当前位置:文档之家› 2. 绿色轮胎材料面临的挑战与进展:基础科学和工程技术-张立群

2. 绿色轮胎材料面临的挑战与进展:基础科学和工程技术-张立群

第十届中国橡胶年会,2015年4月7~10日, 广州白云国际会议中心
绿色轮胎材料面临的挑战与进展: 绿色轮胎材料面临的挑战与进展: 基础科学和工程技术
报 告 人:张立群 工作单位:北京化工大学

汇报内容
? ? ? ? 一、背景 二、基础科学和技术问题 三、研究进展 四、结论

一、背景
1. 轮胎重要性:轮胎 轮胎重要性:轮胎承载着现代工业与社会的运行与发展! 轮胎
交 通 运 输
工 程 机 械
航 空 航 天
军 事 装 备

一、背景
2. 轮胎需求持续增长:我国轮胎产量居世界第一 轮胎需求持续增长:我国轮胎产量居世界第一
汽车产销量 轮胎产量
汽车增长图
中国2013年产量6亿条 产值超4000亿,占GDP0.8% 社会经济影响巨大

一、背景
3. 世界轮胎发展趋势:高性能轮胎 世界轮胎发展趋势:高性能轮胎 要求: 低滚动阻力(低油耗) 高抗湿滑性(安全性) 高耐磨性(寿命)
? A级比G级滚阻低50%,节油 8%,湿路面刹车距离短 ,湿路面刹车距离短18米
(80km/h)
? 如果国内小轿车轮胎都达到B 水平,节约燃油400万吨/年 级水平,节约燃油 ,对减排CO2和减少雾霾有重 减少雾霾有重 要贡献。大大提高行车安全性 欧盟轮胎标签法
目标:2020年欧盟能源消耗减少20% 北京机动车污染对PM2.5贡献超过30%

一、背景
3. 世界轮胎发展趋势:更低滚动阻力 世界轮胎发展趋势:更低滚动阻力
能源日益紧张 未来技术
节 油 性 能
涌现技术
提升25% 提升25%
成熟技术 2011 标签法执行
年 国际轮胎业对未来轮胎节油的要求

二、关键科学问题
轮胎用橡胶材料主要组成:基质橡胶,增强填料,硫化交联剂 轮胎用橡胶材料主要组成:基质橡胶,增强填料,硫化交联剂
硫化剂
多层次多尺度复杂网络结构的纳米复合材料
基质橡胶
增强填料
交联剂

二、关键科学和技术问题
服役性能与材料性能关系(主要是粘弹性和强度 服役性能与材料性能关系(主要是粘弹性和强度) 主要是粘弹性和强度) ? 宽温域的粘弹损耗 宽温域的粘弹损耗决定抗湿滑和滚动阻力 粘弹损耗决定抗湿滑和滚动阻力 ? 0℃的损耗因子越高,刹车耗能高,抗湿 的损耗因子越高,刹车耗能高,抗湿滑越好;60℃ 损耗因子越低,行驶耗能少,滚阻越小 ? 强度决定 强度决定耐磨性 决定耐磨性 橡 胶 tanδ 的 粘 弹 0℃ 性 曲 线 -30 -20 -10 0
橡胶材料要获 得这样的曲线 是很困难的
60℃
10 20 30 40 50 60 70 80 90
T/℃

二、关键科学和技术问题
国际上主流技术 ? 研制特定结构官能化溶聚丁苯橡胶(SSBR)(还有利于粒子分散) ? 研制超高顺式结构的聚丁二烯橡胶(BR) ? 再通过两胶并用获得高性能轮胎所需的粘弹性
1
并用后损耗因子 SSBR:BR=70:30 BR SSBR SSBR
tan δ
0.1
0.01 -120
-90
-60
-30
0
30 TT℃
60
90
120
150

二、关键科学和技术问题
? 基质橡胶强度低(~2MPa)
60℃损耗增加 60℃损耗增加
必须用纳米粒子增强 必须用纳米粒子增强,提 增强,提 升耐磨性 ? 纳米粒子的加入, 纳米粒子的加入 , 显著提 高 60℃ 损耗因子, 损耗因子 , 滚动阻 力大幅增加 ? 含填充剂的复合材料体系 含填充剂的复合材料体系 的粘弹性更难调节,三大 粘弹性更难调节,三大
增强 滚动阻力
“魔三角”
纳米 填料
性能间相互制约,难以平 衡问题更加突出
橡胶分子橡胶分子-填料粒子间摩擦 填料粒子间摩擦 填料填料-填料粒子间摩擦 填料粒子间摩擦 耐磨性 抗湿滑 橡胶分子间的摩擦 橡胶分子间的摩擦

二、关键科学和技术问题
国际上主流技术
? 研制了高分散白炭黑材料( 研制了高分散白炭黑材料(德固萨和罗地亚), 德固萨和罗地亚),克服了填料的聚集,减 ),克服了填料的聚集,减 少了填料粒子间的摩擦,在增强的同时保持更低的滚动阻力 ? 发展了白炭黑高剪切原位分散技术和液相复合技术,促进了白炭黑在基 质橡胶中的高效分散 ? 为了提高抗静电性能,并用少量新型碳纳米管和石墨烯(专利报导)
高分散白炭黑 碳纳米管 石墨烯
原位改性分散技术

二、关键科学和技术问题
国内基础
? 掌握了所需粘弹性的两种橡胶化学结构调节方法 ? 合成了通用的溶聚丁苯橡胶和顺丁橡胶 ? 开展了大量的白炭黑表面修饰技术研究 ? 橡胶纳米复合材料结构及演变的X射线3D成像/分子模拟研究
粒子分布 3D成像
存在问题
? 两种橡胶官能化尚未形成核心 两种橡胶官能化尚未形成核心技术;稀土 核心技术;稀土催化剂催化活性不高 技术;稀土催化剂催化活性不高 ? 没有高质量高分散性白炭黑规模化制备技术 ? 材料组成设计与加工缺少结构认知和指导

二、关键科学问题
高性能轮胎材料及制造 高性能轮胎材料及制造 蕴含四大关键科学问题 蕴含四大关键科学问题
一、高性能基础橡胶分子设计与可控合成 二、纳米增强材料在橡胶中分散及界面调控方法与原理 三、橡胶纳米复合材料多层次网络结构描述及其与材料 性能间的非线性关系 四、橡胶纳米复合材料微观结构在轮胎制造过程中的演 变规律与调控方法

二、关键科学和技术问题
关键科学问题一:高性能基础橡胶分子设计与可控合成 关键科学问题一:高性能基础橡胶分子设计与可控合成
官 能 化 溶 聚 丁 苯 橡 胶
丁二烯
苯乙烯
官能化单体
粘弹性
科学问题:1. 科学问题:1.二甲基胺基、硅氧基官能化单体的分子设计合成 1.二甲基胺基、硅氧基官能化单体的分子设计合成 2.官能化单体与丁二烯、苯乙烯共聚合反应的精确调控 2.官能化单体与丁二烯、苯乙烯共聚合反应的精确调控 3.官能化溶聚丁苯橡胶微观结构与聚集态结构的精确调控 3.官能化溶聚丁苯橡胶微观结构与聚集态结构的精确调控

二、关键科学和技术问题
关键科学问题一:高性能基础橡胶分子设计与可控合成 关键科学问题一:高性能基础橡胶分子设计与可控合成
官能化单体 官能化单体与 化单体与丁二烯耦合作用 丁二烯耦合作用
稀土催化剂
官 能 化 稀 土 顺 丁 橡 胶
可控聚合
丁二烯
顺式含量要高于98%
末端官能化基团
0.8
粘弹性
0.6 Tan delta
0.4
0.2
0.0 -100
-50
0 Temperature/????
50
100
科学问题:1. 科学问题:1.高效 1.高效稀土 高效稀土催化剂的设计与制备 稀土催化剂的设计与制备 2.可控聚合反应方法 2.可控聚合反应方法 3.末端官能化方法 3.末端官能化方法

