube wall thicknesses other than specified in Table1;D=2X wall+0.5/–0.0, bead width recommended. Nominal steel tube dimensions per SAE

J526 and SAE J527. For material thicknesses other than specified in Table 1, see your Quick Connect supplier for compatibility. Molded plastic endform suitability with the various fitting types and applications, should be confirmed with the fitting manufacturer. See Appendix A for Bead Width measurement method.

Dimension“F”is the distance from the rear of the Bead(the retaining surface side)to the tangent of a bend or a surface that may not deviate from the nominal tube diameter. This dimension may vary by coupling manufacturer to provide sufficient clearance for latching mechanisms, release tools, redundant latches or any circumstances required by the customer.

FIGURE 2 - MATING TUBE END FORM

Note: Molded endforms with sharp (K) corner

should be confirmed for serviceability.

Tube sizes up to 10 mm (for overlay check)

Tube sizes greater than 10 mm (for overlay check)

FIGURE 2 - DETAIL A (CONTINUED)

NOTE: Nose shape must be smooth and allow insertion without seal damage. Also it must conform to the required minimum internal diameter in Table 1.

SAE J2044 Revised AUG2009 Page 8 of 23

FIGURE 3 Basic Size

“A”

Maximum

“A”

Minimum mm mm

4.78 mm (3/16 in) 4.57 4.55

6.35 mm (1/4 in) 6.24 6.22

7.94 mm (5/16 in) 7.83 7.81

9.53 mm (3/8 in) 9.43 9.41

10 mm 9.83 9.81

11.11 mm (7/16 in) 10.95 10.93

12 mm 11.70 11.68

12.70 mm (1/2 in) 12.51 12.49

15.88 mm (5/8 in) 15.72 15.70

19.05 mm (3/4 in) 18.80 18.78

22.23 mm (7/8 in) 22.55 22.53

FIGURE 3 - LEAK TEST PIN

NOTE: SAE J2044 rev 2002, test pins are acceptable for use.

6.2 Assembly Effort

Quick connect coupling assembly effort is the peak force required to fully assemble (latch or retain) the mating tube end into the connector. Use a suitable tensile/compression tester to verify conformance to this document.

6.2.1 Test Procedure (New Parts)

a. Test a minimum of 10 couplings.

b. Test the quick connect coupling as supplied. Do not add additional lubrication to the quick connect coupling or test

pin.

c. Attach quick connect coupling to a suitable test fixture.

d. Wipe the test pins, before each test, with a clean lint-free cloth to prevent an accumulation of lubrication.

e. Insert assembly test pin, shown in Figure 4, into the quick connect coupling at a rate of 51 mm/min ± 5 mm/min

(2 in/min ± 0.2 in/min) and measure assembly effort. (Simulated maximum tube end form)

6.2.2 Test Procedure (Connectors after Section 7 Exposure)

a. Allow samples to dry 48 h before insertion testing.

b. Lubricate test pin with SAE 30-weight oil by dipping the end in oil up to the retaining bead.

c. Insert assembly test pin, shown in Figure 4, into the quick connector at a rate of 51 mm/min ± 5 mm/min (2 in/min ±

0.2 in/min) and measure assembly effort.

6.2.3 Acceptance Criteria

a. Maximum first time assembly effort must not exceed 67 N (15 lb) for sizes <11 mm male tubes, and 111 N (25 lb) for

sizes 11 mm male tubes.

b. Maximum assembly effort after Section 7 exposures must not exceed 111 N (25 lb) for <11 mm male tubes and 156 N

(35 lb) for 11 mm male tubes.

SAE J2044 Revised AUG2009 Page 9 of 23

A B C D E

+0.00 +0.00+0.00+0.00+0.00

–0.01–0.01–0.05–0.02–0.05

4.78 mm (3/16 in) 4.69 7.25 20.18 1.93 4.76

6.35 mm (1/4 in) 6.36 8.90 21.16 1.93 6.35

8 mm (5/16 in) 7.95 11.13 21.37 1.93 7.94

9.53 mm (3/8 in) 9.55 13.15 21.37 1.93 9.53

10 mm 9.95 13.63 24.99 1.93 10.00

11.11 mm (7/16 in) 11.15 15.05 27.12 1.93 11.11

12 mm 11.90 16.76 27.12 1.93 12.00

12.70 mm (1/2 in) 12.71 16.76 27.12 1.93 12.70

15.88 mm (5/8 in) 15.92 19.43 27.12 2.74 15.88

19.05 mm (3/4 in) 19.00 22.58 27.12 2.74 19.05

22.23 mm (7/8 in) 22.85 26.20 30.00 2.74 22.23

PA COATED ENDFORMS

6.35 mm (1/4 in) PA 6.36 8.90 21.16 2.32 6.35

8 mm (5/16 in) PA 7.95 11.13 21.37 2.32 7.94

9.5 mm (3/8 in) PA 9.55 13.15 21.37 2.32 9.53

FIGURE 4 - ASSEMBLY TEST PIN

NOTE: Dimensions represent Test Pin diameters @ Maximum Material Condition. Surface finish must be 30 RT or better. SAE J2044 rev 2002, test pins are acceptable for use.

SAE J2044 Revised AUG2009 Page 10 of 23 6.3 Pull-Apart Effort

Quick connect coupling pull-apart effort is the peak force required to pull the mating tube end out of the quick connect coupling. Use a suitable tensile tester to verify conformance to this document. For hose pull-off, see SAE J2045.

6.3.1 Test Procedure

a. Attach the quick connector body stem to a fixture suitable for pulling axially through the centerline of the quick

connector.

b. Use the pull-apart test pin shown in Figure 5. (Simulated minimum mating end form)

c. Apply a tensile load, at a rate of 51 mm/min ± 5 mm/min (2 in/min ± 0.2 in/min), until complete separation occurs.

6.3.2 Acceptance Criteria

a. The Force required to separate unexposed liquid fuel quick connects from the test pin should be, 450 N minimum.

b. The Force required to separate exposed liquid fuel quick connects (after Section 7) from the test pin should be, 297 N

minimum.

c. The Force required to separate unexposed vapor/emissions quick connects from the test pin should be, 222 N

minimum.

d. The Force required to separate exposed vapor/emissions quick connects (after Section 7) from the test pin should be,

75 N minimum.

SAE J2044 Revised AUG2009 Page 11 of 23

A B C D E

+0.01 +0.02 +0.05 +0.05 +0.05

–0.00–0.00–0.00–0.00–0.00

4.76 mm (3/16 in) 4.57 6.95 19.68 1.57 4.76

6.35 mm (1/4 in) 6.24 8.60 20.66 1.57 6.35

8 mm (5/16 in) 7.83 10.83 20.87 1.57 7.94

9.5 mm (3/8 in) 9.43 12.73 20.87 1.57 9.53

10 mm 9.83 13.21 24.49 1.57 10.00

11.1 mm (7/16 in) 10.95 14.55 26.12 1.57 11.11

12 mm 11.70 16.26 26.12 1.57 12.00

12.7 mm (1/2 in) 12.51 16.26 26.12 1.57 12.70

16 mm (5/8 in) 15.72 18.93 26.12 2.34 15.88

19 mm (3/4 in) 18.80 22.08 26.12 2.34 19.05

23 mm (7/8 in) 22.55 25.20 29.00 2.34 22.23

PA COATED ENDFORMS

6.35 mm (1/4 in) PA 6.24 8.60 20.66 1.98 6.35

8 mm (5/16 in) PA 7.83 10.83 20.87 1.98 7.94

9.5 mm (3/8 in) PA 9.43 12.73 20.87 1.98 9.53

FIGURE 5 - PULL APART PIN

NOTE: Dimensions represent Test Pin diameters @ Minimum Material Condition. Surface finish must be 30 RT or better.

