当前位置:文档之家› RESEARCH IN PROGRESS Recent and Current Artificial Intelligence

RESEARCH IN PROGRESS Recent and Current Artificial Intelligence

RESEARCH IN PROGRESS Recent and Current Artificial Intelligence
RESEARCH IN PROGRESS Recent and Current Artificial Intelligence

矩阵分解在优化方法中的应用

矩阵分解以及矩阵范数在数值计算中的应用 张先垒 (自动化与电气工程学院 控制科学与工程 2012210186) 【摘要】矩阵的分解是将一个矩阵分解为较为简单的或具有某种特性的若干矩阵的和或 者乘积,这是矩阵理论及其应用中比较常见的方法。由于矩阵的这些特殊的分解形式,一方面反映了矩阵的某些数值特性,如矩阵的秩、特征值、奇异值等;另一方面矩阵的分解方法与过程往往为某些有效的数值计算方法和理论分析提供了重要的依据,它是应用于解最优化问题、特征值问题、最小二乘方问题的主要数学工具。 关键词 : 矩阵分解 对角化 逆矩阵 范数 条件数 1. 引言 矩阵分解在工程中的应用主要是在解线性方程组中,而这主要就是关系到储存和计算时间的问题上面,如何实现最小的储存和最少的计算时间是在工程计算中的头等问题。在这方年就牵涉到很多对矩阵进行怎样的分解,这篇文章介绍了基本的关于三角分解相关的内容以及关于界的稳定性的考虑。 2. 矩阵的三角分解求解线性方程组 数值求解线性方程组的方法中有一个主要是直接法,假设计算中没有舍入误差,经过有限次算术运算能够给出问题的精确解的数值方法。其中高斯消去法就是利用矩阵的分解实现的。矩阵论一种有效而且应用广泛的分解法就是三角分解法,将一个矩阵分解为一个酉矩阵(或正交矩阵)与一个三角矩阵的乘积或者三角矩阵与三角矩阵的乘积。(见课本P93例4.3)考虑一般的线性方程组,设其中的系数矩阵A 是可逆的, 1111 n m mn a a A a a ?? ? = ? ??? (1-1) 设矩阵A 的第一列中至少有一个是非零元素(否则A 就是奇异矩阵)不妨设为1i a 若一 般的记初等矩阵 [1] 如1-2式及矩阵论课本上的Givens 矩阵。

基于矩阵分解的协同过滤算法

万方数据

万方数据

万方数据

万方数据

基于矩阵分解的协同过滤算法 作者:李改, 李磊, LI Gai, LI Lei 作者单位:李改,LI Gai(顺德职业技术学院,广东顺德528333;中山大学信息科学与技术学院,广州510006;中山大学软件研究所,广州510275), 李磊,LI Lei(中山大学信息科学与技术学院,广州510006;中山大学软件研究 所,广州510275) 刊名: 计算机工程与应用 英文刊名:Computer Engineering and Applications 年,卷(期):2011,47(30) 被引用次数:1次 参考文献(18条) 1.Wu J L Collaborative filtering on the Nefifix prize dataset 2.Ricci F.Rokach L.Shapira B Recommender system handbook 2011 3.Adomavicius G.Tuzhilin A Toward the next generation of recommender systems:a survey of the state-of-the-art and possible extenstions 2005(06) 4.Bell R.Koren Y.Volinsky C The bellkor 2008 solution to the Netflix prize 2007 5.Paterek A Improving regularized singular value decomposition for collaborative filtering 2007 6.Lee D D.Seung H S Leaming the parts of objects by non-negative matrix factorization[外文期刊] 7.徐翔.王煦法基于SVD的协同过滤算法的欺诈攻击行为分析[期刊论文]-计算机工程与应用 2009(20) 8.Pan R.Zhou Y.Cao B One-class collaborative filtering 2008 9.Pan R.Martin S Mind the Gaps:weighting the unknown in largescale one-class collaborative filtering 2009 https://www.doczj.com/doc/6c17541719.html,flix Netflix prize 11.罗辛.欧阳元新.熊璋通过相似度支持度优化基于K近邻的协同过滤算法[期刊论文]-计算机学报 2010(08) 12.汪静.印鉴.郑利荣基于共同评分和相似性权重的协同过滤推荐算法[期刊论文]-计算机科学 2010(02) 13.Hadoop[E B/OL] 14.Apache MapReduce Architecture 15.Wbite T.周敏.曾大聃.周傲英Hadoop权威指南 2010 16.Herlocker J.Konstan J.Borchers A An algorithmic framework for performing collaborative filtering 1999 17.Linden G.Smith B.York J https://www.doczj.com/doc/6c17541719.html, recommendations:Itemto-item collaborative filtering[外文期刊] 2003 18.Sarwar B.Karypis G.Konstan J ltem-based collaborative filtering recommendation algorithms 2001 引证文献(1条) 1.沈韦华.陈洪涛.沈锦丰基于最佳匹配算法的精密零件检测研究[期刊论文]-科技通报 2013(5) 本文链接:https://www.doczj.com/doc/6c17541719.html,/Periodical_jsjgcyyy201130002.aspx