二、关键科学和技术问题
关键科学问题二:纳米增强材料在橡胶中分散及界面调控 关键科学问题二:纳米增强材料在橡胶中分散及界面调控 方法与原理
15nm
白炭黑(纳米二氧化硅)
纳米碳管
氧化石墨烯
(1)要均匀分散在高粘度的橡胶基体中 (2)白炭黑要高浓度填充( 白炭黑要高浓度填充(高于70g/100g橡胶) 橡胶) (3)纳米分散相与橡胶连续相间的界面作用要可调 (4)要低成本、 要低成本、适合于大工业化生产
科学问题:1. 科学问题:1.高分散型白炭黑的表面、粒径特征及调控方法 1.高分散型白炭黑的表面、粒径特征及调控方法 2.固相、液相复合过程原理及控制参数 2.固相、液相复合过程原理及控制参数 3.纳米碳材料的低成本、宏量表面修饰方法 3.纳米碳材料的低成本、宏量表面修饰方法

关键科学问题三:橡胶纳米复合材料多层次多尺度网络结构描述 关键科学问题三:橡胶纳米复合材料多层次多尺度网络结构描述 及其与材料性能间的非线性关系
+
大分子间物理作用: 缠结和相互吸引 大分子间化学作用: 硫桥或C-C共价交联
+
非线性耦合 非线性耦合
多层次、多尺度、复杂的交联的多网络结构
+
增强填料间相互作用: 填料网络结构 橡胶分子与填料间作用: 物理、化学吸附
非线性粘弹性
准确表征复杂结构 指导纯胶分子设计; 指导橡胶组成设计;
构建结构-性能关系模型 滚动阻力;抗湿滑 性;耐磨性能
突破轮胎用高性能复合材料“魔 突破轮胎用高性能复合材料“魔 三角”性能瓶颈的 三角”性能瓶颈的科学基础 ”性能瓶颈的科学基础

二、关键科学和技术问题
关键科学问题四:橡胶纳米复合材料微观结构在轮胎制造过程 关键科学问题四:橡胶纳米复合材料微观结构在轮胎制造过程 中的演变及调控
加工过程
橡胶 复合 材料
停放 工艺
返炼 工艺
挤出 工艺
硫化 工艺
重要影响 基础 研究 橡胶复杂网络结构 和性能 构建响应关系 形成结构演变 控制方法 指导轮胎制造工艺 条件优化; 实现轮胎高性能化

二、关键科学和技术问题
材料的本征性能
复杂的使用 环境 车辆多刚体模 型
黏 弹 性
裂纹扩展动力学方程 (可反映温度、频率 和应力的影响)
动态生热方程 (可反映温度和 频率的影响)
本构方程(可 反映温度和频 率的影响)
虚拟样机试验
建立非线性热-力耦 合单元 ,反映材料 力学性 能和温度分 布的相互影响
非线性热-力耦合
橡胶元件复杂的动态载荷历程
含有非线性接触、大变形几何非线性、材料非 线性的动态热-力耦合的数值模拟分析
裂纹扩展历程 和疲劳寿命
应力应变分布 及其变化历程
温度分布及 其变化历程
建立橡胶元件 的失效准则 爆裂、撕裂、断裂、崩花、掉块

二、关键科学和技术问题
关键科学问题 研究内容
研究内容① 研究内容② 研究内容③ 课题三、 橡胶纳米 复合材料 分散及界 面调控方 法与原理 研究内容④ 课题四、 橡胶纳米 课题五、 轮胎橡胶 研究内容⑤ 课题六、 橡胶材料 在加工过 程中微观 结构演变 及高性能 轮胎制备 提供研究对象 橡胶工业和学术界的一个重要的事件! 为轮胎高性能化实 为分子设计提供方向
现提供理论基础
课题一、 官能化溶 聚丁苯橡 胶的分子 设计与可 控合成
刚刚获得了国家973项目的立项资助
土顺丁橡 胶的分子 设计与可 控合成
课题二、 高性能稀
时间:2015-2019年
构表征
复合材料 多尺度结
材料组成 与“魔三 角”性能 间的关系
经费:3500万-4500万之间
提供高性能基础橡胶 提供纳米复合材料先进制备方法

超材料和变换光学

由「超材料」到「变换光学」的发展简史与基本原理 「超材料」(Metamaterial) 并不是一个定义得很清楚的术语,其中的字根"meta" 意指「超越」,相当於英文的"beyond".一般而言,此一术语意指一些特别设计的人工结构,能像均匀材料那样对电磁场(波)或声波,弹性波反应(response),但却具有天然材料所没有的反应特性[1].这些特性包括:高频人工磁性(artificial magnetism) [2], 负磁导率(negative permeability) [3], 负折射指数(negative index of refraction) [4], 以及双曲型色散关系(hyperbolic dispersion) [5,6] 等.这些有趣的特性导致一些迷人的现象,例如负折射(negative refraction) [7], 次波长成像(subwavelength imaging) [8], 电磁场增益(field enhancement) [9], 以及近场—远场转换(near-to-far field conversion) [5,6] 等.根据这些现象,在过去数年已有许多新颖的元件被设计与制作出来,并已被测试.例如超透镜(superlens) [8,10], 双曲透镜(hyperlens) [6], 工作频率在微波频段的隐形斗篷(invisibility cloak) [11], 以及电浆子波导(plasmonic waveguide) [12] 等.这些工作显示了超材料研究在微波与光波研究方面都有很好的理论与应用前景. 研究超材料的最初目的主要是为了创造一种具有很强的高频磁响应(strong magnetic response at high frequency) 特性的人工材料或结构[2].当这个目的实现后,研究人员又成功的设计并制作了能同时具有等效负磁导率与负介电常数(negative permittivity) [13] 的周期性金属结构.此种「双负」(double negative, or DNG) 材料会具有等效的负折射率[3,4],因而可以具体实现V. G. Veselago 在40 年前[7] 就预测过的「把光折

超硬材料的结构特征与材料硬度的关系

超硬材料的结构特征与材料硬度的关系 材料中的化学键按其特性可分成三类:即金属键、共价键和离子键材料。一般说来,共价键材料具有最高的硬度;离子键材料具有较好的化学稳定性;金属键材料具有较好的综合性能。 材料硬度的大小,主要决定于物质内部结构中原子间结合力的强弱。结合力越强,抵抗外力作用的强度就越大,材料的硬度就越高。金属键一般不很强,故金属键结合成的材料硬度通常不高。共价键则因其键力很强,所以共价键结合成的材料均具有很高的硬度,如金刚石是世界上最硬的材料。离子键的键力较强,因而离子键材料有较高的硬度。 材料的硬度与材料的内部结构特征如离子半径、价键、配位数有关。其规律如下: ①对于结合力类型相同的材料,其离子半径减小,硬度也可提高; ②离子电价高,键力提高,硬度也可提高; ③质点堆积越紧密,密度越大,硬度越高; ④阳离子配位数越高,硬度越高。 1.元素的共价半径 元素周期表中给出了元素的共价半径。共价半径小,材料硬度高。为什么碳是最符合生成超硬材料的元素呢?下面我们分析一下元素的性能。 ①惰性气体 它们是满壳层的元素,其化合价为零,通常呈气态,可用降温或加压的方式使其变为液态,但是除去温度、压力条件则又变成气体,所以它很难变为超硬材料。 ②氢 在通常状况下呈气态。氢原子(H)只有一个电子,当它与其他原子(x)形成共价键后,氢核就暴露在外面,于是可通过库仑作用再与其他电负性较大的原子(Y)相结合。因而,氢键可表示为X —H —Y 的形式。当X 与H 结合时,形成共价键x —H ,结合得紧密;当H 再与Y 结合时,形成氢键,结合力弱。尽管氢还可以通过特殊的形式形成有诸多性能的固态金属氢,但它没有超硬的性能。 ③第二周期中的元素 当把第二周期以外的元素分析过之后,就余下第二周期的锂(Li )、铵(Be)、硼(B)、碳(C)、氮(N)、氧(O)、氟(F)等几种元素了,它们的共价半径见表1—3。 对于N ,O ,F :通常呈气态,凡气体从其特性出发,不可能形成超硬的材料。 对于Li ,Be ,B :它们的共价半径均大于碳,若从共价半径小,硬度高的规律来考虑,就只剩下碳元素了。 综上所述,碳是最符合生成最坚硬物质的元素。 2.价键 从价键的观点出发,半满键的碳,呈4价,它既可“捕获”4个电子变成稳定态,也可“奉献”4个电子而呈稳定态。因此,碳通常以共价键结合,具有很高的硬度。 (1)杂化轨道理论 杂化轨道是相当普遍的原子结合形式之一。杂化轨道理论最先是由鲍林(Paning L)和斯来托(Slater J .C)于1931年提出的。鲍林把d 轨道组合进去,得到了s —p —d 杂化轨道(图l —3)。唐敖庆等把f 轨道组合进去,得到了s —p —d —f 杂化轨道,使该理论更加完善。对金刚石而言,仅讨论s —p 轨道杂化,而不去讨论d —f 更为复杂的杂化轨道。 在量子力学里有叠位原理和简并状态,如金刚石的3 sp ,可写为s 、x p 、y p 、z p ,它

