当前位置:文档之家› 低刚度薄壁零件的精密加工

低刚度薄壁零件的精密加工

低刚度薄壁零件的精密加工
低刚度薄壁零件的精密加工

基本计算轴心受力构件的强度和刚度计算

轴心受力构件的强度和刚度计算 1.轴心受力构件的强度计算 轴心受力构件的强度是以截面的平均应力达到钢材的屈服应力为承载力极限状态。轴心受力构件的强度计算公式为 f A N n ≤= σ (4-1) 式中: N ——构件的轴心拉力或压力设计值; n A ——构件的净截面面积; f ——钢材的抗拉强度设计值。 对于采用高强度螺栓摩擦型连接的构件,验算净截面强度时一部分剪力已由孔前接触面传递。因此,验算最外列螺栓处危险截面的强度时,应按下式计算: f A N n ≤= ' σ (4-2) 'N =)5 .01(1 n n N - (4-3) 式中: n ——连接一侧的高强度螺栓总数; 1n ——计算截面(最外列螺栓处)上的高强度螺栓数; ——孔前传力系数。 采用高强度螺栓摩擦型连接的拉杆,除按式(4-2)验算净截面强度外,还应按下式验算毛截面强度 f A N ≤= σ (4-4) 式中: A ——构件的毛截面面积。 2.轴心受力构件的刚度计算 为满足结构的正常使用要求,轴心受力构件应具有一定的刚度,以保证构件不会在运输和安装过程中产生弯曲或过大的变形,以及使用期间因自重产生明显下挠,还有在动力荷载作用下发生较大的振动。 轴心受力构件的刚度是以限制其长细比来保证的,即

][λλ≤ (4-5) 式中: λ——构件的最大长细比; [λ]——构件的容许长细比。 3. 轴心受压构件的整体稳定计算 《规范》对轴心受压构件的整体稳定计算采用下列形式: f A N ≤? (4-25) 式中:?——轴心受压构件的整体稳定系数,y cr f σ?= 。 整体稳定系数?值应根据构件的截面分类和构件的长细比查表得到。 构件长细比λ应按照下列规定确定: (1)截面为双轴对称或极对称的构件 ? ?? ==y y y x x x i l i l //00λλ (4-26) 式中:x l 0,y l 0——构件对主轴x 和y 的计算长度; x i ,y i ——构件截面对主轴x 和y 的回转半径。 双轴对称十字形截面构件,x λ或y λ取值不得小于t (其中b/t 为悬伸板件宽厚比)。 (2)截面为单轴对称的构件 以上讨论柱的整定稳定临界力时,假定构件失稳时只发生弯曲而没有扭转,即所谓弯曲屈曲。对于单轴对称截面,绕对称轴失稳时,在弯曲的同时总伴随着扭转,即形成弯扭屈曲。在相同情况下,弯扭失稳比弯曲失稳的临界应力要低。因此,对双板T 形和槽形等单轴对称截面进行弯扭分析后,认为绕对称轴(设为y 轴)的稳定应取计及扭转效应的下列换算长细比代替y λ [] 2 /122202022222)/1(4)()(2 1 z y z y z y yz i e λ λλλλλλ--+++= )/7.25//(2 202ωωλl I I A i t z +=

钢结构之受弯构件的强度

受弯构件的强度、整体稳定和局部稳定计算 钢梁的设计应进行强度、整体稳定、局部稳定和刚度四个方面的计算。 一、强度和刚度计算 1.强度计算 强度包括抗弯强度、抗剪强度、局部承压强度和折算应力。 (1) 抗弯强度 荷载不断增加时正应力的发展过程分为三个阶段,以双轴对称工字形截面为例说明如下: 图1 梁正应力的分布 1)弹性工作阶段 荷载较小时,截面上各点的弯曲应力均小于屈服点y f ,荷载继续增加,直至边缘纤维应力达到y f (图1b )。 2)弹塑性工作阶段 荷载继续增加,截面上、下各有一个高度为a 的区域,其应力 σ为屈服应力y f 。截面的中间部分区域仍保持弹性(图1c ),此时梁处于弹塑性工作阶段。 3)塑性工作阶段 当荷载再继续增加,梁截面的塑性区便不断向内发展,弹性核心不断变小。当弹性核心完全消失(图1d )时,荷载不再增加,而变形却继续发展,形成“塑性铰”,梁的承载能力达到极限。 计算抗弯强度时,需要计算疲劳的梁,常采用弹性设计。若按截面形成塑性铰进行设计,可能使梁产生的挠度过大。因此规范规定有限制地利用塑性。 梁的抗弯强度按下列公式计算: 单向弯曲时 f W M nx x x ≤= γσ (1)

双向弯曲时 f W M W M ny y y nx x x ≤+= γγσ (2) 式中 M x 、M y —绕x 轴和y 轴的弯矩(对工字形和H 形截面,x 轴为强轴,y 轴为弱轴); W nx 、W ny —梁对x 轴和y 轴的净截面模量; y x γγ,—截面塑性发展系数,对工字形截面,20.1,05.1==y x γγ;对箱形截面, 05.1==y x γγ; f —钢材的抗弯强度设计值。 当梁受压翼缘的外伸宽度b 与其厚度t 之比大于y f /23513 ,但不超过y f /23515时,取0.1=x γ。 需要计算疲劳的梁,宜取0.1==y x γγ。 (2)抗剪强度 主平面受弯的实腹梁,以截面上的最大剪应力达到钢材的抗剪屈服点为承载力极限状态。 v w f It VS ≤= τ (3) 式中 V —计算截面沿腹板平面作用的剪力设计值; S —中和轴以上毛截面对中和轴的面积矩; I —毛截面惯性矩; t w —腹板厚度; f v —钢材的抗剪强度设计值。 当抗剪强度不满足设计要求时,常采用加大腹板厚度的办法来增大梁的抗剪强度。 型钢腹板较厚,一般均能满足上式要求,因此只在剪力最大截面处有较大削弱时,才需进行剪应力的计算。 (3)局部承压强度

