当前位置:文档之家› 交通土建工程设计毕业论文

交通土建工程设计毕业论文

自考本科毕业

设计

题目:

专业:交通土建工程

助学站点:

考籍号:

姓名:

指导教师:

题目名称

专业:交通土建工程学生姓名:

考籍号:

站点:

指导教师:

完成日期:

目录

1 绪论.............................................. 错误!未定义书签。

1.1引言 (6)

1.2DICAD PRO技术 (6)

1.3拟建项目地区概述 (7)

1.4项目建设的重要意义 (7)

1.5沿线地形地质及自然环境 (8)

2 路线设计......................................... 错误!未定义书签。

2.1公路技术标准的确定 (9)

2.1.1设计车辆 (9)

2.1.2设计交通量 (9)

2.1.3 设计速度 (10)

2.1.4、服务水平 (11)

2.2路线方案的比选

............ (11)

2.3路线平面设计 (12)

2.3.1平面线形设计的一般原则 (12)

2.3.2直线设计 (13)

2.3.3 圆曲线半径设计........................ 错误!未定义书签。

2.3.4 缓和曲线设计 (13)

2.3.5 平面要素组合类型 (14)

2.3.6 平面线形要素组合计算 (15)

2.3.7 主点桩号计算 (16)

2.3.8 路线设计图 (16)

2.3.9 平曲线要素及主点桩号计算示例 (17)

2.3.10 回旋线与圆曲线长度比、S形参数比 (18)

2.3.11 平曲线的敷设 (18)

2.4纵断面设计.................................... 错误!未定义书签。

2.4.1纵坡设计的一般要求.................... 错误!未定义书签。

2.4.2. 纵坡................................. 错误!未定义书签。

2.4.3纵坡设计的步骤 (21)

2.4.4竖曲线 (21)

2.4.5 竖曲线计算示例(其他竖曲线计算见附表Ⅲ竖曲线表) (22)

2.4.6平、纵线形组合设计 (24)

2.4.7拟建路线纵坡设计成果 (24)

2.5路线比选 (24)

2.5.1影响路线方案选择的主要因素 (25)

2.5.2路线方案选择 (25)

2.6横断面设计 (27)

2.6.1横断面组成 (27)

2.6.2行车道宽度 (27)

2.6.2行车道宽度 (27)

2.6.3路肩 (28)

2.6.4路拱 (28)

2.6.5边沟 (28)

2.6.6边坡 (28)

2.6.7超高 (29)

2.6.8行车视距验算 (47)

2.6.9填挖方计算 (48)

3 路基路面设计 (50)

3.1概述 (50)

3.1.1路基路面工程的特点 (50)

3.1.2路基路面应具备的性能 (50)

3.2路基设计 (51)

3.2.1路基设计的一般要求 (51)

3.2.2 结构组合与材料选取 (51)

3.2.3 各层材料的抗压模量和劈裂强度 (52)

3.2.2路基的类型与构造 (57)

3.2.3路基宽度 (57)

3.2.4路基边坡坡度 (58)

3.2.5路基压实 (58)

3.3路面结构设计 (39)

3.3.1设计原则 (39)

3.3.2设计步骤 (59)

3.3.3交通量分析 (59)

3.3.4路面结构的破坏模式与设计指标 (67)

3.3.5计算设计弯沉值 (70)

3.3.6确定路基回弹模量 (70)

3.3.7拟定路面结构 (71)

3.3.8路面结构厚度计算 (71)

3.3.9方案比较 (73)

4 排水设计 (74)

4.1排水量的确定 (74)

4.2排水结构的确定 (74)

4.3新建沥青混凝土路面结构排水系统材料及施工要求 (74)

4.4路基地面排水设计 (76)

4.5路基地下排水 (77)

4.6路面排水 (79)

4.7中央分隔带排水 (79)

5 桥涵设计 (80)

5.1桥涵设计的一般规定 (80)

5.2位置及尺寸 (80)

6结论 (81)

参考文献 (82)

致谢 (84)

附录 (85)

