当前位置:文档之家› 微型光学防抖摄像头模组自动装配调试技术介绍1505

微型光学防抖摄像头模组自动装配调试技术介绍1505

微型光学防抖摄像头模组自动装配调试技术介绍1505
微型光学防抖摄像头模组自动装配调试技术介绍1505

高像素手机摄像头制程简介

采用大镜头光圈(F/2.0或者以上)再搭配超过一千万像素的图像传感器的手机摄像头已经十分普遍,在此光学配置之下,最大容许镜头倾斜角度则越来越小。如图1所示,当镜头倾斜角度超出最大允许镜头倾斜角度时,可能导致图像边缘过分模糊,因而图像品质下降,或整个模组不合格,从而造成浪费。因此,通常对具有高分辨率图像传感器的普通自动对焦摄像头或者镜头平移式的光学防抖摄像头的制作过程中一定要采用光学主动对准设备(Activealignmentmachine,AAMachine或简称AA机)来调校镜头与图像传感器之间的姿态与相对位置等关系。

图1镜头及图像传感器装配误差示意图倾斜角度

自动对焦相机模组镜头倾斜角度,主要分成静态及动态两种。静态镜头倾斜角度指的是在镜头致动器没有作用时(例如:致动器没有通电),镜头光轴和图像传感器表面法线轴之间的夹角。动态镜头倾

斜角度指的是在镜头致动器有作用时(例如:致动器有通电),镜头光轴和没有作用时的变化。

如图2所示,传统的摄像头制程中仅只是利用机械装配的精度来实现镜头大致正对图像传感器。在较低的图像传感器的时代,这样的装配制造方法能足够满足一般的摄像头应用需求。但是随着图像传感器像素值的提高,为了获得较高的成像品质,必须采用主动光学对准设备(AA机)来进行生产。采用AA机制程的设备在组装每一个零配件时,设备将检测被组装的半成品,并根据被组装半成品的实际情况主动对准,然后将下一个零配件组装到位。这种主动对准技术可有效的减小整个模组的装配公差,有效的提升摄像头产品一致性,也为更高阶的摄像头产品封装创造可能性。

光学主动对准设备通常也分为三轴式AA机或者六轴式AA机两种。其中三轴式AA机其设备成本较低,半自动化易操作,转机时间短,校正较容易。虽然三轴式AA机已经能有效的提高高像素摄像头的成像品质。但是,如图2所示,三轴式AA机的加工工业针对镜头与镜头座或者图像传感器之间的光轴歪斜却无法补正。而六轴式AA机可以针对镜头全部的六个自由度进行调整,所得的影像品质一定超越三轴调校,并且可以全自动完成对准功能。有些高端的六轴AA机还能同时点亮图像传感器和镜头调焦马达以折中改善镜头在调校运动后的姿态及位置关系等如图3所示。但是六轴式AA机的设备造价高昂,

操作复杂,生产效率有限,使得高像素摄像头制造成本高企,且需要特别的产线才能满足镜头平移式光学防抖摄像头制造的特殊需求。

总体说来,若果单靠生产品质控制及机械设计去减少静态及动态倾斜角度,是十分困难,可能导致良率过低及生产成本上升。使用专门主动光学校准镜头装置(AAMachine)则可以有效减少静态镜头倾斜。但是,这方法有两个问题:1)对动态镜头倾斜的补偿有限,2)由于装置所需精度及自由度高,所以装置成本高企。

爱佩仪先进的光学防抖摄像头马达自动调校技术

针对以上的技术难点,爱佩仪光电技术有限公司自主研发生产的混合镜头倾斜与平移式光学防抖马达及其自动调校生产技术(以下简称AT系统),则不仅仅是为了顺应高像素高分辨率拍照手机所需要的自动对焦的趋势,而是能使高像素拍照手机的图像品质更上一个新

台阶,而同时大大降低生产成本的产品和技术。此模组生产校正技术已经获得很多国家的技术专利。

随着拍照手机摄像头模组的像素越来越高,应用范围也越来越广泛,特别是低光环境下的高品质拍照需求使得光学防抖技术的需求也越来越迫切。通常的光学防抖摄像头马达分为混合镜头偏转与平移式马达和纯镜头平移式马达两种。纯镜头平移式马达的生产工艺必须借助AA机才有可能进行生产,而且即便是采用了AA机平移式光学防抖摄像头的良率依然十分有限。

为了解决拍照手机光学防抖摄像头的迫切需要及高昂的制造成本与复杂的制作工艺之间的矛盾,爱佩仪光电技术有限公司研发的AT系统能在普通自动对焦马达的基础上无需添加AA机等复杂工艺和设备就可以生产出高品质高良率的光学防抖摄像头。装有爱佩仪光电技术有限公司研发生产的混合镜头倾斜与平移式光学防抖马达的拍照手机摄像头模组在生产过程中,采用类似普通自动对焦马达的生产工艺,只需要对该光学防抖马达采用机械定位的方式进行对准安装即可。然后,针对自动对焦所需要的静态镜头倾斜补偿补偿,对焦过程中的动态镜头倾斜的补偿以及光学防抖控制参数的校正等均可以在AT系统上解决。另外此AT系统最大的优点是生产效率高而系统本身结构简单,提供了一个低成本高效率的生产环境。

图4光学防抖摄像头模组的调试流程软硬件系统结构框图

如图4所示,为AT系统结构框图。电脑或主控制器会按一定的规则向马达致动控制器发送命令,安装好镜头的马达则会根据相应的控制命令移动镜头。

如图5所示,目标模板的特定图案(如图6)将会经过镜头而投射在图像传感器上。电脑或者主控制器会根据图像传感器获得的影像分析各部分的清晰度,根据爱佩仪光电技术有限公司研发的特定的算法计算出需要偏斜补偿的角度,进而将该角度分解到各个驱动器去校正执行。然后根据校正执行后的图像进行进一步分析是否校正到位。多次校正迭代后的一系列相关参数经过验证能达到马达倾斜校正标准的情况下会被存储到马达控制器的数据存储区域供马达在自动对焦等动作时进行校正使用,整个算法流程框图如图7所示。该校正算法

可以针对镜头在不同的对焦移动的位置时由于机械结构的加工或者安装产生的误差进行校正保证在整个自动对焦行程范围内对光轴的偏斜的补偿都是可以进行的。同时,马达安装固定后仍然是可以进行调校的。该自动调校过程针对静态的光轴偏斜以及对焦运动过程中的动态光轴偏斜都是可以进行补偿的。

