当前位置:文档之家› YALE 浙江高考(文科)解析几何(抛物线) 解答题--存在性问题2015-6-16

YALE 浙江高考(文科)解析几何(抛物线) 解答题--存在性问题2015-6-16

YALE 浙江高考(文科)解析几何(抛物线) 解答题--存在性问题2015-6-16
YALE 浙江高考(文科)解析几何(抛物线) 解答题--存在性问题2015-6-16

高考数学复习专题五解析几何第三讲第二课时圆锥曲线的定点、定值、存在性问题课后训练文

第三讲 第二课时 圆锥曲线的定点、定值、存在性问题 1.(2018·云南师大附中质检)已知椭圆C 的焦点在x 轴上,离心率等于25 5 ,且过点 ? ????1,255. (1)求椭圆C 的标准方程; (2)过椭圆C 的右焦点F 作直线l 交椭圆C 于A ,B 两点,交y 轴于M 点,若MA →=λ1AF →,MB → =λ2BF → ,求证:λ1+λ2为定值. 解析:(1)设椭圆C 的方程为 x 2a 2+y 2 b 2 =1(a >b >0), 则????? c a =25 5 ,1a 2 +? ???? 255 2 b 2 =1, ∴a 2=5,b 2 =1, ∴椭圆C 的标准方程为x 2 5 +y 2=1. (2)证明:设A (x 1,y 1),B (x 2,y 2),M (0,y 0) , 又易知F 点的坐标为(2,0). 显然直线l 存在斜率, 设直线l 的斜率为k , 则直线l 的方程是y =k (x -2),将直线l 的方程代入椭圆C 的方程中,消去y 并整理得(1+5k 2 )x 2 -20k 2 x +20k 2 -5=0, ∴x 1+x 2=20k 2 1+5k 2,x 1x 2=20k 2 -5 1+5k 2. 又∵MA →=λ1AF →,MB →=λ2BF → ,将各点坐标代入得λ1=x 12-x 1,λ2=x 22-x 2 , ∴λ1+λ2=x 12-x 1+x 2 2-x 2 = x 1+x 2-2x 1x 2 4-x 1+x 2+x 1x 2

= 2? ?? ??20k 21+5k 2-20k 2 -51+5k 2 4-2·20k 21+5k 2+20k 2 -5 1+5k 2 =-10, 即λ1+λ2为定值. 2.(2018·贵阳一模)过抛物线C :y 2 =4x 的焦点F 且斜率为k 的直线l 交抛物线C 于A , B 两点,且|AB |=8. (1)求l 的方程; (2)若A 关于x 轴的对称点为D ,求证:直线BD 恒过定点,并求出该点的坐标. 解析:(1)易知点F 的坐标为(1,0),则直线l 的方程为y =k (x -1),代入抛物线方程 y 2=4x 得k 2x 2-(2k 2+4)x +k 2=0, 由题意知k ≠0,且[-(2k 2 +4)]2 -4k 2 ·k 2 =16(k 2 +1)>0, 设A (x 1,y 1),B (x 2,y 2),∴x 1+x 2=2k 2 +4 k 2,x 1x 2=1, 由抛物线的定义知|AB |=x 1+x 2+2=8, ∴2k 2 +4k 2 =6,∴k 2=1,即k =±1, ∴直线l 的方程为y =±(x -1). (2)由抛物线的对称性知,D 点的坐标为(x 1,-y 1),直线BD 的斜率k BD = y 2+y 1x 2-x 1=y 2+y 1 y 224-y 21 4 = 4 y 2-y 1 , ∴直线BD 的方程为y +y 1= 4 y 2-y 1 (x -x 1), 即(y 2-y 1)y +y 2y 1-y 2 1=4x -4x 1, ∵y 2 1=4x 1,y 2 2=4x 2,x 1x 2=1,∴(y 1y 2)2 =16x 1x 2=16, 即y 1y 2=-4(y 1,y 2异号), ∴直线BD 的方程为4(x +1)+(y 1-y 2)y =0, 恒过点(-1,0). 3.(2018·南宁模拟)已知抛物线C :y 2=ax (a >0)上一点P (t ,1 2)到焦点F 的距离为2t. (1)求抛物线C 的方程; (2)抛物线C 上一点A 的纵坐标为1,过点Q (3,-1)的直线与抛物线C 交于M ,N 两个不同的点(均与点A 不重合),设直线AM ,AN 的斜率分别为k 1,k 2,求证:k 1k 2为定值. 解析:(1)由抛物线的定义可知|PF |=t +a 4 =2t ,则a =4t ,

解析几何(大题)

21.(本小题满分12分)[2017皖南八校]如图,点()2,0A -,()2,0B 分别为椭圆 ()22 22:10x y C a b a b +=>>的左右顶点,,,P M N 为椭圆C 上非顶点的三点,直线 ,AP BP 的斜率分别为12,k k ,且121 4 k k =- ,AP OM ∥,BP ON ∥. (1)求椭圆C 的方程; (2)判断OMN △的面积是否为定值?若为定值,求出该定值;若不为定值,请说明理由. 【答案】(1)2 2:14 x C y +=;(2)定值1. 【解析】(1)22 1,1144 2,AP BP b k k b a a ?=?=-??=??=? ,椭圆22:14x C y +=. (2)设直线MN 的方程为y kx t =+,()11,M x y ,()22,N x y , ()222 22 , 4184401,4 y kx t k x ktx t x y =+???+++-=?+=??, 122841 kt x x k +=-+,2122 44 41t x x k -=+, ()()1212121212121211 404044 y y k k y y x x kx t kx t x x x x ?=- ??=-?+=?+++=, ()()2 2121241440k x x kt x x t ++++=, ()22 22222448414402414141t kt k kt t t k k k ?? -+-+=?-= ?++?? , ()() ()( )2 2 2 2 1 2 1 2 1 2114MN k x x k x x x x ??= +-= ++-??

