当前位置:文档之家› 牛顿法非线性方程求解

牛顿法非线性方程求解

牛顿法非线性方程求解
牛顿法非线性方程求解

《MATLAB 程序设计实践》课程考核

---第39-40页

题1 : 编程实现以下科学计算算法,并举一例应用之。(参考书籍《精通MATLAB 科学计

算》,王正林等著,电子工业出版社,2009 年) “牛顿法非线性方程求解”

弦截法本质是一种割线法,它从两端向中间逐渐逼近方程的根;牛顿法本质上是一种切线法,它从一端向一个方向逼近方程的根,其递推公式为:

-

=+n n x x 1)

()

('

n n x f x f 初始值可以取)('a f 和)('b f 的较大者,这样可以加快收敛速度。 和牛顿法有关的还有简化牛顿法和牛顿下山法。

在MATLAB 中编程实现的牛顿法的函数为:NewtonRoot 。 功能:用牛顿法求函数在某个区间上的一个零点。 调用格式:root=NewtonRoot )(```eps b a f 其中,f 为函数名;

a 为区间左端点;

b 为区间右端点 eps 为根的精度;

root 为求出的函数零点。 ,

牛顿法的matlab程序代码如下:

function root=NewtonRoot(f,a,b,eps)

%牛顿法求函数f在区间[a,b]上的一个零点%函数名:f

%区间左端点:a

%区间右端点:b

%根的精度:eps

%求出的函数零点:root

if(nargin==3)

eps=1.0e-4;

end

f1=subs(sym(f),findsym(sym(f)),a);

f2=subs(sym(f),findsym(sym(f)),b);

if (f1==0)

root=a;

end

if (f2==0)

root=b;

end

if (f1*f2>0)

disp('两端点函数值乘积大于0 !');

return;

else

tol=1;

fun=diff(sym(f)); %求导数

fa=subs(sym(f),findsym(sym(f)),a);

fb=subs(sym(f),findsym(sym(f)),b);

dfa=subs(sym(fun),findsym(sym(fun)),a);

dfb=subs(sym(fun),findsym(sym(fun)),b);

if(dfa>dfb) %初始值取两端点导数较大者

root=a-fa/dfa;

else

root=b-fb/dfb;

end

while(tol>eps)

r1=root;

fx=subs(sym(f),findsym(sym(f)),r1);

dfx=subs(sym(fun),findsym(sym(fun)),r1); %求该点的导数值 root=r1-fx/dfx; %迭代的核心公式

tol=abs(root-r1);

end

end

例:求方程3x^2-exp(x)=0的一根

解:在MATLAB命令窗口输入:

>> r=NewtonRoot('3*x^2-exp(x)',3,4)

输出结果:

X=3.7331

2、编程解决以下科学计算问题

1) 二自由度可解耦系统的振动模态分析,二自由度振动系统如图所示,其一般方程为:

)12(2)12(2220221)21(221)21(11.

....

...=-+-+=-++-++x x K x x c x m x K x K K x c x c c x m

可写成矩阵形式:0.

..

=++Kx x C x M

设C=0,即无阻尼情况,则系统可解耦为两种独立的振动模态。

流程图:

系统解耦的振动模态的MATLAB代码如下:function erziyoudu()

%输入各原始参数

m1=input('m1=');m2=input('m2='); %质量

k1=input('k1=');k2=input('k2='); %刚度

%输入阻尼系数

c1=input('c1=');c2=input('c2=');

%给出初始条件及时间向量

x0=[1;0];

xd0=[0;-1];

tf=50; %步数

dt=0.1; %步长

%构成二阶参数矩阵

M=[m1,0;0,m2];

K=[k1+k2,-k2;-k2,k2];

C=[c1+c2,-c2;-c2,c2];

%构成四阶参数矩阵

A=[zeros(2,2),eye(2);-M\K,-M\C];

%四元变量的初始条件

y0=[x0;xd0];

%设定计算点,作循环计算

for i=1:round(tf/dt)+1

t(i)=dt*(i-1);

y(:,i)=expm(A*t(i))*y0;%循环计算矩阵指数

end

%按两个分图绘制x1、x2曲线

subplot(2,1,1),plot(t,y(1,:)),grid

xlabel('t'),ylabel('y');

subplot(2,1,2),plot(t,y(2,:)),grid

xlabel('t'),ylabel('y');

运行M文件,依下图所示在MATLAB命令窗口中输入数据:

即可得出该振动的两种模态

2)用GUI 方式解下列PDE :

???

?

?????===-=<<<<=??+??====;0,4sin 0),3(30,40,030

402

222y y x x u x u u y y u y x y u

x u π 解:第一步,在MATLAB 命令窗口输入命令pdetool 打开工具箱,调整x 坐标范围为[0 5],y 坐标范围为[0 5].通过options 选项的Axes Linits 设定如下图所示。

第二步,设定矩形区域。点击工具箱栏中的按钮“”,拖动鼠标画出一矩形,并双击该矩形,设定矩形大小,如下图所示。

第三步,设边界条件。点击工具栏中的按钮“”,并双击矩形区域的相应的边线在弹出的对话框中设定边界条件。如下图所示,分别为各边框的边界条件。

第四步,设定方程。单击工具栏中的按钮“”,在PDE模式下选择方程类型,如下图所示,并在其中设定参数。

第五步,单击工具栏中的按钮“”,拆分区域为若干子区域,如下图所示。

第六步,单击工具栏中的按钮“”,将子区域细化,从而保证结果更精确,如下图所

示。

的三维图。

第八步,单击图2-8在标出的“plot”按钮,或单击工具栏中的按钮“”,可作出解的三维图,如下图所示。

简要流程图:

牛顿法求非线性方程的根

学科前沿讲座论文 班级:工程力学13-1班姓名:陆树飞

学号:02130827

牛顿法求非线性方程的根 一 实验目的 (1)用牛顿迭代法求解方程的根 (2)了解迭代法的原理,了解迭代速度跟什么有关 题目:用Newton 法计算下列方程 (1) 013=--x x , 初值分别为10=x ,7.00=x ,5.00=x ; (2) 32943892940x x x +-+= 其三个根分别为1,3,98-。当选择初值02x =时 给出结果并分析现象,当6510ε-=?,迭代停止。 二 数学原理 对于方程f(x)=0,如果f(x)是线性函数,则它的求根是很容易的。牛顿迭代法实质上是一种线性化方法,其基本思想是将非线性方程f(x)=0逐步归结为某种线性方程来求解。 设已知方程f(x)=0有近似根x k (假定k f'(x )0≠) ,将函数f(x)在点x k 进行泰勒展开,有 k k k f(x)f(x )+f'(x )(x-x )+≈??? 于是方程f(x)=0可近似的表示为 k k k f(x )+f'(x )(x-x )=0 这是个线性方程,记其根为x k+1,则x k+1的计算公式为 k+1k ()x =x -'() k k f x f x ,k=0,1,2,… 这就是牛顿迭代法。

三 程序设计 (1)对于310x x --=,按照上述数学原理,编制的程序如下 program newton implicit none real :: x(0:50),fx(0:50),f1x(0:50)!分别为自变量x ,函数f(x)和一阶导数f1(x) integer :: k write(*,*) "x(0)=" read(*,*) x(0) !输入变量:初始值x(0) open(10,file='1.txt') do k=1,50,1 fx(k)=x(k-1)**3-x(k-1)-1 f1x(k)=3*x(k-1)**2-1 x(k)=x(k-1)-fx(k)/f1x(k) !牛顿法 write(*,'(I3,1x,f11.6)') k,x(k) !输出变量:迭代次数k 及x 的值 write(10,'(I3,1x,f11.6)') k,x(k) if(abs(x(k)-x(k-1))<1e-6) exit !终止迭代条件 end do stop end (2)对于32943892940x x x +-+=,按照上述数学原理,编制的程序如下 program newton implicit none

二分法和牛顿法求解非线性方程(C语言)

(1)二分法求解非线性方程: #include #include #define f(x)((x*x-1)*x-1) void main() {float a,b,x,eps; int k=0; printf("intput eps\n");/*容许误差*/ scanf("%f",&eps); printf("a,b=\n"); for(;;) {scanf("%f,%f",&a,&b); if(f(a)*f(b)>=0)/*判断是否符合二分法使用的条件*/ printf("二分法不可使用,请重新输入:\n"); else break; } do {x=(a+b)/2; k++; if(f(a)*f(x)<0)/*如果f(a)*f(x)<0,则根在区间的左半部分*/ b=x; else if(f(a)*f(x)>0)/*否则根在区间的右半部分*/ a=x; else break; }while(fabs(b-a)>eps);/*判断是否达到精度要求,若没有达到,继续循环*/ x=(a+b)/2;/*取最后的小区间中点作为根的近似值*/ printf("\n The root is x=%f,k=%d\n",x,k); } 运行结果: intput eps 0.00001 a,b= 2,-5 The root is x=1.324721,k=20 Press any key to continue 总结:本题关键在于两个端点的取值和误差的判断,此程序较容易。二分法收敛速度较快,但缺点是只能求解单根。 (2)牛顿法求解非线性方程: #include #include float f(float x)/*定义函数f(x)*/ {return((-3*x+4)*x-5)*x+6;} float f1(float x)/*定义函数f(x)的导数*/

牛顿法非线性方程求解

《MATLAB 程序设计实践》课程考核 ---第37-38页 题1 : 编程实现以下科学计算算法,并举一例应用之。(参考书籍《精 通MAT LAB科学计算》,王正林等著,电子工业出版社,2009 年) “牛顿法非线性方程求解” 弦截法本质是一种割线法,它从两端向中间逐渐逼近方程的根;牛顿法本质上是一种切线法,它从一端向一个方向逼近方程的根,其递推公式为: - =+n n x x 1) ()(' n n x f x f 初始值可以取)('a f 和)('b f 的较大者,这样可以加快收敛速度。 和牛顿法有关的还有简化牛顿法和牛顿下山法。 在MATLAB 中编程实现的牛顿法的函数为:NewtonRoot 。 功能:用牛顿法求函数在某个区间上的一个零点。 调用格式:root=NewtonRoot )(```eps b a f 其中,f 为函数名; a 为区间左端点; b 为区间右端点 eps 为根的精度; root 为求出的函数零点。 ,

牛顿法的matlab程序代码如下: function root=NewtonRoot(f,a,b,eps) %牛顿法求函数f在区间[a,b]上的一个零点%函数名:f %区间左端点:a

