当前位置:文档之家› 数值分析第六次课

数值分析第六次课

最新第六章习题答案-数值分析

第六章习题解答 2、利用梯形公式和Simpson 公式求积分2 1 ln xdx ? 的近似值,并估计两种方法计算值的最大 误差限。 解:①由梯形公式: 21ln 2 ()[()()][ln1ln 2]0.3466222 b a T f f a f b --= +=+=≈ 最大误差限 3''2 ()111 ()()0.0833******** T b a R f f ηη-=-=≤=≈ 其中,(1,2)η∈ ②由梯形公式: 13()[()4()()][ln14ln()ln 2]0.38586262 b a b a S f f a f f b -+= ++=++≈ 最大误差限 5(4)4()66 ()()0.0021288028802880 S b a R f f ηη-=-=≤≈, 其中,(1,2)η∈。 4、推导中点求积公式 3''()()()()() ()224 b a a b b a f x dx b a f f a b ξξ+-=-+<

数值分析课后答案(4)

习题四 1.已知ln( 2.0)=0.6931;ln(2.2)=0.7885,ln(2.3)=0.8329, 试用线性插值和抛物插值计算.ln2.1的值并估计误差 解:线形插值:取 02.0x = 00.6931y = 12.2x = 10.7885y = 22.3x = 20.8329 y = 110 2.1 2.3 2.1 2.0(0)(1)0.69310.832901 10 2.0 2.3 2.3 2.0 x x x x L f x f x x x x x ----= + = + ----=0.7410 抛物线插值: 12200102()()()() x x x x l x x x x --= -- 02211012()()()() x x x x l x x x x --= -- 01222021()()()() x x x x l x x x x --= -- 2200211222L l y l y l y =++=0.742 2.已知x=0,2,3,5对应的函数值分别为y=1,3,2,5.试求三次多项式的插值 解:解:取00x = 12x = 23x = 35x = 12330010203()()()()()()x x x x x x l x x x x x x ---= --- 023********()()()()()()x x x x x x l x x x x x x ---= --- 01332202123()()()()()() x x x x x x l x x x x x x ---=--- 01233303132()()()()()() x x x x x x l x x x x x x ---= --- 3300311322333L l y l y l y l y =+++= 115 626 1310 32 3 ++ - x x x 3.设函数f(x)在[a,b]上具有直到二阶的连续导数,且f(a)=f(b)=0, 求证:2" 1m ax |()|()m ax |()|8 a x b a x b f x b a f x ≤≤≤≤≤ - 解:取01;x a x b ==,1()()0x a x b L f a f b a b b a --= + =-- '' '' 2 11()()() |()()|| ()()|| || |2 2 4 f f b a R f x L x x a x b εε-=-≤--≤ ∴'' 2 1()() |()||()|| || |2 4 f b a f x L x ε-≤+'' 1()|()|| ||()|8 f L x b a ε=+-|||8 )("| a b f -=ε 4.证明n 次Lagrange 插值多项式基函数满足

第六章习题答案数值分析.docx

第六章习题解答 2 2、利用梯形公式和 Simpson 公式求积分 ln xdx 的近似值, 并估计两种方法计算值的最大 1 误差限。 解:①由梯形公式: T ( f ) b a [ f (a) f (b)] 2 1 [ln1 ln 2] ln 2 0.3466 2 2 2 最大误差限 R ( f ) (b a)3 f '' ( ) 1 1 1 0.0833 T 12 12 2 12 12 其中, (1,2) ②由梯形公式: b a 4 f ( b a f (b)] 1 4ln( 3 ln 2] 0.3858 S( f ) [ f (a) ) [ln1 ) 6 2 6 2 最大误差限 R S ( f ) (b a)5 f (4) ( ) 6 6 0.0021, 2880 2880 4 2880 其中, (1,2) 。 4、推导中点求积公式 f ( x)dx (b a) f ( a b ) (b a) 3 (a b) b a 2 24 证明: 构造一次函数 P ( x ),使 P a 2 b f a b , P ' ( a b ) f ' ( a b ), P '' ( x) 0 2 2 2 则,易求得 P( x) f ' ( a b )( x a b ) f ( a b ) 2 2 2 且 P(x)dx f ' ( a b )( x a b ) f ( a b ) dx b b a a 2 2 2 f ( a b )dx (b a) f ( a b ) ,令 P(x)dx I ( f ) b b a 2 2 a 现分析截断误差:令 r ( x) f ( x) P(x) f ( x) f ' ( a b )( x a b ) f ( a b ) 2 2 2 由 r ' ( x) f ' (x) f ' ( a b ) 易知 x a 2 b 为 r (x) 的二重零点, 2 a b )2 , 所以可令 r (x) ( x)( x 2