高中数学解析几何专题之抛物线(汇总解析版)

圆锥曲线第3讲抛物线 【知识要点】 一、抛物线的定义 平面内到某一定点F的距离与它到定直线l(l F?)的距离相等的点的轨迹叫抛物线,这个定点F叫做抛物线的焦点,定直线l叫做抛物线的准线。 注1:在抛物线的定义中,必须强调:定点F不在定直线l上,否则点的轨迹就不是一个抛物线,而是过点F且垂直于直线l的一条直线。 注2:抛物线的定义也可以说成是:平面内到某一定点F的距离与它到定直线l(l F?)的距离之比等于1的点的轨迹叫抛物线。 注3:抛物线的定义指明了抛物线上的点到其焦点的距离与到其准线的距离相等这样一个事实。以后在解决一些相关问题时,这两者可以相互转化,这是利用抛物线的定义解题的关键。 二、抛物线的标准方程 1.抛物线的标准方程 抛物线的标准方程有以下四种: (1) px y2 2= ( > p),其焦点为 )0, 2 ( p F ,准线为2 p x- = ; (2) px y2 2- =(0 > p),其焦点为 )0, 2 ( p F- ,准线为2 p x= ; (3) py x2 2= ( > p),其焦点为 ) 2 ,0( p F ,准线为2 p y- = ; (4) py x2 2- = ( > p),其焦点为 ) 2 ,0( p F- ,准线为2 p y= . 2.抛物线的标准方程的特点

抛物线的标准方程px y 22±=(0>p )或py x 22±=(0>p )的特点在于:等号的一端 是某个变元的完全平方,等号的另一端是另一个变元的一次项,抛物线方程的这个形式与其位置特征相对应:当抛物线的对称轴为x 轴时,抛物线方程中的一次项就是x 的一次项,且一次项x 的符号指明了抛物线的开口方向;当抛物线的对称轴为y 轴时,抛物线方程中的一次项就是y 的一次项,且一次项y 的符号指明了抛物线的开口方向. 三、抛物线的性质 以标准方程 px y 22 =(0>p )为例,其他形式的方程可用同样的方法得到相关结论。 (1)范围:0≥x ,R y ∈; (2)顶点:坐标原点)0,0(O ; (3)对称性:关于x 轴轴对称,对称轴方程为0=y ; (4)开口方向:向右; (5)焦参数:p ; (6)焦点: )0,2(p F ; (7)准线: 2p x - =; (8)焦准距:p ; (9)离心率:1=e ; (10)焦半径:若 ) ,(00y x P 为抛物线 px y 22=(0>p )上一点,则由抛物线的定义,有20p x PF + =; (11)通径长:p 2. 注1:抛物线的焦准距指的是抛物线的焦点到其相应准线的距离。以抛物线 px y 22=

高考数学压轴专题人教版备战高考《平面解析几何》知识点总复习含解析

【最新】《平面解析几何》专题 一、选择题 1.若点O 和点F 分别为椭圆22 143 x y +=的中心和左焦点,点P 为椭圆上的任意一点,则 OP FP →→ g 的最大值为( ) A .4 B .5 C .6 D .7 【答案】C 【解析】 【分析】 设(),P x y ,由数量积的运算及点P 在椭圆上,可把OP FP ?u u u r u u u r 表示成为x 的二次函数,根 据二次函数性质可求出其最大值. 【详解】 设(),P x y ,()()1,0,0,0F O -,则 ()(),,+1,OP x y FP x y ==u u u r u u u r ,则 22OP FP x x y ?=++u u u r u u u r , 因为点P 为椭圆上,所以有:22143 x y +=即2 2334y x =-, 所以()2222 23132244 x x y x x x FP x OP =++=?++-=++u u u r u u u r 又因为22x -≤≤, 所以当2x =时,OP FP ?u u u r u u u r 的最大值为6 故选:C 【点睛】 本题考查了数量积的坐标运算,求二次函数的最大值,属于一般题. 2.已知直线21y kx k =++与直线1 22 y x =-+的交点位于第一象限,则实数k 的取值范围是( ) A .1 2 k > B .16k <- 或1 2 k > C .62k -<< D .1162 k - << 【答案】D 【解析】 【分析】 联立21 1 22y kx k y x =++???=-+?? ,可解得交点坐标(,)x y ,由于直线21y kx k =++与直线