SAE J2044 rev 2002, test pins are acceptable for use.

6.4

Side Load Capability

Quick connect couplings must be able to withstand side loads typical of what might be imposed by hose routing in a vehicle application as well as from having the hose pushed aside to reach other objects on the vehicle during service procedures. The connector side load capability is measured using a side load leak test and a side load fracture test. 6.4.1

Test Procedure

a. Insert quick connector into a length of flexible tubing or hose with the opposite end sealed.

b. Mount a sample in the fracture fixture (see Figure 6), side load quick connector at a rate of 12.7 mm/min ± 5 mm/min

(0.5 in/min ± 0.2 in/min) until the specified force is applied or fracture of the quick connector occurs. Kinking of flexible tubing or hose is permitted c. For liquid fuel quick connect couplings, pressurize the assembly with 1034 kPa ± 35 kPa, 10.34 bar ± 0.35 bar

(150 psig ± 5 psig) air pressure. d. For vapor/emission quick connect couplings, pressurize the assembly with 70 kPa ± 7 kPa, 0.7 bar ± 0.07 bar

(10 psig ± 1 psig) air pressure. e. Side load the quick connect to a load of 152 N, then stop the machine and perform the leak test. (For male tube

endform sizes less than 8mm (5/16”)side load to 44.5N and perform leak test.)f. Continue side load to fracture (must exceed minimum requirement without damage to test equipment). 6.4.2

Acceptance Criteria (Side Load Leak Test)

a. Maximum leak rate is 8 scc/min (0.71 cc/min) at stabilization for liquid fuel quick connectors.

b. Maximum leak rate is 2 scc/min (1.19 cc/min) at stabilization for vapor/emission quick connects. 6.4.3

Acceptance Criteria (Side Load Fracture Test)

For stem sizes 5/16”and above,no fracture,rupture,or yield of the quick connector permitted below a minimum of 200N (45lbf).For stem sizes less than 5/16”,acceptance criteria is per agreement between fitting supplier and OEM.

FIGURE 6 - SIDE LOAD TEST FIXTURE

Tensile Test Machine Center of Pull

Air pressure Test endform Tensile Test inlet

per

Figure 5–Pull Apart Pin

Machine Center of Pull

Alternate Fixture Setup

6.5 Electrical Resistance

If required by the OEM, all connectors used in fuel system applications involving flowing liquid fuel must be sufficiently conductive and capable of creating an electrical connection with the flexible tubing into which they are inserted and with the tube end form that is inserted into them in order to prevent the buildup of harmful electrostatic charges.

6.5.1 Test Procedure

a. Test specimen is to consist of a coupling representative of the design as it will be installed in a vehicle application.

The coupling is to be in the middle of the specimen. The length of both the flexible tubing or hose and rigid tubing must be 250 mm.

b. Expose the specimens in accordance with 7.4 Fuel Compatibility of this document, Fuel C only, then dry the exterior

thoroughly (defer on fuel soak samples).

c. Test per SAE J1645 between the inner surfaces at each end of the specimen.

CAUTION: Measurement device may produce hazardous electrical charge, handle components with insulated means. 6.5.2 Acceptance Criteria

Acceptance criteria are specified in SAE J1645.

6.6 Resistance to Evaporative Emissions

Fuel line couplings are an integral part of the fuel system barrier to evaporative emissions. They are viewed as potential emissions or leak sites in the system. The evaporative losses from a single coupling are normally too small to measure accurately. While connector emissions have been estimated by testing 10 or more couplings concurrently, it is recommended that couplings be tested as a part of the fuel line assembly, per SAE J2045.

7. DESIGN VERIFICATION/VALIDATION TESTING

7.1 Corrosion

The corrosion test is performed to assure that the quick connector components will meet the functional requirements of the fuel system after exposure to the corrosion test.

7.1.1 Test Procedure

a. Insert design intent mating tube ends, shown in Figure 2, into the quick connect couplings.

b. Cap the mating tube ends and the stem ends of the quick connect couplings, so internal surfaces remain free of water

and corrosion.

c. Perform salt spray test per ASTM B 117 for 500 h.

d. Rinse with water before functional tests.

7.1.2 Acceptance Criteria

The quick connect couplings shall be capable of meeting the functional requirements of 6.1 Leak Test, 6.2 Assembly Effort, and 6.3 Pull Apart Effort, after salt spray exposure. Appearance is not a functional requirement.

NOTE: New connector sizes using the same materials and architectural design as previously tested connectors may use the original results as surrogate data.

7.2 Zinc Chloride Resistance

Zinc chloride is an environmental stress-cracking agent to which some hygroscopic polymers are sensitive. This test is performed to assure that the quick connect couplings meet their functional requirements after exposure to zinc chloride.

7.2.1 Test Procedure

a. Insert mating tube ends, shown in Figure 2, into the quick connect couplings.

b. Cap the mating tube ends and stem ends of the quick connect couplings, so internal surfaces remain free of water

and corrosion.

c. Immerse the couplings in a 50% aqueous solution (by weight) of zinc chloride for 200 h at 23 °C (room temperature).

Cover or cap the container to prevent the solution from changing concentration significantly during the exposure.

When in doubt, measure the concentration of ZnCl at the completion of the test.

d. When the exposure is complete, remove the quick connect couplings from the zinc chloride solution, do not rinse or

clean.

e. The quick connect couplings must then be held at room temperature for 24 h.

f. Quick connect couplings are to be inspected after each exposure sequence for any evidence of crackin

g.

g. Rinse with water before functional tests.

7.2.2 Acceptance Criteria

a. No cracks or fractures of the quick connector or its components permitted.

b. The quick connect couplings shall be capable of meeting the functional requirements of 6.1 Leak Test, 6.2 Assembly

Effort, and 6.3 Pull Apart Effort, after exposure to zinc chloride.

NOTE: New connector sizes using the same materials and architectural design as previously tested connectors may use the original results as surrogate data.

7.3 External Chemical and Environmental Resistance

Quick connect couplings may be exposed to a range of chemicals typical of the automotive environment. This chemical resistance test is performed to assure that the quick connect couplings will meet their functional requirements after exposure to typical automotive fluids.

7.3.1 Test Procedure, Fluid or Medium

See Table 2.

a Insert mating tube ends, shown in Figure 2, into the quick connect couplings.

b. Cap mating tube ends and stem ends of the quick connect couplings.

c. Submerge the quick connect coupling assemblies completely.

d. At the end of 60 days, dry connectors at room temperature for 48 h.

e. Rinse before functional tests. (See Table 2)

7.3.2 Acceptance Criteria

The quick connect couplings shall be capable of meeting the functional requirements of 6.1 Leak Test, 6.2 Assembly Effort, and 6.3 Pull Apart Effort, upon completion of the external chemical and environmental testing.

NOTE: New connector sizes using the same materials and architectural design as previously tested connectors may use the original results as surrogate data.

TABLE 2 - FLUID OR MEDIUM(1)

Fluid or Medium Exposure Time Procedure Rinse with Automatic Transmission Fluid 60 Days Soak @ room temp Mineral sprits Motor Oil 60 Days Soak @ room temp Mineral sprits Brake Fluid (Dot 3) 60 Days Soak @ room temp Water

Ethylene Glycol (50% Water) 60 Days Soak @ room temp Water Propylene Glycol (50% Water) 60 Days Soak @ room temp Water

Diesel Fuel 60 Days Soak @ room temp Mineral sprits Engine Degreaser (Soap based

60 Days Soak @ room temp Water

mixed with 50% Water)

1. The fluids in Table 2 shall be considered generic or those that are common to the industry.

7.4 Fuel Compatibility

The fuel compatibility test is performed to assure that the quick connector will meet the functional requirements of the fuel system after exposure to specific fuel blends.