先进制造技术的现状和发展趋势

先进制造技术的现状和发展趋势xxxx xxx xxxxxxxxx 先进制造技术不仅是衡量一个国家科技进展水平的重要标志,也是国际间科技竞争的重点。我国正处于工业化经济进展的关键时期,制造技术是我们的薄弱环节。只有跟上进展先进制造技术的世界潮流,将其放在战略优先地位,并以足够的力度予以实施,,进一步推进国企改革,推动建立强大的企业集团。推进技术创新,推动大型企业尽快建立技术开发中心,广泛吸引人才,在重大技术创新项目中实行产学研结合,才能尽快缩小同发达国家的差距,才能在猛烈的市场竞争中立于不败之地。本文将详细介绍先进制造技术的含义、特点以及在我国的进展状况和进展趋势。 1 先进制造技术的含义和特点 1.1 含义 先进制造技术(AMT)是以人为主体,以运算机技术为支柱,以提升综合效益为目的,是传统制造业持续地吸取机械、信息、材料、能源、环保等高新技术及现代系统治理技术等方面最新的成果,并将其综合应用于产品开发与设计、制造、检测、治理及售后服务的制造全过程,实现优质、高效、低耗、清洁、灵敏制造,并取得理想技术经济成效的前沿制造技术的总称。 1.2 先进制造技术的特点 1)是面向工业应用的技术先进制造技术并不限于制造过程本身,它涉及到产品从市场调研、产品开发及工艺设计、生产预备、加工制造、售后服务等产品寿命周期的所有内容,并将它们结合成一个有机的整体。 2)是驾驭生产过程的系统工程先进制造技术专门强调运算机技术、信息技术、传感技术、自动化技术、新材料技术和现代系统治理技术在产品设计、制造和生产组织治理、销售及售后服务等方面的应用。它要持续吸取各种高新技术成果与传统制造技术相结合,使制造技术成为能驾驭生产过程的物质流、能量流和信息流的系统工程。 3)是面向全球竞争的技术随着全球市场的形成,使得市场竞争变得越来越猛烈,先进制造技术正是为适应这种猛烈的市场竞争而显现的。因

轮胎规格全参数解释

轮胎规格参数解释 胎规格,是轮胎几何参数与物理性能的标志数据。形象的说,就是车子所穿的四只鞋子的大小,鞋底的设计如何,是适合慢跑还是快跑。不同规格的轮胎对于整车的性能表现以及舒适性都会产生影响,下面我们一起看下。 轮胎规格表示含义 国际标准的轮胎规格,一般由六部分组成,“轮胎宽度(mm)+轮胎断面的扁平比(%)+轮胎类型代号+轮辋直径(英寸)+负荷指数+许用车速代号”。轮胎宽度、轮辋直径及扁平比如上图所示,其中扁平比为胎厚与胎宽的百分比。

轮胎宽度,是影响整车油耗表现的一个因素。轮胎的越宽,与地的接触面积越大,相应的就增加了轮胎与地面的摩擦力,车辆的动能转化为摩擦热能而损失的能量会增加,如若行驶相同距离时宽胎就更容易耗油。不过事物都有它的两面性,虽然油耗增加,但宽胎的抓地力要更强,进而也将获得更好的车身稳定性。

扁平比,是影响车辆对路面的反应灵敏度的主要因素。扁平比越低的车辆,胎壁越薄,且轮胎承受的压力亦越大,其对路面的反应非常灵敏,从而能够迅速把路面的信号传递给驾驶者,更便于操控,多见于一些以性能操控见长的车型。扁平比越高,胎壁越厚,虽然拥有充裕的缓冲厚度,但对路面的感觉较差,特别是转弯时会相对更为拖沓,多见于一些以舒适性见长的车型。还有就是越野车的扁平比一般较高,主要是为了适应环境恶劣的路况。

轮胎类型代号,常见的表示有“X”高压胎,“R”、“Z”子午胎,“一”低压胎。市场上的轿车一般采用子午线轮胎,且目前已经实现了子午线轮胎无内胎,俗称“原子胎”。这种轮胎在高速行驶中不易聚热,当轮胎受到钉子或尖锐物穿破后,漏气缓慢,可继续行驶一段距离。另外,原子胎还有简化生产工艺,减轻重量,节约原料等好处。 负荷指数是把一条轮胎所能承受的最大负荷以代号的形式表示,来表征轮胎承受负荷的能力,数值越大,轮胎所能承受的负荷也越大。负荷指数及对应承载质量列表如下。

未来十年高分子材料重点发展领域及需求分析

未来十年高分子材料重点发展领域及需求分析 《中国制造2025》围绕经济社会发展和国家安全重大需求,选择10大优势和战略产业作为突破点,力争到2025年达到国际领先地位或国际先进水平。十大重点领域是:新一代信息技术产业、高档数控机床和机器人、航空航天装备、海洋工程装备及高技术船舶、先进轨道交通装备、节能与新能源汽车、电力装备、农业装备、新材料、生物医药及高性能医疗器械。 图表高分子材料十大重点发展领域 数据来源:产研智库 为指明十大重点领域的发展趋势、发展重点,引导企业的创新活动,国家制造强国建设战略咨询委员会特组织编制了《中国制造2025》重点领域技术路线图,其中提到与高分子材料直接相关的项目如下: 1、降低船体摩擦阻力涂料 重点突破新型高性能降阻涂料技术、船底空气润滑降阻技术等。 2、低温材料与防寒设备 重点开展适用于极地航行船舶的低温材料、泵、阀件等核心液压元件低温启动和密封技术研发。 3、轻量化车身 实现复合材料/混合材料技术突破,降低成本,在新能源汽车上的应用率达到30%,自主率超过50%。

