当前位置:文档之家› MW级风电联轴器装配工艺及仿真分析

MW级风电联轴器装配工艺及仿真分析

双馈变速风电机组模型的仿真分析

双馈变速风电机组模型的仿真分析 在常用的变速恒频风力机种类中,双馈异步电机的风力机有比较大的技术优势和市场空间。文章对使用双馈异步风力发电机的风力机组的输出性能做出研究与分析,并使用MATLAB进行仿真模拟。文章的主要工作包含以下两个部分:第一部分是在风速波动条件下,分别通过电压模式控制和无功功率模式控制,研究分析风电机组的输出特性变化。第二部分是在电网故障条件下,分别通过电压模式控制和无功功率模式控制,研究风电机组输出特性变化。 标签:风力发电;双馈风电机组;动态模型;MATLAB 引言 能源的发展对国民的经济有着非常重要的作用。常规能源主要以化石能源为主,在全球工业飞速发展的时代,产生极具经济效益的同时,化石性燃料使用的程度也达到了空前。化石性燃料的使用对大气造成了严重的污染,对人类的生存环境造成了重大的破坏;此外,化石性燃料隶属一次性能源,总有消耗完结的时候。经济生活中的国策,能源对人类的经济与社会的发展的限制和对资源环境的影响也越来越明显[1]。 虽然各种类新能源中以太阳能的储量最为丰富[2],但是利用太阳能直接进行光伏发电目前仍有一些不能解决的技术问题。所以风力对于我们来说是一个比较理想的替代能源。双馈变速恒频风力发电机目前作为风力发电系统中使用的主要机型,其中永磁直驱式变桨距和双馈异步式的变速恒频风电机组已经成为兆瓦级风电机组的主要技术形式[3]。对上述风力机组的入网运转调控措施的研究是风能发电系统能够广泛应用的基础。双馈风力发电机多采用双PWM变换器为转子提供励磁电流[4]。转子侧变换器控制策略主要有两大类,一类是基于矢量控制的间接功率控制[5-6],另一类是直接功率控制[7-8]。我们国家从“十五”时期已经对双馈异步发电机风电机组理想电网条件下的运转控制进行了比较为深入剖析[9]。实际工程中电网展示出不稳定特点,电压剧降则是一种非常遇见情况,研究这种故障下DFIG的行为、特性,提高风电机组对这种故障的适应能力,已成为目前国内外研究的热点。 1 双馈变速风电机组 1.1 双反馈变速风电机的整体设计 风力发电的种类非常多,按照其结构,控制原理,运行方式可以有不同的分类。根据转速性质进行划分,则可以分为恒速机组和变速机组两类。变速的风电机组又可以分为连续变速的风电机组和不连续的风电机组两种类型。根据发电机类型可以分为以同步发电机(包括以电激磁的同步机和以永磁体激磁的同步机)和以感应发电机(包括普通感应机,双馈感应机)。

风电基础施工方案

目录 第一章前言 (2) 第二章施工优势 (2) 第三章工程概况及特点 (3) 第四章主要工程量 (5) 第五章工程难点特点分析及采取的措施 (6) 第六章施工部署 (7) 第七章施工总平面布置及管理措施 (13) 第八章主要施工方案及措施 (20) 第九章工程进度计划及管理 (33) 第十章质量管理及技术管理 (38) 第十一章职业安全健康保证体系 (45) 第十二章环境保护及文明施工 (51) 第十三章特殊条件下的施工措施 (54) 第十四章计划、统计和信息管理 (55)

第一章前言 编制说明 本工程施工组织设计是按《国华乾安一、二期项目风机及箱变基础建筑、安装工程招标文件》、国家现行技术法规及施工规范、规程、标准编制的。依据的主要技术标准与规范见下:风电机组地基基础设计规定(2007)FD003-2007 建筑结构荷载规范(2006年版)GB 50009-2001 混凝土结构设计规范GB 50010-2002 建筑地基基础设计规范GB 50007-2002 建筑抗震设计规范(2008年版)GB 50011-2001 地下工程防水技术规范GB50108—2001 建筑结构制图标准GB/T 50105-2001 房屋建筑制图统一标准GB/T 50001-2001 建筑结构可靠度设计统一标准 GB 50068-2001 《电力建设施工质量及评定规程》(第1部分:土建工程) 建筑工程施工质量验收统一标准GB50300-2001 混凝土结构工程施工质量验收规范GB50204-2002 其它有关的现行规程、规范 第二章施工优势 一、真诚的感谢业主对我公司的信任,能够给予我公司参与本工程投标机会!我们深知本工程的特殊性与重要性,我公司从上到下表现出了高度的重视程度,我们将会十分珍 惜此次机遇。 二、接到招标文件和设计图纸后,我公司多次组织工程技术管理人员对招标文件和图纸进行了仔细认真的研究,并组织了各个专题会对该项工程的特点、重点、难点进行反复的研究和方案论证比较,并认真的准备了该工程投标预备会的答疑文件,其目的是使施工组织设计科学、合理、详尽,具有很强的可操作性和针对性。 三、我公司通过认真研究招标文件和图纸后对本工程的“桩基础施工方案”、“混凝土

