当前位置:文档之家› 第二章 矩阵运算和行列式

第二章 矩阵运算和行列式

线性代数与空间解析几何电子教案网络版第二章矩阵运算和行列式

§2.1矩阵及其运算

§2.2方阵的行列式

§2.3行列式的性质及计算

§2.4 逆矩阵

§2.5矩阵的分块运算

说明: 由于PowerPoint软件版本差异, 在您的电脑上浏览本电子课件可能有些

内容出现会出现异常.

——课件作者:张小向

第二章矩阵运算和行列式§2.1 矩阵及其运算

一. 矩阵与向量

1. m n矩阵

元素: a

ij (i= 1, ..., m, j= 1, ..., n) a11a12 (1)

a21a22 (2)

… … … …

a m1a m2… a mn

注: 元素都是实(复)数的矩阵称为实(复)矩阵.

今后除非特别说明, 我们所考虑的矩阵都是实矩阵.

例1. 某厂家向三个代理商发送四种产品. 南京苏州常州啤酒(瓶装)

20

16200180190

啤酒(易拉罐)

5020

100120100干啤3016

150160140生啤2516180150150

重量

(Kg/箱)

单价(元/箱)数量(箱)A =20 50 30 2516 20 16 16B =200 180 190100 120 100150 160 140

180 150 150

例2. 四个城市间的单向航线如图所示. 若a ij 表示从i 市

到j 市航线的条数, 则右图可用矩阵表示为

1 4

2 3

A = (a ij ) =0 1 1 1

1 0 0 00 1 0 0

1 0 1 0例3. 直线的一般方程

A 1x +

B 1y +

C 1z +

D 1= 0

A 2x +

B 2y +

C 2z +

D 2= 0

A 1

B 1

C 1A 2B 2C 2

系数矩阵

3. 向量

n维行向量: 1?n矩阵[a1, a2, …, a n]

n维列向量: n?1矩阵a1 a2…

a n

第i分量: a

i (i= 1, …, n)

n阶方阵: n?n矩阵2. 方阵

4. 两个矩阵的行数相等, 列数也相等时, 称

它们是同型矩阵.

5. 若两个同型矩阵A = [a ij]m?n与B = [b ij]m?n

满足: 对于任意的1≤i≤m, 1≤j≤n,

a ij=

b ij都成立, 则称这两个矩阵相等, 记

为A= B.

二. 矩阵的线性运算

1. 加法

]m?n与B = [b ij]m?n的两个同型矩阵A = [a

ij

和C定义为: C= [c

]m?n= [a ij+b ij]m?n.

ij

注: ①若矩阵A= (a

)m?n的元素都是零, 则称之

ij

.

为零矩阵, 记为O

m?n

在不引起混淆的情况下, 简记为O.

)m?n, 记-A= (-a ij)m?n , 称

②设矩阵A= (a

ij

之为A的负矩阵.

③设A, B是同型矩阵, 则它们的差定义为

A+ (-B). 记为A-B.

即A-B= A+ (-B).

2. 数乘

设矩阵A = (a ij )m ?n , 数k 与A 的乘积定义为

(k a ij )m ?n ,

记为k A 或A k .

注: 矩阵加法和数乘运算统称为矩阵的线性运

算.

即k A = A k =k a 11k a 12… k a 1n k a 21k a 22… k a 2n … … … …

k a m 1k a m 2… k a mn

3. 性质

定理2.1设A, B, C, O是同型矩阵, k, l是数, 则

(1) A+ B= B+ A,

(2) (A+ B) + C= A+ (B+ C),

(3) A+ O= A,

(4) A+ ( A) = O,

(5) 1A= A,

(6) k(lA) = (kl)A,

(7) (k + l)A= kA+ lA,

(8) k(A+ B) = kA+ kB.

三. 矩阵与矩阵相乘

例4. 某厂家向三个代理商发送四种产品.

南京苏州常州

啤酒(瓶装)2016200180190

啤酒(易拉罐)5020100120100

干啤3016150160140

生啤2516180150150

180001815016750

10480102409680

数量(箱)

总价(元)总重(Kg)重量(Kg/箱)单价(元/箱)A =20 50 30 2516 20 16 16B =200 180 190100 120 100150 160 140

例5. 四个城市间的单向航线如图所示. 若a ij 表示从i 市直达j 市航线的条数, 则右图可用矩阵表示为

14

23A = (a ij ) =0 1 1 11 0 0 00 1 0 0

1 0 1 0

若b ij 表示从i 市经另外一个城市到j 市航线的条数, 则由右图可得矩阵B = (b ij ) = 2 1 1 00 1 1 11 0 0 0

0 2 1 11

234i j

1. 设A = (a ij )m ?s ,B =(b ij )s ?n , 则A 与B 的乘积是一个m ?n 矩阵C = (c ij )m ?n , 其中

c ij = a i 1b 1j + a i 2b 2j +…+ a i s b s j = ∑a i k b k j . k =1s

记为C = AB . 称AB 为“以A 左乘B ” 或“以B 右乘A ”.

a 11

b 11+a 12b 21+a 13b 31a 11b 12+a 12b 22+a 13b 32

a 21

b 11+a 22b 21+a 23b 31a 21b 12+a 22b 22+a 23b 32

=a 11a 12a 13a 21a 22a 23b 11b 12b 21b 22b 31b 32

2. 矩阵乘积的特殊性

(1)只有当矩阵A的列数等于矩阵B的行数时,

乘积AB才有意义.

(2)若A是一个m?n矩阵, 与B是一个n?m矩阵,

则AB和BA都有意义. 但AB是一个m阶方

阵, BA是一个n阶方阵. 当m ≠n时, AB 与

BA谈不上相等不相等.

即使m= n, AB与BA是同阶方阵也未必相.

例如:

1 1 -2-

2 -2 4 1 2-1 00 1

1 1 -2-

2 -2 4 1 2-1 00 1=0 00 0-

3 -3 6-1 -1 2-2 -2 4

=1 -1-2 2

1 21 2=0 00 0

1 -1-

2 2

1 2

1 2=-33

-33

定理2.2设k 是数, 矩阵A , B , C 使以下各式中

一端有意义, 则另一端也有意义并且

等式成立

(1) (AB )C = A (BC ),

(2) A (B +C ) = AB + AC ,

(A +B )C = AC +BC ,

(3) (kA )B = k (AB ).