薄壁零件的加工实用工艺和夹具设计

摘要: 本文系统设计了薄壁零件的数控车削加工工艺。通过探讨薄壁零件在加工中存在的易变形、零件尺寸精度、位置精度及表面粗糙度不易保证等技术问题,对加工难点进行分析,给出了加工工艺路线和加工方案,通过优化、完善夹具设计和切削参数,防止了薄壁零件加工变形、保证了较好的尺寸精度和位置精度,从而有效解决薄壁零件的车削加工难题。 由于薄壁零件刚性差、强度弱,在加工中极易变形,是零件的形位公差增大,不易保证零件的加工质量。因此对薄壁零件的装夹,切削加工过程中刀具的合理选用及切削量的选择,提出了严格要求。 在普通车床上加工形状较复杂、有一定精度要求、且需要多把刀具进行加工的批量零件时,不仅需要频繁换刀和装夹,花费大量的人力和时间,而且加工出来的零件质量取决于加工人员的技术水平, 产品质量得不到充分的保证。而运用数控车床,结合传统的加工工艺,不但能大大缩短加工时间、提高加工精度,而且成品率高、产品质量稳定。 所以,在运用数控机床加工过程中为保证被加工薄壁件的必要的精度,有同轴度要求的外圆柱面或有垂直度要求的外圆与端面,尽可能在一次装夹中完成;需要编制其加工路线、合理的选择个阶段的加工参数并编写高质量的数控加工程

序。为完全保证零件的形位公差需要设计其装夹的夹具,为此,对零件图纸、零件加工及时效处理等方面都认真地进行了分析和研究。 图1-1 由图1-1可看出,?64mm的外圆对?60mm的孔的同轴度,?64的外圆的圆度和表面质量以及孔尺寸精度的加工是该薄壁零件最主要的加工难点。因为该零件刚性差、强度弱,在加工中极易变形,表面质量、垂直度及同轴度难以保证。镗削孔时应一次装夹中加工出来,以保证该零件的尺寸精度。针对薄壁零件壁薄、刚性差、易变形的特点,可设计该薄壁零件专用夹具装夹,以保证零件的

受弯构件的强度整体稳定和局部稳定计算.

《钢结构》网上辅导材料五 受弯构件的强度、整体稳定和局部稳定计算钢梁的设计应进行强度、整体稳定、局部稳定和刚度四个方面的计算。 一、强度和刚度计算 1.强度计算 强度包括抗弯强度、抗剪强度、局部承压强度和折算应力。 (1)抗弯强度 荷载不断增加时正应力的发展过程分为三个阶段,以双轴对称工字形截面为例说明如下: 图1 梁正应力的分布 f,荷载继续增1)弹性工作阶段荷载较小时,截面上各点的弯曲应力均小于屈服点 y f(图1b)。 加,直至边缘纤维应力达到 y 2)弹塑性工作阶段荷载继续增加,截面上、下各有一个高度为a的区域,其应力f。截面的中间部分区域仍保持弹性(图1c),此时梁处于弹塑性工作阶段。 σ为屈服应力 y 3)塑性工作阶段当荷载再继续增加,梁截面的塑性区便不断向内发展,弹性核心不断变小。当弹性核心完全消失(图1d)时,荷载不再增加,而变形却继续发展,形成“塑性铰”,梁的承载能力达到极限。 计算抗弯强度时,需要计算疲劳的梁,常采用弹性设计。若按截面形成塑性铰进行设计,可能使梁产生的挠度过大。因此规范规定有限制地利用塑性。 梁的抗弯强度按下列公式计算: 单向弯曲时

f W M nx x x ≤= γσ (1) 双向弯曲时 f W M W M ny y y nx x x ≤+=γγσ (2) 式中 M x 、M y —绕x 轴和y 轴的弯矩(对工字形和H 形截面,x 轴为强轴,y 轴为弱轴); W nx 、W ny —梁对x 轴和y 轴的净截面模量; y x γγ,—截面塑性发展系数,对工字形截面,20.1,05.1==y x γγ;对箱形截面, 05.1==y x γγ; f —钢材的抗弯强度设计值。 当梁受压翼缘的外伸宽度b 与其厚度t 之比大于y f /23513 ,但不超过y f /23515时,取0.1=x γ。 需要计算疲劳的梁,宜取0.1==y x γγ。 (2)抗剪强度 主平面受弯的实腹梁,以截面上的最大剪应力达到钢材的抗剪屈服点为承载力极限状态。 v w f It VS ≤= τ (3) 式中 V —计算截面沿腹板平面作用的剪力设计值; S —中和轴以上毛截面对中和轴的面积矩; I —毛截面惯性矩; t w —腹板厚度; f v —钢材的抗剪强度设计值。 当抗剪强度不满足设计要求时,常采用加大腹板厚度的办法来增大梁的抗剪强度。 型钢腹板较厚,一般均能满足上式要求,因此只在剪力最大截面处有较大削弱时,才需进行剪应力的计算。