7.4.1 Test Procedure

a. Insert mating tube ends, shown in Figure 2, into the connectors.

b. The samples shall have fuel contact surfaces exposed to the fuels as specified in Table 3. Fittings to be used on the

inside of a fuel tank must be totally submerged.

c. Replace the fuel every 7 days.

d. New samples must be used for each test.

7.4.2 Test Fuels

See Table 3 (reference SAE J1681).

TABLE 3 - TEST FLUIDS

Test Fluid Exposure Time Procedure

ASTM Reference Fuel C 60 Days Soak @ 40 °C

SAE CE10 (Fuel C Plus 10% Ethyl Alcohol) 60 Days Soak @ 40 °C

60 Days Soak @ 40 °C

SAE CP (Auto-Oxidized Fuel 50 mol/liter

peroxide)

NOTE: Other fuels may be specified by the OEM.

7.4.3 Test Requirement

One-half the samples shall be tested immediately after removal from the test fuel and the remaining samples shall be tested after a 48 h dry-out period.

7.4.4 Acceptance Criteria

The quick connect coupling shall meet the functional requirements of 6.1 Leak Test, 6.2 Assembly Effort, and 6.3 Pull Apart Effort, after the completion of the fuel compatibility test.

NOTE: New connector sizes using the same materials and architectural design as previously tested connectors may use the original results as surrogate data.

7.5 Life Cycle

The life cycle test is performed to assure that the quick connector will meet the functional requirements of the fuel system when exposed to pressure, vibration, and temperature cycles typical of severe duty in automotive applications.

7.5.1 Test Procedure

a. Insert a connector into each end of a 500 mm (19.69 in) length of suitable flexible tubing (5 tube/QC assemblies).

b. Leak test the assembly per 6.1, except use mating tube end shown in Figure 2.

c. Connect the assembly to a test fixture, shown in Figure 8 using production intent tube endforms.

d. Test fluid (liquid fuel quick connect couplings)—Mobil Arctic155refrigerant oil or equivalent.

e.Test fluid(vapor/emission quick connect couplings)—Air.

NOTE: Use of flammable materials is not recommended. However, tests in fuel or fuel surrogates can produce better results at low temperatures.

7.5.2 Vibration Frequency

Continuously sweep the frequency from 7 Hz to 200 Hz, with 3 sweeps per hour.

7.5.3 Acceleration

See Table 4.

TABLE 4 - ACCELERATION(1)

Maintain Acceleration Load From To

18 m/s2(2 G) 7 Hz 25 Hz

90 (10 G) 25 50

182 (20 G) 50 75

163 (18 G) 75 100

145 (16 G) 100 125

127 (14 G) 125 150

109 (12 G) 150 175

90 (10 G) 175 200

1. This test may be interrupted or shut down for weekends at the end of any

section.

7.5.4 Vibration Duration

Maintain vibration as specified in 7.5.8 (Test Cycles).

7.5.5 Fluid Pressure

a. For liquid fuel quick connect couplings during pressure portions of the test, alternate pressure between 0 and

1034 kPa ± 35 kPa, 10.34 bar ± 0.35 bar (150 psig ± 5 psig). Alternate pressure one time per minute (i.e., 1 min at each pressure).

b. For vapor/emission quick connect couplings during pressure portions of the test, alternate pressure between 0 and

69 kPa ± 2 kPa, 0.69 bar ± 0.02 bar (10 psig ± 0.3 psig). Alternate pressure one time minute (i.e., 1 min at each

pressure).

NOTE: Pressure transition rate is to be as close to a square wave as practical but not so abrupt that pressure overshoot occurs. This may require several seconds. See Reference Pressure Cycle.

FIGURE 7 - REFERENCE PRESSURE CYCLE

NOTE: It is recommended that 10 pressure cycles be recorded to demonstrate pressure profile. Reference SAE J343, Figure 1 for reference pressure cycle description.

7.5.6 Fluid Flow (Liquid Fuel Quick Connect Couplings Only)

Flow rate during the specified test cycle is 1.33 Lpm ± 0.2 Lpm (0.46 gpm ± 0.07 gpm) through each quick connect coupling, or as required to maintain specified temperatures and pressures.

7.5.7 Test Duration

336 h (14 test cycles) (14 days)

7.5.8 Test Cycles

The test cycle consists of five sections to simulate hot operation, hot soak, hot operation after hot soak, cold soak, and cold operation. See Table 5.

NOTE: Included at the beginning of the hot and cold test sections are temperature transitions times of 1 h maximum.

7.5.8.1 Hot Operation Test

a.Length of Time—7h

b.Chamber Temperature—125°C±5°C(257°F±9°F)

c. Fluid Temperature (liquid fuel quick connect couplings only)—66°C±5°C(151°F±9°F)

d.Fluid Pressure—yes

e.Fluid Flow—yes

f.Vibration—yes

7.5.8.2 Hot Soak

a.Length of Time—2h

b.Chamber Temperature—125°C±5°C(257°F ± 9 °F)

c. Fluid Temperature (liquid fuel quick connect couplings only)—Heat to chamber temperature

d.Fluid Pressure—yes

e.Fluid Flow—no

f.Vibration—no

7.5.8.3 Hot Operation after Hot Soak

a.Length of Time—7h

b.Chamber Temperature—125°C±5°C(257°F ± 9 °F)

c. Fluid Temperature (liquid fuel quick connect couplings only)—66°C±5°C(151°F±9°F)

d.Fluid Pressure—yes

e.Fluid Flow—yes

f.Vibration—yes

7.5.8.4 Cold Soak

a.Length of Time—7h

b.Chamber Temperature—–40°C(–40°F)

c. Fluid Temperature (liquid fuel quick connect couplings only)—Cool to chamber temperature

d.Fluid Pressure—yes

e.Fluid Flow—no

f.Vibration—no

7.5.8.5 Cold Operation

a.Length of Time—1h

b.Chamber Temperature—–40°C(–40°F)

c. Fluid Temperature (liquid fuel quick connect couplings only)—Cool to chamber temperature

d.Fluid Pressure—yes

e.Fluid Flow—yes

f.Vibration—yes

7.5.9 Acceptance Criteria

a. No fluid leaks permitted during or at completion of test.

b. The connector shall meet the functional requirements of 6.1 Leak Test, 6.2 Assembly Effort, and 6.3 Pull Apart Effort,

after the completion of the life cycle test.

c. Perform visual inspection of connector and its components. No fractures, cracks, or unusual wear permitte

d.

FIGURE 8 - LIFE CYCLE TEST SET UP

TABLE 5 - LIFE CYCLE TEST SCHEDULE

Section Hour

Chamber

Temperature (C o)

Fluid Temperature

(C o) Fluid Pressure Fluid Flow Vibration

7.5.8.1 1 125°(1)125°(1)Yes Yes Yes

2 125° 66° Yes Yes Yes

3 125° 66° Yes Yes Yes

4 125° 66° Yes Yes Yes

5 125° 66° Yes Yes Yes

6 125° 66° Yes Yes Yes

7 125° 66° Yes Yes Yes

7.5.8.2 8 125° 125°(1)Yes No No

9 125° 125° Yes No No

7.5.8.3 10 125° 66°(1)Yes Yes Yes

11 125° 66° Yes Yes Yes

12 125° 66° Yes Yes Yes

13 125° 66° Yes Yes Yes

14 125° 66° Yes Yes Yes

15 125° 66° Yes Yes Yes

16 125° 66° Yes Yes Yes

7.5.8.417–40°(1)–40°(1)Yes No No

18–40°–40°Yes No No

19–40°–40°Yes No No

20–40°–40°Yes No No

21–40°–40°Yes No No

22–40°–40°Yes No No

23–40°–40°Yes No No

7.5.8.524–40°–40°Yes Yes Yes

1. Temperature may be in transition.

7.6 Elevated Temperature Burst

The elevated temperature burst test is performed to assure that the quick connect coupling will withstand the pressure requirements of the fuel system at the maximum operating temperature. This test can be performed as part of the tube and hose assembly requirements of SAE J2045 or as follows.