该动静态综合补偿的算法及功能远优于AA机制程仅只能对镜头初始位置或者马达驱动到最大行程后的静态位置的光轴偏斜进行补偿的功能,如图8所示的调试传递函数(MTF)解析度实验中,当中心点准确对焦后其MTF解析清晰度在982左右.在自动对焦补偿前,图8(a)所示右下角边缘处的MTF解析清晰度在343左右,而自动对焦补偿后,图8(b)所示右下角边缘处同一位置的MTF解析清晰度为468。

爱佩仪光电技术有限公司研发的摄像头自动对焦补偿技术可以使得图像边缘MTF解析度上升36%。同时,将光轴自动校准后的摄像头模组在进行光学防抖的过程中也能保证防抖补偿控制的控制角度的准确性与及时性,确保光学防抖的防抖效果。因此,AT系统能在普通的自动对焦摄像头的制造工艺下充分保证光学防抖与自动对焦摄像头的成像品质与光学防抖效果,而无需AA机制造工艺的参与,极大的降低了光学防抖摄像头的生产成本及研发难度。

图5(“AT”)光学防抖摄像头自动调校系统

图6目标模板

图7自动调校流程图

(a)自动对焦镜头倾斜补偿前(MTF解析度为343)

(b)自动对焦倾斜镜头补偿后(MTF解析度为468)

图8.具有OIS及镜头倾斜补偿的1300万像素摄像头MTF解析度实验

光学防抖角速率传感器(GyroscopeSensor)自动校准技术

光学防抖摄像头模组的防抖效果除了取决于具有光学防抖马达的性能,更与感知抖动运动的角速率传感器(GyroscopeSensor)分不开。这是因为防抖马达驱动镜头来进行光学防抖动工作的执行动作要靠角角速率传感器来进行指导。原则上,各大厂家的角角速率传感器的精度和一致性都已经相当高。但是作为一套完整的微型机电控制系统,角速率传感器和其它部件的配合则需要进行标定以获得最优的效果。AT系统同时具备了能够校正角速传感器的能

力。如图5所示,当目标模板固定下来,而连接摄像头模组的调试平台是可以在两个方向模拟人手的振动。当关停摄像头模组的光学防抖功能时,摄像头获得的景物将会不断抖动,于是,可以通过图像分析技术获取特定的目标景物模板上的标记的移动幅度(L0)。当开启光学防抖功能后,该目标景物模板上的标记的移动幅度会因为光学防抖的作用下减小为L1。然后不断调整与角速率传感器相关的参数使得补偿系数(CompensationRatio,CR,CR=‐20Lg(L1/L0)为最大。通过这样的整体的调校,则可以使得防抖效果进一步提升。

小结

本文介绍了一套最新最先进的由爱佩仪光电技术有限公司(APPhotonics,Inc.)研发生产的具有OIS和AF技术的结构紧凑型高级手机摄像头致动马达模块及光学防抖摄像头的自动化生产调试

摄像头模组设计规范

早节 号 内 容 页数 1 FPC/PC 布局设计 2 2 FPC/PC 线路设计 5 3 FPC/PC 工艺材质要求 8 4 模组包装设计 9 1、FPC/PC 布局设计 (1 )普通定位孔直径 二Holder 定位柱尺寸+定位柱上公差+0.05mm 公差为 +/-0.05mm 。 如果把定位孔做成沉铜孔,则沉铜孔直径 二Holder 定位柱尺寸+定位柱上 公差 +0.05mm 公差为 +/-0.08mm 。 o y (2) 普通定位孔间距的公差为0.05mm 沉铜孔的间距公差为0.08mm (3) CO 单片PC 板上必须有DIEBON 标识,压焊标识,且整版上必须有 SM 标 识; 对于Socket 结构的整版PCB 无论是CS 还是CO 的都需要加防呆标识 || —么 M- 2—_

(4) PC 和FPC 勺贴片PAD!邦线PA 之间的走线距离要大于0.3mm,避免SMT 占片 的时候锡膏回流到邦线PA 上去。 (5) 邦线PA 功边缘距离芯片0.1mr 与0.35 mr 之间,邦线PA [外边缘距离 Holder 在0.1mn 以上。 (6) 电容距离芯片和Holder 内壁必须保证在0.1mn 以上。 电容要靠近芯片滤波PAD (7) 金手指连接的FP (需要把整个金手指开窗出来;对于双面金手指,顶层和 底层一定要错开开窗,错开的距离保证在 0.25mm 以上 」「 P J J rr rpLcrLC- Lm 、 u - 「「 「 h .一: Jn J- rTLTULTL L L -Lnrm- rTTKLTTL^ L L ,?」一」 rpk^TLTLr^ ▼ I —1亦「 J I —L^-d b JT -Lm- FtrrLrrL LM 「-lr-Lrnr-d o r^rLrLrrL^- 订厂 -p n ciJn q .. .-L L J 「 - o U_U —Li —Lfl^-u o p —p —p —o J 一 o pkrLTLTFL o X I 「J 「 + - ■ 「■ 1 .■ ; o

AMCap 摄像头测试软件使用说明

AMCap 摄像头测试软件使用说明 一、预览图像: 1、解压文件AMCap 全功能珍藏版.ini与AMCap 全功能珍藏版.exe,这两个文件一定要放在同一个文件夹目录下(一定要解压出来才能打开软件,否则打开会出现图像不能预览的错误)。 2、双击AMCap打开摄像头; 3、点击设备选择好视频设备(上)和麦克风设备(下)如下图红色框框所示: 4、点击“选项”选择“预览”打钩,如下图: 5、 点击视频捕捉接口,然后点击输出大小,选择1920*1080(根据需要调节分辨率,分辨率大小取决于录像文件大小),压缩格式改成MJPG,然后点击确定。 6、现在就可以旋转镜头来调清晰度了,调成广角来测试,看看四周有没有暗角。一定要多测试几次来确定有没有暗角。

二、录像: 1、点击文件设置好录像文件路径—设置好录像文件名称—弹出的录像大小直接按确定不需要去填数据: 2、点击“捕捉”选项选择好红框所示的“捕捉音频”打钩,然后点击“开始捕捉”就开始录像了,需要停止录像就点击“停止捕捉”录像完成后去上一步设置的文件路径里面查找您的录像文件,需要录另一个文件请在路径名称里面改一下文件名就可以录制第二个录像:

三、拍照: 1、选择“捕捉”选项里面的“拍照”选项,钩选“启用”钩钩,如下图: 2、然后点击文件夹设置好拍照存储路径,如下图:

3、点击“快照”或者按快捷键(Ctrl+L键)就可以拍照了(拍照文件请到设置好的拍照文件路径里面寻找,照片大小可以通过上面步骤调节分辨率大小来调节,分辨率越大照片越大,分辨率越小照片越小),拍照如下图操作: 注:此软件只能操作预览和简单录像拍照使用,录像格式为A VI, 拍照格式BMP、JPG和PNG格式,(录像拍照的文件大小与分辨率大小有直接关系,分辨率越大文件越大,分辨率越小文件越小,设置分辨率请参照一的第5项)如果需要专业格式的录像请您自行查找别的视频软件,我们的摄像头支持所有的视频软件。

摄像头模组设计规范

章节号内容页数 1 FPC/PCB布局设计 2 2 FPC/PCB线路设计 5 3 FPC/PCB工艺材质要求8 4 模组包装设计9 1、FPC/PCB布局设计 (1)普通定位孔直径=Holder定位柱尺寸+定位柱上公差+0.05mm,公差为+/-0.05mm。 如果把定位孔做成沉铜孔,则沉铜孔直径=Holder定位柱尺寸+定位柱上公差+0.05mm 公差为+/-0.08mm。 (2)普通定位孔间距的公差为0.05mm; 沉铜孔的间距公差为0.08mm。 (3)COB单片PCB板上必须有DIEBOND标识,压焊标识,且整版上必须有SMT标识; 对于Socket结构的整版PCB,无论是CSP还是COB的都需要加防呆标识。 (4)PCB和FPC的贴片PAD与邦线PAD之间的走线距离要大于0.3mm,避免SMT贴片的时候锡膏回流到邦线PAD上去。

OK:Failed: (5)邦线PAD内边缘距离芯片0.1mm与0.35 mm之间,邦线PAD外边缘距离Holder在0.1mm以上。 (6)电容距离芯片和Holder内壁必须保证在0.1mm以上。 电容要靠近芯片滤波PAD。 (7)金手指连接的FPC需要把整个金手指开窗出来;对于双面金手指,顶层和底层一定要错开开窗,错开的距离保证在0.25mm以上。 (8)FPC银箔接地的开窗形状为椭圆形,且双面开窗的位置一定要错开,不允许有重合部分,错开距离保证在0.5mm以上。 对于受控图纸中表明FPC有弯折要求的,在样品的制作要求中必须标示弯折的位置和角度,并在技术标准明确的体现出来,禁止在弯折处开窗,对满足“几”字形特殊弯折要求的,必须标示出来。

camera调试工具

camera调试工具: 一、ISO12233 Camera Resolution Chart ISO12233分辨率测试标板遵照ISO12233的标准“摄影-电子照相画面-衡量方法"。这个测试标板在1 X 大小的这个活动区域,测量20 cm 高度只有约0.1毫米的误差。他具有几乎大部分解析度卡所具有的特征。是数码相机与手机摄像头品质测试的必备工具。可以提供实际拍摄的垂直分辨率和水平分辨率等辅助测试,采取统一拍摄角度和拍摄环境,分辩率的计算可以使用了HYRes软件,分开垂直分辨率和水平分辨率两部分进行。 ISO12233测试卡有以下3种规格 一倍标准卡200 x 178mm 两倍标准卡400 x 711mm 四倍标准卡800 x 1422mm 相关图片[点击查看原始尺寸]:

二、ColorChecker 24色卡 ColorChecker标板有24个纯色块,从左到右再从上到下,分别标记为1-24。所以又叫24色卡。 用途:ColorChecker常用于色彩还原与白平衡测试 对于色彩与白平衡的测试,我们采用了标准色卡ColorChecker在不同的环境下使用相应的白平衡模式拍摄进行比较,一方面可以观察机型对各种色彩的还原情况,另一方面可以观察他们的白平衡准确度。 白平衡共有自动白平衡、日光白平衡、阴影白平衡、钨丝灯白平衡、荧光灯白平衡、手动白平衡等6种模式。

三、三,14524 Camera Contrast Chart 14524 Camera Contrast Chart 有12个独立不同程度的灰阶,灰度范围由0.10到2.30. 14524 OECF测试标板的测试信息,描述了Camera如何将Sensor感应的照度在图像中数字量化。他可以测试出最大对比度和动态范围,还有白平衡是否正常,不同灰接的信噪比,Camera的ISO速度如何。 相关图片[点击查看原始尺寸]: 四、灰阶卡 灰阶卡21阶,反射密度从0.05到3.05按照每阶0.1密度递增,每阶代表着1/3EV的曝光量,用来量化测试曝光、反射密度的工具, 相关图片[点击查看原始尺寸]:

摄像头模组设计规范

. 章节号容页数 2 1 布局设计FPC/PCB 5 线路设计2 FPC/PCB8 FPC/PCB 3 工艺材质要求模组包装设计 4 9 、1FPC/PCB布局设计(1)普通定位孔直径=Holder定位柱尺寸+定位柱上公差+0.05mm,公差为+/-0.05mm。 如果把定位孔做成沉铜孔,则沉铜孔直径=Holder定位柱尺寸+定位柱上公差+0.05mm 公差为+/-0.08mm。 (2)普通定位孔间距的公差为0.05mm; 沉铜孔的间距公差为0.08mm。 (3)COB单片PCB板上必须有DIEBOND标识,压焊标识,且整版上必须有SMT标识; 对于Socket结构的整版PCB,无论是CSP还是COB的都需要加防呆标识。 (4)PCB和FPC的贴片PAD与邦线PAD之间的走线距离要大于0.3mm,避免SMT贴片的时候锡膏回流到邦线PAD上去。 . .