郑州大学《钢结构》问答题

1钢结构有哪些特点?钢结构对材料的要求有哪些? 答:A(1)建筑钢材强度高塑性韧性好(2)钢结构质量轻(3)材质均匀,其实际受力情况和力学计算的假定比较符合(4)钢结构制作简便施工工期短(5)钢结构密闭性好(6)耐腐蚀性差(7)耐热不耐火(8)在低温和其他条件下可能发生脆性断裂 B (1)较高的抗拉强度和屈服点(2)较高的塑性和韧性(3)良好的工艺性能(4)有时要求钢材具有适应低温高温和腐蚀性环境的功能 2现规范钢结构采用的是哪种设计方法? 答:概率的极限设计方法。 3A结构极限状态:当结构或其组成部分超过某一特定状态就不能满足设计规范的某一功能要求时,此特定状态就称为该功能的极限状态。 B结构的可靠性:结构应具有的安全性适用性耐火性统称为结构的可靠性。 C可靠度(Ps):结构在规定的时间内在规定的条件下完成预定功能的概率。 D失效概率(Pf):结构不能完成预定功能的概率。 E荷载标准值与荷载设计值的关系:荷载设计值=荷载标准值X荷载分次系数 F强度标准值与强度设计值的关系:强度设计值f=强度标准值/抗力分项系数 4钢材的破坏形式有哪些?钢材有哪几项主要机械性能指标?各项指标可用来衡量钢材哪些方面的性能? 答:A钢材的破坏形式:塑性破坏和脆性破坏。屈服强度fy衡量塑性性能抗拉强度fu衡量弹塑性性能B钢材的主要机械性能包括强度,塑性,冷弯性能,冲击韧性和可焊性。 C屈服点(屈服强度fy)抗拉强度fu反映钢材强度,其值越大承载力越高。伸长率反映刚才塑性的指标之一,另外还有截面收缩率。冷弯试验:是衡量钢材在弯曲变形状态下塑性应变能力和钢材质量的综合指标。冲击韧性:是衡量钢材强度塑性及材质的一项综合指标。 5影响钢材机械性能的主要因素有哪些? 答:化学成分,冶金缺陷,钢材硬化,温度(低温),应力集中,反复荷载作用等因素。 6钢材在复杂应力作用下是否仅产生脆性破坏?为什么? 答:不是。因为在复杂应力作用下,钢材按能量强度理论计算的折算应力σred与单向应力下的屈服点相比较:若σred<fy为弹性状态;若σred≥fy为塑性状态,即发生塑性破坏。当平面或立体应力皆为拉应力时材料处于脆性破坏。 7什么是应力集中状态?应力集中对钢材的机械性能有什么影响? 答:钢结构构件中的应力分布固构件中的孔洞,槽口,凹角,截面突变及刚才内部缺陷等而不能保持均匀分布,在局部产生高峰应力,在另外一些区域则应力降低,形成应力集中现象。 在应力高峰区域总存在着同号的双向或三向应力,使材料处于复杂应力状态,由能量强度理论得知,这种同号的平面或立体应力场导致钢材塑性降低,脆性增加,使结构发生脆性破坏的危险性增大。 8钢结构中常用的钢材有哪几种?钢材牌号的表示方法是什么? 答:在建筑工程中常用的是碳素结构钢,低合金高强度结构钢和优质碳素结构钢。 碳素结构钢的牌号由代表屈服强度字母Q,屈服强度数值,质量等级符号(ABCD)脱氧方法符号(F Z TZ)四个部分按顺序组成。 9 Q235钢中的四个质量等级的钢材在脱氧方法和机械性能上有何不同?如何选用钢材? 答:A Q235钢有ABCD共4个质量等级,其中AB级有沸腾钢,半镇静钢,镇静钢,C级只有镇静钢,D级只有特殊镇静钢。除A级钢不保证冲击韧性值和Q235-A钢不保证冷弯试验合格外其余各级各类钢材均应保证抗拉强度屈服点伸长率冷弯试验及冲击韧性值达到标准规定要求。 B选用钢材时应考虑:(1)结构的重要性(2)荷载情况(3)连接方法(4)结构所处的温度和环境(5)钢材厚度对刚才质量的要求一般来说承重结构的钢材应保证抗拉强度,屈服点伸长率和硫磷的极限含量,对焊接结构尚应保证碳的极限含量。 10 钢结构常用的连接方法有哪些? 答:钢结构的连接方法可分为焊接连接螺栓连接(普通螺栓高强度螺栓)铆钉连接三种。 11 焊缝的质量分为几个等级?与钢材等强的受拉和受弯的对接焊缝须采用几级? 答:寒风的质量等级分为一级二级三级三个等级。与钢材登墙的受拉和受弯的对接焊缝不应低于二级。受压时宜

薄壁圆筒零件车削加工

冷加工echnique T 工 艺 沈阳理工大学应用技术学院 (辽宁 110005) 吴 敬 薄壁圆筒零件车削加工1. 零件特点分析 学院实习工厂加工一批薄壁圆筒零件,如 图1所示。零件材质1C r13,外径110m m ,总长 120mm ,两端内径不同,一端是φ107mm ,另一 端是φ100m m ,最小壁厚是1.5m m ,最大壁厚是 5mm 。薄壁零件加工中,存在的最大问题是变形, 变形影响零件尺寸精度。影响零件变形的因素是: 装夹过程中夹紧力过大或受力不均引起变形;切削 加工中切削力作用引起变形;加工中产生热量,冷 却不充分,引起变形。 上述三个因素,夹紧力引起的变形是主要因 素。所以加工薄壁零件要充分考虑如何防止由夹 紧力作用而产生的变形。1Cr13材质是具有较高强 度及塑性的中碳马氏体不锈钢。加工中易产生加 工硬化,零件切削抗力增大,刀具磨损严重。另 外加工中粘刀现象严重,断屑困难,切屑易刮伤 零件表面,影响加工质量。因此加工中不仅要考 虑变形问题,还要考虑由材料本身的特性带来的 影响。图 1 工件2. 加工工艺方案确定根据零件尺寸特点和材质特性,确定加工工艺路线。 (1)选择φ120mm ×130mm 棒料为毛坯,调质处理,改善加工性能。(2)上卧式车床,先装夹左端φ107m m 孔端,加工右端φ100mm 孔端端面。(3)用φ30mm 钻头钻零件中心通孔。(4)用内径车刀粗加工φ100m m 孔至φ90mm 。(5)零件调头,装夹φ100m m 孔端,加工φ107mm 孔端平面,长度达设计总长要求120mm 。(6)粗、精加工φ107mm 孔,达设计尺寸要求。(7)零件拆卸下,用自制的简单胀套,安装在零件φ107mm 孔内,螺母拧紧,重新上车床,装夹胀套一端。精加工φ100mm 孔达设计尺寸。(8)粗、精加工零件外径达设计尺寸φ110mm 。3. 简易胀套夹具设计考虑零件内径和外径必须同心,薄壁零件装夹易产生变形等问题,设计了胀套夹具(见图 2)。将内斜面开口胀套1套在心轴2上。工件3的 φ107mm 孔套在开口胀套1上,心轴带螺纹一端与 螺母5联接,螺母拧紧, 压板4顶住开口胀套,心 轴移动,顶起胀套胀开与 零件内孔壁紧紧联在一 起。心轴的另一端是用于 车床卡盘夹紧用。利用该 夹具即能保证零件内孔外 径同心,又可避免由于夹 紧力影响产生变形。图2 胀套夹具结构1.开口胀套 2.心轴 3.工件 4.压板 5.螺母