%区间右端点:b %根的精度:eps %求出的函数零点:root if(nargin==3) eps=1.0e-4; end f1=subs(sym(f),findsym(sym(f)),a); f2=subs(sym(f),findsym(sym(f)),b); if (f1==0) root=a; end if (f2==0) root=b; end if (f1*f2>0) disp('两端点函数值乘积大于0 !'); return; else tol=1; fun=diff(sym(f)); %求导数 fa=subs(sym(f),findsym(sym(f)),a); fb=subs(sym(f),findsym(sym(f)),b); dfa=subs(sym(fun),findsym(sym(fun)),a); dfb=subs(sym(fun),findsym(sym(fun)),b); if(dfa>dfb) %初始值取两端点导数较大者 root=a-fa/dfa; else root=b-fb/dfb; end while(tol>eps) r1=root; fx=subs(sym(f),findsym(sym(f)),r1); dfx=subs(sym(fun),findsym(sym(fun)),r1); %求该点的导数值 root=r1-fx/dfx; %迭代的核心公式 tol=abs(root-r1); end end 例:求方程3x^2-exp(x)=0的一根 解:在MATLAB命令窗口输入: >> r=NewtonRoot('3*x^2-exp(x)',3,4) 输出结果: X=3.7331

牛顿迭代法求解非线性方程组的代码

牛顿迭代法求解非线性方程组 非线性方程组如下: 221122121210801080 x x x x x x x ?-++=??+-+=?? 给定初值()00.0T x =,要求求解精度达到0.00001 1.首先建立函数()F X ,方程编程如下,将F.m 保存到工作路径中: function f=F(x) f(1)=x(1)^2-10*x(1)+x(2)^2+8; f(2)=x(1)*x(2)^2+x(1)-10*x(2)+8; f=[f(1),f(2)] ; 2.建立函数()DF X ,用于求方程的jacobi 矩阵,将DF.m 保存到工作路径中: function df=DF(x) df=[2*x(1)-10,2*x(2);x(2)^2+1,2*x(1)*x(2)-10]; %jacobi 矩阵是一阶偏导数以一定方式排列成的矩阵。 3.编程牛顿迭代法解非线性方程组,将newton.m 保存在工作路径中: clear,clc; x=[0,0]'; f=F(x);

df=DF(x); fprintf('%d %.7f %.7f\n',0,x(1),x(2)); N=4; for i=1:N y=df\f'; x=x-y; f=F(x); df=DF(x); fprintf('%d %.7f %.7f\n',i,x(1),x(2)); if norm(y)<0.0000001 break; else end end ezplot('x^2-10*x+y^2+8',[-6,6,-6,6]); hold on ezplot('x*y^2+x-10*y+8',[-6,6,-6,6]); 运行结果如下: 0 0.0000000 0.0000000 1 0.8000000 0.8800000 2 0.9917872 0.9917117

C++实现 牛顿迭代 解非线性方程组

C++实现牛顿迭代解非线性方程组(二元二次为例) 求解{0=x*x-2*x-y+0.5; 0=x*x+4*y*y-4; }的方程 #include #include #define N 2 // 非线性方程组中方程个数、未知量个数#define Epsilon 0.0001 // 差向量1范数的上限 #define Max 100 // 最大迭代次数 using namespace std; const int N2=2*N; int main() { void ff(float xx[N],float yy[N]); //计算向量函数的因变量向量yy[N] void ffjacobian(float xx[N],float yy[N][N]); //计算雅克比矩阵yy[N][N] void inv_jacobian(float yy[N][N],float inv[N][N]); //计算雅克比矩阵的逆矩阵inv void newdundiedai(float x0[N], float inv[N][N],float y0[N],float x1[N]); //由近似解向量x0 计算近似解向量x1 float x0[N]={2.0,0.25},y0[N],jacobian[N][N],invjacobian[N][N],x1[N],errornorm; int i,j,iter=0; //如果取消对x0的初始化,撤销下面两行的注释符,就可以由键盘x读入初始近似解向量for( i=0;i>x0[i]; cout<<"初始近似解向量:"<

matlab程序设计实践-牛顿法解非线性方程

中南大学MATLAB程序设计实践学长有爱奉献,下载填上信息即可上交,没有下载券的自行百度。所需m文件照本文档做即可,即新建(FILE)→脚本(NEW-Sscript)→复制本文档代码→运行(会跳出保存界面,文件名默认不要修改,保存)→结果。第一题需要把数据文本文档和m文件放在一起。全部测试无误,放心使用。本文档针对做牛顿法求非线性函数题目的同学,当然第一题都一样,所有人都可以用。←记得删掉这段话 班级: ? 学号: 姓名:

一、《MATLAB程序设计实践》Matlab基础 表示多晶体材料织构的三维取向分布函数(f=f(φ1,φ,φ2))是一个非常复杂的函数,难以精确的用解析函数表达,通常采用离散 空间函数值来表示取向分布函数,是三维取向分布函数的一个实例。 由于数据量非常大,不便于分析,需要借助图形来分析。请你编写一 个matlab程序画出如下的几种图形来分析其取向分布特征: (1)用Slice函数给出其整体分布特征; " ~ (2)用pcolor或contour函数分别给出(φ2=0, 5, 10, 15, 20, 25, 30, 35 … 90)切面上f分布情况(需要用到subplot函数);

