当前位置:文档之家› SiC陶瓷粉体喷雾造粒过程中影响粉体性能的工艺因素

SiC陶瓷粉体喷雾造粒过程中影响粉体性能的工艺因素

SiC陶瓷粉体喷雾造粒过程中影响粉体性能的工艺因素
SiC陶瓷粉体喷雾造粒过程中影响粉体性能的工艺因素

SiC陶瓷粉体喷雾造粒过程中影响粉体性能的

工艺因素

作者:黄政仁, 林庆玲, 谭寿洪, 江东亮

作者单位:中国科学院上海硅酸盐研究所

本文读者也读过(10条)

1.纪斌.马素花.沈晓冬.崔湛.赵健一种无碱无氯型水泥质量改进剂的试验研究[会议论文]-2010

2.严捍东粉煤灰的粉体特性及其对减水效应的影响[期刊论文]-环境工程2002,20(2)

3.蔡安兰关于水泥助磨剂助磨效果表征的探讨[会议论文]-2006

4.庞薇.汤慧萍.李增峰.张晗亮Al<,2>O<,3>陶瓷注射成形工艺的研究[会议论文]-1998

5.程旭.祁海鹰.由长福.周芳.徐旭常沙丘表面的沙粒流动性分析--以北京北郊沙地为例[期刊论文]-干旱区资源与环境2003,17(5)

6.张本清.戴端木氧化铝陶瓷造粒颗粒不良形状的成因及防止[会议论文]-2000

7.黄政仁.江东亮.谭寿洪碳化硅陶瓷粉体的喷雾造粒[会议论文]-1999

8.丁秋平气体悬浮造粒装置及初步实验研究[学位论文]2005

9.徐招弟.周新木.李永绣.谭宏宇水热法制备超细粉体及在抛光粉上应用前景[期刊论文]-吉首大学学报(自然科学版)2004,25(2)

10.宋丽丽.范丙义.蒋士忠.张大禄蒲公英超微细粉体特性探讨[期刊论文]-中国中药杂志2002,27(1)

本文链接:https://www.doczj.com/doc/6416346231.html,/Conference_285483.aspx

关于陶瓷粉体的制备技术浅析

关于陶瓷粉体的制备技术浅析 姓名:班级:11无非(1)班学号: 摘要通过对这学期粉体课程的学习,拙写了一些自己感兴趣的方面,这篇论文综述了精细陶瓷材料之主要原料-陶瓷粉体的各种制备方法。对最有发展前途的热化学气相反应法、激光诱导化学气相合成法、等离子气相合成法、沉淀法、水热法及溶胶-凝胶法的原理和工艺作了较为详细的介绍。 关键词:陶瓷粉体制备技术原理工艺 1 前言 与金属、塑料相比,精细陶瓷材料具有优异的耐高温、抗腐蚀、耐磨损性及良好的电气性能, 广泛地应用于尖端科技领域, 如空间技术、海洋技术、生物工程领域等。而精细陶瓷制作工艺中的一个基本特点就是以粉体作原料经成型和烧成, 形成多晶烧结体。陶瓷粉体的质量直接影响最终成品的质量, 因此, 发展精细陶瓷的首要问题是要符合要求的原料--粉体。 现代高科技陶瓷材料对粉体的基本要求是高纯、超细、组分均匀、团聚程度 μ1的微粉。近年来,随着小。这里所指的超细,通常是指颗粒的平均直径小于m 科学技术的迅猛发展,一项综合科学技术-- 纳米科学技术迅速崛起,已成为目前世界高新技术领域的一个重要制高点。伴随纳米科学技术的发展, 产生了纳米陶瓷, 纳米陶瓷的研究是当前先进陶瓷发展的三大课题之一, 它的问世将使材料的强度、韧性和超塑性大大提高。长期以来,人们追求的陶瓷增韧性和强度问题可望在纳米陶瓷中得到解决。为了获得纳米陶瓷, 首先必须制备出纳米陶瓷粉体。因此, 对陶瓷粉体的研究将是陶瓷新材料研究中的一个极其重要的范畴。 2 陶瓷粉体的制备技术 目前,世界上有多种制造陶瓷粉体的方法]1[, 大致可分为两类: 粉碎法和合 μ1以下的微粒,且易成法。粉碎法主要采用各种机械粉碎方法, 此法不易获得m 引入杂质。合成法是在原子、分子水平上通过反应、成核、成长、收集和处理来获得的, 因此可得到纯度高、颗粒微细、均匀的粉体。此法应用较广泛, 它又可分为气相合成法、液相合成法和固相合成法。 2. 1 气相合成法 此法可分为蒸发凝聚法( PVD) 及气相反应法( CVD) 。前者是将原料加热至