第一章绪论

1.1 引言

50年来,我国公路建设已取得巨大成就。回顾我国公路发展历程,对比世界公路发展趋势,可以认为,我国公路交通正处于扩大规模、提高质量的快速发展时期。但是,由于基础十分薄弱,我国公路建设总体上还不能适应国民经济和社会发展的需要,与发达国家的先进水平相比还有较大差距。从公路技术等级看,在全国公路总里程中还有近20万公里等外公路,等外公路占公路总里程的比重达到14.4%,西部地区更高,达到21.8%,技术等级构成不理想。从行政区划分布看,由于经济发展和人口分布的不平衡,公路发展在各地区之间存在着较大差距,总的来看,东部地区公路密度较大,高等级公路的比例也较高,明显高于全国平均水平,更高于中、西部地区水平。

因此,为逐步实现我国交通运输现代化的总体战略目标,按照道路的使用功能和交通需求,重点提高经济相对发达地区的公路技术等级,根据国家西部大开发战略,大力扶持西部地区公路基础设施建设,将是本世纪末以至下世纪初我国公路交通发展的战略重点。

1.2 DICAD PRO技术

自1963年美国麻省理工学院的工.E.萨瑟兰德在其博士论文中提出了交互式图形生成技术的概念以来,CAD技术(Computer Aided Design,计算机辅助设计)伴随着计算机技术和计算机图形学技术的发展而迅速地成长起来,成为一门实用的技术,在机械、电子、建筑、化工、能源、交通土建等工程设计领域得到了广泛的应用。它把人从许多重复繁重的体力、脑力劳动中解放出来,大大提高了工作效率。CAD技术在公路勘测设计中的应用,使得传统的公路设计手段、设计方法甚至设计理论都产生了重大变革,极大地促进了交通土建行业的技术进步,成为道路勘测设计现代化的主要标志之一。

互动式道路及立交CAD系统专业加强版-DICAD PRO是东南大学交通学院刘洪波老师继DICAD之后的又一力作,DICAD PRO全面摒弃华而不实的方法和功能,更注重实用功能的研究与开发。

1、加强辅助成图功能,变速车道、收费广场、桥梁涵洞等自动成图,高质量、高效益。

2、增加辅助桥梁功能,保证路线与桥梁设计整体进行,提高整个项目的设计效率。

3、强化智能更新功能,平、纵、横面图及端部高程图数据自动刷新,变更设计不再烦恼。

4、丰富自动成表功能,增加EXCEI表格形式,改善图表效果且利于后续处理!

5、提高设计效率,使道路及立交的设计效率至少增强一倍,给您带来更多便捷、更多效益、更多享受。

6、方便学习掌握,DICAD PRO更具可学习性、易懂性,适合所有设计人员使用。

1.3拟建项目地区概述

陕西省位于中国西北地区东部的黄河中游,地处北纬31°-39°35'东京105°29'-111°15',与山西、河南、湖北、四川、甘肃、宁夏接壤。地域南北长,东西窄,南北长约870公里,东西宽约200-500公里,土地总面积20.56万平方公里,占全国土地总面积的2.145%。因位于陕原以西,故名"陕西"。

陕西境内山塬起伏,河川纵横,地形复杂。其本特征是:南北高,中间低。以北山和秦岭为界,全省可分为陕北高原、关中平原和秦巴山地三大地貌区。

陕北黄土高源海拔800-1300米,约占全省总面积的45%。畜牧业较为发达,煤、石油、天然气储量丰富。

关中平原西起宝鸡,东至潼关,平均海拔520米,东西长360公里,面积约占全省土地总面积的19%。是全省的精华之地,号称"八百里秦川"。

陕南秦巴山地包括秦岭、巴山和汉江谷地,约占全省土地总面积的36%。秦岭在省境内东西长400-500公里,南北宽120-180公里,海拔1000-3000米。巴山们于本省最南部,长约300公里,海拔1500-2000米。秦巴山区是林特产的宝库,汉江谷地土质肥美,农产丰富。

陕西地处内陆中纬度地带,形成显著的大陆性季风气候。从北到南跨温带、暖温带和北亚热带三个气候带。

1.4项目建设的重要意义

近几十年来,随着公路等级的不断提高以及汽车性能的不断改善,再加上高新技术在公路运输中的广泛应用,使得公路运输越来越快捷、安全、舒适、方便,公路在国民经济和社会生活中的地位日益提高。