对于(1)的证明, 我们先来看一个具体的例子:

a 11a 12a 13a 21a 22a 23如A = ,

b 11b 12b 21b 22b b B = ,

c 11c 12c 21c 22C =.

a11b11+a12b21+a13b31a11b12+a12b22+a13b32

a21b11+a22b21+a23b31a21b12+a22b22+a23b32 AB=

BC=b11c11+b12c21b11c12+b12c22 b21c11+b22c21b21c12+b22c22 b31c11+b32c21b31c12+b32c22

a11a12a13

a21a22a23

A= ,

b11b12

b21b22

b b

B= ,

c11c12

c21c22

C=.

我们比较(AB)C和A(BC)的“规格”以及它们的第一行第一列处的元素.

一般地, 设A = [a ij ]m ?k , B = [b ij ]k ?s , C = [c ij ]s ?n , AB = U = [u ij ]m ?s , BC = V = [v ij ]k ?n ,

则(AB )C = UC 与A (BC ) = AV 都是m ?n 矩阵, 且(AB )C = UC 的(i , j )元素是

它恰好是A (BC ) = AV 的(i , j )元素.

可见(AB )C = A (BC ). ∑u iq c qj q =1s = ∑[(∑a ip b pq )c qj ] q =1s p =1k = ∑(∑a ip b pq c qj ) q =1s p =1k = ∑(∑a ip b pq c qj ) q =1s p =1k = ∑[a ip (∑b pq c qj )] q =1s p =1k = ∑a ip v pj p =1

k

结合律的妙用之一设A = BC , 其中B = , C = [1 2 3],

1

231 2 3

2 4 6 ,

3 6 9

则A = 我们可以定义A 的正整数幂

(还有“妙用之二”喔~~~!)A 1= A , A 2= AA , …, A k +1= A k A ,

对于这里的A , A 2005= ?

当然, 对于任意方阵A , 都可以像上面这样去定义A 的正整数幂. 而且有如下结论

A k A l= A k+l, (A k)l= A kl

(AB)k= A k B k

但即使A与B是同阶方阵,

也未必成立!

注: 不能说

“因为AB= BA未必成立, 所以(AB)k= A k B k 未必成立”.

例如A= 0 1

0 0

,B=

1 0

0 0

,AB=

0 0

0 0

,

BA=0 1

0 0

,AB BA, 但(AB)k= A k B k成立.

(AB)k= A k B k

要说明即使A与B是同阶方阵,

也未必成立, 只要举出一个反例即可.

例如A=1 1

0 0

,B=

1 0

1 0

,AB=

2 0

0 0

,

A2= 1 1

0 0

= A,当然这里AB BA B2=

1 0

1 0

=B,

(AB)2= 4 0

0 0,A2B2= AB=

2 0

0 0

, =

1 1

1 1

.

(完整版)第二章矩阵及其运算作业及答案

第二部分 矩阵及其运算作业 (一)选择题(15分) 1.设,均为n 阶矩阵,且,则必有( )A B 22 ()()A B A B A B +-=-(A) (B) (C) (D) A B =A E =AB BA =B E =2.设,均为n 阶矩阵,且,则和( ) A B AB O =A B (A)至多一个等于零 (B)都不等于零 (C) 只有一个等于零 (D) 都等于零 3.设,均为n 阶对称矩阵,仍为对称矩阵的充分必要条件是( ) A B AB (A) 可逆 (B)可逆 (C) (D) A B 0AB ≠AB BA =4.设为n 阶矩阵,是的伴随矩阵,则=( ) A A *A A *(A) (B) (C) (D) 1n A -2n A -n A A 5.设,均为n 阶可逆矩阵,则下列公式成立的是( ) A B (A) (B) ()T T T AB A B =()T T T A B A B +=+(C) (D) 111()AB A B ---=111 ()A B A B ---+=+(二)填空题(15分) 1.设,均为3阶矩阵,且,则= 。 A B 1 ,32A B ==2T B A 2.设矩阵,,则= 。 1123A -?? = ???232B A A E =-+1B -3.设为4阶矩阵,是的伴随矩阵,若,则= 。 A A *A 2A =-A *4.设,均为n 阶矩阵,,则= 。 A B 2,3A B ==-12A B *-5.设,为整数,则= 。 101020101A ? ? ?= ? ??? 2n ≥12n n A A --(三)计算题(50分) 1. 设,,且,求矩阵。 010111101A ?? ?=- ? ?--??112053B -? ? ? = ? ??? X AX B =+X

矩阵的运算及其运算规则

矩阵基本运算及应用 201700060牛晨晖 在数学中,矩阵是一个按照长方阵列排列的复数或实数集合。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。在电力系统方面,矩阵知识已有广泛深入的应用,本文将在介绍矩阵基本运算和运算规则的基础上,简要介绍其在电力系统新能源领域建模方面的应用情况,并展望随机矩阵理论等相关知识与人工智能电力系统的紧密结合。 1矩阵的运算及其运算规则 1.1矩阵的加法与减法 1.1.1运算规则 设矩阵,, 则

简言之,两个矩阵相加减,即它们相同位置的元素相加减! 注意:只有对于两个行数、列数分别相等的矩阵(即同型矩阵),加减法运算才有意义,即加减运算是可行的. 1.1.2运算性质 满足交换律和结合律 交换律; 结合律. 1.2矩阵与数的乘法 1.2.1运算规则 数乘矩阵A,就是将数乘矩阵A中的每一个元素,记为或. 特别地,称称为的负矩阵. 1.2.2运算性质 满足结合律和分配律 结合律:(λμ)A=λ(μA);(λ+μ)A =λA+μA. 分配律:λ(A+B)=λA+λB.

已知两个矩阵 满足矩阵方程,求未知矩阵. 解由已知条件知 1.3矩阵与矩阵的乘法 1.3.1运算规则 设,,则A与B的乘积是这样一个矩阵: (1) 行数与(左矩阵)A相同,列数与(右矩阵)B相同,即 . (2) C的第行第列的元素由A的第行元素与B的第列元素对应相乘,再取乘积之和.