4、高性能聚烯烃材料 突破高熔融指数聚丙烯、超高分子量聚乙烯、发泡聚丙烯、聚丁烯-1(PB)等工业化生产技术,实现规模应用。 5、聚氨酯树脂 重点发展环保型聚氨脂材料如水性聚氨酯材料,加快发展脂肪族异氰酸酯等原料。 6、氟硅树脂 重点发展聚偏氟乙烯、PET、其它氟树脂以及硅树脂、硅油等。 7、特种合成橡胶 重点发展异戊橡胶并配套发展异丁烯合成异戊二烯;发展硅橡胶、溶聚丁苯橡胶和稀土顺丁橡胶;发展卤化丁基、氢华丁腈等具有特殊性能的橡胶等。 8、生物基合成材料 重点突破生物基橡胶合成技术,生物基芳烃合成技术,生物基尼龙制备关键技术,新型生物基增塑剂合成及应用关键技术,生物基聚氨酯制备关键技术,生物基聚酯制备关键技术,生物法制备基础化工原料关键基础技术等。 9、生物基轻工材料 重点发展聚乳酸(PLA)、聚丁二酸丁二酯(PBS)、聚对苯二甲酸二元醇酯(PET、PTT)、聚羟基烷酸(PHA)、聚酰胺(PA)等产品。PLA关键单体L-乳酸和D-乳酸的光学纯度达99.9%以上,成本下降20%;PBS关键单体生物基丁二酸、1,4-丁二醇提高生物转化率达5-10%;PTT关键单体1,3-丙二醇以木薯淀粉、甘油等非粮原料发酵生产,PTT纤维聚合纺丝实现产业化;PA关键单体戊二胺硫酸盐成品纯度高于99%,成本下降20%。 10、特种工程塑料 重点发展基于热塑性聚酰亚胺(PI)工程塑料树脂、杂萘联苯型聚醚砜酮共聚树脂(PPESK)、高端氟塑料的加工成型的特种纤维、过滤材料、耐高温功能膜、高性能树脂基复合材料、耐高温绝缘材料、耐高温功能涂料、耐高温特种胶粘剂。热塑性聚酰亚胺工程塑料树脂,粘度0.38dL/g,Tg=230-310℃,Td5%>500℃,拉伸强度>100MPa,弯曲强度>150MP,成本<15万/吨;杂萘联苯型聚醚砜酮共聚树脂,Tg=263-305℃,拉伸强度90-122MPa,拉伸模量2.4-3.8GPa,体积电阻率3.8-4.8×1016Ω·cm,成本降低到PEEK的50-70%。高端氟塑料主要性能指标:超纯氟塑料制品:PTFE固体表现密度SSG≤2.147g/cm3,PTFE树脂拉伸强度>28MPa,伸长率>350%,绝缘强度>3.5KV/mil。满足SEMI标准中C12的要求;耐高低温氟材料功能膜、特种氟纤维及过滤产品:满足高端环保要求,PTFE树脂要求压缩比>3000,拉伸强度>28MPa,伸长率>360%;油气及化工流体输送用泵、阀门及管

超硬材料报告

超硬材料的性能和应用 材料成型及控制工程2009级2班张天珍学号:20091420224 摘要:超硬材料在工业发展进程中扮演了至关重要的角色。随着时代发展和技术的更新,将越来越受到人们的关注。本文立足事实基础,以超硬材料多年的发展历史为背景,详细介绍了超硬材料的基本性能以及在工业、军工、航空航天、电子、机械、汽车、机床工具、精密制造、医疗、石材、建材等方面的应用。重点介绍了金刚石和立方氮化硼的性能和应用关键词:超硬材料金刚石立方氮化硼性能应用 1、引言 金刚石及立方氮化硼称为超硬材料,是因为它们具有超凡的高硬度特性。金刚石是自然界已知物质中最硬的物质, 还具有高绝缘性、优异的耐磨性和良好的导热性。立方氮化硼的硬度仅次于金刚石, 还具有高耐磨、低摩擦系数、优异的耐热性和化学稳定性,特别是对铁族金属呈化学惰性,尤其适合于加工硬而脆的铁族金属材料。立方氮化硼的这一特点是金刚石所不能比拟的。这样, 立方氮化硼就以其独特的优越性与金刚石相互补充,构成了超硬材料的两大体系。超硬材料具有其他材料无可比拟的优异力学、热学、光学、声学、电学和生物等性能,享有“材料之王”赞誉,是用途广泛的极端材料,不仅可加工世界上所有的已知材料,而且可制成性能极端的功能性器件,在诸多应用领域具有不可替代性。超硬材料及制品已广泛应用于军工、航空航天、电子、机械、汽车、机床工具、精密制造、医疗、石材、建材、机场、清洁能源、高速铁路、公路、石油与天然气钻井、地质勘探、煤炭及矿物采掘、救灾抢险、家庭装修等国计民生的各个领域。 2、金刚石的性能和应用 2.1金刚石的发展史 人类最早发现先金刚石是在公元前800年,但直到18实际末,才开始对金刚石有了系统科学的研究。法国人拉瓦锡发现金刚石可燃烧,英国人费南腾研究证实金刚石是碳的同素异形体。1955年由美国通用电气公司首次以石墨为原料在高温高压条件下合成出金刚石,从此,工业技术领域进入新的时代。 2.2金刚石的性能 金刚石是自然界已知物质中硬度最高的材料。莫氏硬度为10 ,是石英8.5倍,刚玉的4.4倍,立方氮化硼的1.56倍。特别指出,(111)面的硬度大于(110)

我国的先进制造技术研究现状及发展趋势

中国先进制造技术的发展趋势 随着科学技术的进步以及新的管理思想、管理模式和生产模式的引进,近年来,先进制造技术在机械加工领域中的应用越来越广泛,越来越深入。机械制造技术是研究产品设计、生产、加工制造、销售使用、维修服务乃至回收再生的整个过程的工程学科,是以提高质量、效益、竞争力为目标,包含物质流、信息流和能量流的完整的系统工程。改革开放以来,随着科学技术的飞速发展和市场竞争日益激烈,越来越多的制造企业开始将大量的人力、财力和物力投入到先进的制造技术和先进的制造模式的研究和实施策略之中,我国制造科学技术有日新月异的变化和发展,但与先进的国家相比仍有一定差距,为了迎接新的挑战,必须认清制造技术的发展趋势,缩短与先进国家的差距,使我国的产品上质量、上效率、上品种和上水平,以增强市场竞争力,因此,对制造技术及制造模式的研究和实施是摆在我们面前刻不容缓的重要任务,以实现我国机械制造业跨入世界先进行列。 一先进制造技术概述 (1)先进制造技术的体系结构及分类 先进制造技术是系统的工程技术,可以划分为三个层次和四个大类。 三个层次:一是优质、高效、低耗、清洁的基础制造技术。这一层次的技术是先进制造技术的核心,主要由生产中大量采用的铸造、锻压、焊接、热处理、表面保护、机械加工等基础工艺优化而成。二是新型的制造单元技术。这是制造技术与高技术结合而成的崭新制造技术。如制造业自动化单元技术、极限加工技术、质量与可靠性技术、新材料成型与加工技术、激光与高密度能源加工技术、清洁生产技术等。三是先进制造的集成技术。这是运用信息技术和系统管理技术,对上述两个层次进行技术集成的结果,系统驾驭生产过程中的物质流、能量流和信息流。如成组技术(CT)、系统集成技术(SIT)、独立制造岛(AMI)、计算机集成制造系统(CIMS)等。 四个大类:一是现代设计技术,是根据产品功能要求,应用现代技术和科学知识,制定方案并使方案付诸实施的技术。它是门多学科、多专业相互交叉的综合性很强的基础技术。现代设计技术主要包括:现代设计方法,设计自动化技术,工业设计技术等;二是先进制造工艺技术,主要包括精密和超精密加工技术、精密成型技术、特种加工技术、表而改性、制模和涂层技术;三是制造自动化技术,其中包括数控技术、工业机器人技术、柔性制造技术、计算机集成制造技术、传感技术、自动检测及信号识别技术和过程设备工况监测与控制技术等;四是系统管理技术,包括工程管理、质量管理、管理信息系统等,以及现代制造模式(如精益生产、CIMS、敏捷制造、智能制造等)、集成化的管理技术、企业组织结构与虚拟公司等生产组织方法。 (2)先进制造技术的特点 先进性:作为先进技术的基础——制造技术,必须是经过优化的先进工艺。因此,先进制造技术的核心和基础必须是优质、高效、低耗、清洁的工艺。它从传统工艺发展起来,并与新技术实现了局部或系统集成。 通用性:先进制造技术不是单独分割在制造过程的某一环节,它覆盖了产品设计、生产设备、加工制造、维修服务、甚至回收再生的整个过程。 系统性:随着微电子、信息技术的引入,先进制造技术能驾驭信息生成、采集、传递、反馈、调整的信息流动过程。先进制造技术能驾驭生产过程的物质流、能源流和信息流的系统工程。 集成性:先进制造技术由于专业、学科间的不断渗透、交叉、融合,界限逐渐淡化甚至