拟建公路对于拉动沿线经济增长具有重要意义,也是构建便捷、通畅、高效、安全的交通运输体系的重要组成部分。该公路的建成可以改善沿线城镇的运输条件和投资环境,可以加快这些城镇的信息传播和对外交流,可以有效地促进公路沿线资源的开发利用,有利于沿线经济的快速发展。

1.5沿线地形地质及自然环境

1:地形特征西安以北,陕甘黄土高原边,由梁山、黄龙山、药王山、陇山组成的北山山系,与秦岭山脉遥相对应,共同构成环绕关中平原的自然屏障。黄河的最大支流渭河横贯关中平原。关中平原由渭河及其众多支流冲积形成,因而又称渭河平原。它西起宝鸡,东到黄河,号称“八百里秦川”。:2:气候西安属于暖温带半湿润的季风气候区,雨量适中,四季分明。无霜期平均为219~233天。1月份最冷,平均气温-0.5℃~1.3℃;7月份最热,平均气温26.4℃~26.9℃;年平均气温13.3℃。年降水量平均为507.7毫米~719.8毫米。年平均湿度为69.6%。年平均降雪日为13.8天。:3:矿产资源西安地质发育史复杂,构造类型多样。秦岭山区大片的火成岩、变质岩以及渭河盆地巨厚的新生代沉积层,为各种金属、非金属以及能源资源的集聚奠定了基础。现已查明的各类矿产共47种,其中金属矿产21种,非金属矿产22种,能源矿产2种,其他矿产2种。主要金属矿有:铁、锰、铬、钛、铜、铅、锌、锌铜、钼、金、钨、铀和高铝矿物原料。非金属矿主要有:大理石、长石、白云岩、水泥灰岩、石墨、建筑砂砾、脉石英、“蓝田玉”、砂线石、硫矿等。4:自然资源西安的自然植被未遭受第四纪大陆冰川直接侵袭,尚保留若干第三纪古老的孑遗植物,如银杏、水青树、连香、马甲子等。秦岭山地从高海拔向低海拔垂直分布有高山灌丛草甸、针叶林、针阔叶混交林和落叶阔叶林等自然植被类型。自然植被中野生植物资源丰富,计有野生植物138科、681属、2224种,为中国种子植物的重要“基因库”之一。渭河平原主要为大田农作物、蔬菜、果园和城市绿化等栽培植物类型。野生动物资源主要分布在秦岭山地,有兽类55种,鸟类177种,包括有大熊猫、金丝猴、扭角羚秦岭亚种、鬣羚、大鲵、黑鹳、白冠长尾雉、血雉、金鸡等珍稀动物。为保护自然生态系统和珍稀动植物资源,境内已建立3个国家级自然保护区。

2 路线设计

2.1公路技术标准的确定

为了满足经济发展、设计交通量、路网建设和功能的要求,公路必须分等级建设。《公路工程技术标准》(JTG B01—2003),将公路根据功能和适应的交通量分为五个等级:高速公路、一级公路、二级公路、三级公路、四级公路。

一级公路:为供车辆分向、分道行驶,并可根据需要控制出入的多车道公路。四车道一级公路应能适应将各种汽车折合成小客车的远景设计年限内年平均日交通量为15000~30000辆。六车道一级公路应能适应将各种汽车折合成小客车的远景设计年限内年平均日交通量为25000~55000辆。

2.1.1设计车辆

设计车辆是指道路设计所采用的具有代表性的车辆。汽车的行驶性能、外廓尺寸以及不同种类车辆的组成对道路几何设计具有决定作用,对确定路幅组成、车道宽度、平曲线加宽、纵坡大小、行车视距等都与设计车辆有密切关系[1]。按使用目的、结构或发动机的不同,作为道路设计依据的车辆可分为四类:小客车、载重汽车、鞍式列车、铰接车。

鞍式列车适用于大型集装箱运输,可作为高速公路、一级公路和有大型集装箱运输公路的设计依据。其车辆外形轮廓如下表2-1。

表2-1 设计车辆外廓尺寸

2.1.2设计交通量

设计交通量:设计交通量是指拟建道路到预测年限时所能达到的年平均日交通量,其值根据历年交通观测资料预测求得,目前多按年平均增长率计算确定。

1)1(-+?=n ADT AADT λ (2.1)

式中: AADT —设计交通量(辆/天); ADT —起始年平均日交通量(辆/天);

γ—交通量预计年增长率;

n —设计年限

将初始年日交通量换算成小汽车数量:

562023205.15705.15105.14804402200=?+?+?+?++=ADT 辆/天。各种

车型换算系数见下表2-2,初始年交通量见下表2-3.