Failed::OK (5)邦线PAD边缘距离芯片0.1mm与0.35 mm之间,邦线PAD外边缘距离Holder在0.1mm 以上。 (6)电容距离芯片和Holder壁必须保证在0.1mm以上。 电容要靠近芯片滤波PAD。 (7)金手指连接的FPC需要把整个金手指开窗出来;对于双面金手指,顶层和底层一定要错开开窗,错开的距离保证在0.25mm以上。 (8)FPC银箔接地的开窗形状为椭圆形,且双面开窗的位置一定要错开,不允许有重合部分,错开距离保证在0.5mm以上。 对于受控图纸中表明FPC有弯折要求的,在样品的制作要求中必须标示弯折的位置和角度,并在技术标准明确的体现出来,禁止在弯折处开窗,对满足“几”字形特殊弯折要求的,必须标示出来。

河南摄像头模组生产加工项目申报材料

河南摄像头模组生产加工项目 申报材料 规划设计/投资分析/产业运营

承诺书 申请人郑重承诺如下: “河南摄像头模组生产加工项目”已按国家法律和政策的要求办理相关手续,报告内容及附件资料准确、真实、有效,不存在虚假申请、分拆、重复申请获得其他财政资金支持的情况。如有弄虚作假、隐瞒真实情况的行为,将愿意承担相关法律法规的处罚以及由此导致的所有后果。 公司法人代表签字: xxx科技发展公司(盖章) xxx年xx月xx日

项目概要 摄像头产业一般涵盖镜头、图像传感器、音圈马达、模组封装等,其 中图像传感器以CMOS为主流,因此也称作CMOS摄像头模组(CMOSCameraModules,CCM)。从整个产业链来看,CMOS是盈利最多的细 分子行业,龙头毛利率在45-50%,而光学镜头盈利能力最强,龙头大立光 毛利率接近70%。模组(封测)端位于产业链中下游,进入门槛相对较低,国内企业多从事摄像头模组业务,毛利率也最低,约为10%。 CMOS摄像头模组(CMOSCameraModules,CCM)已经成为重要的传感技术,并且该市场竞争越来越激烈。据麦姆斯咨询报道,摄像头模组产业已 经发展到了一个新阶段,Yole预测2018年全球摄像头模组市场规模达到 271亿美元,未来五年将保持9.1%的复合年增长率(CAGR),预计2024年 将达到457亿美元。摄像头模组产业涵盖图像传感器、镜头、音圈电机、 照明器和其它摄像头组件。该产业的主要驱动因素为智能手机和汽车等产 品中的摄像头数量不断增加,因此CMOS摄像头模组市场仍具很强的吸引力。 该摄像头模组项目计划总投资5364.91万元,其中:固定资产投 资4042.11万元,占项目总投资的75.34%;流动资金1322.80万元, 占项目总投资的24.66%。 达产年营业收入10036.00万元,总成本费用7830.45万元,税金 及附加96.59万元,利润总额2205.55万元,利税总额2606.35万元,

摄像头的3种调试方法

摄像头的3种调试方法 一、机器视觉简介 机器视觉就是用机器代替人眼来对外部环境进行感知并做出测量和判断。通过成像器件(即图像摄取装置,分CMOS和CCD两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。在一些对系统实时动作要求比较高的系统中,人的反应速度和信息处理能力是无法满足要求的,而机器视觉易于实现信息集成,和计算机控制系统相结合,可以提高系统的自动化程度。 二、摄像头调试目的 在嵌入式系统中摄像头调试的目的是使摄像头的机械和电气参数在满足系统要求下能产生质量最高的图像数据。一个涉及硬件和软件的成像系统,成像的质量好坏往往受到来自外界干扰和自身限制的很多因素的影响,这些影响会产生噪声和成像不均匀。来自软件层面的因素往往是算法的问题,这个层面的问题可以通过理论分析的数学计算解决,来自硬件层面的因素则而要用仪器进行调试,通过实验测量分析才能解决,由于硬件处理系统底层,所以硬件的质量会直接影响软件的质量,从而影响最终成像质量。对摄像头进行调试就是要从硬件层面上尽量消除干扰。 三、摄像头调试方法 由于嵌入式系统是一个比较广的概念,所以本文以HCS12作为主控芯片的摄像头组小车调试为例对调试方法进行介绍。 (一)外部搭设电路连线CRT显示器 从模拟摄像头上引出电源、地、信号三根引线,对摄像头供电,再将视频信号线接到电视盒视频输入接口。电视盒的VGA-OUT接至CRT显示器,从而实现CRT对经数字化的摄像头视觉进行显示。 市场上诺基亚3310液晶价格低廉,成像基于二值点阵,显示模块为48*84个点列,对相关信息显示表现为对相应点写入数据使其呈现不同颜色。 1.显示字符在系统运行时以字符形式提示系统相关运行参数。每个字符占用点列8*6,需要6字节数据,完成字符显示只需在编程对指定位写入相应数据。由于该液晶模块本身不带有字库,所以在程序开始时要先定义ASCⅡ表字符的液晶显示点阵数据,即一个大小为N*6字节的二维数组。 2.显示图片模拟摄像头采集的视频信号经过MCU的A/D数字化后,信息存储在一个40*70的二维数组中,再将数组二值化,便能在48*84分辨率的液晶模块中显示,使开发者实时对摄像头机器视觉进行观测。 此种方法为硬件和软件相结合的显示方法,能实时跟踪显示摄像头相关信息,显示时不会打断系统运行流程。 (三)自写串口通讯上位机软件 利用MCU的SCI模块发送图片数据至PC机,上位机利用MSCOMM控件编程对通讯数据进行读取。读取数据后,便能利用windows程序强大的数据处理能力和图片显示能力对图片数据处理,如:根据数据对图片进行重绘,对数组滤波分析并显示滤波效果,将接收数组以文件形式导出为计算机仿真提供数据来源。 此种方法为完全软件显示法,只而要从MCU收到数据,便能在PC机上实现一系列处理,对检验图

摄像头测试

摄像头测试方法及应用 国际标准测试图卡: 要判定摄像头成像质量的好坏,我们需要对摄像头成像的质量进行测试并评价,而我们人眼的分辨是有限的。一张完美的图像所涉及的评价参数有很多,比如分辨率、清晰度、动态范围、对比度、颜色、灰阶等级等,因此需要用到多种国际标准测试图卡。固润光电所代理的Imatest和Applied Image公司能提供多种图像测试卡以及图像测试设备和相应的分析软件,能够满足多种测试需求,符合国际标准,为行业提供多种测试图卡。通过测试图卡和相应的图像测试软件来对摄像头成像质量来进行评价,从而判定工厂所生产的摄像头质量的好坏。 本文以QA-76数字影像分辨率测试卡来对摄像头的成像分辨率进行测试,探讨研究如何根据数字图像处理理论进行摄像头准确调焦,以获得较为清晰的图像,主要分为两个部分实现,第一部分首先选取合适的标准测试卡,采集图像并进行感兴趣区域的圆心定位。第二部分是对其图样进行像素采样、处理、比较特征值,以判定目前采集图片是否清晰,确定摄像头成像分辨率选取合适的数字图像清晰度评价函数,以评定不同清晰度下的图像相应特征值。 ISO12233分辨率图卡,该分辨率图卡中包含各种图样,使用时不一定直接使用该图卡,也可以裁剪出必需的部分,并经过重新拼接排列后使用。 图2-1ISO12233分辨率图表 ISO12233分辨率图卡使用分析: 1.暗室:不能反光、透光、关灯后照度低于1Lx,墙面用18度灰的灰布。如无特殊规定,为保证摄像设备拍摄测试图卡时能够输出足够的信号,拍摄时测试图卡表面照度范围应在700Lx~1200Lx之间,测试时饱和度和均匀度可根据实际调节,正常测试使用D65光源,光强度不足需使用相同光源补光。 2.在D65光源色温下,测试图卡上任何一点的照度与测试图卡中心照度差不大于10%;在其他色温下,测试图卡上任何一点的照度与测试图卡中心照度差不大于30%,光源应采取必要的遮光措施,防止光源直射镜头。测试图卡周围应是低照度,以减少炫光,测试时应尽量避免外界光线照射。测试图卡背景采用黑或吸光型中性灰。 3.测试中可使下列标准色温:D65光源色温6500K、泛光灯色温3400K。实际测试环境的色温标准偏差应不大于200K,色温从2700k-7500k可调换。

