当前位置:文档之家› 高二数学----不等式的证明题及解答

高二数学----不等式的证明题及解答

不等式的证明训练题及解答

一、选择题

(1)若l o g a b 为整数,且l o g a

b 1>l o g a b l o g b a 2,那么下列四个结论①b

1>b >a 2

②l o g a b +l o g b a =0 ③0

A 1

B

C 3

D 4

(2)设x 1和x 2是方程x 2+px +4=0的两个不相等的实数根,则( ) A |x 1|>2且|x 2|>2 B |x 1+x 2|>4 C |x 1+x 2|<4 D |x 1|=4且|x 2|=1

(3)若x ,y ∈R +

,且x ≠y ,则下列四个数中最小的一个是( )

A

)11(

2y x + B y

x + (4)若x >0,y >0,且y x +≤a y x +成立,则a 的最小值是( )

A

2

2

C 2

D 2

(5)已知a ,b ∈R +

,则下列各式中成立的是( )

A cos 2θ·lg a +sin 2θ·lg b

B a cos2θ·b sin2

θ=a +b

C cos 2θ·lg a +sin 2θ·lg b >lg(a +b )

D a cos 2θ·b sin2θ

>a +b

(6)设a ,b ∈R +

,且ab -a -b ≥1,则有( )

A a +b ≥2(2+1)

B a +b ≤+1

C a +b ≥(2+1)

2

D a +b ≤2(2+1)

二、填空题

(7)已知x 2+y 2

=1,则3x +4y 的最大值是

(8)设x =2

1y -,则x +y 的最小值是

(9)若

51≤a ≤5,则a +a

1

的取值范围是 (10)A =1+

n n

与1

3121+++ (n ∈N )的大小关系是 (11)实数

y

x

=x -y ,则x 的取值范围是 . 三、解答证明题

(12)用分析法证明:3(1+a 2+a 4)≥(1+a +a 2)2

(13)用分析法证明:ab +cd ≤22c a ?+(14)用分析法证明下列不等式:

(1)求证:15175+>+ (2)求证:4321---<---x x x x (x ≥4)

(3)求证:a ,b ,c ∈R +

,求证:)3

(3)2(

23

abc c b a ab b a -++≤-+ (15)若a ,b >0,2c >a +b ,求证:(1)c 2

>ab ;(2)c -ab c -2

,且x +y >2,求证:

x

y

y x ++11与中至少有一个小于2 (17)设a ,b ,c ∈R ,证明:a 2

+ac +c 2

+3b (a +b +c )≥0

(18)已知1≤x 2+y 2

≤2,求证:

2

1≤x 2+xy +y 2

≤3 (19)设a n =)1(3221+++?+?n n (n ∈N *

),求证:2

)1(2)1(2

+<<+n a n n n 对所有n (n ∈N *

)都成立

(20)已知关于x 的实系数二次方程x 2

+ax +b =0,有两个实数根α,β,证明: (1)如果|α|<2,|β|<2,那么2|α|<4+b 且|b |<4 (2)如果2|α|<4+b 且|b |<4,那么|α|<2,|β|<2 不等式的证明训练题参考答案:

1.A 2.B 3.D 4.B 5.A 6.A

7.5 8.-1 9.[2,

5

26

] 10.A ≥n 11.(-≦,0)∪[4,+≦] 12.证明:要证3(1+a 2

+a 4

)≥(1+a +a 2)2

只需证3[(1+a 2)2-a 2]≥(1+a +a 2)2,即证3(1+a 2+a )(1+a 2-a )≥(1+a +a 2)2

≧1+a +a 2

=(a +

21)2+4

3>0 只需证3(1+a 2

-a )≥1+a +a 2

,展开得2-4a +2a 2

≥0,即2(1-a )2

≥0成立故3(1+a 2+a 4)≥(1+a +a 2)2

成立

13.证明:①当ab +cd <0时,ab +cd <2

222d b c a +?+成立

②当ab +cd ≥0时,欲证ab +cd ≤2

222d b c a +?+

只需证(ab +cd )2

≤(2222d b c a +?+)2

展开得a 2b 2+2abcd +c 2d 2≤(a 2+c 2)(b 2+d 2

)

即a 2b 2+2abcd +c 2d 2≤a 2b 2+a 2d 2+b 2c 2+c 2d 2,即2abcd ≤a 2d 2+b 2c 2

只需证a 2d 2+b 2c 2-2abcd ≥0,即(ad -bc )2

≥0

因为(ad -bc )2

≥0成立所以当ab +cd ≥0时,ab +cd ≤2222d b c a +?+成立综合①②可知:ab +cd ≤2222d b c a +?+成立

14.证明:(1)欲证15175+>+ 只需证22)151()75(+>+

展开得12+235>16+215,即235>4+215 只需证(235)2

>(4+215)2

,即4>15这显然成立

故15175+>+成立

(2)欲证4321---<---x x x x (x ≥4) 只需证2341-+-<-+-x x x x (x ≥4)

即证22)23()41(-+-<-+

-x x x x (x ≥4)

展开得2x -5+22325241-?-+-<-?-x x x x x 即)2)(3()4)(1(--<--x x x x

只需证[)4)(1(--x x ]2

<[)2)(3(--x x ]2

即证x 2-5x +4

-5x +6,即4<6这显然成立 故

4321---<---x x x x (x ≥4)成立

(3)欲证2(

ab b a -+2)≤3(3

3

abc c b a -++) 只需证a +b -2ab ≤a +b +c -33abc

即证c +2ab ≥33abc

≧a ,b ,c ∈R +

,?c +2ab =c +ab +ab ≥3333abc ab ab c =??