2005-2017年浙江高考理科数学历年真题之解析几何大题 教师版

2005-2017年浙江高考理科数学历年真题之解析几何大题 (教师版) 1、(2005年)如图,已知椭圆的中心在坐标原点,焦点12,F F 在x 轴上,长轴12A A 的长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭圆的方程; (Ⅱ)若直线1l :x =m (|m |>1),P 为1l 上的动点,使12F PF ∠ 最大的点P 记为Q ,求点Q 的坐标(用m 表示). 解析:(Ⅰ)设椭圆方程为()22 2210x y a b a b +=>>,半焦距为c , 则2111,a MA a A F a c c =-=- ,()2 222 224 a a a c c a a b c ?-=-??? =??=+???由题意,得 2,1a b c ∴=== ,22 1.43 x y +=故椭圆方程为 (Ⅱ) 设()0,,||1P m y m >,当00y >时,120F PF ∠=; 当00y ≠时,22102 F PF PF M π <∠<∠<,∴只需求22tan F PF ∠的最大值即可 设直线1PF 的斜率011y k m = +,直线2PF 的斜率0 21 y k m =-, 021********||tan 11y k k F PF k k m y -∴∠= =≤=+-+ 0||y =时,12F PF ∠ 最大,(,,||1Q m m ∴> 2、(2006年)如图,椭圆b y a x 222+=1(a >b >0)与过点A (2,0)、B(0,1)的直线有且只有一个公共点T , 且椭圆的离心率e= 2 3。 (Ⅰ)求椭圆方程; (Ⅱ)设F 1、F 2分别为椭圆的左、右焦点,M 为线段AF 2的中点,求证:∠ATM=∠AF 1T 。

解析几何中的存在性问题

探究圆锥曲线中的存在性问题 1.求曲线(或轨迹)的方程。对于这类问题,高考常常不给出图形或不给出坐标系,以考察学生理解解析几何问题的基本思想方法和能力; 2.与圆锥曲线有关的最值(或极值)和取值范围问题,圆锥曲线中的定值、定点问题,探究型的存在性问题。这类问题的综合型较大,解题中需要根据具体问题、灵活运用解析几何、平面几何、平面向量、函数、不等式、三角函数知识,正确的构造不等式或方程,体现了解析几何与其他数学知识的联系。 一、是否存在这样的常数 例1.在平面直角坐标系xOy 中,经过点(0且斜率为k 的直线l 与椭圆2 212 x y +=有两个不同的 交点P 和Q . (I )求k 的取值范围; (II )设椭圆与x 轴正半轴、y 轴正半轴的交点分别为A B ,,是否存在常数k ,使得向量OP OQ +与 AB 共线?如果存在,求k 值;如果不存在,请说明理由. 解:(Ⅰ)由已知条件,直线l 的方程为y kx = 代入椭圆方程得22(12 x kx ++=.整理得221102k x ??+++= ??? ① 直线l 与椭圆有两个不同的交点P 和Q 等价于2 221844202k k k ?? ?=-+=-> ??? , 解得k .即k 的取值范围为222???--+ ? ????? ,,∞∞. (Ⅱ)设1122()()P x y Q x y ,,,,则1212()OP OQ x x y y +=++,, 由方程①,12x x +=. ② 又1212()y y k x x +=++ ③ 而(01)(A B AB =,,. 所以OP OQ +与AB 共线等价于1212)x x y y +=+, 将②③代入上式,解得2 k = .

理科数学2010-2019高考真题分类训练专题九 解析几何第二十八讲 抛物线

专题九 解析几何 第二十八讲 抛物线 2019年 1.(2019全国II 理8)若抛物线y 2 =2px (p >0)的焦点是椭圆 2231x y p p + =的一个焦点,则p = A .2 B .3 C .4 D .8 2.(2019北京理18(1))已知抛物线2:2C x py =-经过点(2,-1).求抛物线C 的方程及其准线方程; 3.(2019全国I 理19)已知抛物线C :y 2=3x 的焦点为F ,斜率为3 2 的直线l 与C 的交点为A ,B ,与x 轴的交点为P . (1)若 4AF BF +=,求l 的方程; (2)若3AP PB =uu u r uu r ,求AB . 4. (2019全国III 理21)已知曲线C :y =2 2 x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分 别为A ,B . (1)证明:直线AB 过定点: (2)若以E (0, 5 2 )为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积. 2010-2018年 一、选择题 1.(2018全国卷Ⅰ)设抛物线C :2 4=y x 的焦点为F ,过点(2,0)-且斜率为2 3 的直线与C 交于M ,N 两点,则?FM FN = A .5 B .6 C .7 D .8 2.(2017新课标Ⅰ)已知F 为抛物线C :2 4y x =的焦点,过F 作两条互相垂直的直线1l ,2l ,直线1l 与 C 交于A 、B 两点,直线2l 与C 交于 D 、 E 两点,则||||AB DE +的最小值为 A .16 B .14 C .12 D .10 3.(2016年四川)设O 为坐标原点,P 是以F 为焦点的抛物线2 2(0)y px p =>上任意一点,M 是线段PF 上的点,且PM =2MF ,则直线OM 的斜率的最大值为

平面解析几何测试题带答案

1.(本小题满分12分)已知:圆C:x2+y2-8y+12=0,直线l:ax+y+2a=0. (1)当a为何值时,直线l与圆C相切; (2)当直线l与圆C相交于A、B两点,且AB=22时,求直线l的方程. 2.设椭圆ax2+by2=1与直线x+y-1=0相交于A、B两点,点C是AB的中点,若|AB|=22,OC的斜 率为 2 2 ,求椭圆的方程. 3.(本小题满分12分)(2010·南通模拟)已知动圆过定点F(0,2),且与定直线l:y=-2相切. (1)求动圆圆心的轨迹C的方程; (2)若AB是轨迹C的动弦,且AB过F(0,2),分别以A、B为切点作轨迹C的切线,设两切线交点为Q, 证明:AQ⊥BQ . 4.已知圆(x-2)2+(y-1)2=20 3 ,椭圆b2x2+a2y2=a2b2(a>b>0)的离心率为 2 2 ,若圆与椭圆相交于A、B, 且线段AB是圆的直径,求椭圆的方程.