摄像头模组设计规范

摄像头模组设计规范 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

章节 号内容 页数 1 FPC/PCB布局设计2 2FPC/PCB线路设计5 3FPC/PCB工艺材质要求8 4模组包装设计9 1、FPC/PCB布局设计 (1)普通定位孔直径=Holder定位柱尺寸+定位柱上公差+0.05mm,公差为+/-0.05mm。 如果把定位孔做成沉铜孔,则沉铜孔直径=Holder定位柱尺寸+定位柱上公差+0.05mm 公差为+/-0.08mm。 (2)普通定位孔间距的公差为0.05mm; 沉铜孔的间距公差为0.08mm。 (3)COB单片PCB板上必须有DIEBOND标识,压焊标识,且整版上必须有SMT标识; 对于Socket结构的整版PCB,无论是CSP还是COB的都需要加防呆标识。 (4)PCB和FPC的贴片PAD与邦线PAD之间的走线距离要大于0.3mm,避免SMT贴片的时候锡膏回流到邦线PAD上去。 OK:Failed: (5)邦线PAD内边缘距离芯片0.1mm与0.35 mm之间,邦线PAD外边缘距离Holder在0.1mm以上。 (6)电容距离芯片和Holder内壁必须保证在0.1mm以上。 电容要靠近芯片滤波PAD。 (7)金手指连接的FPC需要把整个金手指开窗出来;对于双面金手指,顶层和底层一定要错开开窗,错开的距离保证在0.25mm以上。

(8)FPC银箔接地的开窗形状为椭圆形,且双面开窗的位置一定要错开,不允许有重合部分,错开距离保证在0.5mm以上。 对于受控图纸中表明FPC有弯折要求的,在样品的制作要求中必须标示弯折的位置和角度,并在技术标准明确的体现出来,禁止在弯折处开窗,对满足“几”字形特殊弯折要求 的,必须标示出来。 (9)FPC压焊PAD下面不允许有网络。 OKFailed 2、FPC/PCB线路设计 为了能够让摄像头模组能够正常地工作,并且能够有效地预防EMC,EMI等问题,可以采取磁珠,电感,共模线圈进行隔离;加电容进行滤波,并四处铺铜,采用屏蔽地线、屏蔽平面来切断电磁的传导和辐射途径。以下是模组线路设计时的要求和规范: (1)网络距离外框的边缘距离大于0.15mm,,即要大于外框公差+0.1mm。 (2)一般信号线推荐线宽0.1mm,最小线宽0.08mm;电源线和地线推荐线宽0.2mm,最小线宽0.15mm。 (3)电源线要经过电容滤波后进入芯片,其他需要电容滤波的网络,从连接器上引出来的线路要经过电容再连接到芯片,电容要靠近芯片滤波PAD。 (4)避免走环形线,且线路上不允许有直角出现。 (5)线路空白区域打过孔铺通,起屏蔽,散热作用,同时增加DGND网络之间连接性。 对于FPC,如果受控的项目图纸中有弯折要求,在FPC的弯折区域内,用地线代替铺铜,避免大范围的铺铜造成FPC弯折不良。 (6)AVDD和AGND布线在同层且相邻,减小差模信号之间的回路面积。 (7)AGND按照信号线来走,附近不要有PCLK、MCLK和I2C_SDA、I2C_SCL,且尽量不要有DATA线。 (8)MCLK要包地,走线距离尽量短,尽量避免过孔。 (9)PCLK不要和高速数据位走一起,尽可能包地,有DGND在旁。 (10)D0和PCLK靠近DGND。 (11)复位的RESET和STANDBY要远离MCLK,靠近DGND。在边缘附近用地屏蔽。 (12)SCSD不要和数据线走一块,尤其是低几位数据。 (13)不允许在Socket底面PAD上打过孔,如果无法避免,应该把孔打在PAD的边缘,远离连接点位置0.4mm以上,且必须要求用金属填满,保证整个接触PAD的表面都是导通的。

摄像头模组设计规范

1、FPC/PCB布局设计 (1)普通定位孔直径=Holder定位柱尺寸+定位柱上公差+0.05mm,公差为+/-0.05mm。 如果把定位孔做成沉铜孔,则沉铜孔直径=Holder定位柱尺寸+定位柱上公差+0.05mm 公差为+/-0.08mm。 (2)普通定位孔间距的公差为0.05mm; 沉铜孔的间距公差为0.08mm。 (3)COB单片PCB板上必须有DIEBOND标识,压焊标识,且整版上必须有SMT标识; 对于Socket结构的整版PCB,无论是CSP还是COB的都需要加防呆标识。

(4)PCB和FPC的贴片PAD与邦线PAD之间的走线距离要大于0.3mm,避免SMT贴片的时候锡膏回流到邦线PAD上去。 OK:Failed: (5)邦线PAD内边缘距离芯片0.1mm与0.35 mm之间,邦线PAD外边缘距离Holder在0.1mm以上。 (6)电容距离芯片和Holder内壁必须保证在0.1mm以上。 电容要靠近芯片滤波PAD。 (7)金手指连接的FPC需要把整个金手指开窗出来;对于双面金手指,顶层和底层一定要错开开窗,错开的距离保证在0.25mm以上。

(8)FPC银箔接地的开窗形状为椭圆形,且双面开窗的位置一定要错开,不允许有重合部分,错开距离保证在0.5mm以上。 对于受控图纸中表明FPC有弯折要求的,在样品的制作要求中必须标示弯折的位置和角度,并在技术标准明确的体现出来,禁止在弯折处开窗,对满足“几”字形特殊弯折要求的,必须标示出来。 (9)FPC压焊PAD下面不允许有网络。 OK Failed