一级公路的设计交通量按20年预测,交通量年平均增长率取γ=8%。计算

24254)08.01(5620120=+?=-AADT 辆/天。介于15000~30000之间,定此公路为一级四车道。

表2-2 各车型车型换算系数

表2-3 初始年交通量

2.1.3 设计速度

设计速度,是指当气候条件良好、交通密度小、汽车运行只受道路本身条件(几何要素、路面、附属设施等)的影响,中等驾驶技术的驾驶员能保持安全顺适行驶的最大行驶速度。设计速度是决定道路几何形状(如曲线半径、超高、

视距)的基本依据,同时还影响车道宽度、中间带宽度、路肩宽度等指标。该一级公路交通量比较大,位于山岭地区,地势起伏较明显、高差大,选取设计速度为80km/h。

2.1.4、服务水平

服务水平是指车辆在道路上运行过程中驾驶员和乘客所感受到的质量量度。一级公路按二级服务水平设计。

2.2 路线方案的比选

从地形图上看到,根据起终点位置,路线总体成西南-东北走向,路线起终点高差高达70米,起点高终点低,路线较短有三千米左右,平均纵坡很大。第一幅图,起始点处为一片花椒地,北侧为陡峭的山区,南侧稍缓有村庄。第二幅图,中间为山谷较平坦,周围地势较高。从南到北有一条引水渠道,南侧为暗渠,北侧为明渠。与第三幅图连接处为山丘,其东侧山坡为苹果园。第三幅图,南侧地势高且陡,北侧稍缓,偏北侧有一条低等级的沥青道路,路周围有较多的房屋建筑。各幅图上都有较多的坟地。在此地形图上道路选线最主要的问题为利用地形克服高差。

(1)正线选线过程

1)所设计的道路为北线,选线时,使路线尽量靠北。从起点开始线路往东北方向走,主要考虑以下因素:①由于北侧很高,如果路线再往北偏,路线的开挖将会大幅度增加。②若起始段路线抬高太多,会导致后面在更短路线形成更大高差,对车辆行车不利。

2)从JD1始,路线往北偏,在K0+904处穿越垭口。考虑因素:①此垭口在北侧山脉中高程最低,低标高垭口克服高度小,可以缩短路线或采用较平缓的坡度,既节省投资又降低运营费用。②此处垭口,山体较薄,有利于减小开挖量。

③垭口东侧,地势较平坦,有利于展线。④为了使路线尽量与引水渠道正交,JD2定的位置比较靠上。

3)从JD2往下走,地势较缓和,到JD3再往北穿越垭口。K1+880处的垭口在同位置处最低,是路线的主要控制点,必经之地。考虑因素与2)一样,虽然占用了部分苹果园,但避免了道路绕远和大挖方,可以减少造价。并避开了部分

坟地。

4)JD3和终点之间的路段,尽量与引水渠道正交,并避开房屋建筑,避免拆迁,减少拆迁费用。在路线与引水渠道相交处,挖方超过14米,可以考虑做高架引水渠道,净高符合一级公路净高为5米得要求。

(2)比选路线的选线过程

比选路线的选线原则与正线的选线原则相同,比选路线选择利用原有旧路的一部分,并在起始段绕过垭口,从终点往起始点选线。

从终点开始沿原有旧路直走。尽量避开坟地和避免从土岗中间直穿。为了从低垭口处穿过,JD4往西路线往北偏斜,但仍然不能避免从苹果园中穿过。穿过垭口后,路线基本沿等高线走,长直线避开北侧高山,减小开挖量。JD3到JD2之间的长直线使路线往南偏了很多,为使路线整体靠北,从JD2到起点这一段选择较缓和的地势尽量向北侧偏,避开坟地和少占用花椒地。尽量使起始段不爬坡或少爬坡,防止后面的纵坡过大。