防弹陶瓷碳化硼的介绍

防弹陶瓷碳化硼的介绍 近四五十年来,随着科学技术的发展,原子能、火箭、燃气轮机等技术领域对材料提出了更高的要求,迫切需要比耐热合金更能承受高温、比普通陶瓷更能抵御化学腐蚀的材料。而某些陶瓷因为能满足这些要求,因此,这类陶瓷得到了迅速的发展。这些新发展起来的陶瓷,无论从原料、工艺或性能上均与传统陶瓷有很大的差异,被称为特种陶瓷。由于特种陶瓷具有许多独特的性能,潜力很大。而且制作特种陶瓷的主要原料在地球上储量丰富,价格便宜,容易得到。近20年来,各主要工业国家都十分注重特种陶瓷的开发和研究,形成世界性的“陶瓷热”,并取得了很大的进展。所以,特种陶瓷被誉为“万能陶瓷”,是21世纪最有发展前景的重要新材料之一。 碳化硼就是一种有着许多优良性能的重要特种陶瓷。碳化硼最早是在1858年被发现的,然后英国的Joly于1883年、法国的Moissan于1894年分别制备和认定了B3C、B6C。化学计量分子式为B4C的化合物直到1934年才被认知。随后,俄国学者提出了许多不同的碳-硼化合物分子式,但这些分子式未能得到确认。事实上,由B-C相图可以知道,碳-硼化合物有一个从B4.0C到B10.5C的很宽的均相区,在这个均相区内的物质习惯上通称为碳化硼,从20世纪50年代起,人们对碳化硼,尤其是对其结构、性能进行了大量的研究,取得了许多研究成果,推动了碳化硼制备和应用技术的长足发展。由于碳化硼具有其它材料不可比拟的优异性能,人们对碳化硼陶瓷的研究深度与力度不断加大,除高纯度、超细碳化硼粉体合成新方法不断涌现外,人们更多地致力于开展先进实用的成型工艺及烧结工艺技术研究,以使碳化硼制品能够在某些高技术领域实用化并进一步工业化生产。

特种陶瓷制备工艺..

特种陶瓷材料的制备工艺 10材料1班 王俊红,学号:1000501134 摘 要:介绍粉末陶瓷原料的制备技术、特种陶瓷成形工艺、烧结方法。 目前,特种陶瓷中的粉末冶金陶瓷工艺已取得了很大进展,但仍有一些急需解决的问题。 当前阻碍陶瓷材料进一步发展的关键之一是成形技术尚未完全突破。 压力成形不能满足形状复杂性和密度均匀性的要求。 多种胶体原位成形工艺,固体无模成形工艺以及气相成形工艺有望促使陶瓷成形工艺获得关键性突破。 关键词:特种陶瓷;成形;烧结;陶瓷材料 前言:陶瓷分为普通陶瓷和特种陶瓷两大类, 特种陶瓷是以人工化合物为原料(如氧化物、氮化物、碳化物、硼化物及氟化物等)制成的陶瓷。 它主要用于高温环境、机械、电子、宇航、医学工程等方面,成为近代尖端科学技术的重要组成部分。 特种陶瓷作为一种重要的结构材料,具有高强度、高硬度、耐高温、耐腐蚀等优点,无论在传统工业领域,还是在新兴的高技术领域都有着广泛的应用。 因此研究特种陶瓷制备技术至关重要。 正文:特种陶瓷的生产步骤大致可以分为三步:第一步是陶瓷粉体的制备、第二步是成形,第三步是烧结。 特种陶瓷制备工艺流程图 一、 陶瓷粉体的制备 粉料的制备工艺(是机械研磨方法,还是化学方法)、粉料的性质(粒度大小、形态、尺寸分布、相结构)和成形工艺对烧结时微观结构的形成和发展有着巨大的影响,即粉末制备 坯料制备 成型 干燥 烧结 后处理 热压或热等静压烧结 成品