薄壁零件装夹变形原因及控制

薄壁零件装夹变形原因及控制 精密薄壁零件是目前制造业发展的一个重要方向,薄壁零件的装夹是其生产制 造中的一个重要环节,但由于工艺不合理,对薄壁零件认识不够等因素造成的装夹变形时有发生。该文分析了薄壁零件装夹变形的产生原因,并提出了一些控制对策。 薄壁零件,装夹变形,原因,对策 薄壁零件的加工变形,一直是机械加工制造业的一个难题,很多国内外学者都对薄壁零件的加工变形问题进行了分析了研究,使得薄壁零件的加工技术有了一定的突破。实际工作中,要想通过合理的对策解决薄壁零件的加工变形问题,就要首先认清产生变形的原因。 1.薄壁零件装夹变形的成因及区分 薄壁零件出现变形有很多的原因,在设计零件的过程中,不仅要考虑零件设计结构的工艺性,还要提高零件结构的刚性,防止在加工中出现变形,尽可能保证零件结构对称、薄壁厚度均匀,选择毛坯时,最好选择没有内应力的原材料。在制造系统中,零件加工变形的主要因素有, 工件的装夹条件。由于薄壁零件的刚性比较差,加工时不恰当的选择央紧力与 支承力的作用点,导致附加应力,夹、 1 压的弹性变形会一定程度上影响零件表面的尺寸精度和形状、位置精度,导致 变形。 加工残余应力。在零件加工过程中,由于刀具对已加工面的挤压、刀具前刀面 与切屑、后刀面与已加工表面之间的摩擦等综合作用,导致零件表层内部出现新的加工残余应力。由于不稳定的残余应力的存在,一旦零件受到外力作用,零件就会在外力与残余应力的作用下产生局部塑性变形,重新分配截面内的应力,去除外力作用

后,零件就会受到内部残余应力的作用出现变形。这种由于切削过程中残余应力的重新分布,造成的零件的变形,会严重影响加工质量。 切削力和切削热、切削振动。为了避免被加工材料产生弹性变形、塑性变形以及刀具与切屑和工件之间的摩擦,切削过程会产生切削力和切削热,在两者作用下,很容易导致零件振动和变形,进而影响零件的质量。另外,造成零件变形的影响因素还有机床、工装的刚度,切削刀具及其角度、切削参数和零件冷却散热情况等。其中造成零件变形的主要因素是切削力、夹紧力以及残余应力。 2.控制零件变形的工艺措施 由于零件的整体刚性在加工薄壁零件过程中随着零件壁厚逐渐减小,零件的刚性也会降低,进而导致加工零件的变形增大。因而,在对零件进行切削过程中,最大程度地利用零件的未加工部分,支撑正在切削部分,保证切削时处在最 2 佳刚性状态。如,腔内有腹板的腔体类零件,在加工过程中,铣刀以螺旋线方式从毛坯中间位置下刀进而降低垂直分力对腹板的压力,从深度方向铣到尺寸,再从中间扩张到四周至侧壁。如果内腔深度很大,根据上面的方法进行多层加工。这种方式能够尽可能的降低切削变形,减少了由于零件刚性的降低而出现的切削振动现象。 采用辅助支撑。在加工薄壁结构的腔类零件过程中,控制零件的变形就要首先解决由于装夹力造成的变形。因而,可利用腔内加膜胎(橡胶膜胎或硬膜胎)的方式来增加零件的刚性,避免零件在加工过程中出现变形,另外,还可以采用填充法石蜡、低熔点合金等工艺方法,来增加零件的支撑,从而减小变形、提高零件的精度。 设计工艺加强筋,提高刚性。对于薄壁零件来说,为了减少变形,可以增加零件的工艺筋条,从而达到加强刚性的目的,这是工艺设计中避免变形的提高刚性常用的手段之一。如在加工长槽过程中,在圆支管右端上下二槽口留3mm加强筋,进行消除