解析风电塔筒法兰外翻变形的控制工艺

解析风电塔筒法兰外翻变形的控制工艺 摘要:随着能源问题与环境问题的日益突出,风能资源作为一种清洁环保可再 生能源,其重要性越来越高。当前,风力发电产业获得快速发展,风电发电机组 单台设计容量增加,其对塔架的高度要求越来越高。管塔式塔架因其结构紧凑, 安全可靠,便于维护等优势,在风电发电塔架设计中应用较为广泛。 关键词:风电塔;法兰外翻变形;控制工艺 在风力发电装备中,风力发电塔架具有十分重要的,不可缺少的作用。它在 整个发电过程中起着连接风机各个关键装置的作用,要担负起叶片转动过程中产 生的各种压力,冲击,以及电机的震动还要调整受力过程中的摇摆。发电塔架经 过3、4段直筒或锥筒联合在一起构成的。因为每一节塔架是将滚制筒与法兰通 过焊接的方式连在一起的,所以。最重要的是在焊接之后要调控好平面度。要是 在制作过程中操作不当,将不利于风力发电机的正常运作,造成机械破损.降低 机械设备的工作效率,缩短机械设备的寿命。 1 传统工艺及存在问题 1.1传统工艺 为了使法兰与筒体焊接后的内倾量满足设计要求,传统工艺是将 2个合格的 法兰通过刚性固定法连接,找正法兰与筒体的位置后,再焊接成为一个整体。传 统工艺实现的方法通常有 2 种:第 1种方法是将两法兰用螺栓连接在一起,在2 个法兰之间、螺栓内侧均匀垫上 2mm 厚的垫片,拧紧螺母并找正法兰和筒体的 位置后,实施法兰与筒体的焊接,然后将螺栓拆除。第 2 种方法是先在两法兰内 壁均匀焊接 8 ~ 10 块连接钢板,将两法兰固定在一起,然后找正法兰与筒体的位置后,再进行焊接,最后将连接钢板去除。 1.2存在问题 不管采用以上哪种方法,由于焊接应力的作用,当将螺栓或连接钢板去除后,均会出现一个共性问题,那就是法兰出现外翻变形,不能满足相关的设计要求。 由于受法兰外翻变形的影响,采用第 1 种方法焊接后,拆卸螺栓非常困难。采用 第 2 种方法焊接后,必须割下连接钢板,打磨和抛光焊点,同时还必须进行探伤 检测等,这样使得工艺繁琐,生产效率较低。 2风电塔筒法兰焊接工艺 在风电塔筒焊接作业中,为保证筒体与法兰焊接作业能够满足角变形要求, 并且加快筒体组装速度,决定采取将单个法兰与筒体对接点焊之后进行焊接组成 一体的方式。 先在专用法兰平台上进行组装,组装后上单节法兰在焊接滚轮架上进行法兰 焊接。采取埋弧自动焊进行焊接,直流反接,焊丝牌号:H10Mn2,焊丝直径规 格为Φ4,应用HJ350作为焊剂,应用MZ1250自动弧焊机进行焊接。先进行外侧封焊,对外侧点对时间隙比较大的位置进行封焊,再进行内侧焊缝焊接,内侧焊 接一道后,外侧应用碳弧气刨清根,在完成清根后,应用角向磨光机与砂轮进行 坡口打磨,并将坡口两侧20mm宽范围内打磨,通过坡口打磨消除碳化物与氧化物,避免在焊接作业中出现裂纹或夹渣等缺陷问题,进行外侧焊接后再焊完内侧 焊缝。 3 风电塔筒法兰焊接变形控制的工艺措施

齿式联轴器安装规程

齿式联轴器安装规程 齿轮联轴器的装配,在机械设备检修中属于比较常见的检修工艺。在齿式联轴器装配中关键要掌握轮毂在轴上的装配、联轴器所联接两轴的对中、零部件的检查及按图纸要求装配联轴器等环节。齿式联轴器是由齿数相同的内齿圈和带外齿的凸缘半联轴器等零件组成。外齿分为直齿和鼓形齿两种齿形,所谓鼓形齿即为将外齿制成球面,球面中心在齿轮轴线上,齿侧间隙较一般齿轮大,鼓形齿联轴器可允许较大的角位移(相对于直齿联轴器),可改善齿的接触条件,提高传递转矩的能力,延长使用寿命。 齿式联轴器在工作时,两轴产生相对位移,内外齿的齿面周期性作轴向相对滑动,必然形成齿面磨损和功率损耗,因此齿式联轴器需在良好润滑和密封的状态下工作。齿式联轴器径向尺寸小,承载能力大,长用于低速重载工况条件的轴系传动,高精度并经动平衡的齿式联轴器可用于高速传动。 1:联轴器的安装 齿式联轴器装配方法有静力压入法、动力压入法、温差装配法及液压装配法等。装配前一定要按照图纸仔细测量轴和齿套的实际数据看看是否符合要求,对于不符合要求的一定不能装配! (1)静力压入法 这种方法是根据轮毂项轴上装配时所需压入力的大小不同、采用夹

钳、千斤顶、手动或机动的压力机进行,静力压入法一般用于锥形轴孔。由于静力压入法收到压力机械的限制,在过盈较大时,施加很大的力比较困难。同时,在压入过程中会切去轮毂与轴之间配合面上不平的微小的凸峰,使配合面受到损坏。因此,这种方法一般应用不多。压入装配法多用于轻型和中型静配合,而且需要压力机等机械设备,故一般仅在制造厂采用 (2)动力压入法 这种方法是指采用冲击工具或机械来完成轮毂向轴上的装配过程,一般用于轮毂与轴之间的配合使过渡配合或过盈不大的场合。装配现场通常用手锤敲打的方法,方法是在轮毂的端面上垫放木块、铅块或其他软材料作缓冲件,依靠手锤的冲击力,把轮毂敲入。这种方法对用铸铁、淬过火的钢、铸造合金等脆性材料制造的轮毂,有局部损伤的危险,不宜采用。这种方法同样会损伤配合表面,故经常用于低速和小型联轴器的装配。 (3)温差装配法 用加热的方法是轮毂受热膨胀或用冷却的方法使轴端受冷收缩,从而使轮毂轴孔的内径略大于轴端直径,亦即达到所谓的"容易装配值",不需要施加很大的力,就能方便地把轮毂套装到轴上。这种方法比静力压入法、动力压入法有较多的优点,对于用脆性材料制造的轮毂,采用温差装配法是十分合适的。 温差装配法大多采用加热的方法,冷却的方法用的比较少。加热的方法有多种,有的将轮毂放入高闪点的油中进行油浴加热或焊枪烘烤,

