当前位置:文档之家› 基于集合经验模态分解的类星体光变周期及其混沌特性分析_唐洁

基于集合经验模态分解的类星体光变周期及其混沌特性分析_唐洁

基于集合经验模态分解的类星体光变周期及其混沌特性分析_唐洁
基于集合经验模态分解的类星体光变周期及其混沌特性分析_唐洁

EMD经验模式分解信息汇总资料

EMD Empirical Mode Decomposition 经验模态分解 美国工程院院士黄锷1998年提出 一种自适应数据处理或挖掘方法,适用于非线性、非平稳时间序列的处理。 1.什么是平稳和非平稳 时间序列的平稳,一般是宽平稳,即时间序列的方差和均值是和时间无关的常数,协方差与与时间间隔有关、与时间无关。未来样本时间序列,其均值、方差、协方差必定与已经获得的样本相同,理解为平稳的时间序列是有规律且可预测的,样本拟合曲线的形态具有“惯性”。 而非平稳信号样本的本质特征只存在于信号所发生的当下,不会延续到未来,不可预测。 严格来说实际上不存在理想平稳序列,实际情况下都是非平稳。 2.什么是EMD经验模态分解方法? EMD理论上可以应用于任何类型时间序列信号的分解,在实际工况中大量非平稳信号数据的处理上具有明显优势。这种优势是相对于建立在先验性假设的谐波基函数上的傅里叶分解和小波基函数上的小波分解而言的。EMD分解信号不需要事先预定或强制给定基函数,而是依赖信号本身特征自适应地进行分解。 相对于小波分解:EMD克服了基函数无自适应性的问题,小波分析需要选定一个已经定义好的小波基,小波基的选择至关重要,一旦选定,在整个分析过程中无法更换。这就导致全局最优的小波基在局部的表现可能并不好,缺乏适应性。而EMD不需要做预先的分析与研究,可以直接开始分解,不需要人为的设置和干预。 相对于傅里叶变换:EMD克服了传统傅里叶变换中用无意义的谐波分量来表示非线性、非平稳信号的缺点,并且可以得到极高的时频分辨率。 EMD方法的关键是将复杂信号分解为有限个本征模函数IMF,Intrinsic Mode Function。分解出来的IMF分量包含了原信号的不同时间尺度上的局部特征信号。 这句话中:不同时间尺度=局部平稳化,通过数据的特征时间尺度来获得本征波动模式,然后分解or筛选数据。 本质上,EMD将一个频率不规则的波化为多个单一频率的波+残波的形式。 原波形=ΣIMFs+余波 信号()t f 筛选出的本征模函数IMF包括余波,对应有实际的物理成因。 现实中的信号分量IMF不会保持完全稳定的频率和振幅,也常常无法从各个分量中直接看出信号规律。EMD分解经常被用作信号特征提取的一个预先处理手段,将各IMF分量作为后续分析方法的输入,以完成更加复杂的工作。 3.IMF的筛选过程 第一步: Get原数据曲线f(t)所有极大值点,三次样条插值函数拟合成原数据的上包络线; Get原数据曲线f(t)所有极小值点,三次样条插值函数拟合成原数据的下包络线。