轮胎规格参数详解

轮胎规格参数详解

轮胎规格参数详解 国际标准的轮胎代号,以毫米为单位表示断面高度和扁平比的百分数。后面加上:轮胎类型代号,轮辋直径(英寸),负荷指数(许用承载质量代号),许用车速代号。 例如:175/70 R14 77H中:175代表轮胎宽度是175MM,70表示轮胎断面的扁平比是70%,即断面高度是宽度的70%,轮辋直径是14英寸,负荷指数77,许用车速是H级 举例:如参数为175/70 R14 则:胎宽为175mm,宽高比为70% ,轮毂直径为14英寸 则:高度为175*70%=122.5 轿车轮胎的胎侧 例: P175/70R14 77H “P” 是指轿车轮胎。(用以区别卡车或其他车型适用的轮胎) “175”指的是轮胎断面的宽度,是两个胎侧之间的宽度(以毫米为单位)。此宽度随轮胎所匹配轮辋宽度的不同而不同:宽轮辋配宽轮胎,窄轮辋配窄轮胎。一般在胎侧上所标示的胎宽,是指当轮胎安装到所建议宽度的轮辋时的宽度。 “70”是轮胎的扁平比,是胎宽与胎高的比例,这里指胎高占胎宽的70%,数值越小,越显扁平。特别要指出的是高宽比,其含义是轮胎胎壁高度占胎宽的百分比,现代轿车的轮胎高宽比多在50至70之间,数值越小,轮胎形状越扁平。随着车速的提高,为了降低轿车的重心和轴心,轮胎的直径不断缩小。为了保证有足够的承载能力,改善行驶的稳定性和抓地力,轮胎和轮圈的宽度只得不断加大。因此,轮胎的截面形状由原来的近似圆形向扁平化的椭圆形发展。轮胎扁平率越低,轮胎行驶越平稳、操控性越强.但乘坐感觉轮胎弹性不足,震动较大些 “R”是指轮胎的结构,表示此轮胎为子午线结构,“R”代表单词

超硬材料及制品的基本知识

超硬材料及制品基本知识 一、超硬材料概念:对于超硬材料的含义至今没有一 个公认为满意的解释。1981年国际硬物质科学会议认为,硬度大于1000HV的物质均可称为硬物质,这就自然包括了金刚石和立方碳化硼。后来对这个定义进行了补充,认为能加工诸如硬质合金(硬度1600—1800HV)、刚玉(—2000HV)、碳化硅(—2200HV)等这一类物质的材料称为超硬材料。目前由于金刚石和立方氮化硼等材料有其极高的硬度,所以统称为超硬材,具有硬度高、耐磨和热传导性能好、热膨胀系数低等优异性能。 二、超硬材料的分类:分为单晶超硬材料和聚晶超硬 材料(也称为“复合超硬材料”)及3.金刚石薄膜三类。 单晶超硬材料和聚晶超硬材料的主要区别为:单晶金刚石/立方氮化硼材料的特点为硬度更高、耐热性更好,但尺寸较小,多用于制造锯片等切割工具;聚晶金刚石/立方氮化硼是指以金刚石和立方氮化硼微粉等单晶超硬材料为主要原料,添加金属或非金属粘结剂通过超高压高温烧结工艺制成的聚晶复合材料。它的特点是硬度、耐热性略逊于单晶材料,但是由于聚晶超硬材料是内部结构紧密的金刚石致密体,可以增加工具的切割面积,同时克服了单晶超硬材料由于粘结面积小造成的轻易从锯片表面脱落的弊端,具有更高的耐磨性。 金刚石薄膜是用化学气相沉积(CVD)法或其它方法在非金刚石衬底上制备出的超硬薄

膜。它不仅可用于制作各种金刚石刀具,还可作为功能材料用于制作声传感器、扬声器振动膜、红外窗口、X光检测窗口等,应用领域十分广泛。国际上从七十年代初开始进行金刚石薄膜的试制并迅速掀起金刚石薄膜研究开发热潮。我国从八十年代中期开始此项研究,并已列入国家“863计划”,现已能制备出80mm、厚2mm的金刚石薄膜,并在应用研究方面取得了不少成果,但目前总体上仍处于研制阶段,尚未达到工业化应用阶段。有人预计,金刚石薄膜将是21世纪金刚石工业的主要材料,各国科学家都在为使金刚石薄膜产业化而不懈努力。 三、金刚石按用途分为两类:质优粒大可用作装饰品的称宝石级金刚石,质差粒细用于工业的称工业用金刚石。 宝石级金刚石,又称钻石,光泽灿烂,晶莹剔透,被誉为“宝石之王”,价值昂贵,是世界公认的第一货品,其占有程度和消费水平往往被视为是衡量个人和国家经济富裕程度的标志。达不到宝石级的金刚石(工业用金刚石),以其超硬性广泛用于机电、光学、建筑、交 ?总的来说,复合超硬材料相对于传统合金材料具有强大的替代性,市场潜力更大,广泛应用于机械、冶金、地质、石油、煤炭、石材、建筑等传统领域,电子信息、航天航空、国防等高技术领域以及汽车、家电等新兴产业。 1.1复合超硬材料的主要产品用途?当前,复合超硬材料的产品主要分为四类:石油天然气钻头用聚晶金刚石复合片、煤田矿山用聚晶金刚石复合片、聚晶金刚石高品级拉丝模坯和刀具用聚晶金刚石/聚晶立方氮化硼复合片。 (1)石油天然气钻头用聚晶金刚石复合片 石油天然气聚晶金刚石复合片是由无数微小金刚石颗粒和粘结剂混合组成的切削层和硬质合金衬底层在高温高压下烧结合成的,具有很高强度、硬度、耐磨性、抗冲击

先进制造技术的现状和发展趋势

先进制造技术的现状和发展趋势 xxxx xxx xxxxxxxxx 先进制造技术不仅是衡量一个国家科技进展水平的重要标志,也是国际间科技竞争的重点。我国正处于工业化经济进展的关键时期,制造技术是我们的薄弱环节。只有跟上进展先进制造技术的世界潮流,将其放在战略优先地位,并以足够的力度予以实施,,进一步推进国企改革,推动建立强大的企业集团。推进技术创新,推动大型企业尽快建立技术开发中心,广泛吸引人才,在重大技术创新项目中实行产学研结合,才能尽快缩小同发达国家的差距,才能在猛烈的市场竞争中立于不败之地。本文将详细介绍先进制造技术的含义、特点以及在我国的进展状况和进展趋势。 1 先进制造技术的含义和特点 1.1 含义 先进制造技术(AMT)是以人为主体,以运算机技术为支柱,以提高综合效益为目的,是传统制造业不断地吸取机械、信息、材料、能源、环保等高新技术及现代系统治理技术等方面最新的成果,并将其综合应用于产品开发与设计、制造、检测、治理及售后服务的制造全过程,实现优质、高效、低耗、清洁、灵敏制造,并取得理想技术经济成效的前沿制造技术的总称。 1.2 先进制造技术的特点 1)是面向工业应用的技术先进制造技术并不限于制造过程本身,它涉及到产品从市场调研、产品开发及工艺设计、生产预备、加工制造、售后服务等产品寿命周期的所有内容,并将它们结合成一个有机的整体。 2)是驾驭生产过程的系统工程先进制造技术专门强调运算机技术、信息技术、传感技术、自动化技术、新材料技术和现代系统治理技术在产品设计、制造和生产组织治理、销售及售后服务等方面的应用。它要不断吸取各种高新技术成果与传统制造技术相结合,使制造技术成为能驾驭生产过程的物质流、能量流和信息流的系统工程。 3)是面向全球竞争的技术随着全球市场的形成,使得市场竞争变得越来越猛烈,先进制造技术正是为适应这种猛烈的市场竞争而显现的。因此,一个国家的先进制造技术,它的主体应该具有世界先进水平,应能支持该国制造业在全球市场的竞争力 2 先进制造技术的组成 先进制造技术是为了适应时代要求提高竞争能力,对制造技术不断优化和推陈出新而形