矩阵及其运算测试题

第二章 矩阵及其运算测试题 一、选择题 1.下列关于矩阵乘法交换性的结论中错误的是( )。 (A)若A 是可逆阵,则1A -与1A -可交换; (B)可逆矩阵必与初等矩阵可交换; (C)任一n 阶矩阵与n cE 的乘法可交换,这里c 是常数; (D)初等矩阵与初等矩阵的乘法未必可交换。 2.设n (2n ≥)阶矩阵A 与B 等价,则必有( ) (A) 当A a =(0a ≠)时,B a =; (B)当A a =(0a ≠)时,B a =-; (C) 当0A ≠时,0B =; (D)当0A =时,0B =。 3.设A 、B 为方阵,分块对角阵00A C B ??= ??? ,则* C =( )。 (A) **00 A B ?? ??? (B) **||00 ||A A B B ?? ??? (C) **||00||B A A B ?? ??? (D) **||||0 0||||A B A A B B ?? ??? 4.设A 、B 是n (2n ≥)阶方阵,则必有( )。 (A)A B A B +=+ (B)kA k A = (C) A A B B =-g (D) AB A B = 5.设4阶方阵 44(),()||,ij A a f x xE A ?==-其中E 是4阶单位矩阵,则()f x 中3 x 的系数为( )。 (A)11223344()a a a a -+++ (B)112233112244223344113344a a a a a a a a a a a a +++ (C) 11223344a a a a (D)11223344a a a a +++ 6.设A 、B 、A B +、11A B --+均为n 阶可逆矩阵,则1()A B -+为( )。 (A) 11A B --+ (B) A B + (C) 111()A B ---+ (D)11111()B A B A -----+

线性代数行列式算与性质

线性代数行列式的计算与性质 行列式在数学中,是一个函数,其定义域为的矩阵,取值为一个标量,写作或。行列式可以看做是有向面积或体积的概 念在一般的欧几里得空间中的推广。或者说,在维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现了线性自同态和矢量组的行列式的定义。 行列式的特性可以被概括为一个多次交替线性形式,这个本质使得行列式在欧几里德空间中可以成为描述“体积”的函数。 矩阵 A 的行列式有时也记作 |A|。绝对值和矩阵范数也使用这个记法,有可能和行列式的记法混淆。不过矩阵范数通常以双垂直线来表示(如: ),且可以使用下标。此外,矩阵的绝对值是没有定义的。因此,行 列式经常使用垂直线记法(例如:克莱姆法则和子式)。例如,一个矩阵: A= ? ? ? ? ? ? ? i h g f e d c b a , 行列式也写作,或明确的写作: A= i h g f e d c b a , 即把矩阵的方括号以细长的垂直线取代 行列式的概念最初是伴随着方程组的求解而发展起来的。行列式的提出可以追溯到十七世纪,最初的雏形由日本数学家关孝和与德国数学家戈特弗里德·莱布尼茨各自独立得出,时间大致相同。

矩阵行列式的概念与运算

知识点总结: 一、矩阵的概念与运算 1、 矩阵1112 132122 23a a a a a a ?? ??? 中的行向量是()111213a a a a =r ,()2122 23b a a a =r ; 2、 如:1112131112111221222321222122,,c c c a a b b A B C c c c a a b b ?? ???? === ? ? ??????? ,那么 11111212111221212222212233,333a b a b a a A B A a b a b a a ++???? +== ? ? ++????, 1111122111121222 111312232111222121122222 21132223a c a c a c a c a c a c AC a c a c a c a c a c a c +++?? = ?+++?? 矩阵加法满足交换律和结合律,即如果,,A B C 是同阶的矩阵,那么有: ,()()A B B A A B C A B C +=+++=++。 同理如果矩阵,A B 是两个同阶矩阵,那么将它们对应位置上的元素相减所得到的矩阵C 叫做矩阵A 与B 的差,记作C A B =-。 实数与矩阵的乘法满足分配律:即()a A B aA aB +=+。 矩阵对乘法满足:()A B C AB AC +=+,()B C A BA CA +=+,()()()a AB aA B A aB == ()()AB C A BC = 3、 矩阵乘法不满足交换率,如111 11 11 122222222.a b c d c d a b a b c d c d a b ????????≠ ??? ??????????? 矩阵乘法能进行的条件是左边的矩阵A 的列数与右边矩阵B 的行数相等,而且矩阵的乘法不满足交换率,不满足消去律。 二、行列式概念及运算 1.用记号 2 2 11b a b a 表示算式1221b a b a -,即 2 2 11b a b a =1221b a b a -,其中 2 2 11b a b a 叫做二阶行列 式;算式1221b a b a -叫做二阶行列式的展开式;其计算结果叫做行列式的值;2121,,,b b a a 都叫做行列式的元素.利用对角线 2 2 11b a b a 可把二阶行式写成它的展开式,这种方法叫做二阶行列式 展开的对角线法则;即在展开时用主对角线元素的乘积减去副对角线元素的乘积. 2.二元一次方程组的解 二元一次方程组???=+=+222 1 11c y b x a c y b x a (其中2121,,,b b a a 不全为零);记 2 211b a b a 叫做方程组的系数