最新基于MATLAB的风力发电机组的建模与仿真

基于MATLAB 的风力发电机组的建模与仿真 学号:xxxxxxx 姓名:xxx 分数: (xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx) 摘要:本文在风力发电机组监测与控制实验的基础上,总结了风力发电机组的建模技术,并对整个系统建立了MATLAB 仿真模型。仿真结果证明,系统输出的功率波形与输入的风速有关,风能利用系数比较低,发电量不足且输出不稳定。 关键词:MATLAB ;风力发电系统;仿真研究 1 引言 对大型风力发电机机组进行仿真研究,不可避免的就要建立系统的仿真模型。但是,风力发电系统的结构复杂,模型的精细程度将直接决定仿真结果。一般来说,模型越精细,仿真结果越准确,但其控制难度就越高。本文对风速模型、风力机模型、传动模型和发电机模型建模,并研究各自控制方法及控制策略;如对风力发电基本系统,包括风速、风轮、传动系统、各种发电机的数学模型进行全面分析,探索风力发电系统各个部风最通用的模型、包括了可供电网分析的各系统的简单数学模型,对各个数学模型,应用 MATLAB 软件进行了仿真。 2 风力发电机组的建模与仿真 2.1 风速模型的建立 自然风是风力发电系统能量的来源,其在流动过程中,速度和方向是不断变化的,具有很强的随机性和突变性。本课题不考虑风向问题,仅从其变化特点出发,着重描述其随机性和间歇性,认为其时空模型由以下四种成分构成:基本风速b V 、阵风风速g V 、渐变风速 r V 和噪声风速n V 。即模拟风速的模型为: n r g b V V V V V +++= (1-1) (1)基本风速在风力机正常运行过程中一直存在,基本反映了风电场平均风速的变化。一般认为,基本风速可由风电场测风所得的韦尔分布参数近似确定,且其不随时间变化,因而取为常数 (2)阵风用来描述风速突然变化的特点,其在该段时间内具有余弦特性,其具体数学公式为:

TGL 型鼓形齿式联轴器(尼龙套)

TGL 型鼓形齿式联轴器■结构特点:●具有较高的缓冲减振性能,并有较大幅度的轴向、角向、径向位移偏差的补偿能力。●由于工程塑料与金属件的配合,具有良好的自润滑性能,是十分理想的近似万向弹性联轴器。●外壳模具成型简化了加工工艺,成本低。使用环境温度-20oC 80oC。●装配维修特别简单。广泛用于各种液压泵、润滑泵、气动泵、压缩机,纺织机等机械上。●本联轴器外壳可制成钢件(B型或C型),以传递更大的扭矩。 A 型(基本型) B型(内挡圈型) C型(外挡圈型)注意:1、设计选型时,要作扭矩的计算,并考虑转矩变化,起动频繁,环境条件、合理的选择工况系数。2、灰尘较大的场地,用C型结构较好。3、装配时勿将杂物留在腔内。4、装配好后,内齿圈应能用手自由滑动。5、小规格可采用螺钉拧紧。■标记方法:选用B型TGL6鼓形齿式联轴器主动端:J1型轴孔,A型键槽 d=22, L=38 从动端:J1型轴孔,A型键槽 d=32, L=60标记:联轴器 TGL6BJ122×38JB/T5514-91J132×60 如选用TGL6A型联轴器“A”可不标 注 TGL鼓形齿式联轴器基本性能参数和主要尺寸(JB/TB5514-91)型号主要尺寸轴孔直径轴孔长度公称扭矩许用转速转动惯量重量许用补偿 量 DBSdLN.mrpmKg.m2kg径向轴向角向 A、B型C型A、B型C型mmA、B型C型A、B型C型 mm(oC) TGL140-38-46、 71610100000.00003-0.20-0.3±1±1 8、920 10、1122 12、1427 TGL248-38-48、9201690000.00006-0.278-0.3±1±1 10、1122 12、1427 16、18、 1930 TGL356584252410、 112231.585000.000120.000150.4820.5330.4±1±1 12、1427 16、18、1930 20、22、2438 TGL466704656412、

风电塔筒通用制造工艺

风电塔筒通用制造工艺

————————————————————————————————作者:————————————————————————————————日期:

风电塔筒通用制造工艺湖北创联重工有限公司

目录 1.塔筒制造工艺流程图 2.制造工艺 3.塔架防腐 4.吊装 5.运输

一、塔架制造工艺流程图 (一)基础段工艺流程图 1.基础筒节:H原材料入厂检验→R材料复验→R数控切割下料(包括开孔)→尺寸检验→R加工坡口→卷圆→R校圆→100%UT检测。 2.基础下法兰:H原材料入厂检验→R材料复验→R数控切割下料→R法兰拼缝焊接→H拼缝100%UT检测→将拼缝打磨至与母材齐平→热校平(校平后不平度≤2mm)→H拼缝再次100%UT检测→加工钻孔→与筒节焊接→H角焊缝100%UT检测→校平(校平后不平度≤3mm)→角焊缝100%磁粉检测。 3.基础上法兰:外协成品法兰→H入厂检验及试件复验→与筒节组焊→100%UT 检测→H平面检测。 4.基础段组装:基础上法兰与筒节部件组焊→100UT%检测→H平面度检测→划好分度线组焊挂点→整体检验→喷砂→防腐处理→包装发运。 (二)塔架制造工艺流程图 1.筒节:H原材料入厂检验→R材料复验→钢板预处理→R数控切割下料→尺寸检验→R加工坡口→卷圆→R组焊纵缝→R校圆→100%UT检测。 2.顶法兰:成品法兰→H入厂检验及试件复验→与筒节组焊→100%UT检测→平面度检测→二次加工法兰上表面(平面度超标者)。 3.其余法兰:成品法兰→H入厂检验及试件复验→与筒节组焊→100%UT检测→平面度检测。 4.塔架组装:各筒节及法兰短节组对→R检验→R焊接→100%UT检测→R检验→H划出内件位置线→H检验→组焊内件→H防腐处理→内件装配→包装发运。 二、塔架制造工艺 (一)工艺要求: 1.焊接要求 (1)筒体纵缝、平板拼接及焊接试板,均应设置引、收弧板。焊件装配尽量避免强行组装及防止焊缝裂纹和减少内应力,焊件的装配质量经检验合格后方许进行焊接。 (2)塔架筒节纵缝及对接环缝应采用埋弧自动焊,应采取双面焊接,内壁坡口焊接完毕后,外壁清根露出焊缝坡口金属,清除杂质后再焊接,按相同要求制作