(整理)轮胎规格

轮胎规格 轮胎的规格有多种表示方法,如205/60R15 89H、P195/75R14 92S、P195/75SR14、165R13、185—70R14、750—16LT、31×10.50R15LT等等,所以,使很多驾驶员搞不明白,不知道这些数字都是代表轮胎的哪些部位,为什么表示的方法又各种各样。 实际上大家看到的各种各样的轮胎规格是不同国家或不同组织所使 用的不同的表示方法。前面已经介绍了轮胎上的各部位的名称和名称所指的范围,这些名称是不变的,所以,您了解了不同国家的表示方法中所指的轮胎部位以后,也就一通百通,什么都明白了。 ①ISO标记。ISO标记是国际标准组织标记的缩写,有ISO9000、 ISO9001、ISOt9002等,如前面介绍的东洋轮胎,执行的标准是ISO9002,横滨轮胎执行的标准是ISO9001。 按照10S标记,轮胎的规格必须用下列方法表示: 〔例1〕205/60R15 89H 205:轮胎宽度(mm) 60 :扁平比(随后介绍) R :子午线结构 15 :轮胎公称内径(in) 89 :最大负荷 H :最高时速 〔例2〕215/65R15 94H 215:轮胎宽度(mm)

65 :扁平比 R :子午线结构 15 :轮胎公称内径(in) 94 :最大负荷 H :最高时速 ②P公制。P公制为美国标准。 〔例1〕P195/75R14 92S P :客车缩写(PC) 195:轮胎宽度(mm) 75 :扁平比 R :子午线结构 14 :轮胎公称内径(in) 92 :最大负荷 S :最高时速 〔例2〕P205/60HR14 P :客车缩写 205:轮胎宽度(mm) 60 :扁平比 H :最高时速

超硬材料市场分析

1 复合超硬材料简介 1.1 复合超硬材料基本情况 金刚石和立方氮化硼等材料由于其极高的硬度,统称为超硬材料,具有硬度高、耐磨和热传导性能好、热膨胀系数低等优异性能。 目前,超硬材料主要分为单晶超硬材料和聚晶超硬材料(也称为“复合超硬材料”)两类。单晶超硬材料主要为单晶金刚石/立方氮化硼微粉;聚晶超硬材料主要是指以金刚石或立方氮化硼与相关粘结剂经过烧结工艺制备的复合材料。 两类材料的主要区别为:单晶金刚石/立方氮化硼材料的特点为硬度更高、耐热性更好,但尺寸较小,多用于制造锯片等切割工具;聚晶金刚石/立方氮化硼的特点是硬度、耐热性略逊于单晶材料,但是由于聚晶超硬材料是内部结构紧密的金刚石致密体,可以增加工具的切割面积,同时克服了单晶超硬材料由于粘结面积小造成的容易从锯片表面脱落的弊端,具有更高的耐磨性。 总的来说,复合超硬材料相对于传统合金材料具有强大的替代性,市场潜力更大,广泛应用于机械、冶金、地质、石油、煤炭、石材、建筑等传统领域,电子信息、航天航空、国防军工等高技术领域以及汽车、家电等新兴产业。 1.2 复合超硬材料的主要产品用途

当前,复合超硬材料的产品主要分为四类:石油天然气钻头用聚晶金刚石复合片、煤田矿山用聚晶金刚石复合片、聚晶金刚石高品级拉丝模坯和刀具用聚晶金刚石/聚晶立方氮化硼复合片。 (1)石油天然气钻头用聚晶金刚石复合片 石油天然气聚晶金刚石复合片是由无数微小金刚石颗粒和粘结 剂混合组成的切削层和硬质合金衬底层在高温高压下烧结合成的,具有很高强度、硬度、耐磨性、抗冲击性以及良好的自锐性,这些优良特性使其能够应用在岩石的钻探领域。该产品主要作为石油天然气钻头的切削齿,是钻头上起到切削和掘进的核心部件。 (2)煤田矿山钻头用聚晶金刚石复合片 由于具有硬度高、耐磨性强、抗冲击韧性良好等特点,复合超硬材料除了可用于制作石油天然气用钻头外,还可用于制作煤田矿山钻头用PCD复合片,其用途并不局限制造于煤田和矿山作业用的钻进和切割工具,还可广泛应用于制造建筑建造、水电工程施工、凿岩破碎、公路修补等众多领域的钻进工具。 (3)聚晶金刚石高品级拉丝模坯 拉丝模是各种金属线材生产厂家(如电线电缆厂、钢丝厂、焊条焊丝厂等)拉制线材的一种非常重要的易消耗性模具。拉丝模的适用范围十分广泛,主要用于拉拔棒材、线材、丝材、管材等直线型难加

先进制造技术的现状和发展趋势

先进制造技术的现状和发展趋势

摘要近年来, 制造业出现了世界范围的研究并采用“先进制造技术”的浪潮,先进制造技术已成为当代国际间的科技竞争的重点。本文论述了先进制造技术的发展现状与发展趋势,指出:信息化、精密化、集成化、柔性化、动态化、虚拟化、智能化、绿色化将是未来制造技术的必然发展方向。 1.先进制造技术简介 1.1先进制造技术的定义 先进制造技术AMT(advanced manufacturing technology)是制造业不断吸收机械、电子、信息(计算机与通信、控制理论、人工智能等)、能源及现代系统管理等方面的成果,并将其综合应用于产品设计、制造、检测、管理、销售、使用、服务乃至回收的全过程,以实现优质、高效、低耗、清洁和灵活生产,提高对动态多变的产品市场的适应能力和竞争能力的制造技术的总称。它集成了现代科学技术和工业创新的成果,充分利用了信息技术,使制造技术提高到新的高度。先进制造技术是不断利用新技术逐步发展和完善的技术,因而它具有动态性和相对性。先进制造技术以提高企业竞争能力为目标,应用于产品的设计、加工制造、使用维修、甚至回收再生的整个制造过程,强调优质、高效、清洁、灵活生产,体现了环境保护与可持续发展和制造的柔性化。 1.2 先进制造技术的内涵和技术构成 先进制造技术的技术构成可以分为以提高生产效率和快速响应市场需求为 目的的技术构成和以满足特种需求为目的的技术构成。 以提高生产效率和快速响应市场需求为目的的技术构成强调制造系统与制 造过程的柔性化、集成化和智能化。包括: (1) 系统理论与技术(着重制造系统组织优化与运行优化,以提高制造系统的整体柔性与效率) 。 (2) 制造过程的单元技术(着重制造过程的优化,以提高单元的效率与精 度) 。系统理论与技术涉及范围包括:CIMS、敏捷制造、精益生产、智能制造等。制造过程单元技术涉及的范围包括:设计理论与方法、并行工程、系统优化、运行、控制、管理、决策与自组织技术、虚拟制造技术、制造过程智能检测、信息处理、状态检测、补偿与控制、制造设备的自诊断与自修复、智能机器人技术、