第二章矩阵及其运算作业及答案

第二部分 矩阵及其运算作业 (一)选择题(15分) 1.设A ,B 均为n 阶矩阵,且22()()A B A B A B +-=-,则必有( ) (A) A B = (B) A E = (C) AB BA = (D) B E = 2.设A ,B 均为n 阶矩阵,且AB O =,则A 和B ( ) (A)至多一个等于零 (B)都不等于零 (C) 只有一个等于零 (D) 都等于零 3.设A ,B 均为n 阶对称矩阵,AB 仍为对称矩阵的充分必要条件是( ) (A) A 可逆 (B)B 可逆 (C) 0AB ≠ (D) AB BA = 4.设A 为n 阶矩阵,A *是A 的伴随矩阵,则A *=( ) (A) 1n A - (B) 2n A - (C) n A (D) A 5.设A ,B 均为n 阶可逆矩阵,则下列公式成立的是( ) (A) ()T T T AB A B = (B) ()T T T A B A B +=+ (C) 111()AB A B ---= (D) 111()A B A B ---+=+ (二)填空题(15分) 1.设A ,B 均为3阶矩阵,且1 ,32A B ==,则2T B A = 。 2.设矩阵1123A -??= ??? , 232B A A E =-+,则1B -= 。 3.设A 为4阶矩阵,A *是A 的伴随矩阵,若2A =-,则A *= 。 4.设A ,B 均为n 阶矩阵,2,3A B ==-,则12A B *-= 。 5.设101020101A ? ? ?= ? ??? ,2n ≥为整数,则12n n A A --= 。 (三)计算题(50分) 1. 设010111101A ?? ?=- ? ?--??,112053B -?? ?= ? ??? ,且X AX B =+,求矩阵X 。

高中数学(矩阵行列式)综合练习含解析

高中数学(矩阵行列式)综合练习含解析 1.定义运算?? ????++=?????????????df ce bf ae f e d c b a ,如??? ???=?????????????1514543021.已知πβα=+, 2 π βα=-,则=? ? ? ???????? ??ββααααsin cos sin cos cos sin ( ). A. 00?? ???? B. 01?????? C. 10?????? D. 11?????? 2.定义运算 a b ad bc c d =-,则符合条件 120 121z i i i +=--的复数z 对应的点在 ( ) A.第四象限 B.第三象限 C.第二象限 D.第一象限 3.矩阵E =??? ? ??1001的特征值为( ) A. 1 B. 2 C. 3 D. 任意实数 4. 若行列式21 24 1 013 9x x =-,则=x . 5.若2021310x y -??????= ??? ?-?????? ,则x y += . 6.已知一个关于y x ,的二元一次方程组的增广矩阵为112012-?? ??? ,则 x y -=_______. 7.矩阵1141?? ???? 的特征值为 . 8.已知变换100M b ?? =? ??? ,点(2,1)A -在变换M 下变换为点(,1)A a ',则a b += 9.配制某种注射用药剂,每瓶需要加入葡萄糖的量在10ml 到110ml 之间,用0.618 法寻找最佳加入量时,若第一试点是差点,第二试点是好点,则第三次试验时葡萄糖的加入量可以是 ; 10.已知 , ,则y= . 11.若2211 x x x y y y =--,则______x y +=

上海版教材 矩阵与行列式习题(有问题详解)

矩阵、行列式和算法(20131224) 成绩 一、填空题 1.行列式 cos sin 3 6 sin cos 3 6 π π π π 的值是 . 2.行列式 a b c d (,,,{1,1,2}a b c d ∈-)的所有可能值中,最大的是 . 3.将方程组203253x y z x y =?? +=??+=? 写成系数矩阵形式为 . 4.若由命题A :“ 2 2031x x ”能推出命题B :“x a >”,则a 的取值围是 . 5.若方程组111 222a x b y c a x b y c +=??+=?的解为2,1==y x ,则方程组 ?? ?=++=++03520 352222 111c y a x b c y a x b 的解为x = ,y = . 6.方程21 24 1 013 9 x x ≤-的解集为 . 7.把 22111133 33 22 2 4 x y x y x y x y x y x y +- 表示成一个三阶行列式为 . 8.若ABC ?的三个顶点坐标为(1,2),(2,3),(4,5)A B C ----, 其面积为 .

9.在函数()211 1 2 x f x x x x x -=--中3x 的系数是 . 10.若执行如图1所示的框图,输入12341,2,4,8,x x x x ====则输出的数等于 . 11.矩阵的一种运算,???? ??++=???? ??????? ??dy cx by ax y x d c b a 该运算的几何意义为平面上的点),(y x 在矩阵??? ? ??d c b a 的作用下 变换成点(,)ax by cx dy ++,若曲线10x y +-=在矩阵??? ? ??11b a 的作用下变换成曲线10x y --=,则a b +的值为 . 12.在集合{}1,2,3,4,5中任取一个偶数a 和奇数b 构成以原点为起点的向量(),a b α=.从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形,记所有作成的平行四边形的个数为n ,其中面积不超过...4的平行四边形的个数为m ,则m n = 二.选择题 13.系数行列式0D =是三元一次方程组无解的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充分必要条件 D. 既非充分也非必 要条件 14.下列选项中错误的是( ). A. b d a c d b c a - = B. a b c d d b c a = C. d c d b c a 33++ d c b a = D. d c b a d b c a ----- =

第一章行列式与矩阵计算练习(含答案)

行列式及矩阵的计算(课堂练习) 一、填空 1.已知三阶方阵A 的行列式为3,则 2A -= -24 2. 设12,01A -?? = ???1()32x g x x -= -+,则()g A =0800-?? ??? 3.设,,αβγ为3维列向量,记矩阵(,,),(,,)A B αβγαββγγα==+++,若 3,A B =则=,,,,6αβγ βγα+= 4.行列式1 1 1 11 1 11 ---x 的展开式中,x 的系数是 2 . 5.设???? ??=1201A 则=k A 1021k ?? ??? 。(k 为正整数). 6.设321,,ααα,21,ββ都是四维列向量,且四阶行列式1123,,,m αααβ=, 1232,,,n αααβ=,则12312,,,2αααββ-=16m n + 解:11231232,,,2,,,D αααβαααβ=+- 14412312322,,,(1),,,16m n αααβαααβ=+-=+ 7. 已知四阶行列式D 中第三列元素分别为1,3,-2,2,它们对应的余子式分 别为3,-2,1,1,则行列式D =-3 .