最新数值分析课程第五版课后习题答案(李庆扬等)1

第一章 绪论(12) 1、设0>x ,x 的相对误差为δ,求x ln 的误差。 [解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=* ****1)()(ln )(ln x x x x x , 相对误差为* * ** ln ln ) (ln )(ln x x x x r δ εε= = 。 2、设x 的相对误差为2%,求n x 的相对误差。 [解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而n x 的误差为n n x x n x n x x n x x x ** 1 *** %2%2) ()()()(ln * ?=='=-=εε, 相对误差为%2) () (ln )(ln *** n x x x n r == εε。 3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字: 1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5 ?=x 。 [解]1021.1*1 =x 有5位有效数字;0031.0* 2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56* 4 =x 有5位有效数字;0.17*5?=x 有2位有效数字。 4、利用公式(3.3)求下列各近似值的误差限,其中* 4*3*2*1,,,x x x x 均为第3题所给 的数。 (1)* 4*2*1x x x ++; [解]3 334* 4*2*11** *4*2*1*1005.1102 1 10211021)()()()()(----=?=?+?+?=++=? ??? ????=++∑x x x x x f x x x e n k k k εεεε; (2)* 3*2 *1x x x ;

北航数值分析报告第三次大作业

数值分析第三次大作业 一、算法的设计方案: (一)、总体方案设计: x y当作已知量代入题目给定的非线性方程组,求(1)解非线性方程组。将给定的(,) i i

得与(,)i i x y 相对应的数组t[i][j],u[i][j]。 (2)分片二次代数插值。通过分片二次代数插值运算,得到与数组t[11][21],u[11][21]]对应的数组z[11][21],得到二元函数z=(,)i i f x y 。 (3)曲面拟合。利用x[i],y[j],z[11][21]建立二维函数表,再根据精度的要求选择适当k 值,并得到曲面拟合的系数矩阵C[r][s]。 (4)观察和(,)i i p x y 的逼近效果。观察逼近效果只需要重复上面(1)和(2)的过程,得到与新的插值节点(,)i i x y 对应的(,)i i f x y ,再与对应的(,)i i p x y 比较即可,这里求解 (,)i i p x y 可以直接使用(3)中的C[r][s]和k 。 (二)具体算法设计: (1)解非线性方程组 牛顿法解方程组()0F x =的解* x ,可采用如下算法: 1)在* x 附近选取(0) x D ∈,给定精度水平0ε>和最大迭代次数M 。 2)对于0,1, k M =执行 ① 计算() ()k F x 和()()k F x '。 ② 求解关于() k x ?的线性方程组 () ()()()()k k k F x x F x '?=- ③ 若() () k k x x ε∞∞ ?≤,则取*()k x x ≈,并停止计算;否则转④。 ④ 计算(1) ()()k k k x x x +=+?。 ⑤ 若k M <,则继续,否则,输出M 次迭代不成功的信息,并停止计算。 (2)分片双二次插值 给定已知数表以及需要插值的节点,进行分片二次插值的算法: 设已知数表中的点为: 00(0,1,,) (0,1,,)i j x x ih i n y y j j m τ=+=???=+=?? ,需要插值的节点为(,)x y 。 1) 根据(,)x y 选择插值节点(,)i j x y : 若12h x x ≤+ 或12 n h x x ->-,插值节点对应取1i =或1i n =-,

数值分析 第六章 习题

第六章 习 题 1. 计算下列矩阵的1A ,2A ,A ∞三种范数。 (1)1101A ???=????,(2)312020116A ????=??????? . 2. 用Jacobi 方法和Gauss-Seidel 迭代求解方程组 1231231 238322041133631236x x x x x x x x x ?+=??+?=??++=? 要求取(0)(0,0,0)T x =计算到(5)x ,并分别与精确解(3,2,1)T x =比较。 3. 用Gauss-Seidel 迭代求解 12312312 35163621122x x x x x x x x x ??=??++=???+=?? 以(0)(1,1,1)T x =?为初值,当(1)() 310k k x x +?∞?<时,迭代终止。 4. 已知方程组121122,2,x x b tx x b +=?? +=? (1)写出解方程组的Jacobi 迭代矩阵,并讨论迭代收敛条件。 (2)写出解方程组的Gauss-Seidel 迭代矩阵,并讨论迭代收敛条件. 5. 设有系数矩阵 122111221A ?????=?????? , 211111112B ?????=??????? , 证明:(1)对于系数矩阵A ,Jacobi 迭代收敛,而Gauss-Seidel 迭代不收敛. (2)对于矩阵B ,. 6. 讨论方程组 112233302021212x b x b x b ?????????????=??????????????????? 用Jacobi 迭代和Gauss-Seidel 迭代的收敛性;如果都收敛,比较哪种方法收敛更快.