二维经验模态分解的关键问题

Key Problems of Bidimensional Empirical Mode Decomposition Guangtao Ge School of Information and Electronic Engineering Zhejiang Gongshang University Hangzhou, China ggtggtggt@https://www.doczj.com/doc/6917495110.html, Guangtao Ge Department of Information Science & Electronic Engineering Zhejiang University Hangzhou, China ggtggtggt@https://www.doczj.com/doc/6917495110.html, Abstract—In recent years , an emerging theory of Empirical Mode Decomposition (EMD) is an important breakthrough in the field of signal processing. This paper reviews three key problems in the development of the Bidimensional Empirical Mode Decomposition (BEMD) theory and introduces the latest developments of surface-fitting algorithms, boundary corruption solution methods and the BEMD criterion for stopping the sifting process. Then this paper also comments several open problems in BEMD theory and discusses the existing difficult problems . Keywords-component; Bidimensional Empirical Mode Decomposition; surface-fitting; boundary corruption; BEMD criterion 二维经验模态分解的关键问题 葛光涛1, 2 1.浙江工商大学信息与电子工程学院,杭州,中国,310018 2. 浙江大学信息与电子工程学系,杭州,中国,310027 ggtggtggt@https://www.doczj.com/doc/6917495110.html, 【摘要】近年国际上出现的经验模态分解理论(Empirical Mode Decomposition , EMD)是信号处理领域的一个重大突破。本文综述了二维经验模态分解(Bidimensional Empirical Mode Decomposition , BEMD)理论发展过程中涉及的三个关键问题,并着重介绍了曲面拟合、边界污染处理和停止准则制定这三个方面的最新进展,评述了其中的公开问题,对研究中现存的难点问题进行了探讨。 【关键词】二维经验模态分解;曲面拟合;边界污染;停止准则 1 引言 1998 年美国国家宇航局(NASA)的Norden E.huang等人首次提出对一列时间序列数据先进行经验模态分解(以Empirical Mode Decomposition表示 , 简写作EMD),然后对各个分量作希尔伯特变换。这种变换被称为希尔伯特黄变换(Hilbert-Huang transform, HHT)[1,3]。这种信号处理方法被认为是近年来对以傅立叶变换为基础的线性和稳态谱分析的一个重大突破。该方法从本质上讲是对一个复杂的信号进行平稳化处理[2],其结果是将信号中不同尺度的波动或趋势逐级分解开来,由于这种分解是基于局部特征尺度,作为一种完全的数据驱动方法,它具有良好的局部适应性,因此,该方法既能对平稳信号进行分析,又能对非平稳信号进行分析。 以往很多的一维信号处理方法被成功地推广到空间二维信号处理领域,被应用于二维图像数据的处理时同样可以得到良好的效果[4]。例如,傅立叶变换、离散余弦变换以及小波变换等信号处理的技术已经广泛应用于数字图像处理领域,具体应用包括图像滤波、图像复原、图像增强、图像拼接、图像压缩以及数字水印等方面。经验模态分解方法在一维信号处理方面已经获得巨大的成功,所以如果能将一维经验模式分解方法推广到二维,将会给图像处理等领域提供一种新的有效的数据处理手段。 二维经验模态分解理论的发展过程中主要涉及以下几个重要问题[5]:曲面的精确拟合,边界污染的克服,合理停止准则的制定等。 2010 International Conference on Remote Sensing (ICRS) 978-1-4244-8729-5/10/$26.00 ?2010 IEEE ICRS2010

经验模态分解EMD

经验模态分解EMD 经验模态分解是一种基于信号局部特征的信号分解方法。是一种自适应的信号分解方法 任何复杂的信号都是由简单的固有模态函数(intrinsic mode function,IMF)组成,且每一个IMF 都是相互独立的。该方法可以将风速数据时间序列中真实存在的不同尺度或趋势分量逐级分解出来,产生一系列具有相同特征尺度的数据序列,分解后的序列与风速原始数据序列相比具有更强的规律性。 EMD的基本思想认为任何复杂的信号都是由一些相互不同的、简单非正弦函数的分量信号组成。 EMD将非平稳序列分解为数目不多的IMF 分量c和一个趋势项r(残余函数),r是原序列经过逐级分离出IMF 分量后,最终剩下来的“分量”,是单调的和光滑的。 信号的EMD 分解本质上是通过求包络线对信号不断进行移动平均的迭代过程,包络线的不准确将导致信号分解的不完全。传统算法在求包络线时在信号端点处易产生飞翼现象, 即在端点处会产生过大或过小振幅, 若不先对信号进行端点延拓, EMD 分解将无法继续。 确定信号决定了交通流变化的总体趋势,不确定性干扰信号使实际交通流变化在趋势线附近呈现大小不一的波动。 信号从高到低不同频段的成分,具有不等带宽的特点,并且EMD 方法是根据信号本身固有特征的自适应分解。

EMD分解的目的是根据信号的局部时间特征尺度,按频率由高到低把复杂的非线性、非平稳信号分解为有限经验模态函数(IMF)之和 r(t)为残余函数,一般为信号的平均趋势。是非平稳函数的单调趋势项。 风速时间序列的EMD 分解步骤如下: 1)识别出信号中所有极大值点并拟合其包络线eup(t)。 2 )提取信号中的极小值点和拟合包络线elow(t),计算上下包络线的平均值m1(t)。 up low 1 ( ) ( ) ( ) 2 e t e t m t + = (1) 3)将x(t)减去m1(t)得到h1(t),将h1(t)视为新的信号x(t),重复第1)步,经过k 次筛选,直到h1(t)=x(t)?m1(t)满足IMF 条件,记c1(t)=h1(t),则c1(t)为风速序列的第1 个IMF 分量,它包含原始序列中最短的周期分量。从原始信号中分离出IMF 分量c1(t),得