(完整word版)矩阵分解及其简单应用

对矩阵分解及其应用 矩阵分解是指将一个矩阵表示为结构简单或具有特殊性质若干矩阵之积或之和,大体分为三角分解、QR 分解、满秩分解和奇异值分解。矩阵的分解是很重要的一部分内容,在线性代数中时常用来解决各种复杂的问题,在各个不同的专业领域也有重要的作用。秩亏网平差是测量数据处理中的一个难点,不仅表现在原理方面,更表现在计算方面,而应用矩阵分解来得到未知数的估计数大大简化了求解过程和难度。 1. 矩阵的三角分解 如果方阵A可表示为一个下三角矩阵L和一个上三角矩阵U之积,即A=LU 则称A可作三角分解。矩阵三角分解是以Gauss消去法为根据导出的,因此矩阵可以进行三角分解的条件也与之相同,即矩阵A的前n-1个顺序主子式都不为0, 即?k工0.所以在对矩阵A进行三角分解的着手的第一步应该是判断是否满足这个前提条件,否则怎么分解都没有意义。矩阵的三角分解不是唯一的,但是在一定的前提下, A=LDU勺分解可以是唯一的,其中D是对角矩阵。矩阵还有其他不同的三角分解,比如Doolittle 分解和Crout 分解,它们用待定系数法来解求 A 的三角分解,当矩阵阶数较大的时候有其各自的优点,使算法更加简单方便。 矩阵的三角分解可以用来解线性方程组Ax=b。由于A=LU,所以Ax=b可以变换成LU x=b,即有如下方程组: Ly = b { {Ux = y 先由Ly = b依次递推求得y i, y2, ........ ,y n,再由方程Ux = y依次递推求得X n, x n-1 , ... ,X1 . 必须指出的是,当可逆矩阵A不满足?k工0时,应该用置换矩阵P左乘A以便使PA 的n个顺序主子式全不为零,此时有: Ly = pb { { Ux = y 这样,应用矩阵的三角分解,线性方程组的解求就可以简单很多了。 2. 矩阵的QF分解 矩阵的QR分解是指,如果实非奇异矩阵A可以表示为A=QR其中Q为正交矩阵,R为实非奇异上三角矩阵。QR分解的实际算法各种各样,有Schmidt正交方

矩阵分解及其简单应用

矩阵分解是指将一个矩阵表示为结构简单或具有特殊性质若干矩阵之积或之和,大体分为三角分解、分解、满秩分解和奇异值分解.矩阵地分解是很重要地一部分内容,在线性代数中时常用来解决各种复杂地问题,在各个不同地专业领域也有重要地作用.秩亏网平差是测量数据处理中地一个难点,不仅表现在原理方面,更表现在计算方面,而应用矩阵分解来得到未知数地估计数大大简化了求解过程和难度. 矩阵地三角分解 如果方阵可表示为一个下三角矩阵和一个上三角矩阵之积,即,则称可作三角分解.矩阵三角分解是以消去法为根据导出地,因此矩阵可以进行三角分解地条件也与之相同,即矩阵地前个顺序主子式都不为,即.所以在对矩阵进行三角分解地着手地第一步应该是判断是否满足这个前提条件,否则怎么分解都没有意义.矩阵地三角分解不是唯一地,但是在一定地前提下,地分解可以是唯一地,其中是对角矩阵.矩阵还有其他不同地三角分解,比如分解和分解,它们用待定系数法来解求地三角分解,当矩阵阶数较大地时候有其各自地优点,使算法更加简单方便.资料个人收集整理,勿做商业用途 矩阵地三角分解可以用来解线性方程组.由于,所以可以变换成,即有如下方程组:资料个人收集整理,勿做商业用途 先由依次递推求得,,……,,再由方程依次递推求得,,……,. 资料个人收集整理,勿做商业用途 必须指出地是,当可逆矩阵不满足时,应该用置换矩阵左乘以便使地个顺序主子式全不为零,此时有:资料个人收集整理,勿做商业用途 这样,应用矩阵地三角分解,线性方程组地解求就可以简单很多了. 矩阵地分解 矩阵地分解是指,如果实非奇异矩阵可以表示为,其中为正交矩阵,为实非奇异上三角矩阵.分解地实际算法各种各样,有正交方法、方法和方法,而且各有优点和不足.资料个人收集整理,勿做商业用途 .正交方法地分解 正交方法解求分解原理很简单,容易理解.步骤主要有:)把写成个列向量(,,……,),并进行正交化得(,,……,);) 单位化,并令(,,……,),(,,……,),其中;). 这种方法来进行分解,过程相对较为复杂,尤其是计算量大,尤其是阶数逐渐变大时,就显得更加不方便.资料个人收集整理,勿做商业用途 .方法地分解 方法求分解是利用旋转初等矩阵,即矩阵()来得到地,()是正交矩阵,并且(()).()地第行第列 和第行第列为,第行第列和第行第列分别为和,其他地都为.任何阶实非奇异矩阵可通过左连乘()矩阵(乘积为)化为上三角矩阵,另,就有.该方法最主要地是在把矩阵化为列向量地基础上找出和,然后由此把矩阵地一步步向上三角矩阵靠近.方法相对正交方法明显地原理要复杂得多,但是却计算量小得多,矩阵()固有地性质很特别可以使其在很多方面地应用更加灵活.资料个人收集整理,勿做商业用途 .方法地分解 方法分解矩阵是利用反射矩阵,即矩阵,其中是单位列向量,是正交矩阵,.可以证明,两个矩阵地乘积就是矩阵,并且任何实非奇异矩阵可通过连乘矩阵(乘积为)化为上三角矩阵,则.这种方法首要地就是寻找合适地单位列向量去构成矩阵,