(3) 用plot函数给出沿α取向线(φ1=0~90,φ=45,φ2=0)的f分布情况。 (

备注:数据格式说明 解: (1)( (2)将文件内的数据按照要求读取到矩阵f(phi1,phi,phi2)中,代码如 下: fid=fopen(''); for i=1:18 tline=fgetl(fid); end phi1=1;phi=1;phi2=1;line=0; f=zeros(19,19,19); [ while ~feof(fid) tline=fgetl(fid); data=str2num(tline); line=line+1;数据说明部分,与 作图无关此方向表示f随着 φ1从0,5,10,15, 20 …到90的变化而 变化 此方向表示f随着φ 从0,5,10,15, 20 … 到90的变化而变化 表示以下数据为φ2=0的数据,即f(φ1,φ,0)

用牛顿迭代法求解非线性方程

数值分析实验报告(一) 实验 名称 用牛顿迭代法求解非线性方程实验时间2011年11 月19日姓名班级学号成绩 一、实验目的 1.了解求解非线性方程的解的常见方法。 2.编写牛顿迭代法程序求解非线性方程。 二、实验内容 分别用初值 0.01 x=, 10 x=和 300 x=求113,要求精度为5 10-。 三、实验原理 设113 x=,则21130 x-=,记f(x)= 2113 x-,问题便成为了求2x -113=0的正根; 用牛顿迭代公式得 2 1 113 2 k k k k x x x x + - =-,即 1 1113 () 2 k k k x x x + =+(其中k=0,1,2,3,…,) 简单推导 假设f(x)是关于X的函数: 求出f(x)的一阶导,即斜率: 简化等式得到: 然后利用得到的最终式进行迭代运算直至求到一个比较精确的满意值。 如果f函数在闭区间[a,b]内连续,必存在一点x使得f(x) = c,c是函数f在闭区间[a,b]内的一点 我们先猜测一X初始值,然后代入初始值,通过迭代运算不断推进,逐步靠近精确值,直到得到我们主观认为比较满意的值为止。 回到我们最开始的那个”莫名其妙”的公式,我们要求的是N的平方根,令x2 = n,假设一关

于X的函数f(x)为: f(X) = X2 - n 求f(X)的一阶导为: f'(X) = 2X 代入前面求到的最终式中: X k+1 = X k - (X k 2 - n)/2X k 化简即得到我们最初提到求平方根的迭代公式: 四、实验步骤 1.根据实验题目,给出题目的C程序。 当初值为0.01、10、300时,即x=0.01,10,300 分别应用程序: #include "stdio.h" int main() { float number; printf("Please input the number:"); scanf("%f", &number); float x=1; int i; for (i=0;i<1000;i++) { x = (x + number/x)/2; } printf("The square root of %f is %8.5f\n", number ,x); } 得出结果 2.上机输入和调试自己所编的程序。 当x=0.01时,结果为:10.63015 x=10时,结果为:10.63015 x=300时,结果也为:10.63015 3.实验结果分析。 当初值取0.01、10、300时取不同的初值得到同样的结果10.63015。 五、程序

c++求解非线性方程组的牛顿顿迭代法

牛顿迭代法c++程序设计 求解{0=x*x-2*x-y+0.5; 0=x*x+4*y*y-4; }的方程 #include #include #define N 2 // 非线性方程组中方程个数、未知量个数 #define Epsilon 0.0001 // 差向量1范数的上限 #define Max 100 //最大迭代次数 using namespace std; const int N2=2*N; int main() { void ff(float xx[N],float yy[N]); //计算向量函数的因变量向量yy[N] void ffjacobian(float xx[N],float yy[N][N]);/ /计算雅克比矩阵yy[N][N] void inv_jacobian(float yy[N][N],float inv[N][N]); //计算雅克比矩阵的逆矩阵inv void newdundiedai(float x0[N], float inv[N][N],float y0[N],float x1[N]); //由近似解向量x0 计算近似解向量x1 float x0[N]={2.0,0.25},y0[N],jacobian[N][N],invjacobian[N][N],x1[N],errornorm; int i,j,iter=0; //如果取消对x0的初始化,撤销下面两行的注释符, 就可以由键盘向x0读入初始近似解向量for( i=0;i>x0[i]; cout<<"初始近似解向量:"<

非线性方程组的牛顿迭代法的应用

非线性方程组的牛顿迭代法的应用

CENTRAL SOUTH UNIVERSITY 数值分析实验报告

非线性方程组的牛顿迭代法的应用 一、问题背景 非线性是实际问题中经常出现的,并且在科学与工程计算中的地位越来越重要,很多我们熟悉的线性模型都是在一定条件下由非线性问题简化的,为得到更符合实际的解答,往往需要直接研究非线性科学,它是21世纪科学技术发展的重要支柱,非线性问题的数学模型有无限维的如微分方程,也有有限维的。道遥咏计算机进行科学计算都要转化为非线性的单个方程或方程组的求解。从线性到非线性是一个质的变化,方程的性质有本质不同,求解方法也有很大差别。本文主要介绍的是非线性方程组的牛顿迭代法的数值解法。 二、数学模型 对于方程()0=x f ,如果()x f 湿陷性函数,则它的求根是容易的。牛顿法实质上是一种线性化方法,其基本思想是将线性方程()0=x f 逐步归结为某种线性方程来求解。 设已知方程()0=x f 有近似根k x (假定()0'≠k x f ),将函数()x f 在点k x 展开,有 ()()()()k k k x x x f x f x f -+≈', 于是方程()0=x f 可近似地表示为 ()()()0'=-+k k k x x x f x f 这是个线性方程,记其根为1+k x ,则1+k x 的计算公式 () () k k k k x f x f x x ' 1- =+, ,1,0=k 这就是牛顿法。 三、算法及流程 对于非线性方程 ()()()???? ????????=n n n n x L x x f M x L x x f x L x x f f ,,,,,,,,,2 12 12211 在()k x 处按照多元函数的泰勒展开,并取线性项得到