经验模态分解(EEMD)、Fourier变换、HHT

10总体经验模态分解(EEMD)、Fourier变换、HHT EEMD实际就是噪声分析法和EMD方法的结合,抑制模态混叠。 Fourier变换是将任何信号分解为正弦信号的加权和,而每一个正弦信号对应着一个固定的频率(Fourier频率)和固定的幅值,因此,用Fourier 变换分析频率不随时间变化的平稳信号是十分有效的。但对于频率随时间变化的非平稳信号,Fourier 变换就无能为力了。 HHT是历史上首次对Fourier变换的基本信号和频率定义作的创造性的改进。他们不再认为组成信号的基本信号是正弦信号,而是一种称为固有模态函数的信号,也就是满足以下两个条件的信号: (1) 整个信号中,零点数与极点数相等或至多相差1 ; (2) 信号上任意一点,由局部极大值点确定的包络线和由局部极小值点确定的包络线的均值均为零,即信号关于时间轴局部对称。 无论Hilbert谱中的频率还是边际谱中的频率(即瞬时频率) ,其意义都与Fourier分析中的频率(即Fourier 频率) 完全不同,但在Fourier分析中,某一频率处能量的存在,代表一个正弦或余弦波在整个时间轴上的存在,而边际谱h中某一频率处能量的存在仅代表在整个时间轴上可能有这样一个频率的振动波在局部出现过,h越大,代表该频率出现的可能性越大。 11、HHT时频灰度谱转黑白谱 MATLAB作HHT时频谱时出来的是彩色的时频图。请问有办法在MATLAB上面将彩色谱图调成白色底黑色线的黑白图吗哎,因为老师说彩色图普通印出来的话不好看,一片黑的,谢谢大家啊 答:后面加上这个就可以了colormap(flipud(gray)) 12、HHT谱图怎么会这样呢 小弟刚刚接触HHT,也不是学信号的,只是用HHT这个工具处理信号,在处理过程中遇到了这样的问题: 对实测信号直接EMD,然后作HHT谱图如下:

经验模态分解算法中端点问题的处理(1)

x=[0 30 60 90 120 150 180 210 240 270 300 330 360]; y=[-0.0167 -1.0927 -1.8725 -2.3586 -2.3061 -1.9576 -0.9574 -0.0080 0.8896 1.3877 1.1139 0.8517 -0.0167]; fun=@(a,t) a(1)+a(2)*sind(t+a(3)) %matlab7.0以上版本,否则用inline %fun=inline('a(1)+a(2)*sind(t+a(3))','a','t') a0=[-0.5 -1.9 -0.079]; a=nlinfit(x,y,fun,a0) t=0:5:360; yf=fun(a,t); plot(x,y,'o',t,yf) 结果: fun = @(a,t) a(1)+a(2)*sind(t+a(3)) a = -0.5239 -1.8995 -14.2382

经验模态分解算法中端点问题的处理 摘要:经验模态分解(EMD)方法就是对非线性、非平稳信号运用时间区域序列的上下包络线的均值得到瞬时平衡位置,将被分析信号分解成一组相互独立的稳态和线性的固有模态函数(IMF)数集。经验模态分解(EMD)方法是基于原始信号本事出发,经过筛选先把频率高的IMF 分量分离出来,然后在分离频率较低的IMF分量。其实质就是利用时间特征尺度来获取原始信号数据中的振荡模态,本文对经验模态分解算法中端点问题的处理进行研究。 关键词:经验模态分解算法端点函数 经验模态分解(EMD)方法被提出后在各个领域普遍的应用,其具有直观、简单、自适应、完备性和正交性以及调制特性等一系列良好的特点。 (1)自适应性 经验模态分解(EMD)方法的自适应性表现为自适应生成基函数。在整个筛选分解过程中