数值分析习题六解答

习 题 六 解 答 1、在区间[0,1]上用欧拉法求解下列的初值问题,取步长h=0.1。 (1)210(1)(0)2y y y '?=--?=?(2)sin (0)0x y x e y -'?=+?=? 解:(1)取h=0.1,本初值问题的欧拉公式具体形式为 21(1)(0,1,2,)n n n y y y n +=--= 由初值y 0=y(0)=2出发计算,所得数值结果如下: x 0=0,y 0=2; x 1=0.1,2100(1)211y y y =--=-= x 2=0.2,2211(1)101y y y =--=-= 指出: 可以看出,实际上求出的所有数值解都是1。 (2)取h=0.1,本初值问题的欧拉公式具体形式为 21(sin )(0,1,2,)n x n n n y y h x e n -+=++= 由初值y 0=y(0)=0出发计算,所得数值结果如下: x 0=0,y 0=0; x 1=0.1, 02 1000 (sin )00.1(sin 0)00.1(01)0.1x y y h x e e -=++=+?+=+?+= x 2=0.2, 122110.1 (sin )0.10.1(sin 0.1)0.10.1(0.10.9)0.2 x y y h x e e --=++=+?+=+?+= 指出: 本小题的求解过程中,函数值计算需要用到计算器。 2、用欧拉法和改进的欧拉法(预测-校正法)求解初值问题,取步长h=0.1。 22(00.5) (0)1 y x y x y '?=-≤≤? =? 解:(1) 取h=0.1,本初值问题的欧拉公式具体形式为 2 1(2)(0,1,2,)n n n n y y h x y n +=+-= 由初值y 0=y(0)=1出发计算,所得数值结果如下:

北航数值分析报告大作业第八题

北京航空航天大学 数值分析大作业八 学院名称自动化 专业方向控制工程 学号 学生姓名许阳 教师孙玉泉 日期2014 年11月26 日

一.题目 关于x , y , t , u , v , w 的方程组(A.3) ???? ?? ?=-+++=-+++=-+++=-+++79 .0sin 5.074.3cos 5.007.1cos sin 5.067.2cos 5.0y w v u t x w v u t y w v u t x w v u t (A.3) 以及关于z , t , u 的二维数表(见表A-1)确定了一个二元函数z =f (x , y )。 表A-1 二维数表 t z u 0 0.4 0.8 1.2 1.6 2 0 -0.5 -0.34 0.14 0.94 2.06 3.5 0.2 -0.42 -0.5 -0.26 0.3 1.18 2.38 0.4 -0.18 -0.5 -0.5 -0.18 0.46 1.42 0.6 0.22 -0.34 -0.58 -0.5 -0.1 0.62 0.8 0.78 -0.02 -0.5 -0.66 -0.5 -0.02 1.0 1.5 0.46 -0.26 -0.66 -0.74 -0.5 1. 试用数值方法求出f (x , y ) 在区域}5.15.0,8.00|), {≤≤≤≤=y x y x D (上的近似表达式 ∑∑===k i k j s r rs y x c y x p 00 ),( 要求p (x , y )以最小的k 值达到以下的精度 ∑∑==-≤-=10020 7210)],(),([i j i i i i y x p y x f σ 其中j y i x i i 05.05.0,08.0+==。 2. 计算),(),,(* ***j i j i y x p y x f (i =1,2,…,8 ; j =1,2,…,5) 的值,以观察p (x , y ) 逼 近f (x , y )的效果,其中j y i x j i 2.05.0,1.0**+==。

第六章非线性方程的数值解法习题解答

第六章非线性方程的数值解法习题解答 填空题: 1. 求方程()x f x =根的牛顿迭代格式是__________________。 Ans:1()1()n n n n n x f x x x f x +-=- '- 2.求解方程 在(1, 2)内根的下列迭代法中, (1) (2) (3) (4) 收敛的迭代法是(A ). A .(1)和(2) B. (2)和(3) C. (3)和(4) D. (4)和(1) 3.若0)()(,故迭代发散。 以上三中以第二种迭代格式较好。 2、设方程()0f x =有根,且'0()m f x M <≤≤。试证明由迭代格式1()k k k x x f x λ+=- (0,1,2,)k =L 产生的迭代序列{}0k k x ∞ =对任意的初值0(,)x ∈-∞+∞,当2 0M λ<< 时,均收敛于方程的根。

北航数值分析报告大作业第三题(fortran)