由于路线较短,所以考虑将两条路线的平面设计和纵坡设计都进行计算,最后综合道路平面线形和纵坡进行路线方案的比选,从而选出最优方案。2.3路线平面设计

2.3.1平面线形设计的一般原则

(1)平面线形应直捷、连续、顺适,并与地形、地物相适应,与周围环境相协调。

(2)保持平面线形的均衡与连贯。

(3)只有在地形特别困难,自然展线无法争取到需要的距离以克服高差,或因地质条件而无法采取自然展线时,在低等级道路上才可以采用回头曲线。

(4)平曲线应有足够的长度。曲线长度过短,使得驾驶员操作方向盘困难;乘客的生理和心理感受不好。

对于设计车速为80km/h的一级公路平曲线的最小长度的一般值为400m,极限值为140m。

2. 3. 2 圆曲线设计

圆曲线半径,缓和曲线长度是路线平面设计中要解决的基本问题,但只此对于满足一条路线行驶安全顺畅的要求是不够的。实践证明,直线长度过长或过短、

曲线与直线、曲线与曲线配置的不适当也会导致行车事故,降低通行能力,造成行驶时间和运营费用的损失以及破坏与自然景观的协调。因此,一般来说,平面设计应满足以下几点要求:

1.平面设计必须满足《标准》和《规范》的要求

2.平面线形应直捷、连续、顺适,并与地形地物相适应,与周围环境相协调

3. 行驶力学上的要求是基本的,视觉和心理上的要求应尽量满足

4. 保持平面线形的均衡和连贯

5.应避免连续急转的线形

2.3.3直线设计

直线以最短的距离连接两目的地,具有路线短捷、缩短里程和行车方向明确的特点。视距良好,易于排水。但从行车的安全和线形的美观来看,过长的直线,线形呆板,行车单调,容易使驾驶员产生疲劳感,也容易发生超车和超速行驶。采用直线线形时应该特别注意直线同地形的关系,在运用直线线形并决定其长度时,必须采取严谨的态度,不宜采用过长的直线。在我国,根据经验,直线的最大长度,在城镇及其附近或其他景色有变化的地点大于20V是可以接受的。

但是直线的距离也不能过短,特别是同向曲线和反向曲线之间不能设置过短的直线。

同向曲线是指两个转向相同的圆曲线之间用直线或缓和曲线或径相连接而成的平面线形。其中间直线长度就是指前一曲线的终点至后一曲线的起点之间的长度。当此直线的长度很短的时候,在视觉上容易形成直线与两端曲线构成反弯的错觉,使整个线形缺乏连续性,形成所谓的“断背曲线”。《公路路线设计规范》(JTG D20—2006)规定,当计算行车速度≥60km/h时,同向曲线间直线最短长度以不小于设计行车速度的6倍(以m计)为宜;

反向曲线是指两个转向相反的圆曲线之间用直线或缓和曲线或径相连接而成的平面线形。《公路路线设计规范》(JTG D20—2006)规定,当计算行车速度≥60km/h时,反向曲线间直线最短长度以不小于设计行车速度(以m计)的2倍为宜;当曲线两端设有缓和曲线时,也可以直接相连,构成S形曲线[2]。

2.3.4 缓和曲线设计

缓和曲线是道路平面线形要素之一,它是设置在直线与圆曲线之间或半径相

差较大的两个转向相同的圆曲线之间的一种曲率连续变化的曲线。

因车辆要在缓和曲线上完成不同曲率的过度行驶,缓和曲线要有足够的长度,以使驾驶员能从容的打方向盘、乘客感觉舒适、线形美观流畅、圆曲线上的超高和加宽的过渡也能在缓和曲线段完成。《公路路线设计规范》(JTG D20—2006)规定了各级公路缓和曲线的最小长度[2]。对于80km/h的一级公路,缓和曲线最小长度的一般值为100m,最小值为70m。

