当前位置:文档之家› 无壳风机导流装置的模拟与实验研究

无壳风机导流装置的模拟与实验研究

无壳风机导流装置的模拟与实验研究
无壳风机导流装置的模拟与实验研究

浅谈无蜗壳风机研发中存在的问题

龙源期刊网 https://www.doczj.com/doc/6718311366.html, 浅谈无蜗壳风机研发中存在的问题 作者:李友娥 来源:《科技风》2016年第07期 摘要:目前来看,对于无蜗壳风机的使用越来越多,并且对于无蜗壳风机的研究也越来 越深入。但是在对无蜗壳风机进行研究的过程中也发现了相关的问题,主要是:市场上的两种无蜗壳风机之间辨别很难;采取进气实验的方法所得到的出口总压强以及效率的数值偏大;采用旋转无叶的扩压器可以提高机器的性能,但是在使用过程中缺乏定量的数据进行详细的说明。本文主要是通过相关的实验以及调查对上述的问题提出一些看法以及意见。 关键词:无蜗壳风机;研发;问题 现阶段,对于无蜗壳风机的研究时间还很短暂,并且在国内外,对于该项机器的研究都很缺乏,并且在现在的市场上,有关的无蜗壳风机的机器性能还不够完善,因此还有很多地方需要进行进一步的改进与完善。本文主要就国内现今关于无蜗壳风机的发展现状进行研究,对于研究过程中出现的种种问题予以透彻的分析,并且给出了解决这些问题的对应措施,以此为今后的无蜗壳风机的应用提供借鉴,从而使我国的无蜗壳风机研究朝着更深远的方向发展。 一、国内关于无蜗壳风机的研究现状 一般来说,无蜗壳风机在空调以及制冷系统中的使用比较广泛,但这里的其实是离心风机的结构,没有蜗壳。[ 1 ]目前市场上主要有两种类别不同的无蜗壳风机:一种是叶轮出口气流并且在其中没有其他的遮挡,直接流入到大气之中;另一种是将无蜗壳风机放入到一个有进出口的箱体之中,和箱体一体作为一个风机的产品。可以看出来,后者的机器性能是和箱体的质量有关,并且它在和箱体实现统一之后,它的性能与原来相比较差别很大。 另外,对于无蜗壳机器的测试以及评估的问题还不够完善。这是因为它的设计中除去了蜗壳的设计,因此在对其进行性能测试时大多采用的是进气实验,并且按照规定风机的出口气压为大气压的数值,出口的计算速度就取叶轮进行旋转时的平均速度。这种规定的前提是出口的流动速度均匀,并且一般的离心风机从蜗壳出流时是基本符合的。但在无蜗壳风机之中,由于叶片的两侧是压力边以及吸力边,因此这两侧流动的压强以及速度都不相同,并且在吸力边的出口还出现分离,在出口后可能还会引起卷吸的现象,因此,它的出口流动速度是不够均匀的。并且在无蜗壳风机的进口处以及出口处之间需要一个挡板将其进行分开,一般来说,这个挡板的位置是比较靠近叶轮的出口处的,这种设置也势必会使出口流动的不均匀性加强。[ 2 ] 并且,无蜗壳风机还有一个显著问题,即关于无叶扩压器的问题。由于无蜗壳风机缺少蜗壳,因此它的叶轮出口的速度不能被有效的利用,主要是作为损失被处理的,因此,风机的效率以及压强都很低。但是如果将叶轮的出口的前后盘进行延长设置,以此来形成一个不断旋转的无叶扩压器,在这个扩压器的范围之中,流动的面积不断增大并且流动的速度下降、压强提