?c +2ab ≥33abc 成立故原不等式成立

15.证明:(1)≧ab ≤(

2

b a +)2<

c 2,?ab

(2)欲证c -ab c -2

只需证-ab c -2

-2ac +c 2

-ab

只需证a (a +b )<2ac

≧a >0,只要证a +b <2c (已知),故原不等式成立

16.证明:(反证法):假设

x y y x ++11与均不小于2,即y

x

+1≥2,x y +1≥2,?1+x ≥2y ,1+y ≥2x 将

两式相加得:x +y ≤2,与已知x +y >2矛盾, 故

x

y

y x ++11与中至少有一个小于2 17.证明:目标不等式左边整理成关于a 的二次式且令 f (a )=a 2+(c +3b )a +c 2+3b 2+3bc

判别式Δ=(c +3b )2-4(c 2+3b 2+3bc )=-3(b +c )2

≤0

当Δ=0时,即b +c =0,等号成立故a 2+(c +3b )a +c 2+3b 2

+3bc ≥0成立

18.证明:设x =k cos θ,y =k sin θ,1≤k 2

≤2

?x 2

+xy +y 2

=k 2

(cos 2

θ+cos θsin θ+sin 2

θ)=k 2

(1+

2

1

sin2θ) ≧sin2θ∈[-1,1]?k 2≤k 2(1+21sin2θ)≤23k 2,故2

1≤x 2+xy +y 2

≤3

19.证明:≧2

)1(n n n >+=n ,?a n >1+2+3+…+n =2

)1(+n n

2)1(232221+++++++

2)1(2)21(2n n n n n ++=++++=

2

)1(2122)2(2

2+=++<+=n n n n n ,故命题对n ∈N 都成立

20.证明:依题设及一元二次方程根与系数的关系(韦达定理)得:α+β=-a ,αβ=b 则有:(1)(2)等价

于证明|α|<2,|β|<2?2|α+β|<4+αβ,且|αβ|<4

?????+<+

2)4()(44424αββααβαββααβ?????>+--

2222βαβααβ ?????>--

)4)(4(4

2

2

βααβ????

???<<>

4442222βααββααβ或???

??<<>

24

224βααββααβ或?

??

??<<

.2,224

ββαααβ

高二数学测试题含答案

高二数学测试题 2014-3-9 一、选择题:(本大题共12小题,每小题5分,共60分,只有一项是符合题目要求的.) 1.命题 “若△ABC 不是等腰三角形,则它的任何两个内角不相等”的逆否命题是( ) A.若△ABC 是等腰三角形,则它的任何两个内角相等 B.若△ABC 任何两个内角不相等,则它不是等腰三角形 C.若△ABC 有两个内角相等,则它是等腰三角形 D.若△ABC 任何两个角相等,则它是等腰三角形 2.“三角函数是周期函数,tan y x =,ππ22 x ??∈- ??? ,是三角函数,所以tan y x =, ππ22x ?? ∈- ??? ,是周期函数”.在以上演绎推理中,下列说法正确的是( ) (A)推理完全正确 (B)大前提不正确 (C)小前提不正确 (D)推理 形式不正确 3.以下有四种说法,其中正确说法的个数为:( ) (1)“m 是实数”是“m 是有理数”的充分不必要条件; (2) “a b >”是“22a b >”的充要条件; (3) “3x =”是“2230x x --=”的必要不充分条件; (4)“A B B =I ”是“A φ=”的必要不充分条件. A. 0个 B. 1个 C. 2个 D. 3个 4 .已知动点P (x ,y )满足2)2()2(2222=+--++y x y x ,则动点 P 的轨迹是 A.双曲线 B.双曲线左支 C. 双曲线右支 D. 一条射线

5.用S 表示图中阴影部分的面积,则S 的值是( ) A .dx x f c a ?)( B .|)(|dx x f c a ? C .dx x f dx x f c b b a ??+)()( D .dx x f dx x f b a c b ??-)()( 6 . 已知椭圆 22 1102 x y m m +=--,若其长轴在y 轴上.焦距为4,则m 等于 A.4. B.5. C. 7. D .8. 7.已知斜率为1的直线与曲线1 x y x =+相切于点p ,则点p 的坐标是( ) ( A ) ()2,2- (B) ()0,0 (C) ()0,0或()2,2- (D) 11,2? ? ??? 8.以坐标轴为对称轴,以原点为顶点且过圆096222=++-+y x y x 的圆心的抛物线的方程是 ( ) A .23x y =或23x y -= B .23x y = C .x y 92-=或23x y = D .23x y -=或x y 92= 9.设'()f x 是函数()f x 的导函数,将()y f x =和'()y f x =的图象画在同一个直角坐标系中,不可能正确的是 ( ) A B C D . 10.试在抛物线x y 42-=上求一点P ,使其到焦点F 的距离与到()1,2-A 的距离之 和最小,则该点坐标为 ( ) (A )?? ? ??-1,41 (B )?? ? ??1,41 (C )() 22,2-- (D ) ()22,2- 11.已知点F 1、F 2分别是椭圆22 221x y a b +=的左、右焦点,过F 1且垂直于x 轴的直线 与椭圆交于A 、B 两点,若△ABF 2为正三角形,则该椭圆的离心率e 为