5.已知m 是非零实数,抛物线)0(2:2 >=p px y C 的焦点F 在直线2 :02 m l x my --=上. (I )若m=2,求抛物线C 的方程 (II )设直线l 与抛物线C 交于A 、B 两点,F AA 1?,F BB 1?的重心分别为G,H. 求证:对任意非零实数m,抛物线C 的准线与x 轴的焦点在以线段GH 为直径的圆外。 6. (本小题满分14分)(2010·东北四市模拟)已知O 为坐标原点,点A 、B 分别在x 轴,y 轴上运动,且|AB | =8,动点P 满足AP u u u r =35 PB u u u r ,设点P 的轨迹为曲线C ,定点为M (4,0),直线PM 交曲线C 于另外一 点Q . (1)求曲线C 的方程; (2)求△OPQ 面积的最大值. 7.(文)有一个装有进出水管的容器,每单位时间进出的水量各自都是一定的,设从某时刻开始10分钟内只进水、不出水,在随后的30分钟内既进水又出水,得到时间x(分)与水量y(升)之间的关系如图所示,若40分钟后只放水不进水,求y 与x 的函数关系.

2019年浙江省数学高考模拟精彩题选 解析几何解答题 含答案

2016浙江精彩题选——解析几何解答题 1.(2016名校联盟第一次)19.(本题满分15分) 已知椭圆C :22 a x +y 2b 2=1(a >b >0)的左右焦点为F 1,F 2 ,离心率为e .直线l :y =ex +a 与x 轴、y 轴分别交于点A ,B 两点,M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线 l 的对称点,设. (Ⅰ)若l = 3 4 ,求椭圆C 的离心率; (Ⅱ)若D PF 1F 2 为等腰三角形,求l 的值.

2.(2016温州一模19).(本题满分15分)如图,已知椭圆C: 22 22 1(0) x y a b a b +=>> 经过点 ,A B分别为椭圆C的左、右顶点,N M,是椭圆C上非顶点的两点,且OMN ?的面积等于2.(Ⅰ)求椭圆C的方程; (Ⅱ)过点A作OM AP//交椭圆C于点P,求证:ON BP//. 解:(Ⅰ)由题意得: ? ? ? ? ? ? ? ? ? ? ? + = = = = + 2 2 2 2 2 2 2 2 1 ) 2 6 ( 1 c b a a c e b a ,解得: ?? ? ? ? = = 2 4 2 2 b a 故椭圆C的方程为:1 2 4 2 2 = + y x ……………………………………5分 (Ⅱ)解法一:如图所示,设直线OM,ON的方程为 OM y k x =, ON y k x = 联立方程组22 1 42 OM y k x x y = ? ? ? += ?? ,解得M, 同理可得( N,……………………………………7分作' MM x ⊥轴, ' NN x ⊥轴,',' M N是垂足, OMN S ? = '' ''OMM ONN MM N N S S S ?? -- 梯形 1 [()()] 2M N M N M M N N y y x x x y x y =+--+ 1 () 2M N N M x y x y =- 1 2 = =9分 已知 OMN S ? 2 =,化简可得 2 - = ON OM k k.……………………………………11分 设(,) P P P x y,则22 42 P P x y -=,

解析几何大题题型总结(1)

圆锥曲线大题训练1 (求范围)例1、已知过点A (0,1)且斜率为k 的直线l 与圆C :1)3()2(22=-+-y x 交于M 、N 两点。 (1)求k 的取值范围; (2)若12=?ON OM ,其中O 为坐标原点,求|MN | (定值问题)例2、已知椭圆C :12222=+b y a x (0>>b a )的离心率为2 2,点(2,2)在C 上。 (1)求C 的方程; (2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M 。证明:直线OM 的斜率与直线l 的斜率的乘积为定值。

例3、已知直线l 的方程为y = k ( x — 1 )(k >0),曲线C 的方程为 y 2 = 2x ,直线l 与曲线C 交于A 、B 两点,O 为坐标系原点。求证:OB OA ?错误!未找到引用源。是定值 例4、已知双曲线C :)0(122 22>>=-b a b y a x 的两条渐进线的夹角的正切值为724,点A (5,49)是C 上一点,直线l :)4(4 5>+-=m m x y 与曲线C 交于M 、N 两点。 (1)求双曲线C 的标准方程; (2)当m 的值变化时,求证:0=+AN AM k k

例5、已知椭圆C :)0(122 22>>=+b a b y a x 过A (2,0),B (0,1)两点 (1)求椭圆C 的方程及离心率 (2)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值。 (轨迹方程)例6、已知点P (2,2),圆C :x 2+y 2—8y=0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点。 (1)求M 的轨迹方程; (2)当|OP|=|OM|时,求l 的方程及△POM 的面积。 例7、已知椭圆的中心在原点,焦点在x 轴上,一个顶点为B (0,-1),离心率为 36 (1)求椭圆的方程; (2)设过点A (0, 2 3)的直线l 与椭圆交于M 、N 两点,且|BM |=|BN |,求直线l 的方程。