“数值分析“计算实习大作业第三题 ——SY1415215 孔维鹏 一、计算说明 1、将x i=0.08i,y j=0.5+0.05j分别代入方程组(A.3)得到关于t,u,v,w的的方程组,调用离散牛顿迭代子函数求出与x i,y j对应的t i,u j。 2、调用分片二次代数插值子函数在点(t i,u j)处插值得到z(x i,y j)=f(x i,y j),得到数表(x i,y j,f(x i,y j))。 3、对于k=1,2,3,4?,分别调用最小二乘拟合子函数计算系数矩阵c rs及误差σ,直到满足精度,即求得最小的k值及系数矩阵c rs。 4、将x i?=0.1i,y j?=0.5+0.2j分别代入方程组(A.3)得到关于t?,u?,v?,w?的的方程组,调用离散牛顿迭代子函数求出与x i?,y j?对应的t i?,u j?,调用分片二次代数插值子函数在点(t i?,u j?)处插值得到z?(x i?,y j?)=f(x i?,y j?);调用步骤3中求得的系数矩阵c rs求得p(x i?,y j?),打印数表(x i?,y j?,f(x i?,y j?),p(x i?,y j?))。 二、源程序(FORTRAN) PROGRAM SY1415215 DIMENSION X(11),Y(21),T(6),U(6),Z(6,6),UX(11,21),TY(11,21),FXY(11,21),C(6,6) DIMENSION X1(8),Y1(5),FXY1(8,5),PXY1(8,5),UX1(8,5),TY1(8,5) REAL(8) X,Y,T,U,Z,FXY,UX,TY,C,E,X1,Y1,FXY1,PXY1,UX1,TY1 OPEN (1,FILE='第三题计算结果.TXT') DO I=1,11 X(I)=0.08*(I-1) ENDDO DO I=1,21 Y(I)=0.5+0.05*(I-1) ENDDO

数值分析课程设计(最终版)

本文主要通过Matlab 软件,对数值分析中的LU 分解法、最小二乘法、复化Simpon 积分、Runge-Kutta 方法进行编程,并利用这些方法在MATLAB 中对一些问题进行求解,并得出结论。 实验一线性方程组数值解法中,本文选取LU 分解法,并选取数据于《数值分析》教材第5章第153页例5进行实验。所谓LU 分解法就是将高斯消去法改写为紧凑形式,可以直接从矩阵A 的元素得到计算L 、U 元素的递推公式,而不需要任何步骤。用此方法得到L 、U 矩阵,从而计算Y 、X 。 实验二插值法和数据拟合中,本文选取最小二乘拟合方法进行实验,数据来源于我们课堂学习该章节时的课件中的多项式拟合例子进行实验。最小二乘拟合是一种数学上的近似和优化,利用已知的数据得出一条直线或者曲线,使之在坐标系上与已知数据之间的距离的平方和最小。利用excel 的自带函数可以较为方便的拟合线性的数据分析。 实验三数值积分中,本文选取复化Simpon 积分方法进行实验,通过将复化Simpson 公式编译成MATLAB 语言求积分∫e ;x dx 1 0完成实验过程的同时,也对复化Simpon 积分章节的知识进行了巩固。 实验四常微分方程数值解,本文选取Runge-Kutta 方法进行实验,通过实验了解Runge-Kutta 法的收敛性与稳定性同时学会了学会用Matlab 编程实现Runge-Kutta 法解常微分方程,并在实验的过程中意识到尽管我们熟知的四种方法,事实上,在求解微分方程初值问题,四阶法是单步长中最优秀的方法,通常都是用该方法求解的实际问题,计算效果比较理想的。 实验五数值方法实际应用,本文采用最小二乘法拟合我国2001年到2015年的人口增长模型,并预测2020年我国人口数量。 关键词:Matlab ;LU 分解法;最小二乘法;复化Simpon 积分;Runge-Kutta

北航数值分析计算实习报告一

航空航天大学 《数值分析》计算实习报告 第一大题 学院:自动化科学与电气工程学院 专业:控制科学与工程 学生姓名: 学号: 教师: 电话: 完成日期: 2015年11月6日 航空航天大学 Beijing University of Aeronautics and Astronautics

实习题目: 第一题 设有501501?的实对称矩阵A , ??? ???? ?????????=5011A a b c b c c b c b a 其中,064.0,16.0),501,,2,1(64.0)2.0sin()024.064.1(1 .0-==???=--=c b i e i i a i i 。矩阵A 的特征值为)501,,2,1(???=i i λ,并且有 ||min ||,501 150121i i s λλλλλ≤≤=≤???≤≤ 1.求1λ,501λ和s λ的值。 2.求A 的与数40 1 5011λλλμ-+=k k 最接近的特征值)39,,2,1(???=k k i λ。 3.求A 的(谱数)条件数2)A (cond 和行列式detA 。 说明: 1.在所用的算法中,凡是要给出精度水平ε的,都取12-10=ε。 2.选择算法时,应使矩阵A 的所有零元素都不储存。 3.打印以下容: (1)全部源程序; (2)特征值),,39,...,2,1(,s 5011=k k i λλλλ以及A det ,)A (cond 2的值。 4.采用e 型输出实型数,并且至少显示12位有效数字。