陶瓷的最终微观组织结构不仅与烧结工艺有关,而且还受粉料性质的影响。由于陶瓷的材料零件制造工艺一体化的特点,使得显微组织结构的优劣不单单影响材料本身的性能,而且还直接影响着制品的性能。陶瓷材料本身具有硬、脆、难变形等特点。因此,陶瓷材料的制备工艺显得更加重要。由于陶瓷材料是采用粉末烧结的方法制造的,而烧结过程主要是沿粉料表面或晶界的固相扩散物质的迁移过程。因此界面和表面的大小起着至关重要的作用。就是说,粉末的粒径是描述粉末品质的最重要的参数。因为粉末粒径越小,表面积越大,单位质量粉末的表面积(比表面积)越大,烧结时进行固相扩散物质迁移的界面就越多,即越容易致密化。制备现代陶瓷材料所用粉末都是亚微米(<lμm)级超细粉末,且现在已发展到纳米级超细粉。粉末颗粒形状、尺寸分布及相结构对陶瓷的性能也有着显著使组分之间发生固相反应,得到所需的物相。同时,机械球磨混合无法使组分分的影响。粉末制备方法很多,但大体上可以归结为机械研磨法和化学法两个方面。 传统陶瓷粉料的合成方法是固相反应加机械粉碎(球磨)。其过程一般为:将所需要的组分或它们的先驱物用机械球磨方法(干磨、湿磨)进行粉碎并混合。然后在一定的温度下煅烧。由于达不到微观均匀,而且粉末的细度有限(通常很难小于 l μm 而达到亚微米级),因此人们普遍采用化学法得到各种粉末原料。根据起始组分的形态和反应的不同,化学法可分为以下三种类型: 1.固相法: 化合反应法:化合反应一般具有以下的反应结构式: A(s)+B(s)→C(s)+D(g) 两种或两种以上的固态粉末,经混合后在一定的热力学条件和气氛下反应而成为复合物粉末,有时也伴随一些气体逸出。 钛酸钡粉末的合成就是典型的固相化合反应。等摩尔比的钡盐BaCO3和二氧化钛混合物粉末在一定条件下发生如下反应: BaCO3+TiO2→BaTiO3+CO2↑ 该固相化学反应在空气中加热进行。生成用于PTC制作的钛酸钡盐,放出二氧化碳。但是,该固相化合反应的温度控制必须得当,否则得不到理想的、粉末状钛酸钡。 热分解反应法:

碳化硼

碳化硼 科技名词定义 中文名称:碳化硼 英文名称:boron carbide 定义:以碳化硼为主体的磨料。 应用学科: 机械工程(一级学科);磨料磨具(二级学科);磨料(三级学科) 百科名片 碳化硼(boron carbide ),又名一碳化四硼,分子式为B4C,通常为灰黑色粉末。俗称人造金刚石,是一种有很高硬度的硼化物。与酸、碱溶液不起反应,容易制造而且价格相对便宜。广泛应用于硬质材料的磨削、研磨、钻孔等。 目录 1简介管制信息 1名称 1化学式 1相对分子质量 1性状 1储存 1用途 1质检信息质检项目指标值 理化常数 物理化学性质 制备 1应用控制核裂变 1研磨材料 1涂层涂料 1喷嘴 1其他 包装及储存 简介 管制信息 本品不受管制