钢结构简答题

简答题 1. 简述钢结构有哪些主要特点。(8分) 答:(1)材料的强度高,塑性和韧性好; (2)材质均匀,和力学计算的假定比较符合; (3)制作简便,施工周期短; (4)质量轻; (5)钢材耐腐蚀性差; (6)钢材耐热,但不耐火; 2. 碳素结构钢按质量分为几级?并是怎样划分的?Q235B·b代表的意义是什么?(10分) 答:碳素结构钢按质量分为A、B、C、D四级。 其中A级钢材不作冲击韧性要求,冷弯性能在需方有要求时才进行;B、C、D各级钢材均要求冲击韧性值A kv≥27J,且冷弯试验均要求合格,所不同的是三者的试验温度有所不同,B级要求常温(20±5℃)冲击值,C和D级则分别要求0℃和-20℃冲击值。 Q235B·b代表屈服强度为235N/mm2,B级,半镇静钢。 3. 钢结构中,选用钢材时要考虑哪些主要因素?(8分) 答:结构或构件的重要性; 荷载的性质(静载或动载); 连接方法(焊接、铆接或螺栓连接); 工作条件(温度及腐蚀介质)。 4. 轴心受力构件的截面形式有哪几种?并且对轴心受力构件截面形式的共同要求是什么? 答:轴心受力构件的截面形式有热轧型钢、冷弯薄壁型钢、实腹式组合截面以及格构式组合截面。 对轴心受力构件截面形式的共同要求是: (1)能提供强度所需要的截面积; (2)制作比较简便; (3)便于和相邻的构件连接; (4)截面开展而壁厚较薄,以满足刚度要求。 5. 计算压弯(拉弯)构件的强度时,根据不同情况,采用几种强度计算准则?并简述各准则的内容。我国钢结构规范对于一般构件采用哪一准则作为强度极限?(10分) 答:计算压弯(拉弯)构件的强度时,根据不同情况,采用三种强度计算准则。 其中(1)截面边缘纤维屈服准则:当构件受力最大截面边缘处的最大应力达到屈服时,即认为构件达到了强度极限。(2)全截面屈服准则:这一准则以构件最大受力截面形成塑性铰为强度极限。(3)部分发展塑性准则:这一准则以构件最大受力截面的部分受压区和受拉区进入塑性为强度极限。 我国钢结构规范对于一般构件采用部分发展塑性准则作为强度极限。 6. 简述梁的整体失稳现象,影响梁临界弯距的主要因素有哪些。(8分) 答:梁的截面一般窄而高,弯矩作用在其最大刚度平面内,当荷载较小时,梁的弯曲平衡状态是稳定的。当荷载增大到某一数值后,梁在弯矩作用平面内弯曲的同时,将突然发生侧向的弯曲和扭转变形,并丧失继续承载的能力,这种现象称为梁的整体失稳现象。 梁的临界弯矩M cr主要和梁的侧向抗弯刚度、抗扭刚度、翘曲刚度、梁的截面形状、荷载类型、荷载作用位置以及梁的跨度等有关。 7. 钢结构框架钢柱的计算长度系数与哪些因素有关。(6分) 答:钢结构框架钢柱的计算长度系数与框架类型、相交于柱上端节点的横梁线刚度之和与柱线刚度之和的比值K1、相交于柱下端节点的横梁线刚度之和与柱线刚度之和的比值K2、柱与基础的连接方式、横梁远端连接方式、横梁轴力大小以及柱的形式等因素有关。 8. 简述焊接残余应力对结构性能的影响。(8分)

薄壁零件车削加工方法探究

薄壁零件车削加工方法探究 发表时间:2019-07-08T14:56:53.290Z 来源:《防护工程》2019年第7期作者:洪玉亭王保强 [导读] 在对薄壁零件车削进行加工的过程中,要尽可能的减小零件的变形,从而更好的满足薄壁零件的加工需求。 南京理工大学工程训练中心江苏南京 210094 摘要:随着我国经济的发展和社会的进步,我国薄壁零件车削的加工技术也在不断发展,随之而来的生产的发展也对其工艺提出了要求。针对于这种发展现状,需要我们提高薄壁零件车削加工技术,本文主要针对于此展开一系列的讨论,并且给出合理化的建议,希望对我国加工的发展有一定的帮助作用。 关键词:薄壁零件;车削加工;发展现状 引言: 薄壁零件针对于普通的零件,具有较多的优点,性能也比较优越,并且具有较好的结构精度。但是往往这种零件由于其结构相对较为精密,在制造的过程中往往会存在一系列的问题,从而导致其质量受到影响。在对薄壁零件车削进行加工的过程中,要尽可能的减小零件的变形,从而更好的满足薄壁零件的加工需求。 1薄壁零件车削加工受到的影响 1.1加工变形的影响 第一,受力变形。薄壁零件在切削加工过程中内应力和夹紧力受力不均导致变形产生,影响了尺寸和产生形变。一般车削使用的三爪卡盘夹具在装夹薄壁零件时会因弹性变形产生形变。第二,热变形。薄壁零件在车削加工中会因切削热量聚集产生变形,不利于精度控制。第三,振动产生变形。薄壁零件因受力较小,在切削力的作用下,容易产生振动和变形,最终影响尺寸和精度。 1.2切削液的影响 车削加工中,由于刀具与工件、切屑与刀具产生摩擦会产生热量,刀具强度降低,表面质量变差,零件中热量增加,薄壁件受力增加,如果此时切削液选用不合理或冷却不到位会造成零件受力不均匀产生尺寸和精度误差,影响零件质量。 1.3切削用量选择不当的影响 薄壁零件因其结构的特殊性,切削用量的选择要具有特殊性,尤其是精加工阶段,参数选择不合理极容易在加工中出现轧刀现象,产生较大的切削力导致变形,导致零件报废。 1.4切削不合理导致变形 在对薄壁零件进行车削加工的过程中,往往具有较强的震动效果,并且在切削工艺不能达到相关标准的情况下,往往会造成一系列的问题,从而影响车削加工技术。基于此,为了减小切削过程中刀所受到的一些阻力,可以对其前角的角度进行调整。可以根据具体的实际情况做出一定的调整,如果刀具是高速钢的情况下,需要将前角控制在6-30度的范围内,一边保证其能具有较小的阻力。并且在对车削用量的选择上,需要进行合理的选择,从而减小薄壁零件的变形,在对金属切削进行影响因素的分析过程中可以得出,其主要受到两种因素的影响,即背吃刀量和进给量。可以针对于具体的实际情况进行两种量的合理控制,从而减小零件的变形。 1.5刀具不合适导致变形 对薄壁零件进行车削加工,还要做好刀具的选择,以免零件在车削过程中发生热变形。因为,刀具的选择直接关系到刀具前角大小,从而将对零件切削变形程度产生影响。刀具是否锋利,也会影响零件加工效果。此外,在切削的过程中,还要利用切削液冷却和润滑刀具。未能较好的使用切削液,不仅将导致刀具受到磨损,还将导致零件出现变形。 2薄壁零件车削加工措施 2.1合理选择装夹方案,控制受力变形 车削薄壁零件可选择开缝套筒,开缝套筒可改变三爪卡盘三点夹紧、工件不能均匀受力的问题,它可以增大接触面积,切削力也会被均匀分布在工件上,该装夹方式可用于薄壁零件内孔车削。还可采用特制弧形软爪进行装夹,弧形软爪装夹也可增加夹持面积,分散切削力,进而达到减少夹紧力和车削变形,可用于薄壁零件的外圆部分加工。 2.2合理选择切削液 根据机械加工基础的相关知识可知切削液在车削加工过程中的作用明显。合理选择切削液能让零件切削温度降低150℃左右,提升零件表面质量,减少切削力且能提高刀具寿命。根据多年经验,选择卤化液或切削油作为加工薄壁零件的冷却液能达到较好的效果,因此合理选择薄壁零件加工中的切削液,能降低切削过程中的热量和切削力,减少薄壁零件产生的热变形和受力不均匀产生的变形,也能提高加工效率。 2.3合理选择切削用量 合理选择切削用量在薄壁零件加工中的重要性不言而喻。切削用量包含背吃刀量、进给量、切削速度三个要素。合理利用切削三要素,可减少切削力,减少变形。薄壁零件车削过程中,背吃刀量增加切削力增加,会让薄壁受力增加产生变形,根据多年经验,车削45钢薄壁零件精加工阶段背吃刀量在0.4mm为最佳。在背吃刀量一定的情况下,进给力增大,会增大表面粗糙度,导致薄壁零件内应力增加,产生变形,一般精加工进给量为0.1mm/r。切削速度对切削力的影响较小,在刀具、工件材料允许的情况下,甚至可以选择较高的切削速度,但速度提高后,要防止薄壁零件车削中出现振动现象,不利于表面质量,因此,在刀具允许的切削速度内,速度一般选择100m/min。虽然切削用量的合理选择对薄壁零件切削比较重要,但薄壁零件变形跟很多因素有关。切削过程中还要根据刀具材料、零件材料、机床性能合理选择切削用量。 2.4合理选择车削刀具 在车削薄壁零件时,刀具材料最好选择硬质合金或陶瓷刀片,日常使用的高速钢和白钢刀会因材料硬度达不到要求产生较大的切削力。此外刀具几何角度对切削力的影响较大,刀具前角决定刀具的锋利程度,增大刀具前角能缩小摩擦,降低切削力,但热量不易散失,