Newton迭代法求解非线性方程

Newton迭代法求解非 线性方程

一、 Newton 迭代法概述 构造迭代函数的一条重要途径是用近似方程来代替原方程去求根。因此,如果能将非线性方程f (x )=0用线性方程去代替,那么,求近似根问题就很容易解决,而且十分方便。牛顿(Newton)法就是一种将非线性方程线化的一种方法。 设k x 是方程f (x )=0的一个近似根,把如果)(x f 在k x 处作一阶Taylor 展开,即: )x x )(x ('f )x (f )x (f k k k -+≈ (1-1) 于是我们得到如下近似方程: 0)x x )(x ('f )x (f k k k =-+ (1-2) 设0)('≠k x f ,则方程的解为: x ?=x k +f (x k ) f (x k )? (1-3) 取x ~作为原方程的新近似根1+k x ,即令: ) x ('f ) x (f x x k k k 1k -=+, k=0,1,2,… (1-4) 上式称为牛顿迭代格式。用牛顿迭代格式求方程的根的方法就称为牛顿迭代法,简称牛顿法。 牛顿法具有明显的几何意义。方程: )x x )(x ('f )x (f y k k k -+= (1-5) 是曲线)x (f y =上点))x (f ,x (k k 处的切线方程。迭代格式(1-4)就是用切线式(1-5)的零点来代替曲线的零点。正因为如此,牛顿法也称为切线法。 牛顿迭代法对单根至少是二阶局部收敛的,而对于重根是一阶局部收敛的。一般来说,牛顿法对初值0x 的要求较高,初值足够靠近*x 时才能保证收敛。若

要保证初值在较大范围内收敛,则需对)x (f 加一些条件。如果所加的条件不满足,而导致牛顿法不收敛时,则需对牛顿法作一些改时,即可以采用下面的迭代格式: ) x ('f ) x (f x x k k k 1k λ -=+, ?=,2,1,0k (1-6) 上式中,10<λ<,称为下山因子。因此,用这种方法求方程的根,也称为牛顿下山法。 牛顿法对单根收敛速度快,但每迭代一次,除需计算)x (f k 之外,还要计算 )x ('f k 的值。如果)x (f 比较复杂,计算)x ('f k 的工作量就可能比较大。为了避免计算导数值,我们可用差商来代替导数。通常用如下几种方法: 1. 割线法 如果用 1 k k 1k k x x ) x (f )x (f ----代替)x ('f k ,则得到割线法的迭代格式为: )x (f ) x (f )x (f x x x x k 1k k 1 k k k 1k --+---= (1-7) 2. 拟牛顿法 如果用 ) x (f )) x (f x (f )x (f k 1k k k ---代替)x ('f k ,则得到拟牛顿法的迭代格式为: )) x (f x (f )x (f ) x (f x x 1k k k k 2k 1k -+--- = (1-8) 3. Steffenson 法 如果用 ) x (f ) x (f ))x (f x (f k k k k -+代替)x ('f k ,则得到拟牛顿法的迭代格式为: ) x (f ))x (f x (f ) x (f x x k k k k 2k 1 k -+- =+

基于Matlab的牛顿迭代法解非线性方程组

基于Matlab 实现牛顿迭代法解非线性方程组 已知非线性方程组如下 2211221212 10801080x x x x x x x ?-++=??+-+=?? 给定初值0(0,0)T x =,要求求解精度达到0.00001 首先建立函数F(x),方程组编程如下,将F.m 保存到工作路径中: function f=F(x) f(1)=x(1)^2-10*x(1)+x(2)^2+8; f(2)=x(1)*x(2)^2+x(1)-10*x(2)+8; f=[f(1) f(2)]; 建立函数DF(x),用于求方程组的Jacobi 矩阵,将DF.m 保存到工作路径中: function df=DF(x) df=[2*x(1)-10,2*x(2);x(2)^2+1,2*x(1)*x(2)-10]; 编程牛顿迭代法解非线性方程组,将newton.m 保存到工作路径中: clear; clc x=[0,0]'; f=F(x); df=DF(x); fprintf('%d %.7f %.7f\n',0,x(1),x(2)); N=4; for i=1:N y=df\f'; x=x-y; f=F(x); df=DF(x); fprintf('%d %.7f %.7f\n',i,x(1),x(2)); if norm(y)<0.0000001 break ; else end end

运行结果如下: 0 0.0000000 0.0000000 1 0.8000000 0.8800000 2 0.9917872 0.9917117 3 0.9999752 0.9999685 4 1.0000000 1.0000000