利用放缩法证明数列型不等式压轴题

利用放缩法证明数列型不等式压轴题 惠州市华罗庚中学 欧阳勇 摘要:纵观近几年高考数学卷,压轴题很多是数列型不等式,其中通常需要证明数列型不等式,它不但可以考查证明不等式和数列的各种方法,而且还可以综合考查其它多种数学思想方法,充分体现了能力立意的高考命题原则。处理数列型不等式最重要要的方法为放缩法。放缩法的本质是基于最初等的四则运算,利用不等式的传递性,其优点是能迅速地化繁为简,化难为易,达到事半功倍的效果;其难点是变形灵活,技巧性强,放缩尺度很难把握。对大部分学生来说,在面对这类考题时,往往无从下笔.本文以数列型不等式压轴题的证明为例,探究放缩法在其中的应用,希望能抛砖引玉,给在黑暗是摸索的学生带来一盏明灯。 关键词:放缩法、不等式、数列、数列型不等式、压轴题 主体: 一、常用的放缩法在数列型不等式证明中的应用 1、裂项放缩法:放缩法与裂项求和的结合,用放缩法构造裂项求和,用于解决和式 问题。裂项放缩法主要有两种类型: (1)先放缩通项,然后将其裂成某个数列的相邻两项的差,在求和时消去中间的项。 例1设数列{}n a 的前n 项的和1412 2333n n n S a +=-?+,1,2,3, n =。设2n n n T S =, 1,2,3, n =,证明: 1 32 n i i T =< ∑。 证明:易得12(21)(21),3 n n n S +=--1132311()2(21)(21)22121n n n n n n T ++= =-----, 11223 111 31131111 11 ()()221212212121212121 n n i i i n n i i T ++===-=-+-++ ---------∑∑ = 113113()221212 n +-<-- 点评: 此题的关键是将12(21)(21)n n n +--裂项成1 11 2121 n n +---,然后再求和,即可达到目标。 (2)先放缩通项,然后将其裂成(3)n n ≥项之和,然后再结合其余条件进行二次放缩。 例2 已知数列{}n a 和{}n b 满足112,1(1)n n n a a a a +=-=-,1n n b a =-,数列{}n b 的

备战2019高考数学选择题专题04不等式的证明理

专题04 不等式的证明 知识通关 1.基本不等式 (1)定理1:如果a ,b ∈R ,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. (2)定理2(基本不等式):如果a ,b>0,那么 2 a b ab +≥,当且仅当a=b 时,等号成立. 用语言可以表述为:两个正数的算术平均数不小于(即大于或等于)它们的几何平均数. (3)定理3:如果a ,b ,c 为正数,那么 3 3 a b c abc ++≥a =b =c 时,等号成立. 用语言可以表述为:三个正数的算术平均数不小于(即大于或等于)它们的几何平均数. (4)算术平均—几何平均定理(基本不等式的推广):对于n 个正数a 1,a 2,···,a n ,它们的算术平均数不小于(即大于或等于)它们的几何平均数,即 12123n n n a a a a a a a n ++ +≥??,当且仅当 a 1=a 2=···=a n 时,等号成立. 2.柯西不等式 (1)二维形式的柯西不等式:若a ,b ,c ,d 都是实数,则2 2 2 2 2 ()(+)()a b c d ac bd +≥+,当且仅当 ad=bc 时,等号成立. (2)柯西不等式的向量形式:设α,β是两个向量,则||||||?≥?αβαβ,当且仅当α是零向量或β是零向量或存在实数k 使α=k β时,等号成立. (3)二维形式的三角不等式:设x 1,y 1,x 2,y 2∈R ,22 221212x x y y ++≥211222()()x y x y -+- (4)一般形式的柯西不等式:设1212,, ,,,, ,n n a a a b b b 是实数,则 (22212n a a a ++ +)(222 12n b b b + ++) ≥()2 1122n n a b a b a b +++,当且仅当a i =0或b i =0(i=1,2,···,n )或存在一个数k 使得 a i =k b i (i=1,2,···,n )时,等号成立. 3.不等式证明的方法 (1)比较法 比较法是证明不等式最基本的方法,可分为作差比较法和作商比较法两种.

基本不等式练习题

3.4基本不等式 重难点:了解基本不等式的证明过程;会用基本不等式解决简单的最大(小)值问题. 考纲要求:①了解基本不等式的证明过程。 ②会用基本不等式解决简单的最大(小)值问题. 经典例题:若a,b,c都是小于1的正数,求证:,,不可能同时大于. 当堂练习: 1.若,下列不等式恒成立的是() A。B。 C。 D. 2. 若且,则下列四个数中最大的是() A. B.C.2ab D。a 3。设x>0,则的最大值为 ( )A.3 B. C。 D.-1 4.设的最小值是( ) A. 10 B. C. D。 5. 若x, y是正数,且,则xy有( ) A.最大值16B.最小值C.最小值16 D.最大值 6. 若a, b,c∈R,且ab+bc+ca=1, 则下列不等式成立的是 ( ) A. B. C.D。 7。若x〉0, y>0,且x+y4,则下列不等式中恒成立的是 ( )

A. B。 C。 D。 8。a,b是正数,则三个数的大小顺序是() A.B。 C.D. 9.某产品的产量第一年的增长率为p,第二年的增长率为q,设这两年平均增长率为x,则有( ) A.B. C.D。 10.下列函数中,最小值为4的是 ( ) A。B. C. D. 11. 函数的最大值为。 12. 建造一个容积为18m3, 深为2m的长方形无盖水池,如果池底和池壁每m2 的造价为200元和150元,那么池的最低造价为元. 13。若直角三角形斜边长是1,则其内切圆半径的最大值是。 14。若x, y为非零实数,代数式的值恒为正,对吗?答。 15.已知:, 求mx+ny的最大值. 16。已知.若、, 试比较与的大小,并加以证明. 17。已知正数a, b满足a+b=1(1)求ab的取值范围;(2)求的最小值. 18. 设.证明不等式对所有

高二数学期中考试试题及答案

精心整理 高二数学期中考试试题及答案 注意事项:1.本试卷全卷150分,考试时间120分钟。 2.本试卷分为、II 卷,共4页,答题纸4页。 3.I 4.II 第I 1. 或002.等于 3.已知ABC 中,三内角A 、B 、C 成等差数列,则sinB=A.1B.C.D.2 2

2 3 4.在等差数列an中,已知a521,则a4a5a6等于 A. 5. A. 7. 是 或 8.数列{an}的前n项和为Sn,若an1,则S5等于n(n1) C.A.1B.5611 D.630 9.在△ABC中,AB=3,BC=,AC=4,则边AC上的高为 A.322 B.333 C. D.3322

10.已知x>0,y>0,且x+y=1,求41的最小值是xy A.4 B.6 C.7 D.9 x211.若y2则目标函数zx2y的取值范围是 A.[2 12.、sinC A.II卷 13.,则 14.在△ABC中,若a2b2bcc2,则A_________。 15.小明在玩投石子游戏,第一次走1米放2颗石子,第二次走2米放4颗石子…第n次走n米放2颗石子,当小明一共走了36米时,他投放石子的总数是______.