‘壳盖’薄壁铝合金件加工工艺

‘壳盖’薄壁铝合金件加工工艺 “壳盖”薄壁铝合金件加工工艺分析中国航空工业集团公司航宇救生装备有限公司(湖北襄阳441002) 袁开波 “壳盖”零件是一个薄壁的铝合金零件,其形状及尺寸如图1所示.零件的主要特点就是壁薄,由于是铝合金件,其强度差,加工时容易变形,要高效率加工合格的零件,加工过程中编制好工艺路线,做好准确的装夹与定位,就至关重要,同时要控制由于切削对零件产生的变形。 图1“壳盖” 注:未注圆角,凸R1.8mm,凹R1mm,未注壁厚0.8mm. 一、工艺分析 考虑到此零件的内、外形均为圆环形状,其主要的加工方法为数车工序完成,数车工序为分别加工内、外形2个步骤。这里就要考虑加工完第一工序后,在进行第二工序加工时的装夹与定位问题。既要能准确装夹与定位,又要使第二工序的加工操作方便。在经过多次的工艺路线分析及相配合的夹具结构设计之后,确定了先加工内形面,并在其端面上制出装夹定位的位置,然后进行外形面的加工。 二、工艺路线

在加工零件的内形面之后,“壳盖”需要安装在一种辅助夹具上,才能进行第二工序的加工,如图2所示。 (a) 第一工序图 (b) 第二工序简图 图2 “壳盖”工艺路线简图 1.第一工序的加工 “壳盖”在第一工序中要完成如图2(a)所示的加工内容,注意保持各个孔与 M64×0.75螺孔的同轴度。由于“壳盖”壁薄,偏心更易使“壳盖”产生变形。 2. 第二工序的加工 如图2(b)所示,型腔口部的M64×0.75螺纹段位为装夹部分,用M64X0.75螺纹与辅助夹具进行定位与连接。其夹具的设计,如图2(b)所示。从图中可以看出,辅助夹具的设计,其型面尺寸与零件的内形面是一致的,零件扣在夹具上,并通过M64X0.75螺纹拧紧,以保证零件内形面与夹具相贴合,这样,在加工外形面时,零件不会产生变形。 3.安装在辅助夹具上“壳盖”切削时加紧状况的分析 零件在装夹后,车刀切削时,零件的状态是否会松动,可通过图3做一个装夹及切削的状况分析。