7.6.1 Test Procedure

a. Insert a quick connector into each end of a 500 mm (19.69 in) length of tubing or reinforced fuel hose (5 tube/QC

assemblies). Secure each end with a hose clamp if required, to prevent failure of the stem to hose interface.

b. Insert male tube ends, shown in Figure 2, into the quick connect couplings.

c. ttach assembly to a suitable, air or hydraulic, burst pressure source.

d. Place the assembly in a suitable environmental chamber and soak at 115 °C (239 °F) for 1 h.

e. Perform burst by pressurizing the assembly with a pulse free pressure, at a uniform rate of 7000 kPa/min

(1000 psig/min), until burst or rupture occurs.

标准之各种硬度单位换算表以及水质硬度范围

碱度:把天然水经处理过的水的PH降低到相应于纯CO2水溶液的PH值所必须中和的水中强碱物种的总含量。按这个定义,碱度由强酸(盐酸或硫酸)滴定至终点,单位为ep/L. 硬度:通常说的总硬度指水中Ca2+,Mg2+的总量,这是因为其他离子的总含量远小于二者的含量,因此不予考虑。只有在其他量子含量很高时才考虑,其对硬度的影响。水中的阳离子(除H+外)一般也碳酸盐,重碳酸盐,硫酸盐及氯化物等形式存在。 硬度可以分为暂时硬度,永久硬度个负硬度等类型。 暂时硬度:又称碳酸盐硬度,指水中钙,镁的碳酸盐的含量,因天然水中碳酸盐含量很低,只有在碱性水中才存在碳酸盐。故暂时硬度一般是指水中重碳酸盐的含量,水在煮沸时其中的重碳酸盐分解出碳酸盐沉淀。常用的硬度单位是毫摩尔/升(mmol/L) 永久硬度:又称非碳酸盐硬度,主要指水中钙,镁的氯化物.硫酸盐的含量,之外尚有少量的钙.镁硝酸盐.硅酸盐等盐类,在常压9体积不变)情况下加热,这些盐类不会析出沉淀。常用的硬度单位是毫摩尔/升(mmol/L) 负硬度:指水中钾.纳的碳酸盐.重碳酸盐及氢氧化物的含量,又称为纳盐硬度。当水的总碱度大于总硬度时,就回出现负硬度。负硬度可以消除水的永久硬度,负硬度不能与永久硬度共存。常用的硬度单位是毫摩尔/升(mmol/L) 碱度和硬度是水的重要参数,二者之间的关系有以下三种情况: (1)总碱度〈总硬度,此时,水中有永久硬度和暂时硬度,无钠盐(负)硬度,则: 总硬度—总碱度=永久硬度 总碱度=暂时硬度 (2)总碱度〉总硬度,水中无永久硬度,而存在暂时硬度和钠盐硬度,则: 总硬度=暂时硬度 总碱度—总硬度=钠盐硬度(负硬度) (3)总碱度=总硬度,水中没有永久硬度和钠盐硬度,只有暂时硬度,则: 总硬度=总碱度=暂时硬度 1 / 1

硬度换算表、公差、表面粗糙度值(打印清晰版)

HRA HRC HRA HRC HRA HRC HRA HRC 86.6 70.0103778.555.059937070.540.037726928.027486.3 69.5101778.254.558936570.339.537226627.527186.1 69.099777.954.057936070.039.036726327.026885.8 68.597877.753.557035538.536226026.526485.5 68.095977.453.056135038.035125726.026185.2 67.594177.152.555134537.535225425.525885.0 67.092376.952.054334137.034725125.025584.7 66.590676.651.553433636.534224824.525284.4 66.088950176.351.052533236.033824524.024984.1 65.587249476.150.551732735.533324223.524683.9 65.085648875.850.050932335.032924023.024383.6 64.584048175.549.550131834.532423722.524083.3 64.082547475.349.049331434.032023422.023783.1 63.581046875.048.548531033.531623221.523482.8 63.079546174.748.047830633.031222921.023182.5 62.578045574.547.547030232.530822720.522982.2 62.076644974.247.046329832.030422520.022682.0 61.575244273.946.545629431.530022219.522381.7 61.073943673.746.044929131.029622019.022181.4 60.572643073.445.544328730.529221818.521881.2 60.071342473.245.043628330.028921618.021680.9 59.570041872.944.542928029.528521417.521480.6 59.068841372.644.042327629.028121117.021180.3 58.567640772.443.541727328.527880.1 58.066440172.143.041179.8 57.565339671.842.540579.5 57.064239171.642.039979.3 56.563138571.341.539379.0 56.062038071.141.038878.755.560937570.840.5382黑色金属材料 硬度值换算表 布氏硬度 HB 洛氏硬度 维氏硬度HV 布氏硬度HB 洛氏硬度维氏硬度HV 布氏硬度HB 维氏硬度HV 注:1.布氏硬度:主要用来测定铸件、锻件、有色金属制件、热轧坯料及退火件的硬度,测定范围≯HB450。 2.洛氏硬度:HRA 主要用于高硬度试件,测定硬度高于HRC67以上的材料和表面硬度,如硬质合金、氮化钢等,测定范围HRA>70。HRC 主要用于钢制件(如碳钢、工具钢、合金钢等)淬火或回火后的硬度测定,测定范围HRC20~67。 3.维氏硬度:用来测定薄件和钢板制件的硬度,也可用来测定渗碳、氰化、氮化等表面硬化制件的硬度。 洛氏硬度维氏硬度HV 布氏硬度HB 洛氏硬度

硬度值对照表

BUEHLER?Tables for Knoop and Vickers Hardness Numbers

Table of Contents Load 5 gf (0.005kgf) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 Load 10 gf (0.01kgf) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 Load 25 gf (0.025kgf) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 Load 50gf (0.05kgf) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 Load 100gf (0.1kgf) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 Load 200gf (0.2kgf) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 Load 300gf (0.3kgf) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 Load 500gf (0.5kgf) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 Load 1000gf (1kgf) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 Load 2000gf (2 kgf) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 Load 5kgf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44 Load 10kgf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46 Load 20kgf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48 Load 30kgf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50 Load 50kgf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52

水的硬度单位换算Word版

水的硬度 水质硬度单位换算 电导率 电导率与水的硬度 软水与硬水 水分为软水、硬水,凡不含或含有少量钙、镁离子的水称为软水,反之称为硬水。水的硬度成份,如果是由碳酸氢钠或碳酸氢镁引起的,系暂时性硬水(煮沸暂时性硬水,分解的碳酸氢钠,生成的不溶性碳酸盐而沉淀,水由硬水变成软水);如果是由含有钙、镁的硫酸盐或氯化物引起的,系永久性硬水。依照水的总硬度值大致划分,总硬度0-30ppm称为软水,总硬度60ppm以上称为硬水,高品质的饮用水不超过25ppm,高品质的软水总硬度在10ppm以下。在天然水中,远离城市未受污染的雨水、雪水属于软水;泉水、溪水、江河水、水库水,多属于暂时性硬水,部分地下水属于高硬度水。 一百多年来,科学技术极大地推动近代工业、现代工业、当代工业高速发展,渐渐改善人类生活条件的同时,无处不在的化学技术、工业污染极大地破坏着地球环境的固有平衡,使水资源遭受着严重的污染,水,早已不在是几百年前大都可以直接饮用的水,而是含有许多悬浮物、胶体、以及钙、镁等有害重金属离子、病菌。由于家庭用水量的95%以上属非饮用性生活用水,因此,品质不良的水,不仅危害着人体健康,而且危害着涉水性日常生活、涉水性家庭器具。

水质硬度单位的换算表

说明:表中所列每升所含毫克当量的数值,按照德国和苏联的标准,1度相当于每L水中含0.35663毫克当量的CaO,或每L水中含10mg的CaO.按照法国的标准,1 度相当于每L水中含0.19982毫克当量的CaCO 3,或每L水中含10mg的CaCO 3 .按照 美国的标准,1度相当于每L水中含0.01998毫克当量的CaCO 3 ,或每L水中含1mg的 CaCO 3.按照英国的标准,1度相当于每L水中含0.28483毫克当量的CaCO 3 ,或0.7L 水中含10mg的CaCO 3.