风力发电机组的建模与仿真

实验一:风力发电机组的建模与仿真 姓名:文福西学号:171440138 班级:0314405 一、实验目标: 1. 掌握风速模型建立实现方法; 2. 掌握风力机模型建立实现方法; 3. 掌握发电机模型建立实现方法; 二、实验内容: 在MATLAB 下的simulink 中,建立风力发电机组的仿真模型,并进行仿真研究,对仿真的结果进行分析。 三、实验原理: 本实验分四个模块分别是风速的设计,风力机模型的建立,传动系统模型的建立,发电机模型的建立。 1.风速的设计 本文不考虑风向问题,仅从其变化特点出发,着重描述其随机性和间歇性,认为其时空模型由以下四种成分构成:基本风速b V 、阵风风速g V 、渐变风速r V 和噪声风速n V 。即模拟风速的模型为: V=b V +g V +r V +n V 2.风力机模型的建立 风力机是将风能转化为机械能的重要器件。能量的转化将导致功率的下降,它随所采用的风力机和发电机的形式而异,因此,风力机的实际风能利用系数。 风力机实际得到的有用功率为: 而风轮获得的气动转矩为: 为方便定量计算,通过有关研究资料的查找,风能利用系数的值可以近似的表示: 3.传动模型的建立 传动系统的简化运动方程为: Jr 为风轮转动惯量,单位 kgm 2;n 为传动比;Jg 为发电机转动惯量,单位 kgm 2;

Tg 为发电机的反转矩,单位 Nm 。 4.发电机模型的建立 发电机的反扭矩方程为: 四.实验结果和分析: 1.基本风速 模型如下: 仿真的时候假设初始风速为10m/s ,那么它的仿真图为: 分析:基本风速是作用于叶轮上的一个平均风速,是不随时间的变化而变化,可以看见输出的风速也是10m/s 。 2.阵风风速 模型如下: 仿真图为: 分析:通过仿真图可以看出阵风最大风速在6m/s ,并且在3s 左右的时候开始起风,大约在9s 左右停止。 9 9.2 9.49.69.81010.2 10.410.610.8 11

风电塔筒内部结构2000KW塔筒顶法兰平面度加工方法探讨

风电塔筒内部结构2000KW塔筒顶法兰平面度加工方法探讨摘要:针对大唐三门峡清源风电场许继单机2000KW/8On风电塔筒顶法兰装焊后平面度要求较高、难于保证这一生产难题,作者分别采用二种不同的加工方法认真进行对比、分析,并设计出的专用定位工装。最终采用顶部法兰与相邻三节筒节装配焊接后,用专用定位工装,在数控落地铣镗床上焊后加工顶法兰端面,再将加工过的组件与塔架上段塔筒其余各段总装,较好地解决了这一制约生产的技术难题。 关键词:顶法兰;平面度;焊接变形 :TG113.26+3:A 1 问题的提出 1.1 前言 由于风电塔筒上段顶部法兰总装时与风机机舱推力轴承相连接,所以对其装焊形位公差控制要求相当严格。我公司承制的许继2000KW/80n风电塔筒顶部法兰总装后图纸要求法兰平面度不大于0.35mm表面光洁度为5级。远高于东汽风电塔筒对法兰焊后平面度0.6mm的要求。 1.2 保证顶部法兰要求平面度0.6m m以内的上段塔筒传统的加

工工艺 为保证风电塔架上段塔筒顶部法兰的焊后平面度,对于顶部法兰要求平面度0.6mm以内的上段塔筒,我们通常采用如下的加工工艺。我们在塔架上段塔筒上、下法兰整体辗制成型后机加工时预留适当的法兰内倾反变形量。塔架上段塔筒厂内装焊时,采用先将上、下法兰与与之相邻的筒节在平台上竖装,将焊缝间隙调整均匀,点焊定位加固成组件;再将上段其余筒节按排板图也装配成组件,定位加固;最后将二法兰组件与筒节组件总装。检验合格后,制定严密、科学的焊接方法、焊接规范及合理的焊接顺序,然后认真施焊,从而尽可能地减小焊接变形。如果采用我们传统的加工方法,将难以保证许继塔筒顶部法兰焊后平面度要求,生产将不能正常进行,进而影响产品的正常交货周期。 2 改进方法探讨 图1 上段组成示意图 顶部法兰机加工时在法兰端面予留5mm厚度余量作为焊后加工 余量。结合我公司设备现状,我们制订了二种加工方案: 2.1 方案一