无蜗壳风机的特性研究及应用

无蜗壳风机的特性研究及应用 摘要:无蜗壳风机自从出现后,已经在国内外具有多年的发展和使用历史,其 不仅在纺织业、烘箱干燥机内得到使用,在空调行业的应用也比较普遍,常见的 有空气过滤机组、四面出风卡式风机盘机组等。该种风机的优点就是能够让机组 整体结构得到改善,机组个向出风都比较均匀,而且,风机段体积能够缩小,在 箱体内进行配置时,只要考虑到风口的方向,因此,只要根据空调机组的需求在 风机段上任意开设相应的风口,就能够实现快速应用。本文就针对无蜗壳风机的 特性进行研究,并针对其应用措施展开探讨。 关键词:无蜗壳风机;特征;应用措施 最近几年,无蜗壳风机凭借自身出口方向任意、体积小、风量调节范围大、 静压效率高等优势在很多领域都得到普遍的应用。而大量知识密集型产业的发展,例如生物制药、微生物、机密机械加工、航天、新型材料等产业的发展给精密空调、商用空调和净化空调的发展都提供了较为广阔的市场空间。而且,恒温恒湿 场地的要求让无蜗壳风机的使用得到快速发展[1]。为了能够更好地对无我风机选 型进行分析,本文就针对这种风机常见的结构和形式进行探讨,并针对其应用方 法和特点进行研究,以期为今后相关机型的设计和使用提供相应的指导和参考。 一、无蜗壳风机 无蜗壳风机作为一种没有蜗壳、只有风叶的风机,从其构造中不难发现,在 实际设计期间,风机蜗壳一般会被设计成螺旋线的形状,从风机蜗壳蜗舌到出口,蜗壳的截面积呈现出逐渐增大的趋势,其主要作用就是从离心叶轮中流出的高速 气流动压转变成能够对阻力进行克服的静压[2]。经过特殊设计的无蜗壳风机叶轮 和箱体之间是组合,具体如图2所示,从叶轮流出的气体不难发现其和设备箱体 直接形成静压箱,减少气体流动期间的流动损失现象,但是,风机动压会损失掉,因此,在无蜗壳风机样本中对其实施的一般都是静压。 图2 无蜗壳风机和有蜗壳风机对比图 三、无蜗壳风机实际应用探讨 有的领域将是否使用无蜗壳风机当成对空调机机组优劣进行衡量的主要标志,从实际状况来分析无蜗壳风机适用于一定的场合,但是,并非所有的有蜗壳风机 都要改成无蜗壳风机,对于空调机组优劣程度产生决定性的因素较多,包括机组 的噪声、效率、余压、维护方便、密封性的显著特征[4]。 从空调机组风段设计的角度来分析,选择有蜗壳风机的制约因素要低于无蜗 壳风机,根据实际研究发现选择有蜗壳风机的主要制约因素包括进风口和箱体避 免的距离,当其超过叶轮的2/3时,箱体压力损失将近50pa,当使用无蜗壳风机时,根据箱体的结构、尺寸、开设风口面积的大小都会对性能产生直接影响,影 响力度则需要根据实验来进行确定[5-6]。从机组外形的尺寸来分析,选择无蜗壳 风机之后就能够减少空气处理机组风机段的实际长度、宽度尺寸和高度,但是, 一般不会由此改变机组的整体宽度和高度。但是,如果对我国现阶段所使用的风 机设计方法进行改进和完善,则选择同样规格的后倾有蜗壳风机的风机段箱体, 长度尺寸也会逐渐缩短。 结语

风机基础知识

风机基础知识 一. 风机的分类: 1. 按工作原理:透平式----离心式 轴流式 混流式 贯流式 容积式----回转式----罗茨式 叶式 螺杆式 滑片式 往复式----活塞式 柱塞式 隔膜式 2. 按工作压力:通风机:P ≤0.015MPa(15000Pa) 鼓风机:0.015MPa(15000Pa <P ≤0.35MPa(350000Pa) 压缩机:P >0.35MPa(350000Pa) 3. 按用途:很多。 4-2X79 AF 烧结风机 AF 烧结风机 GY4-73 GY6-40引风机 SJ 烧结风机 Y5-48锅炉引风机 地铁风机 电站轴流风机 电站一次风机 对旋轴流风机 多级离心鼓风机 浮选洗煤风机

高炉风机 高温风机 高压离心风机 矿用风机 矿用局扇 煤气鼓风机 射流风机 手提轴流风机 水泥窑尾风机 隧道风机 污水处理风机 屋顶风机 屋顶风机 无蜗壳风机 箱体风机 箱体风机 消防风机 诱导风机 圆形管道风机 矩形管道风机 二. 风机的结构: 风机的主要零部件: 离心风机:叶轮,进风口,机壳,电机,底座,传动组, 轴流风机:叶轮,进口导叶,出口导叶,导流锥,风筒,集流器,电机,支架,传动组,