2013年国家标准各种硬度值换算表

国家标准各种硬度值换算表 Steel Rockwell Rockwell Superficial Vickers Brinell Shore HRA HRB HRC HRD 15N 30N 45N HV HB HS 60kgf 100kgf 150kgf 100kgf 15kgf 30kgf 45kgf 50kgf 3000kgf jis 85.6 68.0 76.9 93.2 84.4 75.4 940 97.6 85.3 67.5 76.5 93.0 84.0 74.3 920 96.4 85.0 67.0 76.1 92.9 83.6 74.2 900 95.2 84.7 66.4 75.7 92.7 83.1 73.6 880 94.0 84.4 65.9 75.3 92.5 82.7 73.1 860 92.8 84.1 65.3 74.8 92.3 82.2 72.2 840 91.5 83.8 64.7 74.3 92.1 81.7 71.8 820 90.2 83.4 64.0 73.8 91.8 81.1 71.0 800 88.9 83.0 63.3 73.3 91.5 80.4 70.2 780 87.5 82.6 62.5 72.6 91.2 79.7 69.4 760 86.2 82.2 61.8 72.1 91.0 79.1 68.6 740 84.8 81.8 61.0 71.5 90.7 78.4 67.7 720 83.3 81.3 60.1 70.8 90.3 77.6 66.7 700 81.8 81.1 59.7 70.5 90.1 77.2 66.2 690 81.1 80.8 59.2 70.1 89.8 76.8 65.7 680 80.3 80.6 58.8 69.8 89.7 76.4 65.3 670 79.6 80.3 58.3 69.4 89.5 75.9 64.7 660 78.8 80.0 57.8 69.0 89.2 75.5 64.1 650 78.0 79.8 57.3 68.7 89.0 75.1 63.5 640 77.2 79.5 56.8 68.3 88.8 74.6 63.0 630 76.4 79.2 56.3 67.9 88.5 74.2 62.4 620 75.6 78.9 55.7 67.5 88.2 73.6 61.7 610 74.7 78.6 55.2 67.0 88.0 73.2 61.2 600 73.9 78.4 54.7 66.7 87.8 72.7 60.5 590 73.1 78.0 54.1 66.2 87.5 72.1 59.9 580 72.2 77.8 53.6 65.8 87.2 71.7 59.3 570 71.3 77.4 53.0 65.4 86.9 71.2 58.6 560 70.4 77.0 52.3 64.8 86.6 70.5 57.8 550 505 69.6 76.7 51.7 64.4 86.3 70.0 57.0 540 496 68.7 76.4 51.1 63.9 86.0 69.5 56.2 530 488 67.7 76.1 50.5 63.5 85.7 69.0 55.6 520 480 66.8 75.7 49.8 62.9 85.4 68.3 54.7 510 473 65.9 75.3 49.1 62.2 85.0 67.7 53.9 500 465 64.9 74.9 48.4 61.6 84.7 67.1 53.1 490 456 64.0 74.5 47.7 61.3 84.3 66.4 52.2 480 448 63.0 74.1 46.9 60.7 83.9 65.7 51.3 470 441 62.0 73.6 46.1 60.1 83.6 64.9 50.4 460 433 61.0 73.3 45.3 59.4 83.2 64.3 49.4 450 425 60.0 72.8 44.5 58.8 82.8 63.5 48.4 440 415 59.0 72.3 43.6 58.2 82.3 62.7 47.4 430 405 58.0 71.8 42.7 57.5 81.8 61.9 46.4 420 397 56.9

里氏硬度换算表

一、里氏硬度计测试基本原理 随着单片技术的发展,1978年,瑞士人Leeb博士首次提出了一种全新的测硬方法,它的基本原理是具有一定质量的冲击体在一定的试验力作用下冲击试样表面,测量冲击体距试样表面1mm 处的冲击速度与回跳速度,利用电磁原理,感应与速度成正比的电压。里氏硬度值以冲击体回跳速度与冲击速度之比来表示。 计算公式:HL=1000*(VB/VA) 式中:HL——里氏硬度值 VB——冲击体回跳速度 VA——冲击体冲击速度 二、里氏硬度计冲击装置 里氏硬度度有D、DC、D=15、C、G、E、DL七种: D:外型尺寸:f20*70mm,重量:75g.通用型,用于大部分硬度测量。 DC:外型尺寸:f20*86mm,重量:50g。冲击装置很短,主要用于非常局促的地方,例如孔或圆筒内。 D+15:外型尺寸:f20*162mm,重量:80g。头部细小,用于沟槽或凹入的表面硬度测量。 C:外型尺寸:f20*141mm,重量:75g。冲击能量最小,用于测小轻、薄部件及表面硬化层。 G:外型尺寸:f30*254mm,重量:250g。冲击能量大,对测量表面要求低。用于大、厚重及表面较粗糙的锻铸件。 E:外型尺寸:f20*162,重量80g压头为人造金刚石,用于硬度极高材料的测定。 DL:外形尺寸:f20*202mm,重量:80g头部更加细小,用于狭窄沟槽及齿轮面硬度的测定。 三、异型支撑环的使用 在现场工作中,经常遇到曲面试件,各种曲面对硬度测试结果影响不同,在正确操作的情况下,冲击落在试件表面瞬间的位置与平面试件相同,故通用支撑环即可。但当曲率小到一定尺寸时,由于平面条件的变形的弹性状态相差显著会使冲击体回弹速度偏低,从而使里氏硬度示值偏低。因此对试样,建议测量时使用小支撑环。对于曲率半径更小的试样,建议选用异型支撑环。 四、里氏硬度计的测量范围 根据里氏原理,只要材料具备一定刚性,能形成反弹,就能测出准确的里氏硬度值,但很多材料里氏与其它制式的硬度没有相应的换算关系,因此里氏硬度计目前只装了9种材料的换算表。具体材料如下:钢和铸钢,合金工具钢,灰铸铁,球墨铸铁,铸铝合金,铜锌合金,铜锡合金,纯铜,不锈铜。 对于一些特殊材料的试样,用户可使用公司提供的拟合曲线软件做专用换算表。在实际生产中,使用的金属材料多种多样,由于里氏硬度计对材料的加工方式、材料的合金元素组成敏感,而里氏