一、算法设计方案 1、求1λ,501λ和s λ的值。 由于||min ||,501 150121i i s λλλλλ≤≤=≤???≤≤,可知绝对值最大特征值必为1λ和501 λ其中之一,故可用幂法求出绝对值最大的特征值λ,如果λ=0,则1λ=λ,否则 501λ=λ。将矩阵A 进行一下平移: I -A A'λ= (1) 对'A 用幂法求出其绝对值最大的特征值'λ,则A 的另一端点特征值1λ或501λ为'λ+λ。 s λ为按模最小特征值,||min ||501 1i i s λλ≤≤=,可对A 使用反幂法求得。 2、求A 的与数40 1 5011λλλμ-+=k k 最接近的特征值)39,...,2,1(=k k i λ。 计算1)1,2,...,50=(i i λ-k μ,其模值最小的值对应的特征值k λ与k μ最接近。因此对A 进行平移变换: )39,,2,1k -A A k k ==(I μ (2) 对k A 用反幂法求得其模最小的特征值'k λ,则k λ='k λ+k μ。 3、求A 的(谱数)条件数2)(A cond 和行列式detA 。 由矩阵A 为非奇异对称矩阵可得: | | )(min max 2λλ=A cond (3) 其中max λ为按模最大特征值,min λ为按模最小特征值,通过第一问我们求得的λ和s λ可以很容易求得A 的条件数。 在进行反幂法求解时,要对A 进行LU 分解得到。因L 为单位下三角阵,行 列式为1,U 为上三角阵,行列式为主对角线乘积,所以A 的行列式等于U 的行列式,为U 的主对角线的乘积。

数值分析第六章实验报告

一、实验名称 Newton-cotes型求积公式 二、实验目的 学会Newton-cotes型求积公式,并应用该算法于实际问题。 三、实验内容 求定积分?π cos xdx e x 四、实验要求 选择等分份数n,用复化Simpson求积公式求上述定积分的误差不超过8 10-的近似值,用MATLAB中的内部函数int求此定积分的准确值,与利用复化Simpson求积公式计算的近似值进行比较。 五、实验程序与输出结果 在MATALAB的Editor窗口中输入以下程序: function y=comsimpson(fun,a,b,n) z1=feval (fun,a)+ feval (fun,b);m=n/2; h=(b-a)/(2*m); x=a; z2=0; z3=0; x2=0; x3=0; for k=2:2:2*m x2=x+k*h; z2= z2+2*feval (fun,x2); end for k=3:2:2*m x3=x+k*h; z3= z3+4*feval (fun,x3); end y=(z1+z2+z3)*h/3; 然后保存为然后保存为comsimpson.m的文件 在MATALAB工作窗口命令窗口中输入: Q2 =comsimpson (@fun,0,pi,1000000000) syms x fi=int(exp(x).*cos(x),x,0,pi); Fs= double (fi)

wQ2= double (abs(fi-Q2) ) 运行后结果: Q2=-12.0703,Fs=-12.0703, wQ2=5.2654e-08 六、实验结果分析 利用复化simpson求积公式计算运行后其结果为Q2=-12.0703,利用内部函数求解的结果为Fs=-12.0703,两者的误差为wQ2=5.2654e-08。从中可以看出误差结果达到了1E-8级数,而相对应的N已经取到了10亿次,再增大N对结果已经没有太大变化。可见复化simpson要得到比较准确的结果需要运算的次数比较大。

北航数值分析大作业3

一、算法设计方案 1.使用牛顿迭代法,对原题中给出的i x i 08.0=,j y j 05.05.0+=, (010 ,020i j ≤≤≤≤)的11*21组j i y x ,分别求出原题中方程组的一组解,于是得到一组和i i y x ,对应的j i t u ,。 2.对于已求出的j i t u ,,使用分片二次代数插值法对原题中关于u t z ,,的数表进行插值得到 ij z 。于是产生了z=f(x,y)的11*21个数值解。 3.从k=1开始逐渐增大k 的值,并使用最小二乘法曲面拟合法对z=f(x,y)进行拟合,得到每次的σ,k 。当7 10-<σ时结束计算,输出拟合结果。 4.计算)5,,2,1,8,,2,1)(,(),,(* ***???=???=j i y x p y x f j i j i 的值并输出结果,以观察),(y x p 逼近),(y x f 的效果。其中j y i x j i 2.05.0,1.0* *+==。 二、算法实现方案 1、求(,)f x y : (1)Newton 法解非线性方程组 0.5cos 2.670.5sin 1.07(1)0.5cos 3.740.5sin 0.79 t u v w x t u v w y t u v w x t u v w y +++-=??+++-=? ? +++-=??+++-=?, 其中,t, u, v ,w 为待求的未知量,x, y 为代入的已知量。 设(,,,)T t u v w ξ=,给定精度水平12110ε-=和最大迭代次数M ,则解该线性方程组的迭代格式为: *(0)(0)(0)(0)(0)(k+1) ()()1()(,,,)()()0,1,T k k k t u v w F F k ξξξ ξξξ-?=?'=-??= ? 在附近选取初值, 迭代终止条件为()(1) () 1/k k k ξξ ξε-∞ ∞ -≤,若k M >时仍未达到迭代精度,则迭代计算失 败。 其中,雅可比矩阵 0.5*cos(t) + u + v + w - x - 2.67t + 0.5*sin(u) + v + w - y - 1.07()0.5*t + u + cos(v) + w - x - 3.74t + 0.5*u + v + sin(w) - y - 0.79F ξ???? ? ?=?????? ,