混流风机:离心式混流,轴流式混流 前向叶轮后向叶轮径向叶轮前向多翼叶轮 轴流风机叶轮混流风机叶轮 三.风机常用术语: 风机标准进口状态:一个大气压,20℃,湿度50%,空气的密度为1.2kg/m3 风机进口状态:大气压力,温度,湿度, 介质的种类,性质。风机常用的介质是空气。注意介质的附着性,磨损性,腐蚀性。 流量Q(风量):指风机进口工况的流量,m3/s或m3/h. 全压P(总压):指风机进口至出口的总压升。Pa。 静压Ps:指风机进口至出口的静压升。Pa.。 动压Pd:风机出口处的平均速度相对应的压力。Pa.。 风机转速n:指叶轮的转速。rpm或r/min。 风机消耗的功率:指风机克服一定的压力输送一定量的气体所需要的功率。kw。对应的是电机的输出功率×传动效率。 风机轴功率N轴(kw)=P(Pa)×Q(m3/h)/3600/(η风机×η传动)/1000×100%;η传动=0.95-0.98。 风机所需功率N(kw)=k×N轴(kw) k------ 四. 型式检验: 1.出厂检验:同下 2.通风机的空气动力性能试验:

AHU空气处理机组选型手册

目录1.如何确定机组型号 2.AHU定义及常用场合功能排布 3.各种功能段使用介绍

第一部分 如何确定机组型号 1.箱体(客户有要求的除外)

2.机组高度2300mm及以下,整机运输;机组高度23mm以上,散件运输。 当机组总高模数大于等于25或宽度模数大于25时,底座槽钢采用100mm,其余均为80mm。 3.表冷器选型 表冷选型出水温度偏差±℃范围内 水阻在110KPa以内(水阻太大时可将盘管前后分级,或左右分) 迎面风速>s时,要加挡水板(在湿度较大的地区,如广州、深圳等地,建议冷盘管迎面风速高于s时,即加装挡水板) 选盘管时冷量需乘以的安全系数 4.风机选型 机组全压>1200Pa时,选用后倾风机 风机出风口风速:直接出风风机,风口风速≤13m/s 不直接出风风机,风口风速≤15m/s 电机极数的选择:风机转速<600r/min,选用6极电机 风机转速600--3000r/min,选用4极电机 风机转速>3000r/min,选用2极电机 无蜗壳风机:必须找厂家选型,无涡壳风机功能段排布上均流在风机段之前。 对于风机电机直联的注意一般都要配变频电机。 5.机组带转轮除湿机的,一般转轮除湿段和机组前后功能段都是通过帆布软接,注意前后预留中间段,帆布软接一般是根据现场情况配,工厂不带。 6.所有的加湿器都要加接水盘,高压喷雾和喷淋还要加装挡水板和开门。喷淋前后都要预留中间段,并且开门。喷淋段本身也要开门。 7.没有特殊要求不允许机组配置外置板式加袋式共滑道。 8.如果要装压差计,初中效不能同框架或者滑道。 9.加湿出风段在一起时,出风段需要设置门。 10.机组配置紫外线灯的,注意机组的宽度是否大于紫外线灯的长度。不同规格紫外线灯的长度:20W——604mm 30W——40W—— 11.湿膜加湿分直排水和循环水两种,我们通常采用的是直排水的。湿膜在功能段上作为加湿用还是作为挡水板是有区别的,所以报价及EOF中要明确。 12.在对噪音要求较高的场合,一般会配置900mm长的消声段,舒适性场合一般选用孔板+玻璃棉形式的消声器,净化场合采用微穿孔的消声器。 13.风阀执行器 开关量

无蜗壳与有蜗壳

离心风机包括有蜗壳离心风机(Housed centrifugal fan)和无蜗壳离心风机(Unhoused centrifugal fan)。一般常用的是有蜗壳离心风机,所以名称中“有蜗壳”就被省略掉了。无蜗壳风机的全称是无蜗壳离心风机,在不同的场合也被称作插入风机(Plug fan)或静压箱风机(Plenum fan)。 图1. 有蜗壳离心风机和无蜗壳离心风机 离心风机罩个蜗壳,是为了增加其静压压头和高压段的风机效率。笼统地说,有蜗壳离心风机拿掉蜗壳后,大部分风量范围(高压区)的静压压头要低于有蜗壳的离心风机,高压区的风机效率也因此低于有蜗壳的离心风机。而一部分风量范围(低压区)的静压压头要高于有蜗壳的离心风机,低压区的风机效率也高于有蜗壳的离心风机。去掉蜗壳后,离心风机的最大风量也有所增大。 鉴于离心风机的这一特性,对离心风机的叶轮进行特殊设计,就获得了高效率的无蜗壳离心风机。 图2. 有蜗壳离心风机的出口风速分布 有蜗壳离心风机的出口风速是有方向且不均匀的。如果在其静压复得尚未完全完成阶段就遇到风道转向,会产生较大的能量损失。如果把无蜗壳离心风机放在这个风向转向处,就可以完全避免这个能量损失。这就是为什么无蜗壳离心风机作为机柜的地板抽风机被大量应用于数据中心的原因。 无蜗壳离心风机的另一个主要应用是组成风机群(Fan wall)。用多台无蜗壳离心风机来取代一台大口径离心风机或轴流风机。