名称 中文名称:碳化硼英文别名:Boroncarbide,Tetraboroncarbide 化学式 B4C 相对分子质量 55.26 性状 坚硬黑色有光泽晶体。硬度比工业金刚石低,但比碳化硅高。与大多数陶器相比,易碎性较低。具有大的热能中子俘获截面。抗化学作用强。不受热氟化氢和硝酸的侵蚀。溶于熔化的碱中,不溶于水和酸。相对密度(d204)2.508~2.512。熔点2350℃。沸点3500℃。 储存 密封保存。 用途 防化学品陶器、耐磨工具制造。 质检信息质检项目指标值 质检项目项目指标值 含量(B4C) ≥90.0% 游离炭及三氧化二硼和其它杂质总量≤10.0% 理化常数 名称;碳化硼 IUPAC英文名Boron carbide 别名B4-C、B4C、黑钻石、一碳化四硼 CAS号12069-32-8 化学式B4C 摩尔质量55.255 g mol 外观黑色粉状 密度 2.52 g/cm (固) 熔点2350 °C (2623.15 K)

第20章瓷粉体原料制备工艺

第20章陶瓷粉体原料制备工艺 §20.1 粉体制备工艺 传统的粉体制备工艺就是机械破碎法,生产量大,成本低,但杂质混入不可避免。 随着先进陶瓷的发展,各种反应合成法得以应用,优点是纯度高、粒度小、成分均匀,但成本高。 20.1.1 传统粉体制备工艺 以机械力使原材料变细的方法在陶瓷工业中应用极为广泛。陶瓷原料进行破碎有利于提高成型坯体质量,提高致密程度并有利于烧结过程中各种物理化学反应的顺利进行,降低烧成温度。 一、颚式破碎机 颚式破碎机是陶瓷工业化生产所经常采用的一种粗碎设备,主要用于块状料的前级处理。设备结构简单,操作方便,产量高。但颚式破碎机的粉碎比不大(约4),进料块度一般很大,因此出料粒度一般都较粗,而且粒度的调节范围也不大。 二、轧辊破碎机 轧辊破碎机的优点在于粉碎效率高,粉碎比大(>60),粒度较细(通常可达到44 m)。但当细磨硬质原料时,由于轧辊转速高,磨损大,使得粉料中混入较多的铁,影响原料纯度,要求后续去铁。同时由于设备的特点,其粉料粒度分布比较窄,只宜用于处理有粒度分布要求的原料。 三、轮碾机 轮碾机是陶瓷工业化生产所常采用的一种破碎设备,也可用于混合物料。在轮碾机中,原料在碾盘与碾轮之间的相对滑动及碾轮的重力作用下被研磨、压碎。碾轮越重、尺寸越大,粉碎力越强。为了防止铁污染,经常采用石质碾轮和碾盘。轮碾机的粉碎比大(约10),轮碾机处理的原料有一定的颗粒组成,要求的粒度越细,生产能力越低。轮碾机也可采用湿轮碾的方法。 四、球磨机 球磨机是工业生产普遍使用的细碎设备,也可用于混料。为了保证原材料的纯度,经常采用陶瓷作为衬里,也可采用高分子聚合物材料作为衬里,并以各种陶瓷球作为研磨球。 湿球磨所采用的介质对原料表面的裂缝有劈裂作用,间歇式湿球磨的粉碎效率比干球磨高,湿球磨所得到的粉料粒度可达几个微米。 球磨机转速对球磨机效率的影响。球磨机转速直接影响磨球在磨筒内的运动状态,转速过快,磨球附看在磨筒内壁,失去粉碎作用;转速太慢,低于临界转速太多,磨球在磨筒内上升不高就落下来,粉碎作用很小;当转速适当时,磨球紧贴在筒壁上,经过—段距离,磨球离开筒壁下落,给粉料以最大的冲击与研磨作用,具有最高的粉碎效率。球磨机的临界转速与球磨筒直径有关,直径越大,临界转速越小。它们之间的关系可用下列关系表示:D>1.25m,N=35/D1/2,D<1.25m,N=40/D1/2,其中N为接近临界转速的工作转速(r/min),D 为球磨筒有效内径(m)。 磨球对球磨机效率的影响。球磨时加入磨球越多、破碎效率越高,但过多的磨球将占据有效空间,导致整体效率降低。磨球的大小以及级配与球磨筒直径有关,可用公式:D(磨筒直径)/24>d(磨球最大直径)>90d0(原料粒度)来计算。磨球的比表面积越大,研磨效能越高,但也不能太小,必须兼顾磨球对原料的冲击作用。此外磨球的密度越大球磨效果越好。 水与电解质的加入量对球磨机效率的影响。湿磨时水的加入对球磨效率也有影响,根据经验,当料/水=1/(1.16~1.2)时球磨效率最高;为了提高效率,还可加入电解质使原料颗粒表