专题九 解析几何第二十七讲 抛物线

2 1 专题九 解析几何 第二十七讲 抛物线 2019 年 x 2 1.(2019 全国 II 文 9)若抛物线 y 2=2px (p >0)的焦点是椭圆 + y = 1的一个焦点,则 3 p p p = A .2 B .3 C .4 D .8 2.(2019 浙江 21)如图,已知点 F (1,0) 为抛物线 y 2 = 2 px ( p > 0) 的焦点,过点 F 的直线交抛物线于 A 、B 两点,点 C 在抛物线上,使得△ABC 的重心 G 在 x 轴上,直线 AC 交 x 轴于点 Q ,且 Q 在点 F 右侧.记△AFG ,△CQG 的面积为 S 1 , S 2 . (1)求 p 的值及抛物线的准线方程; S (2)求 1 的最小值及此时点 G 的坐标. S 2 3.(2019 全国 III 文 21)已知曲线 C :y = x 2 ,D 为直线 y = - 上的动点,过 D 作 C 的两条切 2 线,切点分别为 A ,B . (1)证明:直线 AB 过定点: 5 (2)若以 E (0, 2 )为圆心的圆与直线 AB 相切,且切点为线段 AB 的中点,求该圆的方程. 1.解析(1)设 D ? t , - 1 ? , A (x , y ),则 x 2 = 2 y . 2 ? 1 1 1 1 ? ? 2

2 5 y 2 1 由于 y' = x ,所以切线DA 的斜率为 x 1 ,故 1 + 1 2 = x ,整理得2 tx 1 - 2 y 1 +1=0. 设 B (x 2 , y 2 ) ,同理可得2tx 2 - 2 y 2 +1=0 . 故直线AB 的方程为2tx - 2 y +1 = 0 . 1 所以直线AB 过定点(0, ) . 2 x 1 - t (2)由(1)得直线AB 的方程为 y = tx + 1 . 2 ? y = tx + 1 ?? 由? 2 ? y = x ?? 2 2 ,可得 x 2 - 2tx -1 = 0 . 于是 x + x = 2t , y + y = t (x + x )+1 = 2t 2 +1 . 1 2 1 2 1 2 设M 为线段AB 的中点,则 M ? t , t 2 + 1 ? . 2 ? ? ? 由于 EM ⊥ AB ,而 EM = ( t , t 2 - 2) , AB 与向量(1, t ) 平行,所以t + ( t 2 - 2) t = 0 .解得 t =0或t = ±1. 当t =0时, | EM | =2,所求圆的方程为 x 2 + ? y - ? 5 ?2 ? ? ? = 4 ; 5 ?2 当t = ±1时, | EM |= ,所求圆的方程为 x 2 + y - ? ? ? = 2 . 2010-2018 年 一、选择题 1.(2017 新课标Ⅱ)过抛物线C :y 2 = 4x 的焦点 F ,且斜率为 的直线交C 于点 M ( M 在 x 轴上方), l 为C 的准线,点 N 在l 上且 MN ⊥ l ,则 M 到直线 NF 的距离为 A . B . 2 C . 2 D . 3 3 2 3 3 2

最新专题五平面解析几何

专题五平面解析几何

专题五平面解析几何 第14讲直线与圆 [云览高考] 二轮复习建议 命题角度:该部分主要围绕两个点展开命题.第一个点是围绕直线与圆的方程展开,设计考查求直线方程、圆的方程、直线与圆的位置关系等问题,目的是考查平面解析几何初步的基础知识和方法,考查运算求解能力,试题一般是选择题或者填空题;第二个点是围绕把直线与圆综合展开,设计考查直线与圆的相互关系的试题,目的是考查直线与圆的方程在解析几何中的综合运用,这个点的试题一般是解答题. 预计2013年该部分的命题方向不会有大的变化,以选择题或者填空题的形式重点考查直线与圆的方程,而在解答题中考查直线方程、圆的方程的综合运用.复习建议:该部分是解析几何的基础,涉及大量的基础知识,在复习时要把知识进一步系统化,在此基础上,在本讲中把重点放在解决直线与圆的方程问题上. 主干知识整合