16.若不等式mx+4mx-4<0对任意实数x恒成立,则实数m的取值范围为. 三、解答题(共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.) 17. ,求a5. (2)若 和公比q. 18. 在a、b、c (1 (2 数学试题第3页,共4页 第3/7页 19.(本小题满分12分)已知数列{an}的前n项和Snn248n。

高考数列与不等式压轴题(难题)

高考数列与不等式压轴题 1. 已知数列{}n a 为等差数列,且满足211n n n a a na +=-+,*n N ∈。 1) 求数列{}n a 的通项公式; 2) 求证: 12321 1111 ...ln 2n n n n a a a a ++++++++<. 3) 当01λ<<时,设1 ()2n n b a λ=-,(1)n n c a λ=-,数列1n n b c ?????? 的前n 项和为n T ,求证: 91 43 n n T n -> +。 2. (2013?蓟县一模)已知数列{}n a 中,11a =,*12311 23()2 n n n a a a na a n N +++++???+= ∈ 1) 求数列{}n a 的通项n a ; 2) 求数列2 {}n n a 的前n 项和n T ; 3) 若存在* n N ∈,使得(1)n a n λ≥+成立,求实数λ的取值范围. 3. (2010?无锡模拟)已知数列{}n a 的前n 项和为n S ,数列是公比为2的等比数列. 1) 证明:数列{}n a 成等比数列的充要条件是13a =; 2) 设*5(1)()n n n b n a n N =--∈,若1n n b b +<对*n N ∈恒成立,求1a 的取值范围. 4. 已知数列{}n a 中,2 2(a a a =+为常数),n S 是{}n a 的前n 项和,且n S 是n na 与na 的等差中项. 1) 求数列{}n a 的通项公式; 2) 设数列{}n b 是首项为1,公比为2 3 - 的等比数列,n T 是{}n b 的前n 项和,问是否存在常数a ,使1012n a T ?<恒成立?若存在,求出a 的取值范围;若不存在,说明理由. 5. 已知数列{}n a 满足11a =,2*123()1 n n n n a a m a n N a +++=∈+。 1) 若恒有1n n a a +≥,求m 的取值范围. 2) 在31m -≤<时,证明: 121111 11112 n n a a a ++???+≥-+++ 3) 设正项数列{}n a 的通项n a 满足条件:*() 10()n n n a na n N +-=∈,求证:1 02 n a ≤≤ 。

高中数学基本不等式证明

不等式证明基本方法 例1 :求证:221a b a b ab ++≥+- 分析:比较法证明不等式是不等式证明的最基本的方法,常用作差法和作商法,此题用作差法较为简便。 证明:221()a b a b ab ++-+- 2221[()(1)(1)]02 a b a b =-+-+-≥ 评注:1.比较法之一(作差法)步骤:作差——变形——判断与0的关系——结论 2.作差后的变形常用方法有因式分解、配方、通分、有理化等,应注意结合式子的形式,适当选 用。 例2:设c b a >>,求证:b a a c c b ab ca bc 2 22222++<++ 分析:从不等式两边形式看,作差后可进行因式分解。 证明:)(222222b a a c c b ab ca bc ++-++ =)()()(a b ab c a ca b c bc -+-+- =)()]()[()(a b ab c b b a ca b c bc -+-+-+- =))()((a c c b b a --- c b a >>Θ,则,0,0,0<->->-a c c b b a ∴0))()((<---a c c b b a 故原不等式成立 评注:三元因式分解因式,可以排列成一个元的降幂形式: =++-++)(222222b a a c c b ab ca bc )())(()(2a b ab b a b a c a b c -++-+-,这样容易发现规律。 例3 :已知,,a b R +∈求证:11()()2()n n n n a b a b a b ++++≤+ 证明:11()()2()n n n n a b a b a b ++++-+ 11n n n n a b ab a b ++=+-- ()()n n a b a b a b =-+- ()()n n a b b a =--

高二数学选修测试题及答案

高二数学选修测试题及 答案 Last revised by LE LE in 2021

2008学年高二数学(选修1-2)测试题 (全卷满分150分,考试时间120分钟)命题人:陈秋梅增城市中 新中学 一、选择题(本大题共10小题,每小题5分,共50分,将答案直接填在下表中) 1.下列各数中,纯虚数的个数有()个 .2 2 7 i,0i,58 i+ , (1i-,0.618 个个个个 2.用反证法证明:“a b >”,应假设为(). A.a b > B.a b < C.a b = D.a b ≤ 3.设有一个回归方程?2 2.5 y x =-,变量x增加一个单位时,变量?y平均 () A.增加2.5 个单位 B.增加2个单位 C.减少2.5个单位 D.减少2个单位 4.下面几种推理是类比推理的是() A.两条直线平行,同旁内角互补,如果∠A和∠B是两条平行直线的同旁内角,则∠A+∠B=1800 B.由平面三角形的性质,推测空间四边形的性质 C.某校高二级有20个班,1班有51位团员,2班有53位团员,3班有52位团员,由此可以推测各班都超过50位团员. D.一切偶数都能被2整除,100 2是偶数,所以100 2能被2整除. 5.黑白两种颜色的正六形地面砖块按如图 的规律拼成若干个图案,则第五 个图案中有白色地面砖()块. .22 C 6.复数 5 34 +i 的共轭复数是:() A. 3 5 4 5 +i B. 3 5 4 5 -i C.34 +i D.34 -i 7.复数() 1cos sin23 z i θθπθπ = -+<<的模为() A.2cos 2 θ B.2cos 2 θ - C.2sin 2 θ D.- 8.在如右图的程序图中,输出结果是() A. 5 B. 10 C. 20 D .15 9.设 11 5 11 4 11 3 11 2 log 1 log 1 log 1 log 1 + + + = P,则