硬度单位的转换度换算公式

硬度单位的转换度換算公式 1.肖氏硬度(HS)=勃式硬度(BHN)/10+12 2.肖式硬度(HS)=洛式硬度(HR C)+15 3.勃式硬度(BHN)= 洛克式硬度(HV) 4.洛式硬度(H RC)= 勃式硬度(BHN)/10-3 硬度測定範圍: HS<100 HB<500 HR C<70 HV<1300 (80~88) H RA, (85~95) H RB, (20~70)HRC 洛氏硬度中HRA、H RB、HR C等中的A、B、C为三种不同的标准,称为标尺A、标尺B、标尺C。洛氏硬度试验是现今所使用的几种普通压痕硬度试验之一,三种标尺的初始压力均为98.07N(合10kgf),最后根据压痕深度计算硬度值。标尺A使用的是球锥菱形压头,然后加压至588.4N(合60kgf);标尺B使用的是直径为1.588mm(1/16英寸)的钢球作为压头,然后加压至980.7N(合100kgf);而标尺C使用与标尺A相同的球锥菱形作为压头,但加压后的力是1471N(合150kgf)。因此标尺B适用相对较软的材料,而标尺C适用较硬的材料。实践证明,金属材料的各种硬度值之间,硬度值与强度值之间具有近似的相应关系。因为硬度值是由起始塑性变形抗力和继续塑性变形抗力决定的,材料的强度越高,塑性变形抗力越高,硬度值也就越高。但各种材料的换算关系并不一致。本站《硬度对照表》一文对钢的不同硬度值的换算给出了表格,请查阅。硬度表示材料抵抗硬物体压入其表面的能力。它是金属材料的重要性能指标之一。一般硬度越高,耐磨性越好。常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。 1.布氏硬度(HB) 以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/m m2)。 2.洛氏硬度(H R) 当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。它是用一个顶角120°的金刚石圆锥体或直径为1.59、 3.18mm的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。根据试验材料硬度的不同,分三种不同的标度来表示:HRA:是采用60kg载荷和钻石锥压入器求得的硬度,用于硬度极高的材料(如硬质合金等)。H RB:是采用100kg载荷和直径1.5 8mm淬硬的钢球,求得的硬度,用于硬度较低的材料(如退火钢、铸铁等)。HRC:是采用150kg载荷和钻石锥压入器求得的硬度,用于硬度很高的材料(如淬火钢等)。 3 维氏硬度(HV) 以120kg以内的载荷和顶角为136°的金刚石方形锥压入器压入材料表面,用材料压痕凹坑的表面积除以载荷值,即为维氏硬度HV值(kgf/mm2)。『HK=139.54?P/L2。式中:HK-努普硬度,Mpa;P-荷重,kg;L-凹坑对角线长度,mm。我国和欧洲各国采用维氏硬度,美国则采用努普硬度。兆帕(MPa)是显微硬度的法定计量单位,而kg/mm2是以前常用的硬度计算单位。它们之间的换算公式为1kg/mm2=9.80665Mpa HLD HRC H RB HV HB[1] HB[2] HSD HLD HRC H RB HV HB[1] HB[2] HSD 300 83 596 33.9 322 314 315 46.3 302 84 598 34.2 325 316 318 46.6 304 85 600 34.5 328 319 320 46.9 306 85 602 34.8 330 322 323 47.2 308 86 604 35.1 333 324 325 47.5 310 87 606 35.4 336 327 328 47.8 312 87 608 35.7 338 330 331 48.2 314 88 610 35.9 341 332 333 48.5 316 89 612 36.2 344 335 336 48.8 318 90 614 36.5 346 338 339 49.1

HB HV HRC各种硬度换算表

硬度换算公式: 1.肖氏硬度(H S)=勃式硬度(B H N)/10+12 2.肖式硬度(H S)=洛式硬度(H R C)+15 3.勃式硬度(B H N)=洛克式硬度(H V) 4.洛式硬度(H R C)=勃式硬度(B H N)/10-3 洛氏硬度H R C和布氏硬度H B等硬度对照区别和换算 硬度是衡量材料软硬程度的一个性能指标。硬度试验的方法较多,原理也不相同,测得的硬度值和 含义也不完全一样。最普通的是静负荷压入法硬度试验,即布氏硬度(H B)、洛氏硬度(H R A,H R B,H R C)、维氏硬度(H V),橡胶塑料邵氏硬度(H A,H D)等硬度其值表示材料表面抵抗坚硬物体压入的能力。最流行的里氏硬度(H L)、肖氏硬度(H S)则属于回跳法硬度试验,其值代表金属弹性变形功的大小。因此, 硬度不是一个单纯的物理量,而是反映材料的弹性、塑性、强度和韧性等的一种综合性能指标。 1、钢材的硬度:金属硬度(H a r d n e s s)的代号为H。按硬度试验方法的不同, ●常规表示有布氏(H B)、洛氏(H R C)、维氏(H V)、里氏(H L)硬度等,其中以H B及H R C较为常用。 ●H B应用范围较广,H R C适用于表面高硬度材料,如热处理硬度等。两者区别在于硬度计之测头不同,布氏硬度计之测头为钢球,而洛氏硬度计之测头为金刚石。 ●H V-适用于显微镜分析。维氏硬度(H V)以120k g以内的载荷和顶角为136°的金刚石方形锥压入器压 入材料表面,用材料压痕凹坑的表面积除以载荷值,即为维氏硬度值(H V)。 ●H L手提式硬度计,测量方便,利用冲击球头冲击硬度表面后,产生弹跳;利用冲头在距试样表面1m m 处的回弹速度与冲击速度的比值计算硬度,公式:里氏硬度H L=1000×V B(回弹速度)/V A(冲击速度)。 ●目前最常用的便携式里氏硬度计用里氏(H L)测量后可以转化为:布氏(H B)、洛氏(H R C)、维氏(H V)、肖氏(H S)硬度。或用里氏原理直接用布氏(H B)、洛氏(H R C)、维氏(H V)、里氏(H L)、肖氏(H S)测量硬度值。 时代公司生产的T H系列里氏硬度计就有此功能,是传统台式硬度机的有益补充!”(详细情况请点击《里氏硬度计T H140/T H160/H L N-11A/H S141便携式系列》) 洛氏硬度(H R C)一般用于硬度较高的材料,如热处理后的硬度等等。 2、H B-布氏硬度:一般用于材料较软的时候,如有色金属、热处理之前或退火后的钢铁。布式硬度 (H B)是以一定大小的试验载荷,将一定直径的淬硬钢球或硬质合金球压入被测金属表面,保持规定时间,然后卸荷,测量被测表面压痕直径。布式硬度值是载荷除以压痕球形表面积所得的商。一般为:以一定的载荷(一般3000k g)把一定大小(直径一般为10m m)的淬硬钢球压入材料表面,保持一段时间,

水硬度单位换算表

各种硬度单位换算表 mmol/l 毫克当量/升德国英国法国美国 °DH °Clark 法国度ppm mmo1/l 1 2 5.61 7.02 10 100 毫克当量/升0.5 1 2.8 3.51 5 50 德国°DH 0.178 0.356 1 1.25 1.78 17.8 英国°Clark 0.143 0.286 0.8 1 1.43 14.3 法国法国度0.1 0.2 0.56 0.70 1 10 美国ppm 0.01 0.02 0.056 0.070 0.1 1 水质硬度范围 mmol/l 毫克当量/升德国英国法国美国 °DH °Clark 法国度ppm 特软水0 - 0.7 0 -1.4 0 - 4 0 - 5 0 - 7.1 0 - 71 软水0.7 - 1.4 1.4 -2.8 4 - 8 5 - 10 7.1 - 14.2 71 - 142 中等水1.4 - 2.8 2.8 - 5.6 8 - 16 10 - 20 14.2 - 28.5 142 - 285 硬水2.8 - 5.3 5.6 -10.6 16 - 30 20 - 37.5 28.5 - 53.4 285 - 534 特硬水> 5.3 > 10.6 > 30 > 37.5 > 53.4 > 534 在水处理中,经常会碰到各种各样的硬度单位,他们之间的换算是很费脑筋的,现把各种单位列出,希望大家把他们之间的换算关系填全,有错误的地方请修改:1、毫克当量/L(meq/L):以往习惯用它作为硬度的单位。它表示当量离子的浓度,当量离子必须是一价的离子,如果离子为n价,则当量离子浓度表示的为离子n 价时浓度的n倍值。 2、mg/l:用mgCaCO3/l 表示水中硬度离子的含量 3、mmol/l:现在的国际通用单位。以CaCO3计,每升水中含有的Ca2+的物质的量。或者以每升水中含有的1/2Ca2+的物质的量。 4、ppm:百万分之一,无单位,以CaCO3计。 5、德国度:1度相当于1升水中含有10毫克CaO 6、法国度:1度相当于1升水中含有10毫克CaCO3 7、英国度:1度相当于0.7升水中含有10毫克CaCO3 8、美国度:1度相当于1升水中含有1毫克CaCO3 一个硬度[毫克当量/升(mgN/L)]等于1/2个毫摩尔,50mg/L 我们通常所说的硬度是指以碳酸钙(CaCO3)计的毫摩尔数,mmol/L 由于原来用的是毫克当量/升(mgN/L))已经被多数人接受,很难一下转变过来,所以在滴定时多采用1/2的方法,得到的数值实际上是1/2mmol/L,数值上与毫克当量/升(mgN/L)是一样的。 也就是说一个硬度[毫克当量/升(mgN/L)]等于1/2个毫摩尔,50mg/L