矩阵分解及其应用

《线性代数与矩阵分析》课程小论文 矩阵分解及其应用 学生姓名:****** 专业:******* 学号:******* 指导教师:******** 2015年12月

Little Paper about the Course of "Linear Algebra and Matrix Analysis" Matrix Decomposition and its Application Candidate:****** Major:********* StudentID:****** Supervisor:****** 12,2015

中文摘要 将特定类型的矩阵拆解为几个矩阵的乘机称为矩阵的分解。本文主要介绍几种矩阵的分解方法,它们分别是矩阵的等价分解、三角分解、谱分解、奇异值分解和 Fitting 分解等。矩阵的分解理论和方法是矩阵分析中重要的部分,在求解矩阵的特征值、解线性方程组以及实际工程中有着广泛的运用。因此,本文将介绍矩阵等价分解、三角分解、奇异值分解的理论运用以及三角分解的工程运用。 关键词:等价分解,三角分解,奇异值分解,运用

Abstract Many particular types of matrix are split into the product of a matrix of several matrices, which is called decomposition of matrix. In this paper, we introduce some methods of matrix decomposition, which are equivalent decomposition, triangular decomposition, spectral decomposition, singular value decomposition, Fitting decomposition and so on. The decomposition theory and method of matrix is an important part of matrix analysis, which is widely used in solving the characteristic value, solving linear equations and the practical engineering. In this paper, we will introduce the theory of matrix equivalence decomposition, triangular decomposition, singular value decomposition and the engineering application of triangular decomposition. Key words:Equivalent Decomposition, Triangular Decomposition, Singular Value Decomposition, Application

第四章 矩阵分解

矩阵分析
第四章 矩阵分解
§4.1: 矩阵的满秩分解 §4.2: 矩阵的正交三角分解 §4.3: 矩阵的奇异值分解 §4.4: 矩阵的极分解 §4.5: 矩阵的谱分解
矩阵分解前言
矩阵分解定义: 将一个已知矩阵表示为另一些较为简单或 较为熟悉的矩阵的积(或和)的过程称为矩阵分解. 例:(1)对任意n阶正规矩阵A,存在酉阵U∈Un×n使 A=Udiag(λ1,…,λn)U*, 其中λ1,…,λn为A的所有特征值的任一排列. (2)对任意n阶正定矩阵A,存在可逆阵Q∈Cnn×n使A=Q*Q,或存 在唯一正定阵B使A=BB. 矩阵分解意义:有利于研究已知的矩阵. 例如,利用正定阵A的平方根B为正定阵可证: 对任意Hermite阵H,AH或HA都有实特征值.
1
( AH~(A1/2)-1AHA1/2=A1/2HA1/2∈Hn×n )
2
初等变换与初等矩阵(p73)
三类初等变换: (行(列)变换←→左(右)乘) (1)将矩阵A的两行互换等价于用第一类初等矩阵P(i,j)左 乘A; (2)将矩阵A的第i行乘以k≠0等价于用第二类初等矩阵 P(i(k))=diag(1,…,1,k,1,…,1)左乘A. (3)将矩阵A的第j行乘以k≠0后再加到第i行等价于左乘第 三类初等矩阵P(i,j(k)).
P (i , j ) =
?1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 0 1 1 1 0 1 1
初等变换与初等矩阵举例
?1 ?? 1 4 7 ? ? 1 4 7 ? ? 0 1 ?? 2 5 8 ? = ? 3 6 9 ? ; ? ?? ? ? ? ? 1 0 ?? 3 6 9 ? ? 2 5 8 ? ? ?? ? ? ? ?1 4 7??1 ? ? 1 7 4? ? 2 5 8?? 0 1? = ? 2 8 5? ? ?? ? ? ? ? 3 6 9?? 1 0? ? 3 9 6? ? ?? ? ? ?
?1 ??1 4 7? ? 1 4 7 ? ? ?? ? ? ? 0.2 ? ? 2 5 8 ? = ? 0.4 1 1.6 ? ; ? ? 1?? 3 6 9 ? ? 3 6 9 ? ? ?? ? ? ?
?1 4 7??1 ? ? 1 4 7 / 9? ? ?? ? ? ? ? 2 5 8?? 1 ? = ? 2 5 8/9? ? 3 6 9?? 1/ 9 ? ? 3 6 1 ? ? ?? ? ? ?
---- i ---- j
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1?
P (i , j ( k )) =
?1 ? ? ? ? ? ? ? ? ? ?
1
k 1
? ? ? ? ---? ? ? ---? ? ? 1?
i j
3
?1 ?? 1 2 3? ? 1 2 3 ? ? ?? ? ? ? ? ?4 1 ? ? 4 5 6 ? = ? 0 ?3 ?6 ? ; ? 1?? 7 8 9? ? 7 8 9 ? ? ?? ? ? ?
?3 ? ? 1 2 0 ? ? 1 2 3??1 ? ?? ? ? ? ? 4 5 6?? 1 ? = ? 4 5 ?6 ? ?7 8 9?? 1 ? ? 7 8 ?12 ? ? ?? ? ? ?
4
初等变换与初等矩阵的性质
3类初等矩阵都是可逆的(行列式不为0). 将A依次作初等矩阵P1,…,Pr对应的行(列)初等变换等价 于左(右)乘A以可逆矩阵Pr…P1(P1…Pr). 可适当选第一类初等矩阵的乘积P使PA(AP)的行(列)是A 的行(列)的任意排列; 可适当选第三类初等矩阵 P(i,j(k))中的k使P(i,j(k))A的(i,j)元变为0; 可适当选第二类初等矩阵P(i(k))中的k使P(i(k))A的非 零(i,i)元变为1. 存在初等矩阵的乘积P和Q,使PAQ= ,其中r=rankA.
初等变换与初等矩阵的性质续
命题:设A∈Crm×n前r列线性无关,则用初等行变换可把A变为
? Er ? ? 0 ?1 ? ? D? ? = ? ? 0 ? ? ? ? ? ? 1 1 * * * * *? ? *? *? ? *? ? ? ? ?
一般地,?A∈Crm×n都存在m,n阶可逆阵P和Q使PAQ=
5
证:因前r列线性无关,故用第一类初等矩阵左乘可使A的 (1,1)元≠0. 再用第二类初等矩阵左乘可使a11=1; 最后用若干第三类初等矩阵左乘可使A的第一列=e1. 因前2列线性无关,故新的第2列与e1线性无关且≠0, 故用第一类行变换可使(2,2)元≠0,…可使A的第2列=e2. ….可使A的第r列=er.此时空白处必为0元.
安徽大学 章权兵
1