解:D =1×3+3×(-2)+(-2)×1+2×1=-3 二、判断题 1.设A 、B 均为n 阶方阵,则A B A B =. ( × ) 2.设A 、B 均为n 阶方阵,则AB A B =. (√ ) 三、行列式计算 (1)4 3 3 3 34333 343 3334 Λ ΛΛΛΛΛΛ ΛΛ=n D 解: n D n c c c c c c +++13121M 4 3 3 1 334313334133331 3Λ ΛΛΛΛΛΛΛΛ++++n n n n 1 1312r r r r r r n ---M 1 01000 0103 3313Λ ΛΛΛΛΛΛΛΛ+n =13+n (2)11111231 149118271 D --=-- 解:(范得蒙行列式)=(-1-3)(-1+2)(-1-1)(3+2)(3-1)(-2- 1)=-240 五、a 为何值时,线性方程组:??? ??-=++=++=++a ax x x x ax x x x x a 322321 321321有唯一解? 解:2 )1)(2(11111 1det -+==a a a a a A ,2-≠a 且1≠a 时,有唯一解.

63、矩阵、行列式的运算及性质

第62课矩阵、行列式的运算及性质 【教学目标】 1. 理解矩阵的概念,掌握矩阵的算法,会利用矩阵解线性方程组。 2. 理解行列式的概念,掌握行列式的算法,会利用行列式判断二元(三元)一次方程组解的情况,了解三阶行列式的性质并能运用于计算。 【教学难点】 1. 会利用矩阵解线性方程组 2. 利用行列式判断二元(三元)一次方程组解的情况。 【教学重点】 1.用矩阵表示实际问题中的相关量,运用矩阵的运算解决实际问题。 2.二阶(三阶)行列式的算法, 利用行列式判断二元(三元)一次方程组解的情 况。 【知识整理】 1.矩阵是一个数表,可以用来表示块状数据; 2.矩阵的运算,如:加法、减法、数乘、乘法等; 3.矩阵的基本变换。 4.行列式是表示特定算式的记号,其结果是一个数; 5.对于给定的方程组,能正确找出D 、x D 、y D ,并根据它们的值判断方程组解的情况,或写出方程组的解。 【例题解析】 【属性】高三,矩阵,矩阵,解答题,中,运算 【题目】已知矩阵2 793 1 5A ??= ?--?? ,3 14 026B -?? ?= ? ?-? ?,641 1103C -?? ? = ? ?-? ? ,计算: (1)()A B C +; (2)()B C A +; (3)B A C A +; (4)从上述计算结果中你能得到什么结论? 【解答】(1)11 110()24 13A B C ?? += ?-?? ;(2)15 1842()23 46101311 33B C A ---?? ?+=-- ? ?---? ? ;(3)15 184223 46101311 33BA CA ---?? ?+=-- ? ?---? ? ; (4)矩阵运算不满足交换率,但满足分配率。 【属性】高三,矩阵,矩阵,解答题,中,运算 【题目】一家水果店出售5种水果,它们的单价和利润如表1所示。该家水果店的经理要在计算 每笔生意营业额的同时,计算该笔生意的利润额。假设现有3位顾客购买水果,他们的购买量如表2所示。试计算每笔生意的营业额和利润额。 表1: 表2:

矩阵的运算及其运算规则

矩阵的运算及其运算规则 一、矩阵的加法与减法 1、运算规则 设矩阵,, 则 简言之,两个矩阵相加减,即它们相同位置的元素相加减! 注意:只有对于两个行数、列数分别相等的矩阵(即同型矩阵),加减法运算才有意义,即加减运算是可行的. 2、运算性质(假设运算都是可行的) 满足交换律和结合律 交换律; 结合律. 二、矩阵与数的乘法 1、运算规则

数乘矩阵A,就是将数乘矩阵A中的每一个元素,记为或.特别地,称称为的负矩阵. 2、运算性质 满足结合律和分配律 结合律:(λμ)A=λ(μA);(λ+μ)A =λA+μA. 分配律:λ(A+B)=λA+λB. 典型例题 例6.5.1已知两个矩阵 满足矩阵方程,求未知矩阵. 解由已知条件知 三、矩阵与矩阵的乘法 1、运算规则

设,,则A与B的乘积是这样一个矩阵: (1) 行数与(左矩阵)A相同,列数与(右矩阵)B相同,即. (2) C的第行第列的元素由A的第行元素与B的第列元素对应相乘,再取乘积之和. 典型例题 例6.5.2设矩阵 计算 解是的矩阵.设它为 想一想:设列矩阵,行矩阵,和的行数和列数分别是多少呢 是3×3的矩阵,是1×1的矩阵,即只有一个元素. 课堂练习

1、设,,求. 2、在第1道练习题中,两个矩阵相乘的顺序是A在左边,B在右边,称为A左乘B 或B右乘A.如果交换顺序,让B在左边,A在右边,即A右乘B,运算还能进行吗?请算算试试看.并由此思考:两个矩阵应当满足什么条件,才能够做乘法运算. 3、设列矩阵,行矩阵,求和,比较两个计算结果,能得出什么结论吗? 4、设三阶方阵,三阶单位阵为,试求和,并将计算结果与A比较,看有什么样的结论. 解: 第1题 . 第2题 对于

第二章矩阵及其运算

第二章矩阵及其运算 第一节矩阵及其运算 一.数学概念 定义1.1由个数排成m行n列的数表 称为m行n列的矩阵,简称矩阵,记作 二.原理,公式和法则 1.矩阵的加法 (1) 公式 (2) 运算律 2.数乘矩阵 (1) 公式

(2) 运算律 3.矩阵与矩阵相乘 (1) 设, 则其中,且 。 (2)运算符(假设运算都是可行的): (3)方阵的运算 注意:①矩阵乘法一般不满足交换律。 ②一般 4.矩阵的转置 (1)公式

这里为A的转置矩阵。 (2)运算律 5.方阵的行列式 (1)公式 设A为n阶方阵,为A的行列式。 (2)运算律

6.共轭矩阵 (1)公式设为复矩阵,表示为的共轭复数,则为方阵的共轭矩阵。 (2)运算律(设A,B为复矩阵,为复数,且运算都是可行的): 第二节逆矩阵 一.数学概念 定义2.1设A为n阶方阵,若存在一个n阶方阵B使,则称矩阵A 是可逆的,并把矩阵称为A的逆矩阵。 1.可逆矩阵又称为非奇异矩阵。 2.不可逆矩阵又称为奇异矩阵。 二.原理,公式和法则 1. 定理 2.1方阵A可逆的充分必要条件是,且,其中 为A的伴随矩阵。 推论若AB=E(或BA=E)则B=A-1。 性质逆矩阵是唯一的。 2.运算律