教你如何看轮胎参数

教你如何看轮胎参数 许多驾驶员并不了解自己车上用的或准备购买的是什么类别的轮胎。如果同一辆车上用了不同胎体的轮胎,会影响车的使用性能。因此,在换轮胎时最好先了解一下自己车上使用的是什么胎体的轮胎,如果是半钢丝的,仍然选用半钢丝的,如果是全纤维的,就仍然选用全纤维的。 下面是钢丝、尼龙和纤维的表示方法,它们铭刻在轮胎的胎壁上。 STEEL——钢丝; NYLON——尼龙; POLYESTER——纤维。 每一条轮胎的胎壁上都镌着该条轮胎的构造详情。也就是说,这条轮胎的胎冠是由几层xx制成,而胎侧是由几层xx构成,使人一目了然,一看便知。 例如:普力司通195/50R15 T1花纹轮胎胎侧上的“PLIES(2POLYESTER+2STEEL+NYLON)即指此轮胎为半钢丝子午线轮胎,它的胎冠是由二层纤维帘布和二层钢丝及一层尼龙制成。 又如上海回力185/70R13轮胎,它在胎侧是这样刻的: TREAD:2PLIES POLYESTER (胎冠) (层级) (纤维帘布) 2PLIES STEEL (层级) (钢丝) SIDEWALL:2PLIES POLYESTER (胎侧) (层级) (纤维帘布) 也就是说这条轮胎的胎冠是由二层纤维帘线和二层钢丝制造的;而它的胎侧则是由二层纤维帘线制成。 又比如185/70R14(88H707花)是这样表示的: TREAD:POLYESTER1 + STEEL2 + NYLON2 (胎冠)(一层纤维帘布)(二层钢丝)(二层尼龙) 也就是说这条轮胎的胎冠是由一层纤维帘线和二层钢丝及二层尼龙帘线制成。 又比如美国固特异185/70R13(86S)轮胎,它是这样表示的: TREAD:3PLIES 1POLYESTER+2STEEL SIDEWALL:1POLYESTER 也就是说,这条轮胎的胎冠共有三层,即一层纤维帘线和二层钢丝制成;而胎侧是由一层纤维帘线制成。再如,山东威海的三角牌轮胎165/70R13(79S·TR266花纹)是这样表示的:4PLIES(2STEEL+2POLYESTER),也就是说这条轮胎的胎冠是由二层钢丝和二层纤维帘线共4层组成。 胎冠和层级数越多,它的耐刺、载重等性能越优秀,但散热较慢。胎侧的层级数太少,一是胎体强度不够好,显得胎侧太软,容易被割伤,一是抗撞击能力差,极易被坚硬物撞击坏。但散热和吸震性能好。 每一条轮胎上,在它的规格型号后面都有由数字和字母组成的一组混合数字,如:185/70R13 88H、185R14 90S等,其中的“88H”和“90S”即是轮胎的载质量和速度级别。“88、90”是载重代号,“H、S”是速度级别代号。 因为每一条轮胎在生产过程中,都是严格按照有关该条轮胎的固定技术指标设计生产的,因此,它的载质量和速度级别都有它的临界限。在设计生产过程中不但要考虑每个部位的胶料配方,同时还要考虑胎冠的

赵治亚:超材料高端装备

赵治亚:超材料高端装备 7月28日,中国电科发展战略研究中心与远望智库联合举办了“新挑战、新理念、新技术——未来战争研讨会”,来自权威机构共13名专家,对前沿科技和未来战争相关问题,进行全面深入解析,展开广泛交流和探讨。来自军方、国防工业部门以及科研院校近600人参加了会议。超材料高端装备赵治亚深圳光启高等理工研究院(在未来战争论坛上的报告) 感谢中国电科发展战略研究中心和远望智库提供这么好的 一个平台,我们大家进行思维的交流和互动。我们一直是从事于超材料的技术及装备的研究,我们想在这里从超材料,从材料的这个角度以及在国内外的应用情况和对未来战争 的影响。从这块跟大家分享一下我们的心得。概述 这块的特殊之处,因为超材料整个从概念到技术它还是一个相对来讲比较新的程度。而且它的成熟度尤其是以2006年开始为一个起点。所以从这个角度上来讲大家从美国也好,从中国也好,大家的起跑的时间是一致的。尤其是我们的几位院长,原来在美国的这个领域研发的核心团队,所以在这块我们更看重的是这个里面的发展的时间窗口。谁能更有效地把握住时间窗口,还有像上午专家所说的,更快地进行研究里面的迭代,谁就更有可能去把握先机影响到未

来的战场。图1 下面的报告想从三个方面跟大家简要地介绍一下。第一个可能大家对于超材料从原理到技术到应用可能还不是很熟悉。想对超材料进行一个电磁材料进行一个介绍。第二个主要是从国内外的超材料的发展还有超材料武器装备上面的发展 进行介绍,尤其是以国外的武器装备发展的情况为主。还有第三个也想简要地介绍一下我们对于未来装备发展,尤其是我们超材料能够在未来装备发展里面所产生的作用和影响。part 1 超材料介绍图2 图2比较好地介绍了超材料的基本的原理。根据我们的国家标准GJB 32005-2015这个标准里面的描述,超材料的定义是什么呢?就是一种特殊的复合材料或者是结构,通过对于材料的关键物理尺寸上进行有序的结构设计,来使它进行常规材料所不具备的这种超常物理性质。如果是针对电磁波的频谱,我们可以根据电磁波频谱工作的波长取这个波长的四分之一到二十分之一波长这 样的一个尺寸。比如在厘米级和毫米级的这样的一个尺寸我们对它进行人工的拓扑结构和排布方式进行一个设计,可以看到比如说类似于这样的二维的柔性的超材料,和三维的这种超材料的设计,从而达到一个传统的介质材料所不能达到的,对于电磁波的调控的影响。所以它的整个的超材料的核心就是针对于我所要工作的这个波长进行有序的结 构和排布设计,从而达到我们可以人工定制化地去调制电磁

超硬磨料及其磨具的选择与应用

超硬磨料及其磨具的选择与应用 磨削过程就是磨具中的磨粒对工件的切削过程。选择磨具就是要充分利用磨粒的切削能力去克服工件材料的物理力学性能产生的抗力。由于磨具的品种规格繁多,而每一种磨具都不是万能的切削工具,只有一定的适用范围。因此对每一种磨削工作,都必须适当选择磨具的特性参数,才能达到良好的磨削效果。磨具特性主要包括磨粒、粒度、硬度、结合剂、组织、形状和尺寸。这里从磨具特性方面叙述选择磨具的一般原则。 一.超硬磨料及其磨具 (一)超硬磨料磨具的加工特点 超硬磨料系指金刚石和立方氮化硼均属立方晶系。与刚玉和碳化硅相比,具有硬度高、强度好、颗粒形状好、良好的导热性和低的热膨胀系数等特点。磨削能力强及良好的磨削性能。是非常优异的磨削材料。 由超硬磨料制成的磨具,其磨削性能突出,主要加工特点有: 1.极高的磨料硬度 2.耐磨损性能好 3.形状和尺寸保持性能好 4.能长时间保持磨粒微刃的锋锐性 5.磨削温度低 (二)超硬磨料磨具的特性 1.超硬磨料磨具结构 超硬磨料磨具的结构与普通 磨具不同,其结构形式由工作 层、过渡层和基体三部分组成。 如图一所示。工作层即磨料层, 由金刚石或立方氮化硼磨料、结 合剂及填料组成。是磨具 进行磨削加工的部分。过渡层是 由结合剂和其它材料组成,以保图一超硬磨料金刚石、立方氮化硼磨具结构

证工作层的充分使用,不含超硬磨料,将工作层牢固把持在基体上。近年来,有些厂家取消了过渡层,直接将过渡层把持在基体上。基体是磨具的基本形体,起支承工作层的作用。 2.超硬磨料磨具的特性及标志 ⑴磨料超硬磨料的品种有天然金刚、人造金刚石及立方氮化硼(CBN)。人造金刚石又有多种牌号。人造金刚石、立方氮化硼的品种、代号及适用范围列于表一表一人造金刚石和立方氮化硼品种、代号及适用范围(摘自GB/T6405-1994) ⑵粒度粒度系标志超硬磨料金刚石、立方氮化硼颗粒尺寸的大小。粒度的标记按国家标准的规定,超硬磨料的各粒度颗粒尺寸范围及粒度组成按表二规定。 ⑶结合剂结合剂起着把持超硬磨料和使磨具具有正确的几何形状的作用。超硬磨料磨具的结合剂分四大类,即树脂结合剂(B)、金属(青铜)结合剂(M),陶瓷结合剂(V),电镀金属结合剂(M) ⑷浓度浓度是超硬磨料磨具所特有的概念。它表示磨具工作层单位体积中超硬磨料的含量。一般规定为每立方厘米体积中含4.4克拉(1克拉=0.2g,0.88g/cm3)的超硬磨料磨具的浓度为100%;每增加或减少1.1克拉磨料,则浓度增加或减少25%。不同浓度超硬磨料磨具中磨料含量及代号列于表三。