定速风电机组的仿真报告

定速风电机组的仿真 组员:江天天赵正严亚俊 一、简介 基于普通感应发电机的定速风电机组,一般由风轮、轴系(包括低速轴LS、高速轴HS和齿轮箱组成)、感应发电机组等组成,如图1所示。发电机转子通过轴系与风电机组风轮连接,而发电机定子回路与电网用交流线路连接。这种类型的风电机组一旦起动,其风轮转速是不变的(取决于电网的系统频率),与风速无关。在电力系统正常运行的情况下,风轮转速随感应发电机的滑差变化。风电机组在额定功率运行状态下,发电机滑差的变化范围为1%~2%,因此正常运行时风轮转速仅在很小范围内变化。 图 1:基于普通感应发电机的定速风电机组 二、工作原理: 风电机组通过三叶片风轮将风能转换成机械能,风能输出的机械功率为: 注释::空气密度; :通过风力机叶片的风速; :叶尖速比; :叶片浆距角; :叶片旋转半径; :叶片旋转角速度;

:叶片扫风面积; :功率系数(与叶尖速比以及叶片浆距角有关)。 根据不同的、取值,可得到的曲线如图2所示,从图中可以看出,对应某一确定的浆距角,有一极大值存在,也就是说,当风力机运行时不能保证在所有的风速下都能够产生最大的功率输出。的理论最大值为0.593,这就是著名的Betz极限。 图2:关系曲线 图 3:风电机组功率特性 定速风电机组的风轮从风中获取机械能,然后通过齿轮轴系传递给感应发电机,感应发电机再把机械能转换成电能,输送到电网中。感应发电机向电网提供有功功率,同时从电网吸收无功功率用来励磁。因为这种类型的感应发电机无法控制无功功率,所以利用无功补偿器

来改善风电机组的功率因数,降低机组从电网中吸收的总的无功功率。现代定速风电机组的风轮转速为15~20r/min,发电机转子的同步转速与电网频率对应。 定速风电机组可以采用定浆距控制,也可以采用叶片角控制。其中,定浆距控制风电机组为被动失速控制,它将叶片以固定浆距角用螺栓固定在轮毂上,在给定风速下,风电机组风轮开始失速,失速条件始于叶片根部,并随着风速加大逐渐发展到全部叶片长度。这种失速控制方式成本低廉,但是低风速下风电机组发电效率较低。而叶片角控制定速风电机组为采用负浆距角的主动失速控制方式。主动失速设置为在风速低于额定风速时优化处理,在风速超过额定风速时限制出力为额定功率。这种主动失速控制方式能够提高风电机组的发电效率。 三、仿真模块: Three-Phase Source【三相电源模块】 Three-Phase Transformer(Two Windings)【三相双绕组变压器模块】 Three-Phase Fault【三相故障模块】 Three-Phase PI Section Line【三相π型等值电路模块】 Three-Phase V-I Measurement【三相电压电流测量元件模块---模拟母线】 Wind Turbine Induction Generator(Phasor Type)【风电机组模块】 Goto【跳转模块】 Constant【常数系数模块】 From Workspace【从工作空间中输入数据模块】 Bus Selector【总线选择器模块】 Abs【求取绝对值模块】 Scope【观测仪模块】 Powergui【电力图形用户分析界面模块】 四、模型仿真: 一台单机容量为 1.5MW的定速风电机组经过升压,通过长度为100km、电抗为的架空输电线路与外部系统相连。参考MATLAB中风电

风力发电机运行仿真

基于MATLAB的“风力发电机运行仿真” 软件设计 摘要 关键词 1前言 1.1建模仿真的发展现状 20世纪 50—60年代, 自动控制领域普遍采用计算机模拟方法研究控制系统动态过程和性能。“计算机模拟”实质上是数学模型在计算机上的解算运行, 当时的计算机是模拟计算机, 后来发展为数字计算机。1961年G.W.Morgenthler 首次对仿真一词作了技术性的解释,认为“仿真”是指在实际系统尚不存在的情况下,对于系统或活动本质的复现。目前,比较流行于工程技术界的技术定义是系统仿真是通过对系统模型的实验,研究一个存在的或设计中的系统。仿真的三要素之间的关系可用三个基本活动来描述。如图1 图1 系统仿真三要素之间的关系 20世纪50年代初连续系统仿真在模拟计算机上进行, 50年代中出现数字仿真技术, 从此计算机仿真技术沿着模拟仿真和数字仿真两个方面发展。60年代初出现了混和模拟计算机, 增加了模拟仿真的逻辑控制功能, 解决了偏微分方程、差分方程、随机过程的仿真问题。从60-70代发展了面向仿真问题的仿真语言。20世纪80年代末到90年代初, 以计算机技术、通讯技术、智能技术等为代表的信息技术的迅猛发展, 给计算机仿真技术在可视仿真基础上的进一步发展带来了契机, 出现了多媒体仿真技术。多媒体仿真技术充分利用了视觉和听觉媒体的处理和合成技术, 更强调头脑、视觉和听觉的体验, 仿真中人与计算机交互手段也更加丰富。80年代初正式提出了“虚拟现实”一词。虚拟现实是一种由计算机全部或部分生成的多维感觉环境, 给参与者产生视觉、听觉、触觉等各种感官信息, 使参与者有身临其境的感觉, 同时参与者从定性和定量综合集成的虚拟环境中可以获得对客观世界中客观事物的感性和理性的认识。图2体现

风电基础施工方案【最新版】

风电基础施工方案 一、项目基本情况 XX海上风电场300MW工程示范项目位于《河北省海上风电场工程规划》中的一号场址,地处XX市XX,东经118°45.1′-118°51.3′,北纬38°55.2′-39°3.9′之间。风电场不规则形状,南北长在5.7-11.2km之间,东西宽约7.8km,场址范围面积约为68.2km2。场址水深约7-28m,场址中心距离岸线约18km,西侧距离曹妃甸港区东侧锚地最近约4.8km,南侧距离京唐港至天津新港习惯航路中心线最近约 3.6km,东侧距离海上油气田约4.5km,场址距离曹妃甸港约20km,距离京唐港约26km,交通运输方便。 海上试验风场的试桩工作已于2016年5月4日开工,随着项目的推进海上升压站、陆上220kv送出线路、220kv海缆/35kv 海缆的敷设工程将依据工程建设进度陆续开工。预计于2017年实现首回路共计6台风机并网发电,2018年底前实现整体项目建成投产。 二、水文、地质条件