20150318数值分析学生版作业

2014-2015(2)计算机与信息工程学院数值分析作业 计科专业_______级_____班 姓名:___________学号:____________ 第一章 绪论 一、单项选择题 1.用3.1415作为π 的近似值时具有( )位有效数字。 (A )3 (B )4 (C ) 5 (D )6 2.已知数x 1=721 x 2=0.721 x 3=0.700 x 4=7*10-2是由四舍五入得到的,则它们的有效数字的位数应分别为( )。 (A) 3,3,3,1 ( B) 3,3,3,3 (C) 3,3,1,1 ( D) 3,3,3,2 二、填空题 1.在一些数值计算中,对数据只能取有限位表示,如2 1.414≈ ,这时所产生的误差称为_______误差.(填误差的类型) 2. 为尽量避免有效数字的严重损失,当1>>x 时,应将表达式x x -+1改写为_________以保证计算结果比较精确. 3.在数值计算中,通常取e 2.71= ,此时产生的误差为_________误差(填误差的类型). 4.设x =0.231是精确值x *=0.229的近似值,则x 有_________位有效数字。 三、计算题 1、(本题5分)试确定 7 22 作为π的近似值具有几位有效数字,并确定其相对误差限。 第二章 插值法 一、单项选择题 1. 通过点0011(x ,y ),(x ,y ) 的拉格朗日插值基函数01l (x),l (x)满足 ( ). (A ) 0011l (x )0,l (x )0== ( B) 0011l (x )1,l (x )1== (C )0011l (x )1,l (x )0== (D) 0011l (x )0,l (x )1== 2. 是给定的互异节点, 是以它们为插值节点的插值多项式,则 是一个( ). (A) n +1次多项式 (B) n 次多项式 (C) 次数小于n 的多项式 (D) 次数不超过n 的多项式 二、填空题

数值分析每节课的教学重点、难点

计算方法教案新疆医科大学 数学教研室 张利萍

一、课程基本信息 1、课程英文名称:Numerical Analysis 2、课程类别:专业基础课程 3、课程学时:总学时54 4、学分:4 5、先修课程:《高等数学》、《线性代数》、《Matlab 语言》 二、课程的目的与任务: 计算方法是信息管理与信息系统专业的重要理论基础课程,是现代数学的一个重要分支。其主要任务是介绍进行科学计算的理论方法,即在计算机上对来自科学研究和工程实际中的数学问题进行数值计算和分析的理论和方法。通过本课程的学习,不仅使学生初步掌握数值分析的基本理论知识,而且使学生具备一定的科学计算的能力、分析问题和解决问题的能力,为学习后继课程以及将来从事科学计算、计算机应用和科学研究等工作奠定必要的数学基础。 三、课程的基本要求: 1.掌握计算方法的常用的基本的数值计算方法 2.掌握计算方法的基本理论、分析方法和原理 3.能利用计算机解决科学和工程中的某些数值计算应用问题,增强学生综合运用知识的能力 4.了解科学计算的发展方向和应用前景 四、教学内容、要求及学时分配: (一) 理论教学: 引论(2学时) 第一讲(1-2节) 1.教学内容: 计算方法(数值分析)这门课程的形成背景及主要研究内容、研究方法、主要特点;算法的有关概念及要求;误差的来源、意义、及其有关概念。数值计算中应注意的一些问题。 2.重点难点: 算法设计及其表达法;误差的基本概念。数值计算中应注意的一些问题。3.教学目标: 了解数值分析的基本概念;掌握误差的基本概念:误差、相对误差、误差限、相对误差限、有效数字;理解有效数字与误差的关系。学会选用相对较好的数值计算方法。