矩阵运算、分解和特征值

实验报告(五) 院(系)课程名称:数学模型日期:年月日 班级学号实验室506 专业数学教育姓名计算机号F08 实验 名称 矩阵运算、分解和特征值成绩评定 所用 软件 MATLAB 7.0 指导教师 实验目的1.矩阵的基本运算。 2.矩阵的LU、QR和Cholesky分解。3.矩阵的特征向量和特征值。 实验内容问题1:求线性方程组 1234 124 234 1234 258 369 225 4760 x x x x x x x x x x x x x x +-+= ? ?--= ? ? -+=- ? ?+-+= ? 的解。问题2: (1)求矩阵 123 456 780 A ?? ? = ? ? ?? 的LU分解。 (2)求矩阵 123 456 789 101112 A ?? ? ? = ? ? ?? 的QR分解。 (3)求5阶pascal矩阵的Cholesky分解。 问题3: (1)求矩阵 31 13 A - ?? = ? - ?? 的特征值和特征向量。 (2)求矩阵 23 45 84 A ?? ? = ? ? ?? 的奇异值分解。

实验过程问题1:A=[2,1,-5,1;1,-3,0,-6;0,2,-1,2;1,4,-7,6]; >> inv(A) ans = 1.3333 -0.6667 0.3333 -1.0000 -0.0741 0.2593 1.1481 -0.1111 0.3704 -0.2963 0.2593 -0.4444 0.2593 -0.4074 -0.5185 -0.1111 ans=[1.3333,-0.6667,0.3333,-1.0000;-0.0741,0.2593,1.1481,-0.1111;0.3704,-0. 2963,0.2593,-0.4444;0.2593,-0.4074,-0.5185,-0.1111]; >> B=[8;9;-5;0]; >> ans*B ans = 2.9996 -3.9996 -1.0000 1.0003 所以线性方程的解x=[ 2.9996,-3.9996,-1.0000,1.0003] 问题2:1、A=[1,2,3;4,5,6;7,8,0]; >> [L,U]=lu(A) L = 0.1429 1.0000 0 0.5714 0.5000 1.0000 1.0000 0 0 U = 7.0000 8.0000 0 0 0.8571 3.0000 0 0 4.5000 2、A=[1,2,3;4,5,6,;7,8,9;10,11,12]; >> [Q,R]=qr(A) Q = -0.0776 -0.8331 0.5456 -0.0478 -0.3105 -0.4512 -0.6919 0.4704 -0.5433 -0.0694 -0.2531 -0.7975 -0.7762 0.3124 0.3994 0.3748 R = -12.8841 -14.5916 -16.2992 0 -1.0413 -2.0826 0 0 -0.0000 0 0 0

矩阵的分解

§9. 矩阵的分解 矩阵分解是将一个矩阵分解为比较简单的或具有某种特性的若干矩阵的和或乘积,这是矩阵理论及其应用中常见的方法。由于矩阵的这些特殊的分解形式,一方面反映了原矩阵的某些数值特性,如矩阵的秩、特征值、奇异值等;另一方面矩阵分解方法与过程往往为某些有效的数值计算方法和理论分析提供了重要的依据,因而使其对分解矩阵的讨论和计算带来极大的方便,这在矩阵理论研究及其应用中都有非常重要的理论意义和应用价值。 这里我们主要研究矩阵的三角分解、谱分解、奇异值分解、满秩分解及特殊矩阵的分解等。 一、矩阵的三角分解——是矩阵的一种有效而应用广泛的分解法。 将一个矩阵分解为酉矩阵(或正交矩阵)与一个三角矩阵的乘积或者三角矩阵与三角矩阵的乘积,这对讨论矩阵的特征、性质与应用必将带来极大的方便。首先我们从满秩方阵的三角分解入手,进而讨论任意矩阵的三角分解。 定义1 如果(1,2,,)ii a i n = 均为正实数,()(,1,2,1;∈<=- ij a C R i j i n 1,2,),=++ j i i n 则上三角矩阵 1112122200 ?? ? ?= ? ??? n n nn a a a a a R a 称为正线上三角复(实)矩阵,特别当1(1,2,,)ii a i n == 时,R 称为单位上三角复(实)矩阵。 定义2如果(1,2,,)ii a i n = 均为正实数,()(,1,2,1;∈>=- ij a C R i j i n 1,2,),=++ j i i n 则下三角矩阵 1121 221 2 000?? ? ?= ? ??? n n nn a a a L a a a