1、地质情况 本工程地质由上至下依次为: 海床面:-17.5m~-21.9m, 淤泥:海床面~-27m, 粉砂:-27m~-28.1m, 粘土:-28.1m~-30.8m, 粉砂:-30.8m~-35.5m, 粉质粘土:-35.5m~-38.0m,粉砂:-38.0m~-46.3m, 粉质粘土:-46.3m~-54.0m,粉土:-54.0m~-57.5m,

粉质粘土:-57.5m~-60.0m, 粉砂:-60.0m~-66.0m, 粉质粘土:-66.0m~-68.0m, 粉土:-68.0m~-74.0m, 粉砂:-74.0m~桩尖标高 2、潮位 工程场区设计水位值 单位:m 要素平均高潮位平均低潮位设计高潮位设计低潮位50年一遇高 潮位 50年一遇低

风电并网仿真

风电并网课程作业 用digsilent软件仿真分析 含风电场的单机无穷大系统 的潮流与动态过程 班级:研电1105 姓名:郭威(1112201057) 李彦宾(1112201063)

0 仿真系统参数如下 双馈电机参数: 变压器参数: 额定容量S N =1.5MVA 额定容量S N =63MVA 额定电压U N =0.69kV 额定电压U N =242kV/10.5kV 正常转速n =1490.565rpm 短路损耗404kW 级对数 p=2 空载损耗93kW 惯性时间常数(集中参数)T J =5s 短路电压14.45% 定子电阻R s =0.00598989pu 空载电流2.41% 转子电抗x s =0.125pu 直流电容参数: 同步速时 C =48137.6μF E =1.15kV 转子电阻R r =0.00619137pu 系统参数: 转子电抗x r =0.105368pu 无限大系统: f =50Hz 静止时 负荷参数: 转子电阻R r =0.02623123pu P=35MW ,cos Φ=0.9 输电线路:LGJ400,200km, r1=0.08 Ω/km,x1=0.04 Ω/km. 变压器参数计算:选择电力变压器型号为SSPL-63000/220,额定容量为63000kVA ,额定电压242±2?2.5%kV ,低压10.5kV ,短路损耗404kW ,空载损耗93kW ,短路电压14.45%,空载电流2.41%,经过计算: Ω=??==96.5631000242404100022 2N N K T S U P R Ω=??==33.1346310024245.14100%22 N N k T S U U X S U P G N T 6 22010588.12421000931000-?=?=?= S U S I B N N T 52201059.22421006341.2100%-?=??== 搭建的单机无穷大系统潮流图,该系统中无穷大系统由内阻为0、电压标么值为1的50Hz 交流电压源进行等值。发电机采用经典二阶模型。设Xd ’后暂态电势E ’恒定、机械功率Pm 恒定,D 为定常阻尼系数,忽略线路损耗及分布电容,则对于单机无穷大系统有如下运动方程: (1)1m e d M P P D dt d dt ω ωδω?=---??? ?=-??

风电塔筒涂装工艺设计doc

项目 风电塔筒(不包含基础环) 涂装工艺 Coating Process 公司 1 Rev.1 2 3 Revision Date/ R Signature. /Approved 设计 DESIGNED 校对 CHECKED 审核 EXAMINED 批准 APPROVAL

目录 概述 (3) 1.缩写和标准引用 (4) 1.1缩写 (4) 1.2引用标准 (4) 2.涂料配套方案 (6) 2.1 缩写 (6) 2.2 塔筒本体 (6) 2.3 塔筒顶法兰MF1面 (6) 2.4 其他法兰面 (7) 2.5法兰螺栓孔 (7) 2.6 法兰孔内侧端面的说明和涂装示意图 (7) 2.7 门板和门框涂装说明 (8) 2.8 砂箱板、油槽板、钟摆涂装说明 (8)

2.9 法兰内端面 (9) 2.10 筒体内不锈钢和镀锌件 (9) 2.11 门铰链部位 (9) 2.12干膜厚度标准 (9) 2.13光泽度要求 (10) 2.14涂装注意事项 (10) 3.涂装前的表面处理 (11) 4.油漆施工 (13) 4.1组装后筒体的表面处理 (13) 4.2 油漆涂装 (13) 5.法兰底漆保护用工装 (25) 6.现场修补 (26) 7.综述 (28)

8.安全施工措施 (30) 概述 本文是根据有限公司的实际生产工艺流程,制订的风塔内表面和外表面油漆涂装的要求和施工指导。本指导仅适用于牌油漆的施工。

1.缩写和标准引用 1.1缩写 DFT 干膜厚度 WFT 湿膜厚度 SSPC 钢结构涂装委员会 ISO 国际标准化组织 NACE 国家腐蚀工程师协会 1.2引用标准 ISO 12944 钢结构保护涂层 NACE NO5 高压淡水冲洗的清洁标准 ISO 8501-1:1988 涂装钢材表面锈蚀等级和除锈等级 ISO 8502-3 表面清洁度测试评估-准备涂漆的钢材表面灰尘评 估-压敏胶带法 ISO 8503-2:1995 表面粗糙度比较样板抛(喷)丸、喷砂加工表面GB6484 铸钢丸 GB6485 铸钢砂 GB/T13312 钢铁件涂装前除油程度检验方法(验油试纸法)JB/Z350 高压无气喷涂典型工艺