HB-HV-HRC各种硬度换算表

硬度換算公式: 1.肖氏硬度(H S)=勃式硬度(B H N)/10+12 2.肖式硬度(H S)=洛式硬度(H R C)+15 3.勃式硬度(B H N)=洛克式硬度(H V) 4.洛式硬度(H R C)=勃式硬度(B H N)/10-3 洛氏硬度H R C和布氏硬度H B等硬度对照区别和换算 硬度是衡量材料软硬程度的一个性能指标。硬度试验的方法较多,原理也不相同,测得的硬度值和含义也不完全一样。最普通的是静负荷压入法硬度试验,即布氏硬度(H B)、洛氏硬度(H R A,H R B,H R C)、维氏硬度(H V),橡胶塑料邵氏硬度(H A,H D)等硬度其值表示材料表面抵抗坚硬物体压入的能力。最流行的里氏硬度(H L)、肖氏硬度(H S)则属于回跳法硬度试验,其值代表金属弹性变形功的大小。因此,硬度不是一个单纯的物理量,而是反映材料的弹性、塑性、强度和韧性等的一种综合性能指标。 1、钢材的硬度:金属硬度(H a r d n e s s)的代号为H。按硬度试验方法的不同, ●常规表示有布氏(H B)、洛氏(H R C)、维氏(H V)、里氏(H L)硬度等,其中以H B及H R C较为常用。 ●H B应用范围较广,H R C适用于表面高硬度材料,如热处理硬度等。两者区别在于硬度计之测头不同,布氏硬度计之测头为钢球,而洛氏硬度计之测头为金刚石。 ●H V-适用于显微镜分析。维氏硬度(H V)以120k g以内的载荷和顶角为136°的金刚石方形锥压入器 压入材料表面,用材料压痕凹坑的表面积除以载荷值,即为维氏硬度值(H V)。 ●H L手提式硬度计,测量方便,利用冲击球头冲击硬度表面后,产生弹跳;利用冲头在距试样表面1m m 处的回弹速度与冲击速度的比值计算硬度,公式:里氏硬度H L=1000×V B(回弹速度)/V A(冲击速度)。 ●目前最常用的便携式里氏硬度计用里氏(H L)测量后可以转化为:布氏(H B)、洛氏(H R C)、维氏(H V)、肖氏(H S)硬度。或用里氏原理直接用布氏(H B)、洛氏(H R C)、维氏(H V)、里氏(H L)、肖氏(H S)测量硬度值。 时代公司生产的T H系列里氏硬度计就有此功能,是传统台式硬度机的有益补充!”(详细情况请点击《里氏硬度计T H140/T H160/H L N-11A/H S141便携式系列》) 洛氏硬度(H R C)一般用于硬度较高的材料,如热处理后的硬度等等。 2、H B-布氏硬度:一般用于材料较软的时候,如有色金属、热处理之前或退火后的钢铁。布式硬度 (H B)是以一定大小的试验载荷,将一定直径的淬硬钢球或硬质合金球压入被测金属表面,保持规定时间,然后卸荷,测量被测表面压痕直径。布式硬度值是载荷除以压痕球形表面积所得的商。一般为:以一定的载荷(一般3000k g)把一定大小(直径一般为10m m)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(H B),单位为公斤力/m m2(N/m m2)。(关于布 式硬度(H B)详细情况请点击《布氏硬度机(计)H B-3000B/T H600》) 3、洛式硬度是以压痕塑性变形深度来确定硬度值指标。以0.002毫米作为一个硬度单位。当H B>450

金属材料硬度对照表

一、硬度简介: 硬度表示材料抵抗硬物体压入其表面的能力。它是金属材料的重要性能指标之一。一般硬度越高,耐磨性越好。常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。 1.布氏硬度(HB) 以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。 2.洛氏硬度(HR) 当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。它是用一个顶角120°的金刚石圆锥体或直径为1.59、3.18mm的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。根据试验材料硬度的不同,分三种不同的标度来表示: ?HRA:是采用60kg载荷和钻石锥压入器求得的硬度,用于硬度极高的材料(如硬质合金等)。 ?HRB:是采用100kg载荷和直径1.58mm淬硬的钢球,求得的硬度,用于硬度较低的材料(如退火钢、铸铁等)。 ?HRC:是采用150kg载荷和钻石锥压入器求得的硬度,用于硬度很高的材料(如淬火钢等)。 3 维氏硬度(HV) 以120kg以内的载荷和顶角为136°的金刚石方形锥压入器压入材料表面,用材料压痕凹坑的表面积除 以载荷值,即为维氏硬度HV值(kgf/mm2)。 ############################################################################################# 注: 洛氏硬度中HRA、HRB、HRC等中的A、B、C为三种不同的标准,称为标尺A、标尺B、标尺C。 洛氏硬度试验是现今所使用的几种普通压痕硬度试验之一,三种标尺的初始压力均为98.07N(合10kgf),最后根据压痕深度计算硬度值。标尺A使用的是球锥菱形压头,然后加压至588.4N(合60kgf);标尺B使用的是直径为1.588mm(1/16英寸)的钢球作为压头,然后加压至980.7N(合100kgf);而标尺C使用与标尺A相同的球锥菱形作为压头,但加压后的力是1471N(合150kgf)。因此标尺B适用相对较软的材料,而标尺C适用较硬的材料。实践证明,金属材料的各种硬度值之间,硬度值与强度值之间具有近似的相应关系。因为硬度值是由起始塑性变形抗力和继续塑性变形抗力决定的,材料的强度越高,塑性变形抗力越高,硬度值也就越高。但各种材料的换算关系并不一致。本站《硬度对照表》一文对钢的不同硬度值的换算给出了表格,请查阅。 ##############################################################################################