先进制造技术的应用与发展剖析

毕业设计论文 作者学号 系部机电学院 专业机电一体化技术 题目先进制造技术的应用与发展 指导教师 评阅教师 完成时间:2014 年4月26 日

毕业设计(论文)中文摘要

目录 1 绪论 (4) 1.1先进制造技术的概述 (4) 2 先进制造技术的现状 (5) 3 先进制造技术的应用 (6) 4 先进制造技术的应用举例 (7) 4.1在产品制造过程与工艺技术中的应用 (7) 5 先进制造技术发展展望 (8) 6 计算机集成制造系统 (10) 6.1 CIMS 系统的功能组成 (11) 6.2 CIMS 系统的技术优势分析 (11) 6.2.1保障和提高了新产品开发的质量 (11) 6.2.2 缩短了新产品的上市周期 (12) 7 加工技术 (12) 7.1 超精密加工的技术范畴 (12) 7.2 超精密加工的关键技术 (13) 7.2.1 主轴 (13) 7.2.2 直线导轨 (13) 7.2.3 传动系统 (14) 7.3数控技术(Numerical Control(NC)) (14) 7.3.1 数控技术是应用制造技术的基础和核心 (15) 7.3.2数控技术的推广应用给机械制造业带来了重大变革 (15) 结论 (16) 致谢 (16) 参考文献: (17)

1绪论 1.1先进制造技术的概述 先进制造技术(Advanced Manufacturing Technology),人们往往用AMT 来概括由于微电子技术、自动化技术、信息技术等给传统制造技术带来的种种变化与新型系统。具体地说,就是指集机械工程技术、电子技术、自动化技术、信息技术等多种技术为一体所产生的技术、设备和系统的总称。主要包括:计算机辅助设计、计算机辅助制造、集成制造系统等。AMT是制造业企业取得竞争优势的必要条件之一,但并非充分条件,其优势还有赖于能充分发挥技术威力的组织管理,有赖于技术、管理和人力资源的有机协调和融合。先进制造技术在传统制造技术的基础上融合了计算机技术、信息技术、自动控制技术及现代管理理念等,所涉及的内容非常广泛,学科跨度大。本书围绕先进制造技术的各主题,系统地介绍了各先进制造技术的基本知识、关键技术及其在实际中的应用等。制造技术是使原材料成为人们所需产品而使用的一系列技术和装备的总称,是涵盖整个生产制造过程的各种技术的集成。从广义来讲,它包括设计技术、加工制造技术、管理技术等三大类。其中设计技术是指开发、设计产品的方法;加工制造技术是指将原材料加工成所设计产品而采用的生产设备及方法;管理技术是指如何将产品生产制造所需的物料、设备、人力、资金、能源、信息等资源有效地组织起来,达到生产目的的方法。 具体地说, 先进制造技术是制造业不断吸收信息技术和现代管理技术的成果, 并将其综合应用于产品设计、加工、检测、管理、销售、使用、服务乃至回收的制造全过程, 以实现优质、高效、低耗、清洁、灵活生产, 提高对动态多变的市场的适应能力和竞争能力的制造技术的总称。与传统的制造技术相比, 当代的先进制造技术以其高效率、高品质和对于市场变化的快速响应能力为主要特征。先进制造技术是生产力的主要构成因素, 是国民经济的重要支柱。它担负着为国民经济各部门和科学技术的各个学科提供装备、工具和检测仪器的重要任务, 成为国民经济和科学技术赖以生存和发展

超硬材料的性能与应用

超硬材料的性能与应用 摘要:本文在超硬材料的基础上讨论了其良好性能及在工业上的应用,同时提出超硬材料在其领域内所应该开发的新应用。重点分析了超硬材料在应用过程中所表现出其他材料所不能替代的性能。本文通过查阅相关文献阐述了超硬材料综述了超硬料的结构及其性能特点,为今后超硬材料在工业上的进一步发展有提供前景。关键字:超硬材料、金刚石、立方碳化硼、性能、应用等 一、超硬材料的简介所谓的超硬材料则是指硬度可与金刚石相比拟的材料。目前使用的超硬材料主要是立方氮化硼与金刚石,但是还是许多超硬材料正在研发中,如碳化硼,富硼氧化物等。金刚石包括天然金刚石和人造金刚石,天然金刚石是目前世界上最硬的工业材料,它具有硬度高、耐磨损、热稳定性能好等特性,而且抗压强度高、散热速率快、传声速率快、电流阻抗、防蚀能力、透光、低热胀率等物理性能,是工业材料中不可替代的材料;人造金刚石是加工业最硬的磨料,电子工业最有效的散热材料,半导体最好的晶片,通讯元器件最高频的滤波器,音响最传真的振动膜,机件最稳定的抗蚀层等等,已经被广泛应用于冶金、石油钻探、建筑工程、机械加工、仪器仪表、电子工业、航空航天以及现代尖端科学领域。 立方氮化硼CBN是硬度仅次于金刚石的材料,但是目前并未发现天然立方氮化硼的存在,工业和日常生活中使用的都是人造的。它具有与金刚石的许多特性相比拟的特点,同时也具有更高的热稳定性和对铁族金属及其合金的化学惰性。它作为工程材料,已经广泛应用于黑色金属及其合金材料加工工业。同时,它又具有优异的热学、电学、光学和声学等性能,在一系列高科技领域得到应用,成为一种具有发展前景的功能材料。 二、超硬材料的性能A)结构组成:金刚石是碳原子按四面体成键方式互相连接,组成无限的三维骨架,是典型的原子晶体。每个碳原子都以SP3杂化轨道与另外4个碳原子形成共价键,构成正四面体。由于C-C键很强,所以所有的价电子都参与了共价键的形成,没有自由电子,所以钻石不仅硬度大,熔点极高,而且不导电。氮化硼是立方结构。 B)力学性能:金刚石是目前地球上最硬的物质,莫氏硬度为10。新摩氏硬度15,显微硬度10000kg/mm2,显微硬度比石英高1000倍,比刚玉高150倍。金刚石硬度具有方向性,八面体晶面硬度大于菱形十二面体晶面硬度,菱形十二面体晶面硬度大于六面体晶面硬度。较脆,在不大的冲动力下会沿晶形解理面裂开质纯、结晶完好的为3520 kg/m3,一般为3470~3560 kg/m3。具有平行八面体的中等或完全解理,平行十二面体的不完全解理。呈贝壳状或参差状。金刚石具有极大的弹性模量,是自然界最高的磨削材料,弹性模量达90000kg/mm。摩擦系数小,有极高的抗磨能力,因此在金刚石选矿中利用这一特性,采用球磨机、锥形磨矿机来分离金刚石。但金刚石极脆,不能承受正向的外力撞击。硬度高、耐磨性好。 立方氮化硼烧结体的硬度一般在3500~4000Hv,陶瓷;2400 Hv,硬质合金1800 Hv左右。高硬度带来了相当好的耐磨性,一般讲,立方氮化硼的耐磨性是涂层合金的30倍,是无涂层硬质合金的50倍,是陶瓷刀片的15~20倍。C)热学性能:熔点:金刚石熔点达4000℃,在空气中燃烧温度为850~1000℃,在纯氧中720~800℃燃烧,金刚石发出浅蓝色火焰,并转化成二氧化碳。热导率一般为138.16W/(m?K)。但Ⅱa型金刚石的热导率特别高,在液氮温度下为铜的25倍,并随温度的升高而急剧下降。低温时热膨胀系数极小,随温度的升高,热膨胀系数迅速增大。 立方氮化硼在1370o以上才开始由立方晶体向六方晶体转化;在1000oC的高温下切削,其表面不会产生氧化,高温下硬度降低程度也比硬质合金和陶瓷刀片小的多,这就为高速切削创造了条件。导热系数为79.54w/m,k,仅次于金刚石,随温度提高,导热系数逐渐增大,有利于散热。D)磁电性能:金刚石为无磁性重部分矿物(p>2.9)因此在选矿中不能采用电

相关主题
文本预览
相关文档 最新文档