风电塔筒制作工艺

塔筒制作工艺 1、塔筒制作需注意问题: 1)、塔筒制作整个工序必须按照工艺传递卡严格执行,并实行“三检”制度,每个工序又准人负责。 2)、下料后必须对钢板实行钢字码标识,具体内容包括材质零件号,字高7~10mm,要求清晰、无误,并进行材料跟踪。 3)、坡口必须按照下料图纸要求进行备置,小于16mm,不予开坡口,大于16mm。按照下料图开坡口,要求内部表面光滑平整呈金属光泽。 4)、卷板前必须清理钢板上杂物,铁屑,氧化咋,卷板过程中必须用严格控制弧度与样板间隙和椭圆度,样板长度不小于1200mm, 5)、单节组对,焊接矫正,卷板的同时进行单节筒体的纵缝组对,当管节卷制弧度大刀要求时,检查管节扭曲,周长等,然后进行管节的纵焊缝的点焊加固,组对筒体时,控制筒体对接间隙0-1mm,错口量为1/4t,且不大于1.5mm。焊完后管节再次吊进卷板机进行回圆,筒体回圆后菱角度检查时用内弧样板检查,圆度检查样板弦长为1200mm,样板与筒体之间间隙不超过3mm,管节成型后要求其内表面无压痕,拉伤现象,尺寸精度φ±6mm。椭圆度小于0.3%。 6)、法兰与管节组对:首先确定法兰的配对性,并仔细检查筒节与法兰的椭圆度,筒节的椭圆度不大于3mm,否则必须进行校圆并达到要求后才能组装。 A、筒节与法兰组对前仔细检查椭圆度,要求椭圆度不大于3mm,否则必须进行调整大刀要求后组装。 B\、同一台套上的连接法兰必须是出厂时的成对法兰。 C\、反向平衡法兰的纵缝与筒体的纵缝相错180度。 D、组对前塔体及法兰坡口内极其两侧各50mm用磨光机打磨除锈,油等杂质。 E、组装后要求坡口间隙小于2mm,错边小于2mm。 7)、筒节组装:筒节组装前必须仔细检查筒节的椭圆度不大于6mm。 A、筒节之间组装前仔细检查筒节椭圆度,不大于6MM。否则必须进行校圆并达到要求后组装,组装后坡口间隙要求小于2MM,错边小于3MM. B、相邻筒节纵焊缝相错180度。 C\、管节对接错边及翘边小于2MM。 D、法兰的组装要求符合法兰与单节管节组装的要求 E、同轴度要求小于3MM。 F、上下管口平行度小于4MM。 G、单段塔筒直线度10MM。 组拼方法:将校圆合格的单节分别放置在组对机及焊接滚轮架上,采用组对机与焊接滚轮架配合进行组对。组对时先将管节中心线调平,使管节中心线在同一水平线上,然后用线坠调整两端法兰0度,90度,180度,270度。方位线,使两头法兰方位线对齐,调整合格后房可对大口,相邻筒节纵向焊缝要求错开180度,然后进行定位汗。 8)、门框组装“塔筒门框与相邻筒节纵缝环峰应相互错开,筒节环峰应尽量位于门框中部,纵缝与门框中心线相错度不小于90度。 9)、附件组装:严格按照图纸执行,与筒体配合处的间隙小于1MM后才能施焊。 10)、所有焊工必须出具焊工合格证并在有效期内。 11)、在塔筒、法兰及门框边缘50MM处,打上焊工钢印,防腐后也能看见。 12)、所有纵缝必须带引熄护板,长度不小于120MM,并且去引弧板才用气泡后打磨。

750kw风力发电机叶片建模与仿真分析解析

毕业论文题目:750KW风力机叶片建模与模态仿真分析 学院: 专业:机械设计制造及其自动化 班级:学号: 学生姓名: 导师姓名: 完成日期: 2014年6月20日

诚信声明 本人声明: 1、本人所呈交的毕业设计(论文)是在老师指导下进行的研究工作及取得的研究成果; 2、据查证,除了文中特别加以标注和致谢的地方外,毕业设计(论文)中不包含其他人已经公开发表过的研究成果,也不包含为获得其他教育机构的学位而使用过的材料; 3、我承诺,本人提交的毕业设计(论文)中的所有内容均真实、可信。 作者签名:日期:年月日

毕业设计(论文)任务书 题目: 750KW风力机叶片建模与模态仿真分析 姓名学院专业班级学号 指导老师职称教研室主任 一、基本任务及要求: 1、查阅20篇左右文献资料,撰写开题报告和文献综述。 2、确定叶片主要翼形构成、外形参数及载荷。 3、应用三维建模软件建立叶片三维实体模型。 4、应用仿真软件对复合材料叶片进行模态仿真分析。 5、改变叶片转速,讨论复合材料叶片动力刚化效应对振动的影响。 6、按照要求撰写毕业论文和打印图纸。 二、进度安排及完成时间: 2014.2.20-3.5:课题调研(含毕业实习及撰写毕业实习报告)、查阅文献资料。2014.3.6-3.28:撰写文献综述和开题报告。 2014.3.29-4.8:确定叶片主要翼形构成、外形参数及载荷。 2014.4.9-4.19:应用三维建模软件建立叶片三维实体模型。 2014.4.20-4.27:应用仿真软件对复合材料叶片进行模态仿真分析。 2014.4.28-5.5:改变叶片转速,讨论复合材料叶片动力刚化效应对振动的影响。2014.5.6-5.26:撰写毕业论文、完成设计。 2014.5.27-6.10:整理毕业设计资料,毕业答辩。

风电塔筒制造工艺

风电塔筒制造工艺 一,编制依据: 《钢结构工程施工貭量验收规范》GB50205-2001 《钢制压力容器制作标准》GB150-91 《建筑钢结构焊接规程》JGJ81-2002 《形状和位置公差及末注公差》GB/T1184-1996 《钢制压力容器无损检测》JB4730-94 DIN/EN和AWS标准 本工艺适用于风电场风力发电塔架制造。 二,风电塔筒制造工艺流程 塔筒制造中关键技术有三点: 1)塔筒总长度一般在55M-76M,直径在4.2M-2.3M,制造中同轴度不得大于15 mm,整体塔筒共分四段23节,组对过程中必须保证单节筒体端面平行度≤3 mm。 2)由于同轴度要求严格,各段塔筒连接是采用内法兰连接,法兰的焊接变形不得大于3 mm。 3)焊接貭量的控制,要滿足产品貭量要求。