BUAA数值分析大作业三

北京航空航天大学2020届研究生 《数值分析》实验作业 第九题 院系:xx学院 学号: 姓名: 2020年11月

Q9:方程组A.4 一、 算法设计方案 (一)总体思路 1.题目要求∑∑=== k i k j s r rs y x c y x p 00 ),(对f(x, y) 进行拟合,可选用乘积型最小二乘拟合。 ),(i i y x 与),(i i y x f 的数表由方程组与表A-1得到。 2.),(* * j i y x f 与1使用相同方法求得,),(* * j i y x p 由计算得出的p(x,y)直接带入),(* * j i y x 求得。

1. ),(i i y x 与),(i i y x f 的数表的获得 对区域D ={ (x,y)|1≤x ≤1.24,1.0≤y ≤1.16}上的f (x , y )值可通过xi=1+0.008i ,yj=1+0.008j ,得到),(i i y x 共31×21组。将每组带入A4方程组,即可获得五个二元函数组,通过简单牛顿迭代法求解这五个二元数组可获得z1~z5有关x,y 的表达式。再将 ),(i i y x 分别带入z1~z5表达式即可获得f(x,y)值。 2.乘积型最小二乘曲面拟合 2.1使用乘积型最小二乘拟合,根据k 值不用,有基函数矩阵如下: ????? ??=k i i k x x x x B 0000 , ????? ??=k j j k y y y y G 0000 数表矩阵如下: ???? ? ? ?=),(),(),(),(0000j i i j y x f y x f y x f y x f U 记C=[rs c ],则系数rs c 的表达式矩阵为: 11-)(-=G G UG B B B C T T T )( 通过求解如下线性方程,即可得到系数矩阵C 。 UG B G G C B B T T T =)()( 2.2计算),(),,(* ***j i j i y x p y x f (i =1,2,…,31 ; j =1,2,…,21) 的值 ),(**j i y x f 的计算与),(j i y x f 相同。将),(**j i y x 代入原方程组,求解响应) ,(* *ij ij u t 进行分片双二次插值求得),(**j i y x f 。),(* *j i y x p 的计算则可以直接将),(**j i y x 代入所求p(x,y)。 二、 源程序 ********* 第三次数值分析大作业Q9************ integer::i, j, K1, L1, n, m dimension X(31), Y(21), T(6), U(6), Z(6, 6), UX(11, 21), TY(11, 21), FXY(11, 21), C(6, 6) dimension z1(31, 21), z2(31, 21), z3(31, 21), z4(31, 21), z5(31, 21) dimension X1(8), Y1(5), FXY1(8, 5), PXY1(8, 5), UX1(8, 5), TY1(8, 5)

数值分析第六章小结【计算方法】

第六章 数值积分学习小结 一、本章知识梳理 求积公式及其代数精度: 数值求积公式的一般形式: ()0 ()()n b n k k a k f x dx f x λ=≈∑? 截断误差: )()(0 k b a n k k n x f dx x f R ?∑=-=λ 数值求积公式是一种近似方法,因此,要求它对尽可能多的被积函数f 能准确计算积分的值,这就有了代数精度的概念。 定义:对于上面所列的求积公式,当()f x 为任何次数不高于m 的多项式时 都成为等式,而当()f x 为某个m+1次多项式时不能成为等式,则称它具有m 次代数精度。 插值型求积公式: ()0 ()()n b n k k a k f x dx f x λ=≈∑? 其中() ()(0,1,...,) b n k k a l x dx k n λ ==? 截断误差: (1)0 ()[()](1)!n n b n j a j f R x x dx n ξ+==-+∏? 定理:n+1个节点的插值型求积公式至少具有n 次代数精度。 Newton —Cotes 求积公式: 求积公式:

()0 ()()n b n k a k b a f x dx f a k n λ =-≈+∑? 其中 ()() ()(0,1,...,)n n k k b a c k n λ=-= ()00 (1)[()]!()!n k n n n k j j k c t j dt k n k n -=≠-=--∏? 2(1) 00 ()[()](1)!n n n n n j h R f t j dt n ξ++==-+∏? 梯形公式(n=1): ()[()()]2 b a b a f x dx f a f b -≈+? 3 1()''(),(,)12 b a R f a b ηη-=-∈ Simpson 公式(n=2): ()[()4()+()]62 b a b a a b f x dx f a f f b -+≈ +? 5(4) 2()(),(,)2880 b a R f a b ηη-=-∈ Simpson3/8公式(n=3): 22()[()3()3()()]833b a b a a b a b f x dx f a f f f b -++≈ +++? 5(4)3()(),(,)6480 b a R f a b ηη-=-∈ Cotes 公式(n=4): 33()[7()32()12()32()7()]90424 b a b a a b a b a b f x dx f a f f f f b -+++≈ ++++? 7(6) 4()(),(,)1935360 b a R f a b ηη-=-∈