几种矩阵分解方法的对比

线性系统的求解是数值分析中的一个基本问题。线性系统的求解在电路分析中典型的应用就是用基尔霍夫电压定律和基尔霍夫电流定律求解电路。下面的五个方程组是对一个典型的电路系统的描述:5I1+5I2=V;I3-I4-I5=0;2I4-3I5=0;I1-I2-I3=0;5I2-7I3-2I4=0;当系统确定以后I1, I2,I3,I4,I5前面的系数就确定了。I1,I2,I3,I4,I5的具体数值将随输入电压值V5的变化而改变。求解线性系统解(也就是求解矩阵的解)常用的方法有Gaussian Elimination with Backward Substitution 法,LU Factorization法,LDL T Factorization 法和Choleski 法。其中Gaussian Elimination with Backward Substitution 法最为简单直接,它的思路就是将系数矩阵化简为一个上三角矩阵或者化简为一个下三角矩阵。但是它消耗的资源最多,以一个可描述为5*5矩阵的系统而言它需要5*5*5/3次乘法运算,即大约42次乘法运算。但系统大到100*100时这种方法的计算量非常可观。这种方法不适合处理很大的矩阵。作为Gaussian Elimination with Backward Substitution 法的改进LU Factorization(也叫LU分解法)法的思路是将系统矩阵分解成为一个上三角矩阵和一个下三角矩阵进行运算。这样的话极为方便求解迭代。假设系统为n*n的系统,那么LU分解的方法将计算量由n*n*n/3降低到2*n*n。对于一个100*100的系统LU分解法的计算量仅仅是Elimination with Backward Substitution 法的3%。尽管在决定L矩阵和U矩阵时依然需要n*n*n/3次运算但是系统一旦定下来后是不会有大的改动的,往往是外部条件改变也就是说5I1+5I2=V;I3-I4-I5=0;2I4-3I5=0;I1-I2-I3=0;5I2-7I3-2I4=0;这个系统的系数是不会经常变的,常变的只是外部条件V。LU分解法适应的范围极宽,他对系统没有特殊的要求。当描述系统的矩阵大于6*6时选用LU分解法会更为节省资源,当系统小于6*6时Elimination with Backward Substitution法效率会更高些。LDL T Factorization 法和Choleski 法和LU分解法很像似,基本思路也是将系统矩阵分解成上三角矩阵和下三角矩阵。但是这两种方法要求系统的矩阵必须是正定的,也就是说系统的任意阶行列式必需为正。这样对系统的要求就严格一些。LDL T Factorization 法需要n*n*n/6+n*n-7*n/6次乘法和n*n*n/6-n/6次加减法。Choleski 法则仅仅需要n*n*n/6+n*n/2-2*n/3次乘法和n*n*n/6-n/6次加减法。当系统较大时不失为两种很好的选择。

矩阵可对角化的总结分解

矩阵可对角化的总结莆田学院数学系02级1班连涵生21041111 [摘要]:主要讨论n级方阵可对角化问题:(1)通过特征值,特征向量和若尔当标准形讨论方阵可对角化的条件;(2)实n 级对称矩阵的可对角化讨论;(3)几个常见n 级方阵的可对角化讨论。 [关键词]:n级方阵;可对角化;相似;特征值;特征向量;若尔当标准形;n级实对称矩阵 说明:如果没有具体指出是在哪一个数域上的n级方阵,都认为是复数域上的。当然如果它的特征多项式在某一数域K上不能表成一次多项式的乘积的话,那么在此数域上它一定不能相似对角阵。只要适当扩大原本数域使得满足以上条件就可以。复数域上一定满足,因此这样假设,就不用再去讨论数域。 引言 所谓矩阵可对角化指的是矩阵与对角阵相似,而说线性变换是可对角化的指的是这个线性变换在某一组基下是对角阵(或者说线性变换在一组基下的矩阵是可对角化的),同样可以把问题归到矩阵是否可对角化。本文主要是讨论矩阵可对角化。 定义1:设A,B是两个n级方阵,如果存在可逆矩阵P,使P-1AP=B,则称B与A相似,记作A~B。矩阵P称为由A 到B的相似变换矩阵。[]1[]2[]3[]4

定义2:设A 是一个n 级方阵,如果有数λ和非零向量X ,使AX=λX 则称λ是矩阵A 的特征值,X 称为A 的对应于λ的特征向量,称{|}V A λααλα==为矩阵对应于特征值λ的特征子空间。[] 1[]2[]3[] 4 定义3:设A 是数域P 上一个n 级方阵,若多项式 ()[]f x P X ∈,使()0f A =则称()f x 为矩阵A 的零化多项式。[] 2 定义4:数域P 上次数最低的首项为1的以A 为根的多项式称为A 的最小多项式。[] 1[]2[] 3 一、首先从特征值,特征向量入手讨论n 级方阵可对角化的 相关条件。 定理1:一个n 级方阵A 可对角化的充要条件它有n 个线性无关的特征向量。[] 1[]2[]3[] 4 证明:必要性:由已知,存在可逆矩阵P ,使 1 2 1 n P AP λλλ-????? ?=??????即12n AP P λλλ?? ????=????? ? 把矩阵P 按列分块,记每一列矩阵为 12,,,n P P P 即 12[,,,]n P P P P = 于是有