1.直线的概念与方程 (1)概念:直线的倾斜角θ的范围为[0°,180°),倾斜角为90°的直线的斜率不存在,过 两点的直线的斜率公式k =tan α=y 2-y 1x 2-x 1(x 1≠x 2 ); (2)直线方程:点斜式y -y 0=k (x -x 0),两点式y -y 1y 2-y 1=x -x 1x 2-x 1(x 1 ≠x 2,y 1≠y 2),一般式Ax +By +C =0(A 2+B 2≠0); (3)位置关系:当不重合的两条直线l 1和l 2的斜率存在时,两直线平行l 1∥l 2?k 1=k 2,两直线垂直l 1⊥l 2?k 1·k 2=-1,两直线的交点就是以两直线方程组成的方程组的解为坐标的点; (4)距离公式:两点间的距离公式,点到直线的距离公式,两平行线间的距离公式. 2.圆的概念与方程 (1)标准方程:圆心坐标(a ,b ),半径r ,方程(x -a )2+(y -b )2=r 2,一般方程:x 2+y 2+Dx +Ey +F =0(其中D 2+E 2-4F >0); (2)直线与圆的位置关系:相交、相切、相离 ,代数判断法与几何判断法; (3)圆与圆的位置关系:相交、相切、相离、内含,代数判断法与几何判断法. 要点热点探究 ? 探究点一 直线的概念、方程与位置关系 例1 (1)过点(5,2),且在y 轴上的截距是在x 轴上的截距的2倍的直线方程是( B ) A .2x +y -12=0 B .2x +y -12=0或2x -5y =0 C .x -2y -1=0 D .x -2y -1=0或2x -5y =0 (2)[2012·浙江卷] 设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a + 1)y +4=0平行”的( A ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 点评] 直线方程的四种特殊形式(点斜式、斜截式、两点式、截距式)都有其适用范围,在解题时不要忽视这些特殊情况,如本例第一题易忽视直线过坐标原点的情况;一般地,直线A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0平行的充要条件是A 1B 2=A 2B 1且A 1C 2≠A 2C 1,垂直的充要条件是A 1A 2+B 1B 2=0. 变式题 (1)将直线y =3x 绕原点逆时针旋转90°,再向右平移1个单位,所得的直线方程为( A ) A .y =-13x +13 B .y =-13x +1 C .y =3x -3 D .y =13 x +1 (2)“a =-2”是“直线ax +2y =0垂直于直线x +y =1”的( C ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 ? 探究点二 圆的方程及圆的性质问题 例2 (1)已知圆(x -a )2+(y -b )2=r 2的圆心为抛物线y 2=4x 的焦点,且与直线3x +4y +2=0相切,则该圆的方程为( C ) A .(x -1)2+y 2=6425 B .x 2+(y -1)2=6425 C .(x -1)2+y 2=1 D .x 2+(y -1)2=1 (2)[2012·陕西卷] 已知圆C :x 2+y 2-4x =0,l 是过点P (3,0)的直线,则( A ) A .l 与C 相交 B .l 与 C 相切 C .l 与C 相离 D .以上三个选项均有可能 [点评] 确定圆的几何要素:圆心位置和圆的半径,求解圆的方程就是求出圆心坐标和

解析几何归纳总结

解析几何归纳总结 1、直线与圆的方程 对于直线方程,要理解直线的倾斜率和斜率的概念,掌握点到直线的距离公式等,特别是直线方程的几种形式 对于圆的方程,要熟练运用与圆相关的基本问题的求解方法,如求解圆的方程的待定系数法、圆的圆心与半径的配方法、求圆的弦心距的构造直角三角形法、判断直线与圆、圆与圆的位置关系的几何法、求圆的切线的基本方法等 例1:若直线 1x y a b +=通过点M (cos α,sin α),则 A 221a b +≤ B 221a b +≥ C 22111a b +≤ D 22111a b +≥ 2、圆锥曲线的定义、标准方程 圆锥曲线的定义一般涉及焦半径、焦点弦、焦点三角形和准线,利用余弦定理解三角形等。 例2:(1)已知12,F F 为双曲线C :22 2x y -=的左、右焦点,点P 在C 上,122PF PF =,cos 12F PF ∠=___________________ (2)已知12,F F 为双曲线C: 22 1x y -=的左、右焦点,点P 在C 上,1260F PF ∠=?,则P 到x 轴的距离为___________ (3)已知12,F F 为双曲线C: 22 1927 x y -=的左、右焦点,点A 在C 上,M (2,0),AM 为12F AF ∠的平分线,则2AF =____________________ (4)已知抛物线C :2 4y x =的焦点为F ,直线y=2x-4与C 交于A,B 两点,则cos AFB ∠=___________ 3、圆锥曲线的离心率 求离心率的值(或其取值范围)的问题是解析几何中常见的问题,常规求值问题需要找等式,求范围问题需要找不等式:其归纳结底是利用定义寻求关于a,b,c 的相应关系式,并把式中的a,b,c 转化为只含有a,c 的齐次式或不等式,再转化为含e 的关系式,最后求解。小题中常涉及焦半径等,可利用第二定义来解决,避免了复杂的运算。 例3(1)已知F 为椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交在C 于点 D ,且2BF DF = ,则C 的离心率为_____________ (2)已知抛物线C :2 2y px =(p>0)的准线为l ,过M (1,0l 交于点A ,与C 的一个交点为B,若AM MB = ,则p=_______________ 4、直线与圆锥曲线问题的常规解题方法

浙江高考解析几何大题

浙江高考历年真题之解析几何大题 1、(2005年)如图,已知椭圆的中心在坐标原点,焦点12,F F 在x 轴上,长轴12A A 的长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭圆的方程; (Ⅱ)若直线1l :x =m (|m |>1),P 为1l 上的动点,使12F PF ∠ 最大的点P 记为Q ,求点Q 的坐标(用m 表示). 解析:(Ⅰ)设椭圆方程为()22 2210x y a b a b +=>>,半焦距为c , 则2111,a MA a A F a c c =-=- ,()2 222 224 a a a c c a a b c ?-=-??? =??=+??? 由题意,得 2,3,1a b c ∴=== ,22 1.43 x y +=故椭圆方程为 (Ⅱ) 设()0,,||1P m y m >,当00y >时,120F PF ∠=; 当00y ≠时,22102 F PF PF M π <∠<∠<,∴只需求22tan F PF ∠的最大值即可设直线1PF 的斜率011y k m = +,直线2PF 的斜率0 21 y k m =-, 002122222212002||tan 1121||1 y k k F PF k k m y m y m -∴∠= =≤= +-+-?- 2 01||m y -=时,12F PF ∠最大,(2,1,||1Q m m m ∴±->