大口径的离心风机和轴流风机的转速不可能很高,因此产生的噪声也往往是低频噪声。低频噪声的消声是十分困难的。影剧院,高级宾馆,高档写字楼都要花费大量的资金来消除这些难以消除的低频噪声。 无蜗壳离心风机群(Fan wall)的出现,使这个空调行业最棘手的问题迎刃而解了。 图3. 无蜗壳离心风机群 无蜗壳离心风机一般采用与电机直连的方式。因此不但避免了皮带传递能耗,也节省了皮带损耗的运行成本。 对于变风量系统,无蜗壳离心风机多采用EC电机(Electronically Commutated Motor)。其中,高效的IPM(Interior Permanent Magnetic)电机的平均效率高达90%以上。 从理论上说,应该是先有无蜗壳离心风机,后出现有蜗壳离心风机的。有蜗壳离心风机应该说是无蜗壳离心风机的升级版。但随着技术的进步,如今在好多应用中,又回到了无蜗壳离心风机,无蜗壳离心风机又成了有蜗壳离心风机额升级版。在好多节能改造工程中,有蜗壳离心风机被撤下,换上了无蜗壳离心风机。 但我们不能就因此而说有蜗壳离心风机过时了。日本最大的AHU(Air Handling Unit)生产商一边号称采用了无蜗壳离心风机,一边又给加上了一个不完整的蜗壳。由此可见,蜗壳的增压作用还是有效的。在一些场合还是不可缺少的。

风机知识问答

风机知识问答 1.亿利达排烟风机有那几大类? 答:柜式风机;轴流风机;单进风风机C型;及混流风机。 2.如果风机轴功率为1.95KW,如果是后倾风机,选配电机功率应至少多少KW? 如果是前倾风机呢?为什么? 答:后倾风机2.2KW,前倾风机3KW。对于同样的变化幅度,对于后倾风机来说,功率变化范围较小,对于前倾风机变化范围较大,故前倾风机更容易过载。 3.如果选用CBPF400风机,配变频电机,转速2010RPM,你会如何确定电机和风机? 为什么? 答:选CBPF400R,1.5KW/4P变频电机,调频转速2010RPM,。1.变频电机特点, 额定频率以上为恒功率,向下为恒转矩,所以变频电机一般往上调节;2.防止应急启动,如选用2极变频电机,则需用CBPF400RH。 4.华德轴流选型曲线图上的功率是什么功率? 答:峰值吸收功率 安装功率是否应大于上述功率?为什么? 答:不一定。一般情况是要大于上述功率。 峰值吸收功率等于风机最大吸收功率,然而风机运行功率是与系统阻力有关的,当风机运行靠近曲线右侧,即系统阻力低时,风机实际吸收功率低于最大吸收功率,故选择电机就有可能小于最大吸收功率。 5.前倾风机会发生系统喘振吗?为什么? 答:会发生。 对于前倾风机,性能曲线左侧是可以用的,就会出线风机系统曲线与风机性能曲线相切或接近相切的情况,从而出现系统喘振。 6.后倾风机会发生系统喘振吗?为什么? 答:不会发生。 对于后倾风机,性能曲线左侧是平直的不会出现风机系统曲线与风机性能曲线相切或接近相切现象。 7.亿利达风机因为动平衡作的好,所以价格要高一些,就此谈一下你的观点。 答:风机动平衡G2.5远高于国家标准,风机轴承的使用寿命大大增加,从而也使我们公司售后服务工作大大减轻。对于亿利达来说是公司开支的大大节省,而对客户没有太大实际好处,所以价格要高是不合理的。 8.为什么通常消防加压风机选用轴流式风机?皮带驱动的风机呢? 答:消防加压风机是用于发生消防事故时对,建筑物内空气的输送。其长期处于待机状态,而不经常检修,轴流风机是直联式,不会出现皮带老化松弛而无法启动的诸多问题。9.对于离心风机,风量/风机大小和现场条件有何关系? 10.排油烟,那几种风机较适合?各应注意什么? 答:无蜗壳风机电机外置,正压风机用于管道末端;单进风后倾风机C型,背板开检修门,下端放水口;SYQ双进风皮带轴承外置,下端排水口;电机与气流隔离的轴流风机,用于系统末端,易清理。