8-高考压轴题-不等式证明方法

高考压轴题-不等式证明方法 郑紫灵 数列与不等式的综合问题常常出现在高考的压轴题中,是历年高考命题的热点,这类问题能有效地考查学生综合运用数列与不等式知识解决问题的能力.本文介绍一类与数列和有关的不等式问题。其中用的最多的是放缩法,而放缩法有四个最基本的 1.先求和再放缩。 (1)直接用等差或等比的求和公式求和 例1.求证1111 1 (2242) n -+ +++<()*n N ∈ 证明:111-111121...= =21-2124221-2 n n n -?? ???????++++

高考数学高三模拟考试试卷压轴题专题六十三不等式的证明

高考数学高三模拟考试试卷压轴题专题六十三不等式的证明 【高频考点解读】 1.了解证明不等式的基本方法:比较法、综合法、分析法、放缩法、数学归纳法. 2.了解柯西不等式、排序不等式以及贝努利不等式. 3.能利用均值不等式求一些特定函数的极值. 【重点知识梳理】 一、比较法证明不等式 (1)求差比较法: 知道a>b ?a -b>0,ab 只要证明a -b>0即可,这种方法称为求差比较法. (2)求商比较法: 由a>b>0?a b >1且a>0,b>0,因此当a>0,b>0时,要证明a>b ,只要证明a b >1即可,这种方法称为求商比较法. 二、综合法与分析法 1.综合法 利用某些已经证明过的不等式和不等式的性质,推导出所要证明的不等式,这种方法叫综合法.即“由因导果”的方法. 2.分析法 证明不等式时,有时可以从求证的不等式出发,分析使这个不等式成立的充分条件,把证明不等式转化为判定这些充分条件是否具备的问题,如果能够肯定这些充分条件都已经具备,那么就可以判定原不等式成立,这种方法叫作分析法.即“执果索因”的方法. 3.平均值不等式 定理:如果a ,b ,c 为正数,则a +b +c 3≥3 abc ,当且仅当a =b =c 时,等号成立. 我们称 a + b + c 3 为正数a ,b ,c 的算术平均值,3 abc 为正数a ,b ,c 的几何平均值,定理中的不等式为三个正数的算术—几何平均值不等式,简称为平均值不等式. 4.一般形式的算术—几何平均值不等式 如果a1,a2,…,an 为n 个正数,则a1+a2+…+an n ≥n a1a2…an ,当且仅当a1=a2=…=an 时,等号成立. 【高考考纲突破】

不等式的证明及著名不等式知识梳理及典型练习题

不等式的证明及着名不等式 一、知识梳理 1.三个正数的算术—几何平均不等式 (1)定理 如果a ,b ,c 均为正数,那么a +b +c 3____3abc ,当且仅当________时, 等号成立. 即三个正数的算术平均________它们的几何平均. (2)基本不等式的推广 对于n 个正数a 1,a 2,…,a n ,它们的算术平均________它们的几何平均,即a 1+a 2+…+a n n ____n a 1a 2…a n ,当且仅当______________时,等号成立. 2.柯西不等式 一、二维形式的柯西不等式 二维形式的柯西不等式的变式: .,,,,, )( 1等号成立时当且仅当则都是实数若二维形式的柯西不等式定理bc ad d c b a =22222) ())((bd ac d c b a +≥++bd ac d c b a +≥+?+2222)1(bd ac d c b a +≥+?+2222)2 ( .,,,,, )( 2等号成立时使或存在实数是零向量当且仅当是两个向量设柯西不等式的向量形式定理βαββαk k =≤.,:1221等号成立时当且仅当式得二维形式的柯西不等平面向量坐标代入b a b a ,=2 221122212221)()()(b a b a b b a a +≥++式: 得三维形式的柯西不等将空间向量的坐标代入,2 332211232221232221)()()(b a b a b a b b b a a a ++≥++++.)3,2,1(,,,,等号成立时使得或存在一个数即共线时当且仅当 ,i kb a k i i ===221221222221212211)()(R,y ,x ,y , )( 3y y x x y x y x x -+-≥+++∈那么设二维形式的三角不等式定理