2.3.5 平面要素组合类型

(1)基本型曲线

如下图2—1,按直线-回旋线-圆曲线-回旋线-直线的顺序组合的线形。适用场合:交点间距不受限。从线形的协调性出发,宜将回旋线、圆曲线、回旋线之长度比设计成1:1:1~1:2:1。并注意满足设置基本型曲线的几何条件: 2β≤α(2.2)

式中:α—路线转角(°)

β—回旋线角(°)

图2-1 基本型曲线

(2)S形曲线(见下图2-2)

两个反向圆曲线用两段回旋线连接的组合。适用场合:交点间距受限(交点间距较小)。

①S形相邻两个回旋线参数A1与A2宜相等。当采用不同的参数时,A1与A2之比应小于2.0,有条件时以小于1.5为宜。

②在S形曲线上,两个反向回旋线之间不设直线,是行驶力学上所希望的。不得已插入直线时,必须尽量地短,其短直线的长度或重合段的长度应符合下式(2.3):

40

2

1A A l +≤

(2.3) 式中:l —反向回旋线间短直线或重合段的长度。

③S 型两圆曲线半径之比不宜过大,宜为:R 2/R 1=1~1/3。

图 2-2 S 形曲线示意图

2.3.6 平面线形要素组合计算

计算图示如下图2-3所示:

切线增长值: 3

2

( m )2240S S L L q R

=- (2.4) 内移值: 24

3

( m )242384S S

L L p R R

=- (2.5) 缓和曲线角: R

L s

6479.280=β (°) (2.6) 切线长: ()( m )2

T R p tg

q α

=++ (2.7) 平曲线长: 0(2)

2( m )180

L R Ls π

αβ=-+ (2.8)

外距: ()sec

( m )2

E R p R α

=+- (2.9)

切曲差: 2( m )J T L =- (2.10) 式中: α—转角(度); Ls —缓和曲线长(m); R —圆曲线半径(m)。

图2-3 平曲线要素图示

2.3.7 主点桩号计算

以交点里程桩号为起算点:

T JD ZH -= (2.11)

S L JD HY += (2.12)

2

L

ZH QZ +

= (2.13) S L HZ YH -= (2.14)

L ZH HZ += (2.15)

2.3.8 路线设计图

路线设计图见下图2-4,实线为正线,虚线为比选路线。

正线:JD1、JD2、JD3三个交点之间的距离比较近,若设置基本型曲线,则曲线之间的直线距离不能满足2V 的要求,所以在JD1、JD2、JD3之间设置连续的两个S 形曲线,S 形中间不设直线。JD4设置基本型曲线。

比选路线:JD1、JD2之间的直线长度比较短,设置S 形曲线。JD3、JD4之间设置S 形曲线。

JD4 JD1 JD2 JD1 JD3 JD2 JD3

图2-4 路线设计图

2.3.9 平曲线要素及主点桩号计算示例

以正线JD4为例α=31°,R=600米,Ls=120米,JD4=K2+162.912。 (1)平曲线要素计算

m R R p Ls Ls 000.16002384120600241202384243

4

234

2

=?-?=-=

m R L L q S S 980.59600240120212024022323

=?-=-=

m R L s 730.518060*********=??==ππβ

m q p R T 652.226980.592

31

tan

)000.1600(2

tan )(=+?+=++=α

m L R L s 631.44412018031600180=+?

?=+=

π

π

α

m R p R E 683.236002

sec

)1600(2

sec

)(=-+=-+=α

α

m L T D 673.8631.444652.22622=-?=-=

(2)主点桩号计算

543

.4872K 120543.6072K L HZ YH 543.6072K 652.226912.1622K L ZH HZ 2275

.3852K 2/652.226912.1622K 2/L ZH QZ 912

.2822K 120912.1622K L ZH HY 912.1622K 652.226564.3892K T 4JD ZH S S +=-+=-=+=++=+=+=++=+=+=++=+=+=-+=-=

验算:

4JD 564.3892K 2/673.82275.3852K 2/D QZ =+=++=+

其他交点具体计算结果见附表 Ⅰ直线、曲线、转角表。

2.3.10 回旋线与圆曲线长度比、S形参数比

(1)正线回旋线与圆曲线长度比、S形参数比(见下表2-5)