2、(2006年)如图,椭圆b y a x 2 22+=1(a >b >0)与过点A (2,0)、B(0,1)的直线有且只有一个公共点T ,且椭圆的 离心率e= 2 3 。 (Ⅰ)求椭圆方程; (Ⅱ)设F 1、F 2分别为椭圆的左、右焦点,M 为线段AF 2的中点,求证:∠ATM=∠AF 1T 。 解析:(Ⅰ)过 A 、B 的直线方程为 12 x y += 因为由题意得??? ????+-==+1211 2222x y b y a x 有惟一解, 即0)4 1(22222 22 =-+-+ b a a x a x a b 有惟一解, 所以22 2 2 (44)0(0),a b a b ab ?=+-=≠故442 2 -+b a =0; 又因为e 3 c =即 22234 a b a -= , 所以2 2 4a b = ;从而得22 1 2,,2 a b == 故所求的椭圆方程为22212x y += (Ⅱ)由(Ⅰ)得6c = , 所以 1266((F F ,从而M (1+4 6 ,0) 由 ?? ???+-==+1 211222 2x y y x ,解得 121,x x == 因此1(1,)2T = 因为126tan 1-= ∠T AF ,又21 tan =∠TAM ,6 2tan =∠2TMF ,得 12 6 6 1 121 62 tan -= + -= ∠ATM ,因此,T AF ATM 1∠=∠ 3、(2007年)如图,直线y kx b =+与椭圆2 214 x y +=交于A B ,两点,记AOB △的面积为S .

专题11 平面解析几何大题强化训练(省赛试题汇编)(原卷版)

专题11平面解析几何大题强化训练(省赛试题汇编) 1.【2018年广西预赛】已知中心在原点O,焦点在x轴上,离心率为的椭圆过点设不过原点O的直线l与该椭圆交于P,Q两点,且直线OP,PQ,OQ的斜率依次成等比数列,求面积的取值范围. 2.【2018年安徽预赛】设O是坐标原点,双曲线C:上动点M处的切线,交C的两条渐近线于 A、B两点. ⑴求证:△AOB的面积S是定值; ⑵求△AOB的外心P的轨迹方程. 3.【2018年湖南预赛】已知抛物线的顶点,焦点,另一抛物线的方程为 在一个交点处它们的切线互相垂直.试证必过定点,并求该点的坐标. 4.【2018年湖南预赛】如图,在凸四边形ABCD中,M为边AB的中点,且MC=MD.分别过点C、D作边BC、AD的垂线,设两条垂线的交点为P.过点P作与Q.求证:. 5.【2018年湖北预赛】已知为坐标原点,,点为直线上的动点,的平分线与直线 交于点,记点的轨迹为曲线. (1)求曲线的方程; (2)过点作斜率为的直线,若直线与曲线恰好有一个公共点,求的取值范围. 6.【2018年甘肃预赛】已知椭圆过点,且右焦点为. (1)求椭圆的方程;

(2)过点的直线与椭圆交于两点,交轴于点.若,求证:为定值;(3)在(2)的条件下,若点不在椭圆的内部,点是点关于原点的对称点,试求三角形面积的最小值. 7.【2018年吉林预赛】如图,已知抛物线过点P(-1,1),过点Q(,0)作斜率大于0的直线l 交抛物线与M、N两点(点M在Q、N之间),过点M作x轴的平行线,交OP于A,交ON于B.△PMA 与△OAB的面积分别记为,比较与3的大小,说明理由. 8.【2018年山东预赛】已知圆与曲线为曲 线上的两点,使得圆上任意一点到点的距离与到点的距离之比为定值,求的值.9.【2018年天津预赛】如图,是双曲线的两个焦点,一条直线与双曲线的右支相切,且分别交两条渐近线于A、B.又设O为坐标原点,求证:(1);⑵、A、B四点在同一个圆上. 10.【2018年河南预赛】已知方程平面上表示一椭圆.试求它的对称中心及对称轴.

2020高考数学一轮复习第八章解析几何课时作业51证明最值范围存在性问题文

51 证明、最值、范围、存在性问题课时作 基础达] x 的右焦点的直,.[2018·全国卷Ⅰ]设椭交的坐标(2,0两点, A 的方程轴垂直时,求直(1OMOM .(2=为坐标原点,证明:的方程(1,0解析(1由已知1. . 的坐标由已知可得,,A =(2,0,所2.的方程OMOM (2证明:==0°轴重合时,AO 轴垂直时的垂直平分线OMOM . =所以轴不重合也不垂直时,的方程21)1≠0)MM 2,直的斜率之和1yy kMkM . xx kk 42kx1x kMkM . + -- x22 yykx =1,得-将1)=代入 (+22222 kxxkk 0,(22+1)--42=+22k2-4k2xxxx . 1=所以21+=2,1+2k2+12k24k +12k3+8k34k4k3--kxxkxkx 0. 2-3(=1+=2)+2则4112k2+kMBkMA 0从而+,=MBMA 故的倾斜角互补.,OMBOMA . 所以∠=∠OMBOMA . =∠综上,∠2 lpxCyPQ 与抛的直线经过点(0,1)(1,2)2.[2018·北京卷]已知抛物线,过点:2 =NCAPBMyBPAy . 有两个不同的交点,直线,,且直线交交轴于物线轴于l 的斜率的取值范围;(1)求直线→→→→11O ,求证:+为定值.(2)设QO 为原点,QM =λ,QN =μQO μλ2 pxy 解析:(1)因为抛物线 =2,过点(1,2)pp 2. =4所以2,即=2 xyC . 故抛物线的方程为4=l 0. 由题意知,直线的斜率存在且不为kylkx 设直线的方程为≠0),=+1( ,y24x =??22 xkxk 0. 4)得由+(2-+1=?,=ykx +1? 4×1>0依题(<1. <解0PP (,轴相交,故直2不过3. 从≠-∞,-3)∪(-3,0)∪(0,1)的斜率的取值范围所以直21(2证明:2. =(1kky P 1直的方程xkxy2. 的纵坐标,得xxkx2. 同理得的纵坐标 x.