薄壁零件车削加工方法探讨

薄壁零件车削加工方法探讨 1.薄壁零件的加工特点 1.1薄壁零件不能承受较大的径向力,用通用夹具安装困难。 1.2薄壁零件的刚性差,在夹紧力的作用下,极易产生变形,常态下工件的弹性复原,会影响工件的尺寸精度和形状精度。 1.3工件受切削热的影响,尺寸精度不易控制。 1.4由于切削力的影响,工件易产生变形或振动,尺寸精度和表面粗糙度不易控制。 1.5薄壁零件刚性差,不能采用较大的切削用量,生产效率低。 因此合理的选择装夹方法,加工方法,切削用量,减少振动及充分冷却和检测都是保证加工薄壁零件的关键。 2.薄壁零件的装夹方法 2.1通用软爪定位装夹,选择正确的夹紧力作用点,使夹紧力作用在工件刚性较好的部位,适用于形状和尺寸公差要求不严的零件加工。优点:装卸方便长度可定位,看承受较大切削力。 缺点:零件定位点较集中,零件加紧后变形较严重。 2.2大面积扇形软爪装夹:采用扇形软爪的三爪卡盘,按与加工零件的装夹面动配合的要求,加工出卡爪的工作面,增大与零件的接触面积。 优点:增大夹紧力的作用面积,使工件支持面增大,夹紧力均匀分布在工作面上,可加大切削用量,不易产生变形。

缺点:扇形软爪不易加工。 2.3芯棒装夹 2.3.1采用椎体芯轴装夹,将零件直接套在椎体芯轴加工。 2.3.2采用圆柱芯轴装夹,将零件装在芯轴上采用轴线压紧。减小零件径向变形。 优点:装卸零件方便,能保证较高的同心度,技术要求。 缺点:零件内孔被芯轴划伤。 2.4磁力吸盘装夹:采用磁力吸盘将零件吸附在吸盘上,这时零件只受轴向力,而径向不受力。 优点:可一次较高零件内外圆。 缺点:零件找正比较麻烦,应用范围小。 3.薄壁零件较高方法的选择 3.1 先粗后精 先粗加工出零件的外圆和内孔,外圆和内孔均匀留0.5—0.8毫米余量,端面单边留0.25—0.3毫米余量,然后选择适当的装夹方法,将零件精加工到图纸尺寸要求。 3.2先内后外 先加工内孔,以为孔较外圆难加工,易产生变形。然后加工外圆,可采用芯轴装夹,以内孔定位轴向夹紧,防止零件加工中产生影响加工精度。 3.3一次完成 在一次装夹中完成所需要的加工的所以尺寸,主要应用于毛坯料是

薄壁零件加工方法和工艺分析

薄壁零件的工艺分析及加工方法 单位名称:陕西长岭电子科技有限责任公司 作者:安小康 2017年3月 2 日 薄壁零件的工艺分析及加工方法 作者:安小康 职业技能鉴定等级:二级 单位名称:陕西长岭电子科技有限责任公司 单位地址:宝鸡市渭滨区清姜璐75号 2017年3月2 日 目录 摘要 (1) 关键词 (1) 1工艺方案分析 (2) 薄壁零件图 (2) 零件图分析 (2) 确定加工方法 (2) 2工件装夹 (3) 定位基准选择 (3) 确定零件定位基准 (3) 装夹方式选择 (3) 确定装夹方式 (3)

3刀具和切削用量选择 (3) 4零件加工 (5) 5加工注意事项 (7) 安全文明生产 (7) 刀具的选择 (7) 削用量的要求 (7) 6影响薄壁加工因素及解决方法 (8) 受力变形 (8) 受热变形 (9) 振动变形 (9) 总结 (10) 参考文献 (11) 摘要 薄壁工件因为具有重量轻、节约材料、结构紧凑等特点,薄壁零件已日益广泛地应用在各工业部门。但薄壁零件的加工是比较棘手的,原因是薄壁零件刚性差、强度弱,在加工中极容易变形,不易保证零件的加工质量。 薄壁零件的加工问题,一直是较难解决的。薄壁件目前一般采用数控车削的方式进行加工,为此要对工件的装夹、刀具几何参数、程序的编制等工艺分析方面进行试验,合理的选择加工方法从而有效地克服了薄壁零件加工过程中出现的变形,保证加工精度。

关键词:薄壁工件工艺分析程序编制加工方法 1工艺方案分析 薄壁零件图 零件图分析 该零件图是薄壁套类零件由外圆、内孔、外螺纹组成。尺寸标注完整,表面粗糙度为,选用毛坯是45号钢。毛坯尺寸Φ35mm×50mm,表面无热处理等要求。 确定加工方法 确定加工方法的原则是保证加工表面加工精度和表面粗糙度。薄壁类零件应按粗、精加工工序。薄壁件通常需要加工工件的内、外表面。内表面的粗加工和精加工都会导致工件变形,所以应按粗精加工分序。内外表面粗加工后,再内外表面精加工,均匀的去除工件表面多余部分,这样有利于消除切削变形。加工方法多种多样,应结合零件的形状,尺寸,位置,选择合理快捷的加工方法。尺寸公差要求较高,公差值较小。取其基本尺寸加工编程便可。 2工件装夹 定位基准选择 定位基准选择极为重要,他影响到工件加工的尺寸,位置精度从而影响到工件整体的加工质量。 确定零件定位基准 根据基准重合原则以工件左端面或者右端面作为定位基准 装夹方式选择