Newton 法解非线性方程组

Newton法解非线性方程组 一.题目重述:编程实现非线性方程组的牛顿解法,并求解如下方程组。 3x1?cos x2x3?0.5=0 x12?81x2+0.12+sin x3+1.06=0 e?x1x2+20x3+10π?3 3 =0 二.算法: 非线性方程组的牛顿法为:给定初始解向量x(0),对于k≥1生成 x(k)=x(k?1)?J x k?1?1F(x(k?1)). 三.编程实现: 这里用MATLAB程序实现,建立三个文件如下: 1.函数F(X)文件 function F =F( X) F(1,1)=3*X(1)-cos(X(2)*X(3))-0.5; F(2,1)=X(1)^2-81*(X(2)+0.1)^2+sin(X(3))+1.06; F(3,1)=exp(-X(1)*X(2))+20*X(3)+(10*pi-3)/3; end 2.J(X) 函数(即Jacobian矩阵)文件 function F1= F1(X ) F1(1,:)=[3,sin(X(1)*X(2))*X(3),sin(X(1)*X(2))*X(2)]; F1(2,:)=[2*X(1),-162*(X(2)+0.1),cos(X(3))]; F1(3,:)=[exp(-X(1)*X(2))*(-X(2)),exp(-X(1)*X(2))*(-X(1)),20]; end 3.解题脚本文件 文件名zu %% 牛顿法解非线性方程组 clear; X0=[0.1;0.1;-0.1]; for i=1:200 X=X0-F1(X0)\F(X0); %这里采用MATLAB的左除方法,避免算逆矩阵X0=X; end X

非线性方程组牛顿迭代法(1)

华中师范大学 课程结业论文 题目:非线性方程组牛顿法及MATLAB程序 院系:数学与统计学学院 专业:数学与应用数学 年级:2014级 课堂名称:数值分析(1)实验 学生姓名:杨帅 学号:2014212643 2016年6月18

非线性方程组牛顿法及其MATLAB 程序 〔摘要〕学了《数值分析》这门课,了解到非线性方程的数值解法有:对分区间法、简单迭代法、Aitken-Steffensen 加速法、Newton 迭代法、正割法等,自然就会想到非线性方程组的数值解法有哪些呢?和非线性方程的数值解法有哪些不不同呢? 在研究非线性方程组的数值解法之前,首先要给非线性方程组下一个合理定义;n 个变量n 个方程(n>1)的方程组表示为0 ),...,,(2 1 =n i x x x f (其中i=1,2...,n ),若i f 中至少有一个是非线性函数,则称上述 的表示为非线性方程组。在R 中记,T n x x x f f ),...,,(2 1 =,其中记 ),...,()(1n i i i x x f x f f ==且D x ∈。 若存在尣∈D ,使?(尣)=0,则称尣为非线性方程组的解。上述方程组可能有一个解或多个解,也可能有无穷多解或无解。对非线性方程组解的存在性的研究远不如线性方程组那样成熟,现有的解法也不象线性方程组那样有效。除极特殊的方程外,一般不能用直接方法求得精确解,目前主要采用迭代法求近似解。根据不同思想构造收敛于解尣的迭代序列{尣}(k=0,1,…),即可得到求解非线性方程组的各种迭代法;但研究数学问题的时候,一般是由简单到复杂,由特殊到一般。因此要在研究非线性方程组牛顿解法的时候,首先要探究非线性方程的牛顿解法。 1.1求解线性方程组的牛顿法及其MATAB 程序 1.1.1程序设计思路 输入的量:初始值0 x 、近似根k x 的误差限tol ,近似根k x 的函数 值)(k x f 得误差限ftol ,迭代次数的最大值gxmax 、函数fnq (x )=) (x f

牛顿法解非线性方程组实验报告

实验名称: 牛顿法解非线性方程组 1 引言 我们已经知道,线性方程组我们可以采取Jacobi 迭代法,G-S 迭代法以及SOR 迭代方法求解。而在科学技术领域里常常提出求解非线性方程组的问题,例如,用非线性函数拟合实验数据问题、非线性网络问题,用差分法求解非线性微分方程问题等。 我们在解非线性方程组时,也考虑用迭代法求解,其思路和解非线性方程式一样,首先要将F(x)=0转化为等价的方程组 12(,,,),(1,2, )i i n x g x x x i n == 或者简记为x =g (x ),其中:,:n n n i g R R g R R →→ 112 2()()(),()n n n g x g x g R g x ???? ????????==∈???? ???????????? x x x x x 迭代法:首先从某个初始向量(0)x 开始,按下述逐次代入方法构造一向量序列(){}k x : (1)()() 1(,,),(1,2,,)k k k i i n x g x x i n +== 其中,()()() ()12 (,,,)k k k k T n x x x =x 。 或写成向量形式:(1)()(),(0,1,2,)k k g k +==x x 如果()*lim k k →∞ ≡x x (存在),称(){}k x 为收敛。且当()i g x 为连续函数时,可得 *()*(lim )()k k g g →∞ ==x x x 说明*x 为方程组的解。又称为x =g (x )的不动点。 本实验中采用牛顿迭代法来求解非线性方程组。 2 实验目的和要求 运用matlab 编写一个.m 文件,要求用牛顿法非线性方程组: 12(0)(1)()3211 cos 02,(取(0,0),要求10)1sin 0 2 T k k x x x x x x x +-∞ ?-=??=-

matlab程序设计实践-牛顿法解非线性方程

中南大学 MATLAB程序设计实践学长有爱奉献,下载填上信息即可上交,没有下载券 的自行百度。所需m文件照本文档做即可,即新建(FILE)→脚本(NEW-Sscript)→复制本文档代码→运行(会跳出 保存界面,文件名默认不要修改,保存)→结果。第 一题需要把数据文本文档和m文件放在一起。全部测 试无误,放心使用。本文档针对做牛顿法求非线性函 数题目的同学,当然第一题都一样,所有人都可以用。 ←记得删掉这段话 班级: 学号: 姓名: 一、《MATLAB程序设计实践》Matlab基础