北航数值分析大作业第二次

《数值分析》计算实习作业 (第二题)

算法设计方案: 1、对矩阵A 赋值,取计算精度ε=1×10-12; 2、对矩阵A 进行拟上三角化,得到A (n-1),并输出A (n-1); 对矩阵A 的拟上三角化,通过直接调用子函数inftrianglize(A)来实现;拟上三角化得到的矩阵A (n-1)输出至文件solution.txt 中。 3、对A (n-1)进行QR 分解并输出Q 、R 及RQ 矩阵; QR 分解通过直接调用子函数QRdescom(A,Q,R, n)实现。 4、运用QR 方法求所有的特征值,并输出; (1)初始时令m=n ,在m>2的条件下执行; (2)判断如果|A mm-1|<ε,则得到一个特征值,m=m-1,转(4);否则转(3); (3)判断如果|A m-1m-2|<ε,则得到两个特征值,m=m-2,转(4); (4)判断如果m ≤2,转(6);否则转(5); (5)执行相似迭代,转(2); k k T k k k k k k k k k k Q A Q A R Q M I D A D tr A M ==+-=+1)2)det(( (6)求出最后的一个或两个特征值; (7)输出全部的特征值至文件solution.txt 中。 5、输出QR 分解法迭代结束之后的A (n-1)至文件solution.txt 中; 6、通过反幂法求出所有实特征值的特征向量并输出。 首先令B=(A-λi I),其中λi 是实特征值;反幂法通过调用子函数Bpowmethod(B,x1)实现,最终λi 对应的特征向量就是x1;最后将所有的实特征值的特征向量输出。

数值分析第六章学习小结

第六章 数值积分 --------学习小结 姓名 班级 学号 一、 本章学习体会 本章主要讲授了数值积分的一些求积公式及各种求积公式的代数精度,重点应掌握插值型求积公式,什么样的求积公式可以被称为插值型求积公式,Newton-Cotes 求积公式及其收敛性与数值稳定性,复化求积公式和高斯求积公式,在本章的学习过程中也遇到不少问题,比如本章知识点多,公式多,在做题时容易张冠李戴,其次对Newton-Cotes 求积公式的收敛性与数值稳定性理解不够透彻,处理一个实际问题时,不知道选取哪一种求积公式,来达到最精确的结果。 二、 本章知识梳理 6.1求积公式及其代数精度 代数精度的概念:如果求积公式(6.1)当f(x)为任何次数不高于m 的多项式时都成为等式,而当f(x)为某个m+1次多项式时(6.1)不能成为等式,则称求积公式(6.1)具有m 次代数精度。 6.2插值型求积公式 (1)求积公式: ?+++=b a n n n dx x n f R )()! 1()(1)1(ωξ (2)重要的定理:n+1个节点的插值型求积公式至少具有n 次代数度。 (3)求积系数:a b A k n k -=∑=0 6.3Newton-Cotes 求积公式及其收敛性与数值稳定性 (1)公式:∑?=≈n k k n k b a x f dx x f 0)()()(λ∑=-=n k k n k x f c a b 0)()()(

(2)截断误差:?∏=++-+=n n j j n n n dt t t f n h R 00 )1(2)()()!1(ξ (3)重要的定理:当n 为偶数时,n+1个节点的Newton-Cotes 求积公式至少具有n+1次代数精度。 (4)常用的Newton-Cotes 求积公式 n=1 梯形公式:)]()([2 )(b f a f a b dx x f b a +-≈? 余项:),(),(12 )(3 1b a f a b R ∈''--=ηη,具有一次精度。 n=2 Simpson 公式:)]()2 (4)([6)(b f b a f a f a b dx x f b a +++-≈? 余项:),(),(2880 )()4(5 2b a f a b R ∈--=ηη,具有三次精度。 6.4复化求积法 (1)复化梯形公式: ])(2)()([2)(11∑? -=+++≈n k b a kh a f b f a f h dx x f 截断误差: ],[),(122b a f h a b R T ∈''--=ηη (2)复化Simpson 公式: ])(2)(4)()([3)(111212∑∑?=-=-+++≈m k m k k k b a x f x f b f a f h dx x f 截断误差: ],[),(180)4(4b a f h a b R s ∈--=ηη 6.5Gauss 型求积公式 (1)定义:若n 个节点的插值型求积公式(6.23)具有2n-1 次代数精度,则称它为Gauss 型求积公式。 (2)定理:n 个节点的 Gauss 型求积公式的代数精度为2n-1。 (3)定理:设},1,0),({ =k x g k 是区间[a,b]上带权)(x ρ的正交多项式系,则求

相关主题
文本预览
相关文档 最新文档