矩阵分解及其简单应用

矩阵分解及其简单应用 x=b,即有如下方程组:Ly=bUx=y 先由Ly=b依次递推求得y1, y2,……,yn,再由方程Ux=y依次递推求得 xn,xn-1,……, x1、必须指出的是,当可逆矩阵A不满足?k≠0时,应该用置换矩阵P左乘A以便使PA的n个顺序主子式全不为零,此时有: Ly=pbUx=y 这样,应用矩阵的三角分解,线性方程组的解求就可 以简单很多了。2、矩阵的QR分解矩阵的QR分解是指,如果实 非奇异矩阵A可以表示为A=QR,其中Q为正交矩阵,R为实非奇 异上三角矩阵。QR分解的实际算法各种各样,有Schmidt正交方法、Givens方法和Householder方法,而且各有优点和不足。2、1.Schmidt正交方法的QR分解Schmidt正交方法解求QR分解原 理很简单,容易理解。步骤主要有:1)把A写成m个列向量a= (a1,a2,……,am),并进行Schmidt正交化得=(α1, α2,……,αm);2) 单位化,并令Q=(β1,β2,……,βm),R=diag(α1, α2,……,αm)K,其中a=K;3)A=QR、这种方法来进行QR分解,过程相对较为复杂,尤其是计算量大,尤其是阶数逐渐变大时,就显得更加不方便。2、2.Givens方法的QR分解Givens方 法求QR分解是利用旋转初等矩阵,即Givens矩阵Tij(c,s)来得 到的,Tij(c,s)是正交矩阵,并且det(Tij(c,s))=1。Tij(c,s)的第i行第i列和第j行第j列为cos,第i行第j列和第j行第i

列分别为sin和-sin,其他的都为0、任何n阶实非奇异矩阵A可通过左连乘Tij(c,s)矩阵(乘积为T)化为上三角矩阵R,另 Q=T-,就有A=QR。该方法最主要的是在把矩阵化为列向量的基础上找出c和s,然后由此把矩阵的一步步向上三角矩阵靠近。Givens方法相对Schmidt正交方法明显的原理要复杂得多,但是却计算量小得多,矩阵Tij(c,s)固有的性质很特别可以使其在很多方面的应用更加灵活。2、3.Householder方法的QR分解Householder方法分解矩阵是利用反射矩阵,即Householder矩阵H=E-2uuT,其中u是单位列向量,H是正交矩阵,detH=-1。可以证明,两个H矩阵的乘积就是Givens矩阵,并且任何实非奇异矩阵A可通过连乘Householder矩阵(乘积为S)化为上三角矩阵R,则A= QR。这种方法首要的就是寻找合适的单位列向量去构成矩阵H,过程和Givens方法基本相似,但是计算量要小一些。矩阵的QR分解可以用来解决线性最小二乘法的问题,也可以用来降低矩阵求逆的代价。矩阵的求逆是件不小的工程,尤其是阶数慢慢变大的情况时,而用先把矩阵QR分解成正交矩阵和上三角矩阵,就容易多了,况且正交矩阵的转置就是逆,这一点是其他的矩阵分解无法比拟的。在解求线性方程组中,如果系数矩阵的阶数比较大,可以利用QR分解来使计算简单化。另外,QR分解考虑的是n阶矩阵,其他的矩阵是不能用这种方法进行分解,由于QR 分解的这一前提条件,使得下面提到的满秩矩阵分解和奇异值分解就有了其特殊的意义。3、满秩分解满秩分解也称最大秩分

矩阵doolittle分解算法

解线性方程组的Doolittle 分解 目的意义: 1.学习和掌握线性代数方程组的Doolittle 分解法。 2.运用Doolittle 分解法进行计算。 方法原理: n 阶线性方程组的系数矩阵A 非奇异且有分解式A=LR ,其中L 为单位下三角矩阵,R 为上三角矩阵,即L=(l ij ),当ij 时,r ij =0,矩阵A 的这种分解方法为Doolittle 的分解。 ?? ??? ??? ??? ???????? ?????=????????????nn n n n n nn n n n n r r r r r r l l l a a a a a a a a a 222 112112 1 21 2 1 2222111211111 比较等号两边的第i 行和第j 列的元素,可知∑== n k kj ik ij r l a 1 ,因为 0,11,======++ij j j in i i r r l l ,所 ∑==n k kj ik ij r l a 1 =ij kj i k ik r r l +∑-=1 1 ,i<=j ,从而 . ,1,,1 1n i i j r l a r i k kj ik ij ij +=-=∑-=当 n i i j ,2,1++=时, ii ji i k i k kj jk kj jk ij r l r l r l a +==∑∑=-=1 1 1 ,从而n i j r r l a l ii i k ki jk ji ji ,,1,/)(1 1 +=-=∑-=,于是就得 到了计算LR 分解的一般计算公式。 算法描述: Setp1:利用for 循环求出1 1 k ki ki kp pi p r a l r -==-∑,1 1 ()/k ik ik ip pk kk p l a l r r -==- ∑。 Step2: 1 1 i i i ik k k y b l y -==-∑,得出1 ()/n i i ik k ii k i x y r x r =+=- ∑ 程序代码: 头文件: #include typedef double Datatype;