风机大全,风机各个类别介绍

风机的各个类别介绍第一:离心风机 离心风机系列(生产工艺、环保工业、机组设备等应用) 中低压离心风机 4-68离心风机4-72离心风机4-79离心风机 高压离心风机 9-19/9-26高压离心风机8-09/9-12高压离心风机 排尘离心风机 C4-73排尘离心风机C6-48排尘离心风机 锅炉离心风机 G4-73、Y4-73锅炉鼓、引风机Y5-48锅炉离心引风机G6-41、Y6-41锅炉离心引风机Y8-39、Y9-38锅炉引风机 高温离心风机 W5-48高温离心风机W9-26高温离心风机GWF插入式高温离心风机 空调离心风机 DFW外转子离心风机KDF前向多翼式空调风机KHF后弯式空调离心风机WHF无蜗壳离心风机 设备配套离心风机 DFA小型离心风机DFD多翼式外转子离心风机HFD后倾式外转子离心风机 第二:屋顶风机 屋顶风机系列(屋面排热、排尘、排废气通风应用) DWT屋顶风机 DWT风机采用模压轴流或离心叶轮,风机专用电机直联传动,防腐风帽、金属或玻璃钢风筒底座,具有耐腐蚀、质轻高强、运转平稳、维护简单、噪声低、性能优等特点,广泛应用于发电、化工、橡胶、制药、食品加工、冶金等各行业及高级民用建筑的通风换气。 JRTC全铝制离心式屋顶风机(RTC) JRTC屋顶风机是引进欧美先进技术联合科研院校共同研发的一种环保、节能全铝质离心式屋顶排风机,该产品外形设计流畅美观,工艺精湛,符合高档建筑对于外露设备质感的要求。 HTF(A)-W屋顶排烟风机 HTF(A)-W风机采用模压轴流叶轮、内置高温电机(配设专门的电机冷却系统)、防雨风帽、泛水底座。具有耐高温性能优良、效率高、体积小、安装简便等优点。选配双速电机,可达到一机两用(即平时排风和消防时高温排烟),配设电控箱后可远程自动控制。

无蜗壳离心风机的实验性能对比

无蜗壳离心风机的实验性能对比 无蜗壳离心风机一般多以设备冷却风扇的形式使用,具有风量大、压力高、噪声低、结构紧凑等优点,是普通轴流风机和普通离心风机无法替代的产品。鉴于无蜗壳离心风机良好的低噪声性能,目前也有厂家推出箱式无蜗壳风机用于建筑物通风换气。 蜗壳的作用:机壳的任务是将离开叶轮的气体导向机壳出口,并将气体的一部分动能转变为静压。蜗壳中不同截面处的流量是不同的,在任意截面处,气体的容积流量与位置角φ成正比。一般气流在蜗壳进口处是沿圆周均匀分布,因此在不同φ角截面上的流量q vφ可表示为q vφ=q v4 (φ/360°)。q v4为蜗壳进口处流量,通常蜗壳中速度变化不大,气体密度可认为是定值。若蜗壳的型线能保证气体自由流动,这时蜗壳壁对气流就不会发生作用,那么在不考虑粘性情况下,气体在蜗壳内的运动将遵循动量矩不变定律,即c u R=常数。 经分析得知,气体最多6次被蜗壳碰撞导至出口,蜗壳很好地收集了气体。并且气体在叶轮流向蜗壳时容积变大,一部分动能转变为静压。 离心通风机的主要功能是完成气体的输送,若无机壳就不可能实现这一功能,无蜗壳也不可能很好地实现叶轮的功效。 箱体与叶轮装配见图1和图2。其中箱体均由铝型材框架和夹心面板制成。六面体只有一面敞开,它强制气流从一个方向流出,并有消声作用。它与常规箱体机相比,其制作简单,节约空间,降低了成本。图中1020×1020×880为箱体1;1060×1027×880为箱体2。 试验采用标准出气侧试验风室,风室横截面积为3000mm×3000mm,风室中采用孔板测定流量,其结构如图1所示。