高二数学排列练习题及答案

解答题 1.求和()() 2!1!2!4!3!24!3!2!13+++++++++++n n n n . 2.5名男生、2名女生站成一排照像: (1)两名女生要在两端,有多少种不同的站法? (2)两名女生都不站在两端,有多少不同的站法? (3)两名女生要相邻,有多少种不同的站法? (4)两名女生不相邻,有多少种不同的站法? (5)女生甲要在女生乙的右方,有多少种不同的站法? (6)女生甲不在左端,女生乙不在右端,有多少种不同的站法? 3.从6名运动员中选出4人参加4×400m 接力赛,如果甲、乙两人都不能跑第一棒,那么共有多少种不同的参赛方案? 4.由2,3,5,7组成没有重复数字的4位数. (1)求这些数字的和;(2)按从小到大顺序排列,5372是第几个数? 5.由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的数共有多少个? 6.7个人按下列要求站成一排,分别有多少种不同的站法? (1)甲不站在左端; (2)甲、乙都不能站在两端; (3)甲、乙不相邻; (4)甲、乙之间相隔二人. 7.8个人站成一排,其中甲不站在中间两个位置,乙不站在两端两个位置,有多少种不同的站法? 8.从8名运动员中选出4人参加4×100m 接力比赛,分别求满足下列条件的安排方法的种数:(1)甲、乙二人都不跑中间两棒;(2)甲、乙二人不都跑中间两棒。 9.在一块并排10垄的田地中,选择2垄分别种值A ,B 两种作物,每种作物种植一垄,为有利于作物生长,要求A ,B 两种作物间隔不小于6垄,则不同的选垄方法共有多少种? 10.某城市马路呈棋盘形,南北向马路6条,东西向马路5条,一辆汽车要从西南角行驶到东北角不绕道的走法有多少种? 参考答案: 1.∵()()()22!2!2!1!2++=+++++k k k k k k k ,()()()! 21!11!21+-+=++=k k k k . ∴()()()!2121!21!11!41!31!31!21+-=?? ????+-+++??? ??-+??? ??-=n n n 原式 2.(1)两端的两个位置,女生任意排,中间的五个位置男生任意排;2405522=?A A (种); (2)中间的五个位置任选两个排女生,其余五个位置任意排男生;2400 5525=?A A

七年级下册数学不等式类压轴题

不等式类压轴题 1.不等式组的所有整数解的和是( ) A .﹣3 B .﹣2 C .0 D .﹣5 2.若关于x 的不等式mx ﹣n >0的解集是x <,则关于x 的不等式(m+n )x >n ﹣m 的解集是( ) A .x <﹣ B .x >﹣ C .x < D .x > 3.若关于x 的不等式mx ﹣n >0的解集是x <,则关于x 的不等式(n ﹣m )x >(m+n )的解集是( ) A .x <﹣ B .x >﹣ C .x < D .x > 4.如果关于x 的不等式07)(>-+-n m x n m 的解集为1

7.已知同时满足不等式x -2>6和3x +2>4x -a 的x 的取值中有且只有四个整数,则a 的取值范围是_________ 8.若关于x 的一元一次不等式组 有解,则m 的取值范围为( ) A . B .m ≤ C . D .m ≤ 9.不等式组???≤-->-21a x a x 的解集中,任一个x 的值均在3≤x <7的范围内,求a 的 取值范围为: . 10.若均为非负整数,则M=5x+4y+2z 的取值范围是( ) A .100≤M ≤110 B .110≤M ≤120 C .120≤M ≤130 D .130≤M ≤140 11.已知x+y+z=0,且x >y >z ,则的取值范围是 .

高二数学测试题 含答案解析

高二暑假班数学测试题 一、选择题(本大题共6小题,每小题5分,共30分) 1.若a 1b >1 c 【解析】选C.选项A 中c =0时不成立;选项B 中a ≤0时不成立;选项D 中取a =-2,b =-1,c =1验证,不成立,故选C. 2.等比数列x ,3x +3,6x +6,…的第四项等于( ) A .-24 B .0 C .12 D .24 【解析】选A.由题意知(3x +3)2=x (6x +6),即x 2+4x +3=0,解得x =-3或x =-1(舍去),所以等比数列的前3项是-3,-6,-12,则第四项为-24. 3.当x >1时,不等式x +1x -1≥a 恒成立,则实数a 的取值范围是( ) A .(-∞,2] B .[2,+∞) C .[3,+∞) D .(-∞,3] 【解析】选D.因为当x >1时,x +1x -1=1+(x -1)+1 x -1≥3, 所以x +1 x -1 ≥a 恒成立,只需a ≤3. 4.等差数列{a n }满足a 24+a 2 7+2a 4a 7=9,则其前10项之和为( ) A .-9 B .-15 C .15 D .±15 【解析】选D.由已知(a 4+a 7)2=9,所以a 4+a 7=±3,从而a 1+a 10=±3. 所以S 10=a 1+a 102 ×10=±15. 5.函数y =x 2+2 x -1(x >1)的最小值是( ) A .23+2 B .23-2 C .2 3 D .2 【解析】选 A.因为x >1,所以x -1>0.所以y =x 2+2x -1=x 2-2x +2x +2 x -1= x 2-2x +1+2(x -1)+3x -1=(x -1)2+2(x -1)+3x -1=x -1+3 x -1 +2≥23+2. 6.不等式组? ??? ? x ≥2x -y +3≤0表示的平面区域是下列图中的( D )