表2-5 正线回旋线与圆曲线长度比

A1/A2=291.2/209.8=1.39 A3:A2=211.4/209.8=1

Ls:Lr:Ls在1:1:1~1:2:1之间,A1:A2≤1.5。

均符合要求

(2)比选路线回旋线与圆曲线长度比、S形参数比(见下表2-6)

A1/A2=256.9/233.5=1.10 A4/A3=340.3/312.2=1.09

s:Lr:Ls在1:1:1~1:2:1之间,A1:A2≤1.5。

均符合要求

表2-6 比选路线回旋线与圆曲线长度比

2.3.11 平曲线的敷设

平曲线的敷设主要是指圆曲线和缓和曲线的敷设。在曲线敷设之前,需要在已选定的路线上标上桩号。曲线敷设的方法是采用切线支距法。在ZH点建立坐标系,坐标系的X轴方向与ZH点处的直线同向,Y轴垂直于X轴。然后每隔20 m (以桩号计)计算一个点的坐标。对于缓和曲线,坐标计算的公式如下:

2

25

40Ls

R L L x -= (2.16) 3

37

33366Ls

R L RLs L y -= (2.17) 对于圆曲线,坐标计算的公式如下:

m m R q x ?sin += (2.18) )cos 1(m m R p y ?-+= (2.19)

)2(6479

.28R

l l s

m m m m +=+=βα? (2.20) 具体计算结果见附表Ⅱ逐桩坐标表。

2.4纵断面设计

路线的纵断面是指沿着公路中线竖直剖切然后展开的线。把公路的纵断面图与平面图结合起来,就能准确地定出公路的空间位置。

纵断面图上有两条主要的线:一条是地面线,它是根据中线上各桩点的高程而点绘的一条不规则的折线,反映了沿着中线地面的起伏变化情况;另一条设计线是一条具有规则形状的几何线,反映了公路路线的起伏变化情况。纵断面设计线是由直线和竖曲线组成的。高速公路和一级公路采用中央分隔带的外侧边缘高程作为路基设计高程。

2.4.1纵坡设计的一般要求

(1)纵坡设计必须满足《公路工程技术标准》(JTG B01—2003)的各项规定。

(2)为保证车辆能以一定速度安全顺适地行驶,纵坡应具有一定的平顺性,起伏不宜过大和过于频繁。尽量避免采用极限纵坡值。合理安排缓和坡段,不宜连续采用极限长度的陡坡夹最短长度的缓坡。

(3)纵坡设计应对沿线地面、地下管线、地质、水文、气候和排水等综合考虑,视具体情况加以处理,以保证道路的稳定与通畅。

(4)一般情况下山岭重丘区纵坡设计应考虑填挖平衡,尽量使挖方运作就近路段填方,以减少借方和废方,降低造价和节省用地。

(6)对连接段纵坡,如大、中桥引道及隧道两端接线等,纵坡应和缓、避免产生突变。交叉处前后的纵坡应平缓一些。

(7)在实地调查基础上,充分考虑通道、农田水利等方面的要求。

2.4.2. 纵坡

(1)最大纵坡:是指在纵坡设计时各级道路允许使用的最大坡度值。各级公路最大纵坡见下表2-7。

表2-7 各级公路最大纵坡

(2)理想最大纵坡:是指设计车型在油门全开的情况下,持续以希望速度等速行驶所能克服的坡度。

(3)不限长度最大纵坡:是指设计车型在油门全开的情况下,持续以容许速度等速行驶所能克服的坡度。容许速度一般为设计速度的1/2~2/3(高速路取低限,低速路取高限)。

(4)最小纵坡:各级公路在特殊情况下容许使用的最小坡度值。

最小纵坡值:0.3%,一般情况下0.5%为宜。

(5)最小限制坡长:最小坡长规定汽车以设计速度的9~15S 的行程为宜。80km/h的公路,最小坡长一般值为250m,最小坡长最小值为200m。

(6)最大坡长限制:指控制汽车在坡道上行驶,当车速下降到最低容许速度时所行驶的距离。各纵坡坡长限制见下表2-8。

表 2-8 设计速度80km/h时纵坡长度限制表

相关主题
相关文档 最新文档