2、FPC/PCB线路设计 为了能够让摄像头模组能够正常地工作,并且能够有效地预防EMC,EMI等问题,可以采取磁珠,电感,共模线圈进行隔离;加电容进行滤波,并四处铺铜,采用屏蔽地线、屏蔽平面来切断电磁的传导和辐射途径。以下是模组线路设计时的要求和规范: (1)网络距离外框的边缘距离大于0.15mm,,即要大于外框公差+0.1mm。 (2)一般信号线推荐线宽0.1mm,最小线宽0.08mm;电源线和地线推荐线宽0.2mm,最小线宽0.15mm。 (3)电源线要经过电容滤波后进入芯片,其他需要电容滤波的网络,从连接器上引出来的线路要经过电容再连接到芯片,电容要靠近芯片滤波PAD。 (4)避免走环形线,且线路上不允许有直角出现。 (5)线路空白区域打过孔铺通,起屏蔽,散热作用,同时增加DGND网络之间连接性。

CMCC摄像头测试标准

11.3 摄像头性能测试 摄像头分辨率测试 a)测试目的:判别手机主摄像头分辨率是否达到标称值。 b)关注元件:主、副摄像头 c)样机数量:1台。 d)设备要求:分辨率测试图卡:ISO12233,图像分析软件。 e)试验条件 测试环境:温度20°C~30°C, 湿度35~60%RH 样品状态:开机,摄像头设置于最大分辨率 f)试验方法 a.调节终端镜头与测试图卡(ISO resolution Chart for Electronics Still Cameras )之间的距离,使图卡成像清晰,并使水平方向的粗框与画面水平框平行,拍摄是让图卡的有效高度(粗框内侧的高度)正好沾满画面。一般图像格式水平像素与垂直像素比例为4:3,使所拍摄画面为黑线内区域即可。

b.截取中心水平分辨率和中心垂直分辨率双曲线光楔图像,如下图所示: c.用目视的方法从低向高观察光楔图像线数的变化,当线数发生变化时(5 →4,9→8),此时图像上对应的刻度数n即为视觉分辨率,单位为100LW/PH。 LW/PH为Line Width /Phase Height,表示充满整个画面高度所需的线的条数,用于描述镜头对所拍摄物体的细节刻画能力。 g)判断标准 测试结果经软件分析,单位为LW/PH。 针对不同有效像素的摄像头,其中心视场的水平,垂直分辨率应满足下

列要求: 标称30万像素以上中心不低于200 LW/PH 标称130万像素以上中心不低于400 LW/PH 标称200万像素以上中心不低于600 LW/PH 标称300万像素以上中心不低于1000 LW/PH 标称500万像素以上中心不低于1500 LW/PH 标称800万像素以上中心不低于2000 LW/PH 摄像头白平衡测试 a)测试目的:判别手机主摄像头在不同色温的光源条件下,是否能保证获得合 适的色彩再现。 b)关注元件:主、副摄像头 c)样机数量:1台。 d)设备要求:彩色图卡,图像分析软件。 e)试验条件 测试环境:温度20°C~30°C, 湿度35~60%RH 样品状态:开机,摄像头设置于最大分辨率 f)试验方法 a.在色温3400K和6500K照明条件下,对彩色图卡(GertagMacbeth color checker彩色图卡)进行拍摄。

微型摄像头模组选型

静脉显像系统的摄像头模组选型对比 1.手机摄像头模组的概况 摄像头的成像过程就是将光信号数字化的过程。光线首先通过镜头,到达感光元件-可能是CCD,或者是CMOS,两者的作用都是将光线转换为数字信号,然后数字信号被传送到一个专门的外理器(DSP),进行图像信号增强以及压缩优化后再传输到手机或者其它存储设备上,那么由此可以看到其中的每一个设备都对摄像头的整体性能有影响。手机相机模组主要由镜头(lens),传感器(sensor),后端图像处理芯片(Backend IC),软板(FPC)四个部分组成。决定一个摄像头好坏的最重要的因素关键部件就是:镜头(LENS)、图像传感器(SENSOR)和数字信号处理芯片(DSP)。相机手机的关键技术为:光学设计技术,非球面镜制作技术,光学镀膜技术等。 摄像头模组主要组成部分: 摄像头模组主要组成部分由:镜头(Lens),红外滤光片(IR Filter),图像传感器(Sensor IC)、数字信号处理(DSP)及软板(FPC),其中有些Sensor IC是集成了DSP,有些是没有集成DSP,没有集成DSP的module需要外部外挂DSP。如果所示为具体的结构示意图: 外部光线穿过Lens后,经过IR Filter滤波后照射到Sensor面上,Sensor将从Lens上传导过来的光线转换为电信号,再通过内部的A/D转换为数字信号。如果Sensor没有集成DSP,则通过DVP的方式传输到baseband,此时的数据格式是RAW RGB 2.摄像头模组的选型 根据有效的资料查找,摄像头模组的主要研发和生产厂家是日本、韩国、台湾以及中国大陆的厂家和公司。由于国外的产品较难购买并且价格较高,首先考虑国内的摄像头模组公司。大部分大陆厂家按照网上联系方式联系不到,也无邮箱可以联系,联系到的厂家和公司几乎都是主要和大的手机厂商合作,他们都是批量生产,大量供应,很难申请到免费样品,必须要进行购买, 主要联系到的厂家有深圳金乾象科技、沈阳敏像科技、深圳三赢兴电子和东莞信泰光学等。联系了国内以及台湾在内的十几家主要摄像头模组生产厂家,很多不符合我们的要求其中有的是联系不到,有的是不提供样品不单卖,还有事不符合我们的使用情况,模组不能

LVDS接口与MIPI接口

LVDS接口与MIPI接口 MIPI (Mobile Industry Processor Interface) 是2003年由ARM, Nokia, ST ,TI等公司成立的一个联盟,目的是把手机内部的接口如摄像头、显示屏接 口、射频/基带接口等标准化,从而减少手机设计的复杂程度和增加设计灵活性。MIPI联盟下面有不同的WorkGroup,分别定义了一系列的手机内部接口标准,比如摄像头接口CSI、显示接口DSI、射频接口DigRF、麦克风 /喇叭接口SLIMbus 等。统一接口标准的好处是手机厂商根据需要可以从市面上灵活选择不同的芯片和模组,更改设计和功能时更加快捷方便。下图是按照 MIPI的规划下一代智能手机的内部架构。 MIPI是一个比较新的标准,其规范也在不断修改和改进,目前比较成熟的接口应用有DSI(显示接口)和CSI(摄像头接口)。CSI/DSI分别是指其承载的是针对Camera或Display应用,都有复杂的协议结构。以DSI为例,其协议层结构如下:

CSI/DSI的物理层(Phy Layer)由专门的WorkGroup负责制定,其目前的标准是D-PHY。D-PHY采用1对源同步的差分时钟和1,4对差分数据线来进行数据传输。数据传输采用DDR方式,即在时钟的上下边沿都有数据传输。 D- PHY的物理层支持HS(High Speed)和LP(Low Power)两种工作模式。HS模式下采用低压差分信号,功耗较大,但是可以传输很高的数据速率(数据速率为80M,1Gbps); LP模式下采用单端信号,数据速率很低(<10Mbps),但是相应的功耗也很低。两种模式的结合保

摄像头模组设计规范修订稿

摄像头模组设计规范 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

章节号内容 页数 1 FPC/PCB布局设计 2 2 FPC/PCB线路设计 5 3 FPC/PCB工艺材质要求 8 4 模组包装设计 9 1、FPC/PCB布局设计 (1)普通定位孔直径=Holder定位柱尺寸+定位柱上公差+0.05mm,公差为+/-0.05mm。 如果把定位孔做成沉铜孔,则沉铜孔直径=Holder定位柱尺寸+定位柱上公差+0.05mm 公差为+/-0.08mm。 (2)普通定位孔间距的公差为0.05mm; 沉铜孔的间距公差为0.08mm。 (3)COB单片PCB板上必须有DIEBOND标识,压焊标识,且整版上必须有SMT标识; 对于Socket结构的整版PCB,无论是CSP还是COB的都需要加防呆标识。

(4)PCB和FPC的贴片PAD与邦线PAD之间的走线距离要大于0.3mm,避免SMT贴片的时候锡膏回流到邦线PAD上去。 OK: Failed: (5)邦线PAD内边缘距离芯片0.1mm与0.35 mm之间,邦线PAD外边缘距离Holder在0.1mm以上。 (6)电容距离芯片和Holder内壁必须保证在0.1mm以上。 电容要靠近芯片滤波PAD。 (7)金手指连接的FPC需要把整个金手指开窗出来;对于双面金手指,顶层和底层一定要错开开窗,错开的距离保证在0.25mm以上。

(8)FPC银箔接地的开窗形状为椭圆形,且双面开窗的位置一定要错开,不允许有重合部分,错开距离保证在0.5mm以上。 对于受控图纸中表明FPC有弯折要求的,在样品的制作要求中必须标示弯折的位置和角度,并在技术标准明确的体现出来,禁止在弯折处开窗,对满足“几”字形特殊弯折要求的,必须标示出来。 (9)FPC压焊PAD下面不允许有网络。 OK Failed

Camera客观标准测试

Camera客观标准测试 Camera图像效果相关测试项目 解析度Resolution 色彩偏差Color Error/饱和度Saturation 白平衡AWB 信噪比SNR Shading测试(Lens Shading/Color Shading) 灰阶Gray Scale/动态范围Dynamic Range 曝光偏差Exposure Error Gamma Density Range 畸变TV-Distortion 色散Chromatic Aberration 视场角FOV 完成以上测试项目需要的测试设备及软件: 硬件设备: 多光源测试灯箱(可提供D65,TL84,CWF,A,H光等多种光源),色温照度测试计,均匀光源(DNP灯箱,亮度可调),各种测试Chart(包括24色色卡,ISO12233 Chart,21阶灰卡,动态范围测试Chart,18%中性灰卡,畸变测试chart,色散测试chart等),白板(Diffuser); 一、测试软件 Imatest,Photoshop 二、注意事项 1、拍摄过程中尽量等摄像头的亮度和颜色稳定后再进行拍照,尤其是切换光源后; 2、建议每个模块项的照片都拍两张,便于确认问题; 3、照片尽量拍正,因为照片拍得好坏对测试结果影响很大.

Imatest界面简介 测解析力 直接打开前一 张MTF测试图 色彩还原、饱 和度、白平衡、 信噪比、曝光、 Gamma 灰阶、动态范围灰阶、动 态范围Shading测试 畸变

一、解析度(Resolution) 1.1 测试目的: 测试手机拍照系统的清晰度,包含中心解析度和边角解析度; 1.2 测试设备: 12233 Chart ,色温照度计; 1.3 测试环境: 实验室光线照度为>200Lux。原则上是保持chart表面照度均匀的前提下,尽量让测试环境达到最亮,我们实际调试时为了提高效率,尽量模拟客户的测试环境。 1.4 拍照步骤: (1)将手机Camera调至sensor实际分辨率,其余拍照菜单保持默认选项(如EV、Flash等);(2)将12233 Chart垂直固定在墙上; 注:30像素选用1X的Chart,130万和200万像素的选用2 X的Chart,500万像素的选用4 X的Chart,1200万像素以上的项目选用增强型4X Chart. (3)移动手机的位置,保证手机摄像头的光轴与ISO12233 Chart平面垂直,测MTF值时使ISO12233 Chart中的4:3区域正好落在手机的预览画面中,如下图1红线框所示: 图1 (4)固定手机,待图像稳定后拍照; (5)测线对时,中心的解析度测试可用上述照片,角落解析度测试需另外拍两张照片。拍照步骤同上,不同的是调节手机预览ISO12233 Chart的区域,具体拍照区域见图2,图3的红色线框区域:

可视对讲功能及参数

总则 1.在凡有“★”标识的内容条款被视为重要的响应要求、技术指标要求和性能要求。投标人必须对此作出回答并完全满足这些要求不可以出现任何负偏离,如果出现负偏离则将被视为无效投标。2.★采用的可视对讲产品的厂家是安防行业标准、国家标准、国际标准起草单位;核可视对讲产品具有省级或以上公安部门颁发的具有有效期内的安全技术防范产品生产登记批准书 联网可视对讲系统简介 该系统由主要由联网可视对讲部分(管理主机系列、单元门口主机系列、家庭智能终端系列、中间传输产品等)和物业智能化部分(软件)组成。本系统联网设备用一条五类双绞线解决全部的通讯信号, 系统联网质量好, 音视频还原度高,声音保密性强,抗干扰强,传输距离远。 系统单元部分采用总线传输方式,楼层主干线采用阻水型双绞网络线,入户采用双绞网络线;总体架构,一根网线,贯穿所有,联网布线简洁。 一、系统功能 ●呼叫:单元数码主机可呼叫室内分机; ●对讲:单元数码主机可与室内分机相互对讲; ●★开锁:室内分机可开启单元数码主机所控制的电控锁; 用户密码开锁; 感应卡开锁。 ●可视:室内分机可显示可视单元数码主机的图像; ●门禁联网:数码主机具有联网控制功能。