①若A可逆,则A-1亦可逆,且。 ②若A可逆,数,则λA可逆,且。 ③若A,B为同阶矩阵且均可逆,则AB亦可逆,且 ④若A可逆,则A T亦可逆,且 第三节分块矩阵 一.数学概念 分块矩阵:用若干条横线和竖线将矩阵A分成若干小块,每一小块称为矩阵的子块,以子块为元素的矩阵为分块矩阵。 1.一般分块 2.按行分块

矩阵行列式的概念与运算(标准答案)

矩阵、行列式的概念与运算 知识点总结: 一、矩阵的概念与运算 1、 矩阵1112 132122 23a a a a a a ?? ??? 中的行向量是()111213a a a a =r ,()2122 23b a a a =r ; 2、 如:111213111211122122 2321222122,,c c c a a b b A B C c c c a a b b ?? ???? === ? ? ? ?????? ,那么 11111212111221212222212233,333a b a b a a A B A a b a b a a ++???? +== ? ? ++????, 1111122111121222 111312232111222121122222 21132223a c a c a c a c a c a c AC a c a c a c a c a c a c +++?? = ?+++?? 矩阵加法满足交换律和结合律,即如果,,A B C 是同阶的矩阵,那么有: ,()()A B B A A B C A B C +=+++=++。 同理如果矩阵,A B 是两个同阶矩阵,那么将它们对应位置上的元素相减所得到的矩阵C 叫做矩阵A 与B 的差,记作C A B =-。 实数与矩阵的乘法满足分配律:即()a A B aA aB +=+。 矩阵对乘法满足:()A B C AB AC +=+,()B C A BA CA +=+,()()()a AB aA B A aB == ()()AB C A BC = 3、 矩阵乘法不满足交换率,如1 11 11 11 122222222.a b c d c d a b a b c d c d a b ????????≠ ??? ??????????? 矩阵乘法能进行的条件是左边的矩阵A 的列数与右边矩阵B 的行数相等,而且矩阵的乘法不满足交换率,不满足消去律。 二、行列式概念及运算 1.用记号 2 2 11b a b a 表示算式1221b a b a -,即 2 2 11b a b a =1221b a b a -,其中 2 2 11b a b a 叫做二阶行列式; 算式1221b a b a -叫做二阶行列式的展开式;其计算结果叫做行列式的值;2121,,,b b a a 都叫做行列式的元素.利用对角线 2 2 11b a b a 可把二阶行式写成它的展开式,这种方法叫做二阶行列式展开的 对角线法则;即在展开时用主对角线元素的乘积减去副对角线元素的乘积. 2.二元一次方程组的解

四阶行列式的计算

四阶行列式的计算; N阶特殊行列式的计算(如有行和、列和相等); 矩阵的运算(包括加、减、数乘、乘法、转置、逆等的混合运算); 求矩阵的秩、逆(两种方法);解矩阵方程; 含参数的线性方程组解的情况的讨论; 齐次、非齐次线性方程组的求解(包括唯一、无穷多解); 讨论一个向量能否用和向量组线性表示; 讨论或证明向量组的相关性; 求向量组的极大无关组,并将多余向量用极大无关组线性表示; 将无关组正交化、单位化; 求方阵的特征值和特征向量; 讨论方阵能否对角化,如能,要能写出相似变换的矩阵及对角阵; 通过正交相似变换(正交矩阵)将对称矩阵对角化; 写出二次型的矩阵,并将二次型标准化,写出变换矩阵; 判定二次型或对称矩阵的正定性。 第二部分:基本知识 一、行列式 1.行列式的定义 用n^2个元素aij组成的记号称为n阶行列式。 (1)它表示所有可能的取自不同行不同列的n个元素乘积的代数和; (2)展开式共有n!项,其中符号正负各半; 2.行列式的计算 一阶|α|=α行列式,二、三阶行列式有对角线法则; N阶(n>=3)行列式的计算:降阶法 定理:n阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。

方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。 特殊情况 上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积; (2)行列式值为0的几种情况: Ⅰ行列式某行(列)元素全为0; Ⅱ行列式某行(列)的对应元素相同; Ⅲ行列式某行(列)的元素对应成比例; Ⅳ奇数阶的反对称行列式。 二.矩阵 1.矩阵的基本概念(表示符号、一些特殊矩阵――如单位矩阵、对角、对称矩阵等); 2.矩阵的运算 (1)加减、数乘、乘法运算的条件、结果; (2)关于乘法的几个结论: ①矩阵乘法一般不满足交换律(若AB=BA,称A、B是可交换矩阵); ②矩阵乘法一般不满足消去律、零因式不存在; ③若A、B为同阶方阵,则|AB|=|A|*|B|; ④|kA|=k^n|A| 3.矩阵的秩 (1)定义非零子式的最大阶数称为矩阵的秩; (2)秩的求法一般不用定义求,而用下面结论: 矩阵的初等变换不改变矩阵的秩;阶梯形矩阵的秩等于非零行的个数(每行的第一个非零元所在列,从此元开始往下全为0的矩阵称为行阶梯阵)。 求秩:利用初等变换将矩阵化为阶梯阵得秩。 4.逆矩阵 (1)定义:A、B为n阶方阵,若AB=BA=I,称A可逆,B是A的逆矩阵(满足半边也成立); (2)性质:(AB)^-1=(B^-1)*(A^-1),(A')^-1=(A^-1)';(A B的逆矩阵,你懂的)(注意顺序)