高考数学压轴题秒杀

第五章压轴题秒杀 很多朋友留言说想掌握秒杀的最后一层。关于秒杀法的最难掌握的一层,便是对于高考数学压轴题的把握。压轴题,各省的难度不一致,但毫无疑问,尤其是理科的,会难倒很多很多很多人。 不过,压轴题并不是那般神秘难解,相反,出题人很怕很怕全省没多少做出来的,明白么?他很怕。那种思想,在群里面我也说过,在这里就不多啰嗦了。 想领悟、把握压轴题的思路,给大家推荐几道题目。 全是数学压轴题,且是理科(09的除山东的外我都没做过,所以不在推荐范围内)。 08全国一,08全国二,07江西,08山东,07全国一 一年过去了,很多题目都忘了,但这几道题,做过之后,虽然一年过去了,可脉络依然清晰。都是一些可以秒杀的典型压轴题,望冲击清华北大的同学细细研究。 记住,压轴题是出题人在微笑着和你对话。 具体的题目的“精”,以及怎么发挥和压榨一道经典题目的最大价值,会在以后的视频里面讲解的很清楚。 不过,我还是要说一下数列压轴题这块大家应该会什么(难度以及要求依次增高)\ 1:通项公式的求法(不甚解的去看一下以前的教案,或者问老师,这里必考。尤其推荐我押题的第一道数列解答题。) 2.:裂项相消(各种形式的都要会)、迭加、迭乘、错位相减求和(这几个是最基本和简单的数列考察方式,一般会在第二问考) 3:数学归纳法、不等式缩放 基本所有题目都是这几个的组合了,要做到每一类在脑中都至少有一道经典题想对应才行哦。 开始解答题了哦,先来一道最简单的。貌似北京的大多挺简单的。 这道题意义在什么呢?对于这道题在高考中出现的可能性我不做解释,只能说不大。意义在于,提醒大家四个字,必须必须必须谨记的四个字:分类讨论!!!!!!! 下面07年山东高考的这道导数题,对分类讨论的考察尤为经典,很具参考性,类似的题目在08、09、10年高考题中见了很多。 (22)(本小题满分14分) 设函数f(x)=x2+b ln(x+1),其中b≠0. (Ⅰ)当b> 时,判断函数f(x)在定义域上的单调性; (Ⅱ)求函数f(x)的极值点; (Ⅲ)证明对任意的正整数n,不等式ln( )都成立. 这道题我觉得重点在于前两问,最后一问..有点鸡肋了~ 这道题,太明显了对吧?

不等式的证明测试题与答案

不等式的证明 班级 _____ _____ 一、选择题(本大题共10小题,每小题5分,共50分) 1.若a >0, b >0,则)11)((b a b a ++ 的最小值是 ( ) A .2 B .22 C .24 D .4 2.分析法证明不等式中所说的“执果索因”是指寻求使不等式成立的 ( ) A .必要条件 B .充分条件 C .充要条件 D .必要或充分条件 3.设a 、b 为正数,且a + b ≤4,则下列各式中正确的一个是 ( ) A . 111<+b a B . 111≥+b a C . 21 1<+b a D . 21 1≥+b a 4.已知a 、 b 均大于1,且log a C ·log b C=4,则下列各式中,一定正确的是 ( ) A .a c ≥b B .a b ≥c C .bc ≥a D .a b ≤c 5.设a =2,b=37-,26-= c ,则a 、b 、c 间的大小关系是 ( ) A .a >b>c B .b>a >c C .b>c>a D .a >c>b 6.已知a 、b 、m 为正实数,则不等式 b a m b m a >++ ( ) A .当a < b 时成立 B .当a > b 时成立 C .是否成立与m 无关 D .一定成立 7.设x 为实数,P=e x +e -x ,Q=(sin x +cos x )2,则P 、Q 之间的大小关系是 ( ) A .P ≥Q B .P ≤Q C .P>Q D . P b 且a + b <0,则下列不等式成立的是 ( ) A . 1>b a B . 1≥b a C . 1

高二下期期末数学测试题及答案解析

高二下期期末数学测试题 第I卷(选择题) 一、选择题(本题共12道小题,每小题5分,共60分) 1.过函数图象上一个动点作函数的切线,则切线倾斜角的范围为(B ) A. B. C. D. 2.曲线y=ln(2x﹣1)上的点到直线2x﹣y+3=0的最短距离是(A) A.B.2 C.3 D.0 3.曲线y=e﹣2x+1在点(0,2)处的切线与直线y=0和y=x围成的三角形的面积为( A )A.B.C.D.1 4.已知函数与的图象如图所示,则(C) A.在区间(0,1)上是减函数B.在区间(1,4)上是减函数 C.在区间上是减函数D.在区间上是减函数 5.设是虚数单位,若复数,则的共轭复数为(D ) A.B.C.D. 6.某高三学生进行考试心理素质测试,场景相同的条件下每次通过测试的概率为,则连续测试4次,至少有3次通过的概率为(A )

A.B. C.D. 7.将某选手的7个得分去掉1个最高分,去掉1个最低分,剩余5个分数的平均数为91,现场作的7个分数的茎叶图有一个数据模糊,无法辨认,在图中以表示,则5个剩余分数的方差为(C ) A.B. C. 6 D.30 8.在的展开式中,常数项是(D) A.B.C.D. 9.由数字0,1,2,3组成的无重复数字的4位数,比2018大的有( B )个 A.10 B.11 C.12 D.13 10.已知,在的图象上存在一点,使得在处作图象的切线, 满足的斜率为,则的取值范围为(A ) A.B. C.D. 11.电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示: 电视台每周安排的甲、乙连续剧的总播放时长不多于600min,广告的总播放时长不少于 30min,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍,分别用,表示每周计划播出的甲、乙两套连续剧的次数,要使总收视人次最多,则电视台每周播出甲、乙两套连续剧的次数分别为(A ) A.6,3 B.5,2 C. 4,5 D.2,7

2021年高考数学第一轮专题复习- 不等式——不等式的证明

第48课时:第六章 不等式——不等式的证明(二) 课题:不等式的证明(二) 一.复习目标: 1.了解用反证法、换元法、放缩法等方法证明简单的不等式. 二.知识要点: 1.反证法的一般步骤:反设——推理——导出矛盾(得出结论); 2.换元法:一般由代数式的整体换元、三角换元,换元时要注意等价性; 3.放缩法:要注意放缩的适度,常用的方法是:①舍去或加上一些项;②将分子或分母放大(或缩小). 三.课前预习: 1.设实数,x y 满足22(1)1x y +-=,当0x y c ++≥时,c 的取值范围是 ( ) () A 1,)+∞ () B (1]-∞ () C 1,)+∞ () D (1]-∞ 2 .1A n =+++与)n N *∈的大小关系是 . 四.例题分析: 例1.已知332x y +=,求证:2x y +≤. 例2.设正有理数1a 是3的一个近似值,令21 211a a =+ +, (1介于1a 与2a 之间;

(2)证明:2a 比1a 更接近于3; (3的有理近似值的方法. 例3.在数列{}n a 中,23sin sin 2sin 3sin 2222n n n a αααα=++++,对正整数,m n 且m n >,求证:12m n n a a -< . 例4.设1a b c ++=,2221a b c ++=,a b c >>,求证:103c -<<. 五.课后作业: 1.下列三个式子22a c -,22b a -,22(,,)c b a b c R -∈中 ( ) ()A 至少有一式小于1- ()B 都小于1- ()C 都大于等于1- ()D 至少有一式大于等于1- 2设0,0,,111x y x y x y A B x y x y +>>==+++++,则,A B 的大小关系是 .