平面解析几何高考专题复习

第八章 平面解析几何 第一节 直线的倾斜角与斜率、直线的方程 1.直线的倾斜角 (1)定义:x 轴正向与直线向上方向之间所成的角叫做这条直线的倾斜角.当直线与x 轴平行或重合时,规定它的倾斜角为0°. (2)倾斜角的范围为[0,π). 2.直线的斜率 (1)定义:一条直线的倾斜角α的正切值叫做这条直线的斜率,斜率常用小写字母k 表示,即k =tan_α,倾斜角是90°的直线没有斜率. (2)过两点的直线的斜率公式: 经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式为k =y 2-y 1x 2-x 1=y 1-y 2 x 1-x 2. 3.直线方程

1.利用两点式计算斜率时易忽视x 1=x 2时斜率k 不存在的情况. 2.用直线的点斜式求方程时,在斜率k 不明确的情况下,注意分k 存在与不存在讨论,否则会造成失误. 3.直线的截距式中易忽视截距均不为0这一条件,当截距为0时可用点斜式. 4.由一般式Ax +By +C =0确定斜率k 时易忽视判断B 是否为0,当B =0时,k 不存在;当B ≠0时,k =-A B . [试一试] 1.若直线(2m 2+m -3)x +(m 2-m )y =4m -1在x 轴上的截距为1,则实数m 是( ) A .1 B .2 C .-12 D .2或-1 2 解析:选D 当2m 2+m -3≠0时,即m ≠1或m ≠-3 2时,在x 轴上截距为4m -12m 2+m -3= 1,即2m 2-3m -2=0, 故m =2或m =-1 2 . 2.过点M (-2,m ),N (m,4)的直线的斜率等于1,则m 的值为________. 解析:∵k MN =m -4 -2-m =1,∴m =1. 答案:1 3.过点M (3,-4),且在两坐标轴上的截距相等的直线的方程为________. 解析:①若直线过原点,则k =-4 3, 所以y =-4 3x ,即4x +3y =0. ②若直线不过原点. 设x a +y a =1,即x +y =a . 则a =3+(-4)=-1, 所以直线的方程为x +y +1=0. 答案:4x +3y =0或x +y +1=0 1.求斜率可用k =tan α(α≠90°),其中α为倾斜角,由此可见倾斜角与斜率相互联系不可分割,牢记:“斜率变化分两段,90°是分界线,遇到斜率要谨记,存在与否需讨论”. 2.求直线方程的一般方法 (1)直接法:根据已知条件,选择适当的直线方程形式,直接写出直线方程,选择时,应

高中数学解析几何大题专项练习.doc

解析几何解答题 2 2 x y 1、椭圆G:1(a b 0) 2 2 a b 的两个焦点为F1、F2,短轴两端点B1、B2,已知 F1、F2、B1、B2 四点共圆,且点N(0,3)到椭圆上的点最远距离为 5 2. (1)求此时椭圆G 的方程; (2)设斜率为k(k≠0)的直线m 与椭圆G相交于不同的两点E、F,Q 为EF的中点,问E、F 两点能否关于 过点P(0, 3 3 )、Q 的直线对称?若能,求出k 的取值范围;若不能,请说明理由. 2、已知双曲线 2 2 1 x y 的左、右顶点分别为A1、A2 ,动直线l : y kx m 与圆 2 2 1 x y 相切,且与双曲 线左、右两支的交点分别为P1 (x1, y1 ), P2 ( x2 , y2) . (Ⅰ)求 k 的取值范围,并求x2 x1 的最小值; (Ⅱ)记直线P1A1 的斜率为k1 ,直线P2A2 的斜率为k2 ,那么,k1 k2 是定值吗?证明你的结论.

3、已知抛物线 2 C : y ax 的焦点为F,点K ( 1,0) 为直线l 与抛物线 C 准线的交点,直线l 与抛物线C 相交于A、 B两点,点 A 关于x 轴的对称点为 D .(1)求抛物线C 的方程。 (2)证明:点F 在直线BD 上; u u u r uu u r 8 (3)设 FA ?FB ,求BDK 的面积。.9 4、已知椭圆的中心在坐标原点O,焦点在x轴上,离心率为中点 T 在直线OP 上,且A、O、B 三点不共线. (I) 求椭圆的方程及直线AB的斜率; ( Ⅱ) 求PAB面积的最大值.1 2 ,点 P(2,3)、A、B在该椭圆上,线段AB 的

相关主题
文本预览
相关文档 最新文档