●★网络组网:系统联网采用485协议通信,对讲数据联网与 门禁数据联网独立联接,互不干扰,传输距离远,图像、 语音失真小。 ●★单元系统组网采用调制、解调结构,不同类型的分机可以 经过楼层设备互联组网。使单元系统组合灵活,便于扩充和 拓展,能满足用户的各种要求。 ●系统配置设备少,配置方便灵活。 ●系统容量大,采用8位编码技术,4位栋号,4位房号,能 适应各大型小区的编码。 ●对讲声音清晰、干扰小:音频、视频采用点对点传输,传输 距离远,干扰小。 ●安保防盗:主机全部具有防拆报警功能。可根据菜单操作设 置,安全方便。 ●全金属操作部件:一体化的冲压铝合金外壳既美观大方又坚 固耐用,按●键具有防水防腐功能。背光的数字键盘、理性的设计使操作更方便。 ●★密码功能:系统具有密码开锁和密码管理功能,开锁密码为 一组1-6位数密码,共120组开锁密码。 ●通话保密和系统自动隔离:户与户、栋与栋之间互不干扰。 ●★布线、施工调试简单,主干线采用一条网线,入户采用一条网线联接。 ●★安装、维护方便,设备采用标准RJ45接口连接,支持热插

无人机设计手册及主要技术

无人机设计手册及主要技术 内容简介 独家《无人机设计手册》分上、下两册共十二章。 上册包括无人机系统总体设计,气动、强度、结构设计,动力装置,发射与回收系统,飞行控制与管理系统。 下册包括机载电气系统,指挥控制与任务规划,测控与信息传输,有人机改装无人机,综合保障设计,可靠性、维修性、安全性和环境适应性以及无人机飞行试验等。有关无人机任务设备、卫星中继通信的设计以及正在发展的无人机技术等内容,有待手册再版时编入,使无人机设计手册不断成熟和丰富。 适用人群 本手册是国内第一部较全面系统阐述无人机设计技术的工具书,不仅可作为无人机的设计参考,也可以作为院校无人机教学、无人机行业的工程技术人员和管理人员的参考书,并可供无人机部队试验人员使用。希望本手册的出版能对我国无人机研制工作的技术支持有所裨益。 作者简介 祝小平,现任西北工业大学无人机所总工程师,主要从事无人机总体设计、飞行控制与制导系统设计等研究工作。主持了工程型号、国防预研等国家重点项目多项,获国家和部级科学技术奖9项,其中国家科技进步一等奖1项,国防科技进步一等奖4项,获技术发明专利10项,荣立“国防科技工业武器装备型号研制”个人一等功,发表论着150多篇。先后入选国家级“新世

纪百千万人才工程”、国防科技工业“511人才工程”和教育部“新世纪优秀人才支持计划”,获得“ 国防科技工业百名优秀博士、硕士”、“国防科技工业有突出贡献的中青年专家”、“陕西省有突出贡献专家”和“科学中国人(2009)年度人物”等荣誉称号。? 无人机相关GJB标准-融融网 gjb 8265-2014 无人机机载电子测量设备通用规范 gjb 4108-2000 军用小型无人机系统部队试验规程 gjb 5190-2004 无人机载有源雷达假目标通用规范 gjb 7201-2011 舰载无人机雷达对抗载荷自动测试设备通用规范 gjb 5433-2005 无人机系统通用要求 gjb 2347-1995 无人机通用规范 gjb 6724-2009 通信干扰无人机通用规范 gjb 6703-2009 无人机测控系统通用要求 gjb 2018-1994 无人机发射系统通用要求 ? 无人机主要技术 一、动力技术 续航能力是目前制约无人机发展的重大障碍,业内人士也普遍认为消费级多旋翼续航时间基本维持在20min左右,很是鸡肋。逼得用户外出飞行不得不携带多块电池备用,造成使用操作的诸多不便,为此有诸多企业在2016年里做出了新的尝试。

手机摄像头模组生产工艺的SMT流程及SMT应用分析

手机摄像头模组生产工艺的SMT流程及SMT应用分析 摘要 随着通信技术的不断扩延,手机已成为人们生活、工作、学习、娱乐不可或缺的工具。而手机摄像头模组是手机中非常重要的组件之一,其品质的好坏直接影响手机整体品质的高低。因此在手机摄像头模组生产的过程中每一步都是要严格把关的,不能有丝毫的懈怠。在手机摄像头模组中,FPC软电路板是决定手机照相生成图片的关键组件之一,因此它的生产工艺及质量好坏显得尤为重要。 基于此,首先简单介绍了手机摄像头模组原理以及SMT技术在手机摄像头模组生产工艺中的应用,着重阐述了手机摄像头模组FPC软电路板的改良设计和SMT生产工艺流程及产品质量分析。根据手机摄像头模组FPC软电路板的具体要求,合理进行SMT技术指标优化,分析研究了手机摄像头模组再流焊SMT焊接温度分布曲线。针对FPC软电路板产品设置了AIO (automatic optical inspection)检测及ICT在线测试方法。 关键字:手机摄像头模组 SMT AIO检测 ICT在线测试

Mobile phone camera module production technology of SMT processes and SMT application ABSTRACT Summary as communication technologies continues expansion, mobile phone has become the people's life, work, learn, play an indispensable tool. Mobile phone camera module is one of the very important components in the mobile phone, its quality directly affect the overall level of quality phones. In the mobile phone camera module production at every step in the process is to strictly, there can be no slack. Mobile phone camera module in the FPC flexible circuit board is to determine the key components of the camera phone picture, therefore its production process and the quality is particularly important. Based on this, the first simply introduced the mobile phone camera module principle and SMT technology and its application in mobile phone camera module production, focusing on mobile phone camera module is described FPC flexible circuit board design and analysis of SMT production process and product quality. According to mobile phone camera module FPC flexible circuit board requirements, reasonable SMT technical specifications, analysis of mobile phone camera module for reflow SMT soldering temperature distribution flexible circuit board set AIO products (automatic optical inspection) test online test methods and ICT. Keyword: mobile phone camera module;SMT;AIO ICT;on-line test

相关主题
文本预览
相关文档 最新文档