在上述风室装置中对700mm后向离心叶轮的3种机型风机进行试验,3种机型的试验安装示意图如图2所示。考虑到3种机型的不同结构有不同的出口面积,采用静压数据作为测试结果进行对比。由测试结果(见图3)可以看出,普通离心风机的压力要比另外2种机型高,而且随着风量的减小,其压力的增幅加大。

无蜗壳箱体风机

无蜗壳箱体风机 摘要: 针对有些客户不需要离心通风机蜗壳的特殊要求,从蜗壳的功能入手,对几种不同情况的无蜗壳风机做了对比试验,得出了简要的结论。 关键词:通风机箱体 1 引言 本文从蜗壳的功能入手,研制了无蜗壳箱体风机。与常规箱体风机相比,无蜗壳箱体风机不仅制作简单,而且还节约空间,降低成本。这就给设计人员提出了一个新课题。 2 理论分析 蜗壳的作用:机壳的任务是将离开叶轮的气体导向机壳出口 , 并将气体的一部分动能转变为静压。蜗壳中不同截面处的流量是不同的 , 在任意截面处 , 气体的容积流量与位置 角φ成正比。一般气流在蜗壳进口处是沿圆周均匀分布,因此在不同φ角截面上的流量q vφ可表示为q vφ= q v 4 (φ/360°)。q v 4 为蜗壳进口处流量,通常蜗壳中速度变化不大,气体密度可认为是定值。若蜗壳的型线能保证气体自由流动,这时蜗壳壁对气流就不会发生作用,那么在不考虑粘性情况下,气体在蜗壳内的运动将遵循动量矩不变定律,即 c u R=常数。 经分析得知,气体最多 6 次被蜗壳碰撞导至出口,蜗壳很好地收集了气体。并且气体在叶轮流向蜗壳时容积变大,一部分动能转变为静压。 离心通风机的主要功能是完成气体的输送,若无机壳就不可能实现这一功能,无蜗壳也不可能很好地实现叶轮的功效。 3 对比试验 普通风机与无蜗壳箱体风机的对比,标准4-79-13 № 7A 风机及把该叶轮装入尺寸为 1020 × 1020 × 880 箱体 1 中的性能对比见表 1 。 结构4-79-13 № 7A4-79 № 7A 叶轮 + 箱体 1 工况点流量 /(m 3 /h)全压 /Pa全压效率 /%流量 /(m 3 /h)全压 /Pa全压效率 /% 112609166880.51609476949 214134162982.01734664945 315592160983.01886153240 417117155084.21988044436 518590149185.52033435629 620071145284.92120324525 722317123683.021******** 824564100178.52240210911 同一个叶轮装了两种不同的箱体的对比,见表 2 。

施乐百无蜗壳风机样本

Flexible Ansaugstutzen Flexible connectors at inlet Teile-Nr. / Art. no.: 00403346 Angaben beziehen sich auf EFF1 / IE2 Motor / Datas are valid for EFF1 / IE2 motor Angaben mit EFF2 / IE1 Motor siehe Seite 14 / Datas with EFF2 / IE1 motor see page 14 kg Frequenzumrichter Icontrol siehe Seite 62-68. Frequenzy inverter Icontrol see page 62-68. Zubeh?r siehe Ausklappseite hinten Accessories see tri-fold at the back

500 1.000 1.500 2.000 2.500 3.000 p [P a ] s F q [m /h] V 3

Teile-Nr. / Art. no.: 00403346 Angaben beziehen sich auf EFF1 / IE2 Motor / Datas are valid for EFF1 / IE2 motor Angaben mit EFF2 / IE1 Motor siehe Seite 14 / Datas with EFF2 / IE1 motor see page 14 kg Frequenzumrichter Icontrol siehe Seite 62-68. Frequenzy inverter Icontrol see page 62-68. Flexible Ansaugstutzen Flexible connectors at inlet Zubeh?r siehe Ausklappseite hinten Accessories see tri-fold at the back

相关主题
文本预览
相关文档 最新文档