矩阵的奇异值分解

§2 矩阵的奇异值分解 定义 设A 是秩为r 的m n ?复矩阵,T A A 的特征值为 1210r r n λλλ>λλ+≥≥ ≥===. 则称i σ=(1,2, ,)i n =为A 的奇异值. 易见,零矩阵的奇异值都是零,矩阵A 的奇异值的个数等于A 的列数,A 的非零奇异值的个数等于其秩. 矩阵的奇异值具有如下性质: (1)A 为正规矩阵时,A 的奇异值是A 的特征值的模; (2)A 为半正定的Hermite 矩阵时,A 的奇异值是A 的特征值; (3)若存在酉矩阵,m m n n ??∈∈U V C C ,矩阵m n ?∈B C ,使=UAV B ,则称A 和B 酉等价.酉等价的矩阵A 和B 有相同的奇异值. 奇异值分解定理 设A 是秩为r (0)r >的m n ?复矩阵,则存在m 阶酉矩阵U 与n 阶酉矩阵V ,使得 H ?? ==?? ?? O U AV O O ∑?. ① 其中12diag(,,,)r σσσ=∑,i σ(1,2,,)i r =为矩阵A 的全部非零奇异值. 证明 设Hermite 矩阵H A A 的n 个特征值按大小排列为 1210r r n λλλ>λλ+≥≥ ≥===. 则存在n 阶酉矩阵V ,使得 1 2 H H ()n λλ???? ??==??? ??? ??? ? O V A A V O O ∑. ②

将V 分块为 12()=V V V , 其中1V ,2V 分别是V 的前r 列与后n r -列. 并改写②式为 2 H ??=? ??? O A AV V O O ∑. 则有 H 2H 112==A AV V A AV O , ∑. ③ 由③的第一式可得 H H 2H 1111()()r ==V A AV AV AV E , 或者∑∑∑. 由③的第二式可得 H 222()() ==AV AV O AV O 或者. 令111-=U AV ∑,则H 11r =U U E ,即1U 的r 个列是两两正交的单位向量.记作112(,,,)r =U u u u , 因此可将12,,,r u u u 扩充成m C 的标准正交基, 记增添的向量为1, ,r m +u u ,并构造矩阵21(, ,)r m +=U u u ,则 12121(,)(,, ,,, ,)r r m +==U U U u u u u u 是m 阶酉矩阵,且有 H H 1121 r ==U U E U U O ,. 于是可得 H H H 1 121H 2()()????===???? ???? O U U AV U AV AV U O O O U ,,∑∑. 由①式可得 H H H H 111222r r r σσσ??==+++???? O A U V u v u v u v O O ∑. ④ 称④式为矩阵A 的奇异值分解. 值得注意的是:在奇异值分解中121,, ,,, ,r r m +u u u u u 是H AA 的特征 向量,而V 的列向量是H A A 的特征向量,并且H AA 与H A A 的非零特征值

MATLAB中矩阵LU分解

一、 题目 编写实现对N 阶非奇矩阵A 进行LU 分解的程序。 二、 算法组织 若n 阶方阵的各阶顺序主子行列式不为零则存在唯一的单位上三角矩阵L 和上三角矩阵L 式的A=LU 。其基本思想是GAUSS 消去法。参照《计算方法》第38页L 、U 各项计算公式编写公式。 1. 输入带分解矩阵A 2. For i=1,2,……n 将L 对角线元素赋值L (i ,i )=1; 3. For j=1,2,……n 3.1 将U 第一行元素赋值U (1,j )=A (1,j ); 4. For k=2,……n 4.1 将 L 第一列元素赋值L(k,1)=A(k,1)/U(1,1); 5. For i=2,……n 5.1 For j=i ,……n 1 0k kj ki ij kj i A L A U -=-?∑ For k=i+1,……n 10k jk ki ij kk jk i A L A U L -=??-? ??? ∑ 三、 程序实现 clear all clc A=input('请输入一个方阵 ');% 输入一个n 阶方阵 [n,n]=size(A); L=zeros(n,n); U=zeros(n,n); for i=1:n %将L 的主对角线元素赋值1 L(i,i)=1; end for j=1:n %求矩阵U 的第一行元素 U(1,j)=A(1,j); end for k=2:n %求矩阵L 的第一列元素 L(k,1)=A(k,1)/U(1,1);

end for i=2:n %求L、U矩阵元素 for j=i:n s=0; for t=1:i-1 s=s+L(i,t)*U(t,j); end U(i,j)=A(i,j)-s; end for k=i+1:n r=0; for t=1:i-1 r=r+L(k,t)*U(t,i); end L(k,i)=(A(k,i)-r)/U(i,i); end end %输出矩阵L、U L U