(完整版)第二章矩阵及其运算练习卷二(参考

练习卷二(A 卷) 第二章 矩阵及其运算 一、填空题(本大题共4个小题,每小题5分,共20分) 1.=???? ??--T 764012 241607-?? ? ? ? -?? 2.()= ??? ? ? ??302642406801212018?? ? ? ??? . 3.已知方阵A 、B 满足22A A B B ==,,则2()A B A B +=+成立的充要条件 是 AB+BA=0 . 4.设???? ??=3421A ,则=*A 3241-?? ? -?? ,=-1 A 0.60.40.80.2-?? ?-?? . 二、单项选择题(本大题共2个小题,每小题5分,共10分) 5.设A 、B 为n 阶方阵,则下列选项正确的是( B ). (A) ()k k k AB A B =; (B) 若A E =,则AB BA =; (C) 22()()A B A B A B -=-+; (D) 若AB=O ,则A=O 或B=O . 6.设A 、B 为n 阶方阵,则必有( A ). (A) BA AB =; (B) B A B A +=+; (C) 1A A -=; (D) B A B A ?=. 三、求下列矩阵的逆矩阵(本大题共1个小题,共15分) 7.??? ? ? ??---=412112013A . 解法1:利用伴随矩阵求解。因为|A|=5, * *154114/51/510123212/53/5||01101/51/5A A A A ---???? ? ? =-∴==- ? ? ? ? ????

解法2:利用初等变换求解(第三章). 四、解答下列各题(本大题共3个小题,每小题15分,共45分) 8.设矩阵111211111A -?? ?=- ? ???,236b ?? ? = ? ??? ,且Ax b =,求x . 解:由于|A|=6≠0,所以* 1101/31/311/21/31/6,3||1/201/22A A x A b A ---???? ? ?= === ? ? ? ?-???? 9.设方阵A 满足22A A E -=,证明A 及2A E +都可逆,并求1 A -及1(2)A E -+.. 证明:由于2(2)2A A A A E E -=-=两边同时取行列式,得|||2|20||0n A A E A -=≠?≠ 所以A 可逆。由于11 ()2().2 A A E E A A E --=?=- 212121(3) 222)()(2)44 A E A E A A E A E A A A E ---++=?++==-+= Q 可逆且:( 10.已知??? ?? ??=100110111A ,求)(A f ,其中E A A A f 32)(2+-=. 解: 212322201 2022001002123222300201()0 12022030020001002003002A A f A ???? ? ?== ? ? ? ?? ??? ???????? ? ? ? ?=-= ? ? ? ? ? ? ? ?? ??????? ,2, + 五、证明题(本大题共1个小题,共15分) 11.若O A k =(k 为整数),证明:121)(--++++=-k A A A E A E Λ. 证明:若O A k =,则2 1 ()()k k E A E A A A E A E --++++=-=L 故:E-A 可逆,且121 ) (--++++=-k A A A E A E Λ (选作题)已 知 12212 2A ?- ?= ? ?? ? ,且 6A E =,求

矩阵与行列式

第9章 行列式与矩阵 学习目标 了解n 阶行列式定义,理解行列式性质. 掌握二阶、三阶、四阶行列式的计算. 理解矩阵的概念、逆矩阵的概念及其存在的充分必要条件,了解矩阵秩的概念. 掌握几种特殊矩阵,掌握矩阵的线性运算、乘法运算、转置及其运算规律、矩阵的初等行变换和用初等行变换求矩阵的秩和逆矩阵的方法. 在科学研究和实际生产中,碰到的许多问题都可以直接或近似地表示成一些变量之间的线性关系,因此,线性关系的研究就显得是非常重要了. 行列式与矩阵是研究线性关系的重要工具.本章将介绍行列式与矩阵的一些基本概念、性质和运算. §9.1 行列式的概念与计算 9.1.1二阶、三阶行列式 用消元法解二元线性方程组 ?? ?=+=+2 2221211 212111b x a x a b x a x a (9.1) 当021122211≠-a a a a 时,得 211222*********a a a a a b a b x --= ,21 1222111 212112a a a a b a b a x --= 为了便于记忆,我们引进二阶行列式的概念. 1.二阶行列式的定义 定义9.1 用2 2个数组成的记号 22 21 1211a a a a ,表示数值21122211a a a a -,称为二阶行 列式,22211211,,,a a a a 称为行列式的元素,横排称行,竖排称列. 利用二阶行列式的概念,当二元线性方程组(9.1)的系数组成的行列式0≠D 时,它的解可以用行列式表示为 1 12111 22221212121112111221222122 , b a a b b a a b D D x x a a a a D D a a a a ==== 其中1D 和2D 是以21,b b 分别替换系数行列式D 中第一列、第二列的元素所得到的两个

线性代数教案 第二章 矩阵及其运算

1 2 m m mn a a a 矩阵。为了表示它是一个整体,总是加一个括号将它界起来,并通常用大写字母表示它。记做 12m m mn a a a ? ?12 m m mn a a a a ??? 。切记不允许使用11 12121 22 212 n n m m mn a a a a a a a a a = A 。 矩阵的横向称行,纵向称列。矩阵中的每个数称为元素,所有元素都是实数的矩阵称为实矩阵,所有元素都是复数的矩阵称为复矩阵。本课中的矩阵除特殊说明外,都指12n n nn a a a ?? 不是方阵没有主对角线。在方阵中,

00nn a ?? 1121 2212000n n nn a a a a a a ?????? (主对角线以上均为零)1122 00000 0nn a a a ????? ???? (既}nn a . 对角元素为1的对角矩阵,记作E 或001???? ()11a ,此时矩阵退化为一个数矩阵的引进为许多实际的问题研究提供方便。 a x +)1(+?n 矩阵: 12 m m mn m a b a a a b ?? 任何一个方程组都可以用这样一个矩阵来描述;反之,一个矩阵也完全刻划了一个方

1 22 m m m mn mn b a b a b ? +++? ? ? ? ???-=4012B ,计算 B A +。 122 m m m mn mn b a b a b ? ---? 与矩阵n m ij a A ?=}{的乘积(称之为数乘),

12 m m mn a a a λλ?? 以上运算称为矩阵的线性运算,它满足下列运算法则:

矩阵与行列式

第一章 矩阵与行列式 释疑解惑 1. 关于矩阵的概念:最难理解的是:矩阵它是一个“数表”,应当整体地去看它,不要与行列式实际上仅是一个用特殊形式定义的数的概念相混淆;只有这样,才不会 把用中括号或小括号所表示的矩阵如a c b d ?? ??? 写成两边各划一竖线的行列式如a c b d ,或把 行列式写成矩阵等。还要注意,矩阵可有(1)m ≥行和(1)n ≥列,不一定m n =;但行列式只有n 行n 列。n 阶行列式是2 n 个数(元素)按特定法则对应的一个值,它可看成n 阶方 阵 111212122212n n n n nn a a a a a a A a a a ????? ?=???????? 的所有元素保持原位置而将两边的括号换成两竖线时由行列式定义确定的一个新的对象:特 定的一个数值, det A 、A 或n D ,即 111 det n ij k k k A A a a A ==== ∑ (如二阶方阵 a d A b c ??= ???所对应的行列式是这样一个新的对象: a d ac bd b c =-)。也正 因为于此,必须注意二者的本质区别,如当A 为n 阶方阵时,不可把A λ与A λ等同起来, 而是 n A A λλ =,等等。 2. 关于矩阵的运算:矩阵的加(减)法只对同形矩阵有意义;数λ乘矩阵 m n A ?是用数λ乘矩阵m n A ?中每一个元素得到的新的m n ?矩阵;二矩阵相乘与前述这两种 线性运算有着实质上的不同,它不仅要求左矩阵的列数等于右矩阵的行数,而且积的元素有其特定的算法(即所谓行乘列),乘法的性质与前者的性质更有质的不同(如交换律与消去律不成立),对此要特别加以注意,也不要与数的乘法的性质相混淆。 3. 关于逆阵:逆阵是由线性变换引入的,它可只由AB E =来定义(A 与B 互为逆阵),这是应用的基础。要记住方阵可逆的充要条件为 A ≠以及关系式 * A A A E =,二者有着重要与广泛的应用。要弄清A 的伴随方阵是矩阵()ij A a =的各元素 代数余子式为元素的矩阵的转置,否则会出错。要会用两种方法求逆阵,从而会用逆阵求解线性方程组及各种矩阵方程。 4. 关于矩阵的初等变换:首先要懂得矩阵的三种初等变换的算法,明白一个矩阵经过一次初等变换并非完全不变,变换前后的矩阵间只是一种特殊的所谓等价关系(如(,)~E i j A A ,而不是(,),E i j A A =等等)。还要能将行列式性质中提公因子、交换两 行(列)与用常数乘某行(列)加到另一行(列)上去后的结果弄清楚,并可与相应方阵的初等变换进行对比。重要的是知道初等变换不改变矩阵的秩。 5. 关于矩阵的秩:矩阵的秩是由解线性方程组引入的一个新概念,对它要逐步加深理解。为此,首先应弄清什么是矩阵的行阶梯形:其一个“台阶”(非零行)只有一行,即任一行的首非零元素下面(同列)的元素全为零,不能把两行的首非零元素位于同一列视为一个“台阶”,而全为零的一行也是一个台阶,且要位于非零行下方。这里,要求会用矩阵的行初等变换法和计算子式法两种方法求可逆方阵的逆阵。

行列式和矩阵从概念到运算的联系与区别 江兵兵

行列式与矩阵从概念到运算的联系与区别 江兵兵 (天水师范学院数学与统计学院甘肃天水74100) 摘要:行列式与矩阵是两个相对独立的基本理论结果,是两个完全不同的概念, 那么它们之间有着怎样的联系与区别,本文通过详细举例论证对行列式与矩阵从其概念的定义到有关运算方面的联系与区别做了详细说明,使读者对行列式与矩阵有了进一步的认识,达到灵活熟练的运用相关知识解决有关问题。 关键字:行列式;矩阵;概念;运算;转置 The determinant and the relationship and difference matrix from concept to operation Jiang Bingbing (School of Mathematics and Statistics tianshui Normal University, Tianshui 74100) Abstract:determinant and matrix is basic theory of two relatively independent as a result, are two entirely different concepts, so the relationship and difference between them have how, for example demonstrated in this article, through detailed determinant and matrix from the definition of the concept to the operation made detailed aspects of the relation and distinction between, make readers to have further understanding of the determinant and matrix, to achieve flexible use of related knowledge skilled to solve the problem. Key words: the determinant; Matrix; Concept; Calculations; transpose

矩阵与行列式的运算

实验矩阵与行列式的运算试验目的: 掌握MATLAB基本操作命令 熟悉矩阵与行列式的运算

一、预备知识 (1)矩阵A与B的加减运算:A+B; (2)数k 乘以矩阵A的运算:k*A; (3)矩阵A与B的乘积运算:A*B; (4)矩阵A的转置运算:A’; (5)求矩阵A的逆:inv(A)或A^(-1); (6)求方阵A的n次幂:A^n; (7)解线性方程组AX=b:X=A\b; (8)计算方阵A的行列式:det(A).

二、矩阵相关运算举例 -13 11/21/31 Hilbert 1/21/31/41/31/41/511/613/12,47/60A b A A A A ????=?????? ????=??????例矩阵,向量,求的逆矩阵和 的行列式。

例2 利用magic命令生成3阶幻方矩阵,并利用matlab命令实现下列运算。 (1)生成4阶幻方 A=magic(3) (2)验证A是幻方 验证列和与行和:sum(A) sum(A’)验证主对角元素:sum(diag(A)) 验证副对角元素:sum(diag(fliplr(A))) (3)将A第2列置换为1 A(:,2)=ones(3,1)

例3一制造商生产三种不同的化学产品A、B、C。每一产品必须经过两部机器M,N 的制作,而生产每一吨不同的产品需 要使用两部机器不同的时间 机器产品A产品B产品C M234 N223 机器M每星期最多可使用80小时,而机器N每星期最多可使用60小时。问一周内每一产品须制造多少才能使机器被充分地利

设x 1、x 2、x 3分别表示每周内制造产品A 、B 、C 的吨数。于是机器M 一周内被使用的实际时间为2x 1+3x 2+4x 3,为了充分利用机器,可以令 2x 1+3x 2+4x 3=80 同理,可得:2x 1+2x 2+3x 3=60 ?? ?=++=++60 32280 432321321x x x x x x 求方程组通解

相关主题
文本预览
相关文档 最新文档