表示多晶体材料织构的三维取向分布函数(f=f(φ1,φ,φ2))是一个非常复杂的函数,难以精确的用解析函数表达,通常采用离散空间函数值来表示取向分布函数,是三维取向分布函数的一个实例。由于数据量非常大,不便于分析,需要借助图形来分析。请你编写一个matlab程序画出如下的几种图形来分析其取向分布特征:(1)用Slice函数给出其整体分布特征; (2)用pcolor或contour函数分别给出(φ2=0, 5, 10, 15, 20, 25, 30, 35 … 90)切面上f分布情况(需要用到subplot函数);

(3) 用plot函数给出沿α取向线(φ1=0~90,φ=45,φ2=0)的f分布情况。

备注:数据格式说明 解: (1)将文件内的数据按照要求读取到矩阵f(phi1,phi,phi2)中,代码如下: fid=fopen(''); for i=1:18 tline=fgetl(fid); end phi1=1;phi=1;phi2=1;line=0; f=zeros(19,19,19); while ~feof(fid) tline=fgetl(fid); data=str2num(tline); line=line+1; if mod(line,20)==1 phi2=(data/5)+1; phi=1; 数据说明部分,与作图无关 此方向表示f 随着φ1从0,5,10,15, 20 …到90的变化而变化 此方向表示f 随着φ从0,5,10,15, 20 …到90的变化而变化 表示以下数据为φ2=0的数据,即f (φ1,φ,0)

matlab实现牛顿迭代法求解非线性方程组

matlab实现牛顿迭代法求解非线性方程组 已知非线性方程组如下 3*x1-cos(x2*x3)-1/2=0 x1^2-81*(x2+0.1)^2+sin(x3)+1.06=0 exp(-x1*x2)+20*x3+(10*pi-3)/3=0 求解要求精度达到0.00001 ———————————————————————————————— 首先建立函数fun 储存方程组编程如下将fun.m保存到工作路径中: function f=fun(x); %定义非线性方程组如下 %变量x1 x2 x3 %函数f1 f2 f3 syms x1 x2 x3 f1=3*x1-cos(x2*x3)-1/2; f2=x1^2-81*(x2+0.1)^2+sin(x3)+1.06; f3=exp(-x1*x2)+20*x3+(10*pi-3)/3; f=[f1 f2 f3]; ———————————————————————————————— 建立函数dfun 用来求方程组的雅克比矩阵将dfun.m保存到工作路径中: function df=dfun(x); %用来求解方程组的雅克比矩阵储存在dfun中 f=fun(x); df=[diff(f,'x1');diff(f,'x2');diff(f,'x3')]; df=conj(df'); ———————————————————————————————— 编程牛顿法求解非线性方程组将newton.m保存到工作路径中: function x=newton(x0,eps,N); con=0; %其中x0为迭代初值eps为精度要求N为最大迭代步数con用来记录结果是否收敛for i=1:N; f=subs(fun(x0),{'x1' 'x2' 'x3'},{x0(1) x0(2) x0(3)}); df=subs(dfun(x0),{'x1' 'x2' 'x3'},{x0(1) x0(2) x0(3)}); x=x0-f/df; for j=1: length(x0); il(i,j)=x(j); end if norm(x-x0)

牛顿法求解非线性方程组matlab源程序

牛顿法求解非线性方程组matlab源程序Newton-Raphson 求解非线性方程组matlab源程序 matlab程序如下: function hom [P,iter,err]=newton('f','JF',[;; ],,,1000); disp(P); disp(iter); disp(err); function Y=f(x,y,z) Y=[x^2+y^2+z^2-1; 2*x^2+y^2-4*z; 3*x^2-4*y+z^2]; function y=JF(x,y,z) f1='x^2+y^2+z^2-1'; f2='2*x^2+y^2-4*z'; f3='3*x^2-4*y+z^2'; df1x=diff(sym(f1),'x'); df1y=diff(sym(f1),'y'); df1z=diff(sym(f1),'z'); df2x=diff(sym(f2),'x'); df2y=diff(sym(f2),'y'); df2z=diff(sym(f2),'z'); df3x=diff(sym(f3),'x'); df3y=diff(sym(f3),'y'); df3z=diff(sym(f3),'z'); j=[df1x,df1y,df1z;df2x,df2y,df2z;df3x,df3y,df3z]; y=(j); function [P,iter,err]=newton(F,JF,P,tolp,tolfp,max) %输入P为初始猜测值,输出P则为近似解 %JF为相应的Jacobian矩阵 %tolp为P的允许误差 %tolfp为f(P)的允许误差 %max:循环次数 Y=f(F,P(1),P(2),P(3)); for k=1:max