矩阵分解

矩阵分解 在矩阵运算中,把矩阵分解成形式比较简单或具有某种特性的一些矩阵的乘积,在矩阵理论的研究和应用中,具有重要的意义。一方面,矩阵分解能够明显反映出原矩阵的某些数值特征,如矩阵的秩、行列式、特征值及奇异值等,令一方面分解的方法与过程往往提供了某些有效地数值计算方法和理论分析根据。常见的矩阵分解方法有:三角分解、QR 分解、满秩分解、奇异值分解。下面将主要从这四个方面进行分别介绍。 一、三角分解 定义: 设n n n C A ?∈,如果存在下三角矩阵n n n C L ?∈和上三角矩阵n n n C R ?∈,使得 LR A = (1) 则成A 可以作三角分解。 A 可以作三角分解的充分必要条件是A 的k 阶顺序主子式 )1,2,1(0det -=≠=?n k A k k ,而k A 为A 的k 阶顺序主子式(证明略) 。 如果A 可以分解成LR A =,其中L 是对角元素为1的下三角矩阵(称为单位下三角矩阵),R 是上三角矩阵,则称之为A 的Doolittle 分解;L 是下三角矩阵,R 为对角元素为1的上三角矩阵,则称之为A 的Crout 分解。 如果A 可以分解为LDR A =,其中L 为单位下三角矩阵,D 为对角

矩阵,R 为单位上三角矩阵,则称之为A 的LDR 分解。设n n n C A ?=,则A 有唯一LDR 分解的充分必要条件是)1,,2,1(0-=≠?n k k 。此时对角矩阵),,,(21n d d d diag D =的元素满足 ),,3,2(,111n k d d k k k =??= ?=- (2) 证明从略。 假设n n C A ?∈是Hermite 正定矩阵,则存在下三角矩阵n n C G ?∈,使得H GG A =,则称之为A 的Cholesky 分解。 综合分析:方阵的三角分解存在的充要条件是:A 的k 阶顺序主子式)1,2,1(0det -=≠=?n k A k k ,但是方阵的三角分解不是唯一的,比如A 可以表示成))((1R D LD LR A -==,其中,D 为对角元素均不为0的对角矩阵。为了规范化才有了Doolittle 分解和Crout 分解形式。矩阵的LDR 分解建立在普通LR 分解的基础上。而Cholesky 分解则是A 为Hermite 正定矩阵时的一种特殊形式。 二、QR 分解 定义:设n n C A ?∈,如果存在n 阶酉矩阵Q 和n 阶上三角矩阵R ,使得 QR A = (3) 则称之为A 的QR 分解或酉-三角分解。当n n R A ?∈时,称之为A 的正交-三角分解。 值得注意的是,任意n n C A ?∈都可以作QR 分解。当n n n C A ?∈(即A 为满秩矩阵)时,A 可以得到唯一A=QR 分解形式,其中,Q 是n 阶酉矩阵,n n n C R ?∈是具有正对角元的上三角矩阵。

矩阵分解及应用

矩阵分解及应用 1 引言 矩阵是研究图形(向量)变换的基本工具许多数学模型都可以用矩阵表示,矩阵理论既是学习数学的基础,又是一门最有实用价值的数学理论.它不仅是数学的一个重要分支,而且业已成为现代各科领域处理大量有限维空间形式与数量关系强有力的工具.矩阵在代数学习课程中占有重要的地位,而矩阵的分解在矩阵理论研究及其应用中有着重要意义,是其他一些研究课题解决问题的工具. 本文介绍了矩阵的几种分解方法:三角分解、正交分解、满秩分解、奇异值分解以及各种分解方法的应用.三角分解在求线性方程组的过程中占有十分重要的作用;正交三角 )(QR 分解在计算数学中扮演十分重要的角色,尤其是以QR 分解所建立的QR 方法,已对数 值线性代数理论的近代发展起了关键的作用;矩阵的满秩分解和奇异值分解是近几十年来求各类最小二乘问题和最优化问题的重要数学工具. 2 矩阵的三角分解及应用 2.1 杜利特尔分解法 定义 2.1]1[ 对于n 阶矩阵A =)(ij a ,n j i ,,2,1,Λ=.如果LU A =,其中L 为单位下三角矩阵,U 为上三角矩阵,则称LU A =为矩阵A 的杜利特尔分解. 确定三角矩阵L 和U 的方法: 设LU A =,其中L =??????? ?????11 12121 ΛO ΛM n n l l l ,U =????? ? ??????nn n n u u u u u u M O ΛΛ22211211 按矩阵的乘法有 ij a = ∑=) ,m in(1 j i s sj is u l ,n j i ,,2,1,Λ= 由于 kk l =1 所以有

kj a =+ kj u ∑-=1 1 k s sj ks u l ,n k k j ,,1,Λ+= 所以 kj u =- kj a ∑-=1 1 k s sj ks u l ,n k k j ,,1,Λ+= 同理 ik l = kk sk k s is ik u u l a ∑-=-1 1 ,n k k i ,,2,1Λ++= 这样便可以得到三角矩阵L 和U . 2.2 克劳特分解法 定义 2.2]1[ 对于n 阶矩阵A =)(ij a ,n j i ,,2,1,Λ=,如果LU A =,其中L 为下三角矩阵,U 为单位上三角矩阵,称LU A =为矩阵A 的克劳特分解. 确定三角矩阵L 和U 的方法: 设LU A =,其中L =? ?????? ?????nn n n l l l l l l ΛO ΛM 2121 2111,U =????? ? ??? ???1112112M O ΛΛn n u u u 按矩阵的乘法有 ij a = ∑=) ,m in(1 j i s sj is u l ,n j i ,,2,1,Λ= 由于 kk u =1 所以有 ik a =+ ik l ∑-=1 1 k s sk is u l ,n k k i ,,1,Λ+= 所以 ik l =-ik a ∑-=1 1k s sk is u l .n k k i ,,1,Λ+=. 同理

相关主题
文本预览
相关文档 最新文档