第3章 构件的强度和刚度共27页

第3章构件的强度和刚度 学习目标 理解各种基本变形的应力概念和分布规律; 掌握虎克定律及材料在拉伸和压缩时的机械性能指标的含义; 掌握各种基本变形的应力和强度计算方法; 掌握弯曲刚度的基本计算方法; 了解应力集中和交变应力的概念及材料在交变应力作用下的破坏特点。 3.1 分布内力与应力、变形与应变的概念 3.1.1 分布内力与应力 杆件受力作用时截面上处处有内力。由于假定了材料是均匀、连续的,所以内力在个截面上是连续分布的,称为分布内力。用截面法所求得的内力是分布内力的合力,它并不能说明截面上任一点处内力的强弱。为了度量截面上任一点处内力的强弱程度,在此引入应力这一重要概念。 截面上一点的内力,称为该点的应力。与截面相垂直的应力称为正应力,用σ表示;截面相切的应力称为切应力,也称剪应力,用τ表示。在国际单位制中,应力的基本单位是N /m2,即Pa。工程中常用单位为MPa,GPa,它们的换算为: l MPa=106Pa=1 N/mm2 1 GPa=103MPa=103 N/mm2 3.1.2应变 在外力的作用下,构件的几何形状和尺寸的改变统称为变形。一般讲,构件内各点的变形是不均匀的,某点上的变形程度,称为应变。 围绕构件内K点取一微小的正六面单元体,如图3—1(a)所示,设其沿x轴方向的棱边长为x ?称为x ?的线变形。 ?+u ?,如图3—1(b)所示,u ?,变形后的边长为x 当x?趋于无穷小时,比值ε=u ?/x?表示一点处微小长度的相对变形量,称为这一点的线应变或正应变,用ε表示。 一点处微小单元体的直角的改变量[图3—1(c)],称为这一点的切应变,用γ表示。 线应变ε和切应变γ是度量构件内一点变形程度的两个基本量,它们都是无量纲的量。

薄壁零件的数控车削加工

目录 前言 -------------------------------------------------------------------------------------------------------------- 2 第一章数控车床的车削加工特点 -------------------------------------------------------------------- 3 1.1数控加工的发展趋势 ----------------------------------------------------------------------------------- 3 1.1.1高速、高精密化---------------------------------------------------------------------------------------- 3 1.1.2高可靠性------------------------------------------------------------------------------------------------- 4 1.1.3数控车床设计CAD化、结构设计模块化---------------------------------------------------- 4 1.1.4 功能复合化--------------------------------------------------------------------------------------------- 4 1.1.5智能化、网络化、柔性化和集成化 ------------------------------------------------------------- 4 第二章薄壁零件的加工难点分析 -------------------------------------------------------------------- 6 2.1理论分析--------------------------------------------------------------------------------------------------- 6 2.2举例分析 -------------------------------------------------------------------------------------------------- 6 第三章薄壁零件的加工改进 ------------------------------------------------------------------------ 12 3.1装夹方式的改变 ---------------------------------------------------------------------------------------- 12 3.2选用合理的切削用量 --------------------------------------------------------------------------------- 13 3.3合理选择刀具的几何角度 --------------------------------------------------------------------------- 14 3.4切削液对薄壁零件的影响 --------------------------------------------------------------------------- 14 第四章盘形薄壁零件的车削 ------------------------------------------------------------------------ 15 4.1盘形薄壁零件介绍 ------------------------------------------------------------------------------------- 15 4.2实践分析-------------------------------------------------------------------------------------------------- 16 4.3具体操作-------------------------------------------------------------------------------------------------- 16 4.4结论 -------------------------------------------------------------------------------------------------------- 16 第五章薄壁零件加工过程浅析----------------------------------------------------------------------- 17 参考文献------------------------------------------------------------------------------------------------------- 18

薄壁零件加工方法和工艺分析

薄壁零件加工方法和工 艺分析 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

薄壁零件的工艺分析及加工方法 单位名称:陕西长岭电子科技有限责任公司 作者:安小康 2017年 3月 2 日 薄壁零件的工艺分析及加工方法 作者:安小康 职业技能鉴定等级:二级 单位名称:陕西长岭电子科技有限责任公司 单位地址:宝鸡市渭滨区清姜璐75号 2017年 3月 2 日 目录 摘要 (1) 关键词 (1) 1工艺方案分析 (2) 薄壁零件图 (2) 零件图分析 (2) 确定加工方法 (2) 2工件装夹 (3) 定位基准选择 (3) 确定零件定位基准 (3) 装夹方式选择 (3) 确定装夹方式 (3)

3刀具和切削用量选择 (3) 4零件加工 (5) 5加工注意事项 (7) 安全文明生产 (7) 刀具的选择 (7) 削用量的要求 (7) 6影响薄壁加工因素及解决方法 (8) 受力变形 (8) 受热变形 (9) 振动变形 (9) 总结 (10) 参考文献 (11) 摘要 薄壁工件因为具有重量轻、节约材料、结构紧凑等特点,薄壁零件 已日益广泛地应用在各工业部门。但薄壁零件的加工是比较棘手的,原 因是薄壁零件刚性差、强度弱,在加工中极容易变形,不易保证零件的 加工质量。 薄壁零件的加工问题,一直是较难解决的。薄壁件目前一般采 用数控车削的方式进行加工,为此要对工件的装夹、刀具几何参数、程 序的编制等工艺分析方面进行试验,合理的选择加工方法从而有效地克 服了薄壁零件加工过程中出现的变形,保证加工精度。

关键词:薄壁工件工艺分析程序编制加工方法 1工艺方案分析 薄壁零件图 零件图分析 该零件图是薄壁套类零件由外圆、内孔、外螺纹组成。尺寸标注完整,表面粗糙度为,选用毛坯是45号钢。毛坯尺寸Φ35mm×50mm,表面无热处理等要求。 确定加工方法 确定加工方法的原则是保证加工表面加工精度和表面粗糙度。薄壁类零件应按粗、精加工工序。薄壁件通常需要加工工件的内、外表面。内表面的粗加工和精加工都会导致工件变形,所以应按粗精加工分序。内外表面粗加工后,再内外表面精加工,均匀的去除工件表面多余部分,这样有利于消除切削变形。加工方法多种多样,应结合零件的形状,尺寸,位置,选择合理快捷的加工方法。尺寸公差要求较高,公差值较小。取其基本尺寸加工编程便可。 2工件装夹 定位基准选择 定位基准选择极为重要,他影响到工件加工的尺寸,位置精度从而影响到工件整体的加工质量。 确定零件定位基准 根据基准重合原则以工件左端面或者右端面作为定位基准 装夹方式选择

相关主题
文本预览
相关文档 最新文档