注:法兰外购。 三,塔筒下料工艺: 1,技术交底 1)审图人员必须从设计总配置图开始,逐亇图号、逐亇部位核对, 找清相应安装或装配关糸,再核对外形几何尺寸、各部件之间尺寸能否相亙衔接。之后,再逐亇核对各接点、孔距、孔位、孔径等相关尺寸。 2)认真核对施工图零件数量、单重和总重, 3)审图时应将主要构件计萛出用科幅面,按每节塔筒展开料直接与 供应商订货。

4)审图时发现的问题要及时向设计部门请示,经设计部门修改,不 得擅自修改。 5)施工图低必须经专业人員认真审核后,下达生产车间,专业技术 人員汇同车间技术员对生产者进行技术交底。 2,放样设施及条 1)放样前,放样人員必须熟悉施工图和工艺要求,核对构件与构件相应连接的几何尺寸及连接有否不当之处。 2)放样使用的钢下、弯展、盘尺,必须经计量单位检验合格,丈量尺寸时应分段叠加,不得分段测量后加累计全长。 3)放样应在平整的放样台上进行。凡放大样的构仲,应以1:1的比例放出实样:当构件较大时可绘制下料图。 3,大样检查与施工图未尽尺寸的获取 1)施工图没有注明和无法注明的尺寸与角度,应在放样时取得。 2)大样完成后应由有矣技术人员和貭检人员认真检查。 4,号料 1)下料规格的合理排列,也就是说,在需要切割的每一张钢板上如何合理安排所用规格,使之不剩料边、料头,尽量提高材料的利用率。下料工将同材貭、同厚度的用料,按宽度、长度、数量汇总,作出排板图,套裁切割后再用油漆写明图号。 5.切割 1)割口量与组对间隙的计萛 塔筒实际下料尺寸=名义尺寸﹢割口量﹢公差尺寸﹢焊接收

风力发电与并网技术仿真分析

风力发电与并网技术仿真分析 发表时间:2017-11-15T18:35:50.290Z 来源:《电力设备》2017年第20期作者:石凯1 张帆2 陈默3 [导读] 摘要:作为可再生能源的风电近些年发展迅速,在风电大规模并网的同时也带了许多问题,如对电网稳态运行时的无功功率、有功功率、系统电压的控制和动态稳定性产生不利的影响。 (1北京送变电公司北京市良乡昊天大街 1002401;2 国网冀北电力有限公司经济技术研究院北京市西城区 100045; 3 国家电网公司交流建设分公司北京市西城区 100043) 摘要:作为可再生能源的风电近些年发展迅速,在风电大规模并网的同时也带了许多问题,如对电网稳态运行时的无功功率、有功功率、系统电压的控制和动态稳定性产生不利的影响。文章分析了风力发电系统的基本构造,介绍了风电并网技术中的动态无功补偿及电压调节、低电压穿越技术。采用Matlab/simulink软件对风力机接入系统后的运行情况进行仿真,可知风机接入电网会对电网电能质量造成影响。 关键词:风电;电力系统;低电压穿越;仿真 ABSTRACT:In recent years, wind power as renewable energy development rapid, wind power bring a lot of problems in large-scale grid-connected, such as take adversely affected to reactive power, the active power, system voltage control and dynamic stability in grid steady-state operation. This paper analyzes the basic structure of the wind power generation system, introduced dynamic reactive power compensation and voltage regulation, low voltage ride through technology in wind power grid-connected technology. Using Matlab/simulink software simulate the operation of the wind turbine access system, shows that wind turbine access grid would be take adversely affect to grid power quality. KEYWORD: wind power; power system; LVRT; Simulation 引言 我国风资源分布广泛,可利用量巨大。近年来,风能利用越来越多,风电装机容量不断增加,截至目前,我国风电装机容量已位居世界第一。 但由于风电具有间歇性、随机性、波动性的特点,所以,随着风电规模的不断扩大,风电装机的快速增加,电网安全稳定运行压力越来越大。一方面风力机弃风现象严重,另一方面风电场脱网事故频发,对电网安全运行构成威胁,突出表现为风电并网消纳问题,风电机组运行可靠性问题以及电力电子变流技术。所以,风电机组要具备低电压穿越、有功调节和无功补偿能力,满足电力系统安全运行的需要[1][2]。 风力发电系统是将风能转换为电能的机械、电气及控制设备的组合。典型的风力发电系统主要由叶轮、传动系统、变速器、发电机、调向机构及控制系统和储能装置等几大部分组成[3][4]。 2 仿真实验 仿真内容包括以下两个部分: (1)30MW,10kV同步发电机通过升压变压器进行并网,变压器的出线母线侧接有30MW,功率因数为0.9的负荷。并网经过200km 的LGJ400型双回架空线接到无穷大系统。并网中出现三相故障,持续时间为0.1s。并对负荷进行切除仿真。 (2)接入风力发电机,风力机的功率为15MW,通过升压变压器后,经过100km的LGJ400型架空线与母线连接。对三相故障和切除负荷进行仿真。 2.1 实验原理图 采用Matlab软件中的simulink进行上述仿真实验,观测内容包括同步电机并网后的节点电压和电流,以及支路功率和同步发电机的功角。对风力机接入系统后的运行情况进行了仿真。实验中对软件库中包含的同步电机和风力发电机的仿真实例进行了认真分析和比较,并选出了合理的模型进行搭建,原理图如图1所示。

相关主题
文本预览
相关文档 最新文档