材料硬度单位对照区别和换算

洛氏硬度(HRC)、布氏硬度(HB)等硬度对照区别和换算 洛氏硬度(HRC)、布氏硬度(HB)等硬度对照区别和换算 硬度是衡量材料软硬程度的一个性能指标。硬度试验的方法较多,原理也不相同,测得的硬度值和含义也不完全一样。最普通的是静负荷压入法硬度试验,即布氏硬度(HB)、洛氏硬度(HRA,HRB,HRC)、维氏硬度(HV),橡胶塑料邵氏硬度(HA,HD)等硬度其值表示材料表面抵抗坚硬物体压入的能力。最流行的里氏硬度(HL)、肖氏硬度(HS)则属于回跳法硬度试验,其值代表金属弹性变形功的大小。因此,硬度不是一个单纯的物理量,而是反映材料的弹性、塑性、强度和韧性等的一种综合性能指标。 钢材的硬度:金属硬度(Hardness)的代号为H。按硬度试验方法的不同, ●常规表示有布氏(HB)、洛氏(HRC)、维氏(HV)、里氏(HL)硬度等,其中以HB及HRC较为常用。 ●HB应用范围较广,HRC适用于表面高硬度材料,如热处理硬度等。两者区别在于硬度计之测头不同,布 氏硬度计之测头为钢球,而洛氏硬度计之测头为金刚石。 ●HV-适用于显微镜分析。维氏硬度(HV)以120kg以内的载荷和顶角为136°的金刚石方形锥压入器压入材 料表面,用材料压痕凹坑的表面积除以载荷值,即为维氏硬度值(HV)。 ●HL手提式硬度计,测量方便,利用冲击球头冲击硬度表面后,产生弹跳;利用冲头在距试样表面1mm处的回弹速度与冲击速度的比值计算硬度,公式:里氏硬度HL=1000×VB(回弹速度)/ VA(冲击速度)。 ●目前最常用的便携式里氏硬度计用里氏(HL)测量后可以转化为:布氏(HB)、洛氏(HRC)、维氏(HV)、肖氏(HS)硬度。或用里氏原理直接用布氏(HB)、洛氏(HRC)、维氏(HV)、里氏(HL)、肖氏(HS)测量硬度值。时代公司生产的TH系列里氏硬度计就有此功能,是传统台式硬度机的有益补充!” 1、HB - 布氏硬度: 布氏硬度(HB)一般用于材料较软的时候,如有色金属、热处理之前或退火后的钢铁。洛氏硬度(HRC)一般用于硬度较高的材料,如热处理后的硬度等等。 布式硬度(HB)是以一定大小的试验载荷,将一定直径的淬硬钢球或硬质合金球压入被测金属表面,保持规定时间,然后卸荷,测量被测表面压痕直径。布式硬度值是载荷除以压痕球形表面积所得的商。一般为:以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2(N/mm2)。 2、HR-洛式硬度 洛式硬度(HR-)是以压痕塑性变形深度来确定硬度值指标。以0.002毫米作为一个硬度单位。当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。它是用一个顶角120°的金刚石圆锥体或直径为1.59、3.18mm的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。根据试验材料硬度的不同,分三种不同的标度来表示: HRA:是采用60kg载荷和钻石锥压入器求得的硬度,用于硬度极高的材料(如硬质合金等)。 HRB:是采用100kg载荷和直径1.59mm淬硬的钢球,求得的硬度,用于硬度较低的材料(如退火钢、铸铁等)。HRC:是采用150kg载荷和钻石锥压入器求得的硬度,用于硬度很高的材料(如淬火钢等)。 另外: (1)HRC含意是洛式硬度C标尺, (2)HRC和HB在生产中的应用都很广泛 (3)HRC适用范围HRC 20--67,相当于HB225--650

硬度换算表

硬度换算表 [HB -> HRA/B/C -> TS](专业整理) 2006年10月28日星期六 15:33 X.H. 因为表格数据的字数超过了BAIDU上载的最大限制,所以拍成了图片; 把硬度与抗拉强度极限联系起来,而且整理结果覆盖了比较全面的硬度范围;希望对你有帮助。 先来点泛泛的介绍: 大家常常谈硬度,那么硬度的本质是什么呢?硬度表示材料抵抗硬物体压入其表面的能力。 它是金属材料的重要性能指标之一。一般硬度越高,耐磨性越好。 常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。 HB布氏硬度,10mm球头、荷重3000kg,球头有三种类型:HBS标准球、HultGreen球、硬质合金球(碳化钨球HBW);注意:一般称布氏硬度,默认是指HBW球头。 以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/平方mm (N/mm2)。 洛氏(ROCKWELL) HRA/B/C,其中B标尺为球头,A、C标尺为金刚石锥形压头;事实上,HRA、HRB、HRC、HRD、HRE、HRF、HRG、HRH、HRK、HRL、HRM、HRP、HRR、HRS、HRV共15种标尺里面,只有HRC/HRA/HRD三个标尺的测量压头为金刚石,其他的全为球头。 当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。它是用一个顶角120°的金刚石圆锥体或直径为1.59、3.18mm的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。根据试验材料硬度的不同,分三种不同的标度来表示: HRA:是采用60kg载荷和钻石锥压入器求得的硬度,用于硬度极高的材料(如硬质合金等)。HRB:是采用100kg载荷和直径1.58mm淬硬的钢球,求得的硬度,用于硬度较低的材料(如退火钢、铸铁等)。 HRC:是采用150kg载荷和钻石锥压入器求得的硬度,用于硬度很高的材料(如淬火钢等)。 *** 需要注意的是:洛氏硬度没有单位,它是以0.002毫米作为一个硬度单位。 维氏硬度(HV) 以120kg以内的载荷和顶角为136°的金刚石方形锥压入器压入材料表面,用材料压痕凹坑的表面积除以载荷值,即为维氏硬度值(HV)。单位为公斤力/平方mm (N/mm2)。 实践证明,金属材料的各种硬度值之间,硬度值与强度值之间具有近似的相应关系。因为硬度值是由起始塑性变形抗力和继续塑性变形抗力决定的,材料的强度越高,塑性变形抗力越高,硬度值也就越高。

水硬度单位定义及换算

水硬度单位定义及换算 水硬度的单位常用的有mmol/L或mg/L。过去常用的当量浓度N已停用。换算时,1N=0.5mol/L 由于水硬度并非是由单一的金属离子或盐类形成的,因此,为了有一个统一的比较标准,有必要换算为另一种盐类。通常用Ca0或者是CaCO3(碳酸钙)的质量浓度来表示。当水硬度为0.5mmol/L时,等于28mg/L的CaO,或等于50mg/L的CaCO3。此外,各国也有的用德国度、法国度来表示水硬度。1德国度等于10mg/L的CaO,1法国度等于10mg/L的CaCO3。 0.5mmol/L相当于208德国度、5.0法国度。 1、mmol/L —水硬度的基本单位 2、mg/L(CaCO3) —以CaCO3的质量浓度表示的水硬度 1mg/L(CaCO3) = 1.00×10-2 mmol/L 3、mg/L(CaO) —以CaO的质量浓度表示的水硬度 1mg/L(CaO) = 1.78×10-2 mmol/L 4、mmol/L(Boiler) —工业锅炉水硬度测量的专用单位,其意义是 1/2Ca+2和1/2Mg+2的浓度单位 1mmol/L(Boiler) = 5.00×10-1 mmol/L 5、mg/L(Ca) —以Ca的质量浓度表示的水硬度 1mg/L(Ca) = 2.49×10-2 mmol/L 6、ofH(法国度)—表示水中含有10mg/L CaCO3或0.1mmol/L CaCO3 时的水硬度

1ofH = 1.00×10-1mmol/L 7、odH(德国度)—表示水中含有10 mg/L CaO时的水硬度 1odH = 1.79×10-1 mmol/L 8、oeH(英国度)—表示水中含有1格令/英国加仑,即14.3mg/L或 0.143mmol/L的CaCO3时的水硬度 1oeH = 1.43×10-1mmol/L 9、水硬度单位换算: 1mmol/L = 100 mg/L (CaCO3) = 56.1 mg/L (CaO) = 2.0 mmol/L (Boiler锅炉) = 40.1 mg/L (Ca) = 10 ofH (法国度) = 5.6 odH (德国度) = 7.0 oeH (英国度)

相关主题
文本预览
相关文档 最新文档