高二数学选修2-2测试题(含答案)

高二数学选修2—2测试题 一、选择题(每小题5分,共60分) 1、若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000 ()() lim h f x h f x h h →+-- 的值为( ) A .'0()f x B .'02()f x C .'02()f x - D .0 2、一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时速度是( ) A .7米/秒 B .6米/秒 C .5米/秒 D .8米/秒 3、函数3 y x x 的递增区间是( ) A .),0(+∞ B .)1,(-∞ C .),(+∞-∞ D .),1(+∞ 4、32()32f x ax x =++,若'(1)4f -=,则a 的值等于( ) A . 3 19 B . 316 C .313 D .3 10 5、若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( ) A .430x y --= B .450x y +-= C .430x y -+= D .430x y ++= 6、如图是导函数/()y f x =的图象,那么函数()y f x =在下面哪个区间是减函数 A. 13(,)x x B. 24(,)x x C.46(,)x x D.56(,)x x

7、设*211111()()123S n n n n n n n = +++++∈+++N ,当2n =时,(2)S =( )A.12B.1123+C.111234++ D.11112345+++ 8、如果10N 的力能使弹簧压缩10cm ,为在弹性限度内将弹簧从平衡位置拉到离平衡位置6cm 处,则克服弹力所做的功为( ) (A)0.28J (B)0.12J (C)0.26J (D)0.18J 9、 有一段“三段论”推理是这样的: 对于可导函数()f x ,如果0()0f x '=,那么0x x =是函数()f x 的极值点,因为函数3()f x x =在0x =处的导数值(0)0f '=,所以,0x =是函数3()f x x =的极值点. 以上推理中( ) A .大前提错误 B . 小前提错误 C .推理形式错误 D .结论正确 10、已知直线kx y =是x y ln =的切线,则k 的值为( ) (A )e 1 (B )e 1- (C )e 2 (D )e 2- 11、在复平面内, 复数1 + i 与31+i 分别对应向量OA 和OB , 其中O 为坐标原 点,=( ) A.2 B.2 C. 10 D. 4 12、 若点P 在曲线y =x 3-3x 2+(3-3)x +3 4上移动,经过点P 的切线的倾斜角 为α,则角α的取值范围是( ) A .[0,π2) B .[0,π2)∪[2π3,π) C .[2π3,π) D.[0,π2)∪(π2,2π 3] 二、填空题(每小题5分,共30分) 13、=---?dx x x )2)1(1(1 02 14、函数322(),f x x ax bx a =+++在1=x 时有极值10,那么b a ,的值分别为________。 15、已知)(x f 为一次函数,且1 0()2()f x x f t dt =+?,则)(x f =_______. 16、函数g (x )=ax 3+2(1-a )x 2-3ax 在区间? ? ???-∞,a 3内单调递减,则a 的取值 范围是________.

高中数学百大经典例题—不等式证明

高中数学 典型例题一 例1 若10<-(0>a 且1≠a ). 分析1 用作差法来证明.需分为1>a 和10<a 时, 因为 11,110>+<---=x a . (2)当10<+<--=x a . 综合(1)(2)知)1(log )1(log x x a a +>-. 分析2 直接作差,然后用对数的性质来去绝对值符号. 解法2 作差比较法. 因为 )1(log )1(log x x a a +-- a x a x lg ) 1lg(lg )1lg(+- -= [])1lg()1lg(lg 1 x x a +--= [])1lg()1lg(lg 1 x x a +---= 0)1lg(lg 1 2>--= x a , 所以)1(log )1(log x x a a +>-.

说明:解法一用分类相当于增设了已知条件,便于在变形中脱去绝对值符号;解法二用对数性质(换底公式)也能达到同样的目的,且不必分而治之,其解法自然简捷、明快. 典型例题二 例2 设0>>b a ,求证:.a b b a b a b a > 分析:发现作差后变形、判断符号较为困难.考虑到两边都是正数,可以作商,判断比值与1的大小关系,从而证明不等式. 证明:b a a b b a a b b a b a b a b a b a ---=?=)( ∵0>>b a ,∴ .0,1>->b a b a ∴1)(>-b a b a . ∴a b b a b a b a .1> 又∵0>a b b a , ∴.a b b a b a b a >. 说明:本题考查不等式的证明方法——比较法(作商比较法).作商比较法证明不等式的步骤是:判断符 号、作商、变形、判断与1的大小. 典型例题三 例3 对于任意实数a 、b ,求证 444 ()22 a b a b ++≥(当且仅当a b =时取等号) 分析 这个题若使用比较法来证明,将会很麻烦,因为,所要证明的不等式中有4 ( )2 a b +,展开后很复杂。若使用综合法,从重要不等式:2 2 2a b ab +≥出发,再恰当地利用不等式的有关性质及“配方”的技巧可得到证明。 证明:∵ 222a b ab +≥(当且仅当22 a b =时取等号) 两边同加4 4 4 4 2 22 ():2()()a b a b a b ++≥+, 即: 44222 ()22 a b a b ++≥ (1) 又:∵ 2 2 2a b ab +≥(当且仅当a b =时取等号)

文本预览
相关文档 最新文档