经验模态分解

经验模态分解(Empirical Mode Decomposition,简称EMD) 对数据信号进行EMD分解就是为了获得本征模函数,因此,在介绍EMD分析方法的 具体过程之前,有必要先介绍EMD分解过程中所涉及的基本概念的定义:本征模函数,这是掌握EMD方法的基础。 本征模函数 在物理上,如果瞬时频率有意义,那么函数必须是对称的,局部均值为零,并且具有 相同的过零点和极值点数目。在此基础上,NordneE.Hunag等人提出了本征模函数(Intrinsic Mode Function,简称IMF)的概念。本征模函数任意一点的瞬时频率都是 有意义的。Hunag等人认为任何信号都是由若干本征模函数组成,任何时候,一个信 号都可以包含若干个本征模函数,如果本征模函数之间相互重叠,便形成复合信号。EMD分解的目的就是为了获取本征模函数,然后再对各本征模函数进行希尔伯特变换,得到希尔伯特谱。 Hunag认为,一个本征模函数必须满足以下两个条件: ⑴l函数在整个时间范围内,局部极值点和过零点的数目必须相等,或最多相差一个; ⑵在任意时刻点,局部最大值的包络(上包络线)和局部最小值的包络(下包络线) 平均必须为零。 第一个条件是很明显的,它与传统的平稳高斯信号的窄带要求类似。对于第二个条件,是一个新的概念,它把经典的全局性要求修改为局部性要求,使瞬时频率不再受不对 称波形所形成的不必要的波动所影响。实际上,这个条件应为“数据的局部均值是零”。但是对于非平稳数据来说,计算局部均值涉及到“局部时间尺度”的概念,而 这是很难定义的。因此,在第二个条件中使用了局部极大值包络和局部极小值包络的 平均为零来代替,使信号的波形局部对称。Huang等人研究表明,在一般情况下,使 用这种代替,瞬时频率还是符合所研究系统的物理意义。本征模函数表征了数据的内 在的振动模式。由本征模函数的定义可知,由过零点所定义的本征模函数的每一个振 动周期,只有一个振动模式,没有其他复杂的骑波;一个本征模函数没有约束为是一 个窄带信号,并且可以是频率和幅值的调制,还可以是非稳态的;单由频率或单由幅 值调制的信号也可成为本征模函数。 EMD方法的分解过程 由于大多数所有要分析的数据都不是本征模函数,在任意时间点上,数据可能包含多 个波动模式,这就是简单的希尔伯特变换不能完全表征一般数据的频率特性的原因。 于是需要对原数据进行EMD分解来获得本征模函数。

EMD经验模态分解

EMD ?①分解得到的IMF分量是基于序列(信号)本身的局部的特征时间尺度,各个分量表征了原序列不同时间尺度(或频率)的振荡变化,趋势项集中反映了序列的非平稳性,在一定程度上表现原序列的总趋势; ?②瞬时频率ω(t)作为时间的函数,能敏锐地识别出资料的多尺度嵌套结构。 ?③Hilbert谱是由每个IMF分量经过Hilbert变换得到的,因而具有明确的物理意义,反映了物理过程的能量(振幅)‐频率‐时间的分布。

?EMD分解方法是基于以下假设条件: ?⑴数据至少有两个极值,一个最大值和一个最小值; ?⑵数据的局部时域特性是由极值点间的时间尺度唯一确定; ?⑶如果数据没有极值点但有拐点,则可以通过对数据微分一次或多次求得极值,然后再通过积分来获得分解结果。 它能用几个内在的本征模态和一个剩余来揭示序列的振荡结构特征和非平稳性;用谱图准确地给出原序列及其IMF分量的主要振幅变化所对应的频率和时间;在处理强间歇性信号以及短数据序列方面有很好的效果。 瞬时频率 ?它的频率是随时间改变的,即叫ωj(t) ?对于任一时间连续函数X(t),其Hilbert变换Y(t)定义为: 上式表示X(t)与1/t的卷积,Hilbert变换强调X(t)的局部性。定义式上可以看出Hilbert变换是从时域到时域的变换。 ?构造解析信号Z(t)

?用幅角的时间导数来定义瞬时频率: 瞬时频率是ω=ω(t)是时间的单值函数。 ?瞬时频率把信号限定为“窄带”,即极大点(极小点)的数目与穿 零点的数目相等。 为了使瞬时频率具有物理意义,必须加上约束条件,下面举正弦波的例子来说明这个约束条件的含义。正弦函数写成: X(t)=sin t 它的Hilbert变换是cos t,在x-y平面的相点图1.1(a)中的单位圆,相函数是1.1(b)中的直线,瞬时频率是1.1(c)所示,是一个常数。

相关主题
文本预览
相关文档 最新文档