数值分析求解非线性方程根的二分法,简单迭代法和牛顿迭代法

实验报告一:实验题目 一、 实验目的 掌握求解非线性方程根的二分法、简单迭代法和牛顿迭代法,并通过数值实验比较两种方法的收敛速度。 二、 实验内容 1、编写二分法、牛顿迭代法程序,并使用这两个程序计算 02)(=-+=x e x x f 在[0, 1]区间的解,要求误差小于 4 10- ,比较两种方法收敛速度。 2、在利率问题中,若贷款额为20万元,月还款额为2160元,还期为10年,则年利率为多少?请使用牛顿迭代法求解。 3、由中子迁移理论,燃料棒的临界长度为下面方程的根cot x =(x 2?1)/2x ,用牛顿迭代法求这个方程的最小正根。 4、用牛顿法求方程f (x )=x 3?11x 2+32x ?28=0的根,精确至8位有效数字。比较牛顿迭代法算单根和重根的收敛速度,并用改进的牛顿迭代法计算重根。 三、 实验程序 第1题: 02)(=-+=x e x x f 区间[0,1] 函数画图可得函数零点约为0.5。 画图函数: function Test1() % f(x) 示意图, f(x) = x + exp(x) - 2; f(x) = 0 r = 0:0.01:1; y = r + exp(r) - 2 plot(r, y); grid on 二分法程序: 计算调用函数:[c,num]=bisect(0,1,1e-4) function [c,num]=bisect(a,b,delta) %Input –a,b 是取值区间范围 % -delta 是允许误差 %Output -c 牛顿迭代法最后计算所得零点值 % -num 是迭代次数

ya = a + exp(a) - 2; yb = b + exp(b) - 2; if ya * yb>0 return; end for k=1:100 c=(a+b)/2; yc= c + exp(c) - 2; if abs(yc)<=delta a=c; b=c; elseif yb*yc>0 b=c; yb=yc; else a=c; ya=yc; end if abs(b-a)

非线性方程组的牛顿迭代法的应用

CENTRAL SOUTH UNIVERSITY 数值分析实验报告

非线性方程组的牛顿迭代法的应用 一、问题背景 非线性是实际问题中经常出现的,并且在科学与工程计算中的地位越来越重要,很多我们熟悉的线性模型都是在一定条件下由非线性问题简化的,为得到更符合实际的解答,往往需要直接研究非线性科学,它是21世纪科学技术发展的重要支柱,非线性问题的数学模型有无限维的如微分方程,也有有限维的。道遥咏计算机进行科学计算都要转化为非线性的单个方程或方程组的求解。从线性到非线性是一个质的变化,方程的性质有本质不同,求解方法也有很大差别。本文主要介绍的是非线性方程组的牛顿迭代法的数值解法。 二、数学模型 对于方程()0=x f ,如果()x f 湿陷性函数,则它的求根是容易的。牛顿法实质上是一种线性化方法,其基本思想是将线性方程()0=x f 逐步归结为某种线性方程来求解。 设已知方程()0=x f 有近似根k x (假定()0'≠k x f ),将函数()x f 在点k x 展开,有 ()()()()k k k x x x f x f x f -+≈', 于是方程()0=x f 可近似地表示为 ()()()0'=-+k k k x x x f x f 这是个线性方程,记其根为1+k x ,则1+k x 的计算公式 ()() k k k k x f x f x x ' 1- =+, ,1,0=k 这就是牛顿法。 三、算法及流程 对于非线性方程 ()()()???? ????????=n n n n x L x x f M x L x x f x L x x f f ,,,,,,,,,2 1212211 在()k x 处按照多元函数的泰勒展开,并取线性项得到

经典Newton-Raphson牛顿法求解非线性方程组matlab源程序

function hom [P,iter,err]=newton('f','JF',[7.8e-001;4.9e-001;3.7e-001],0.01,0.001,1000); disp(P); disp(iter); disp(err); function Y=f(x,y,z) Y=[x^2+y^2+z^2-1; 2*x^2+y^2-4*z; 3*x^2-4*y+z^2]; function y=JF(x,y,z) f1='x^2+y^2+z^2-1'; f2='2*x^2+y^2-4*z'; f3='3*x^2-4*y+z^2'; df1x=diff(sym(f1),'x');

df1y=diff(sym(f1),'y'); df1z=diff(sym(f1),'z'); df2x=diff(sym(f2),'x'); df2y=diff(sym(f2),'y'); df2z=diff(sym(f2),'z'); df3x=diff(sym(f3),'x'); df3y=diff(sym(f3),'y'); df3z=diff(sym(f3),'z'); j=[df1x,df1y,df1z;df2x,df2y,df2z;df3x,df3y,df3z]; y=(j); function [P,iter,err]=newton(F,JF,P,tolp,tolfp,max) %输入P为初始猜测值,输出P则为近似解%JF为相应的Jacobian矩阵 %tolp为P的允许误差 %tolfp为f(P)的允许误差 %max:循环次数

Y=f(F,P(1),P(2),P(3)); for k=1:max J=f(JF,P(1),P(2),P(3)); Q=P-inv(J)*Y; Z=f(F,Q(1),Q(2),Q(3)); err=norm(Q-P); P=Q; Y=Z; iter=k; if (err function homework4 [P,iter,err]=newton('f','JF',[7.8e-001;4.9e-001;3.7e-001],0.01,0.001,1000);

相关主题
文本预览
相关文档 最新文档