2019年最新MLCC陶瓷粉体材料行业分析报告

MLCC陶瓷粉体材料行业 分析报告

目录 一、行业属性 (5) 二、行业管理体制、产业政策和主要法律法规 (7) 1、行业管理体制、行业主管部门及自律性组织 (7) 2、产业政策和主要法律法规 (8) 三、行业与上下游行业的关系 (10) 四、下游MLCC 行业概况 (11) 1、MLCC 简介 (11) (1)电介质陶瓷粉料等材料技术 (13) (2)介质薄层化技术 (13) (3)陶瓷粉料和金属电极共烧技术 (14) 2、MLCC 行业市场发展状况 (14) (1)全球MLCC 行业发展状况 (14) (2)我国MLCC 行业发展状况 (15) 3、MLCC 行业未来发展前景 (16) (1)电子消费品的更新换代及新产品的不断涌现将持续提高市场对MLCC 的需 求 (17) (2)MLCC 对其他类型电容器的替代作用将日趋明显 (19) (3)中国已成为全球电子整机的生产基地,作为电子整机使用的主要元件之一, 国内的MLCC 行业迎来了良好的发展契机 (21) (4)国内经济的发展及人民生活水平的提高所带来的电子消费品普及化过程,将 带动国内对MLCC 的巨大需求 (22) 4、MLCC 行业主要企业情况 (23) (1)全球主要MLCC 厂家 (24) (2)国内主要MLCC 厂家 (31) 5、MLCC 行业未来发展趋势 (34) (1)小型化、微型化 (34) (2)大容量化 (35)

五、MLCC 电子陶瓷材料行业概况 (37) 1、MLCC 电子陶瓷材料内涵 (38) 2、钛酸钡基础粉及水热法 (39) (1)钛酸钡基础粉 (39) (2)钛酸钡的制备方法 (40) (3)水热法 (43) 3、改性添加剂 (44) 4、MLCC 配方粉 (45) 5、MLCC 电子陶瓷材料行业市场发展及需求概况 (46) 6、MLCC 电子陶瓷材料行业的竞争状况 (50) (1)日本堺化学(Sakai) (52) (2)美国Ferro 公司 (52) (3)日本化学(NCI) (53) (4)日本富士钛(Fuji Titanium) (53) (5)日本共立(KCM,Kyoritsu) (54) (6)日本东邦(Toho) (54) (7)三星精密化学株式会社 (55) (8)户田工业株式会社 (55) (9)台湾信昌电子陶瓷股份有限公司 (56) (10)我国国内MLCC 电子陶瓷材料行业的市场竞争情况 (57) 7、进入行业的主要壁垒 (58) (1)技术壁垒 (58) (2)市场壁垒 (59) (3)安全生产和环境保护壁垒 (60) (4)资金壁垒 (60) 8、行业利润水平的变动趋势及变动原因 (61) 六、行业技术水平和发展趋势 (62) 1、行业技术水平 (62)

MLCC陶瓷粉体材料行业分析报告

2011年MLCC陶瓷粉体材料行业分析报告

目录 一、行业属性 ............................................. 二、行业管理体制、产业政策和主要法律法规.................. 1、行业管理体制、行业主管部门及自律性组织....................... 2、产业政策和主要法律法规....................................... 三、行业与上下游行业的关系................................ 四、下游MLCC 行业概况.................................... 1、MLCC 简介.................................................... (1)电介质陶瓷粉料等材料技术.......................... (2)介质薄层化技术.................. 错误!未定义书签。 (3)陶瓷粉料和金属电极共烧技术........................ 2、MLCC 行业市场发展状况........................................ (1)全球MLCC 行业发展状况............................ (2)我国MLCC 行业发展状况............................ 3、MLCC 行业未来发展前景........................................ (1)电子消费品的更新换代及新产品的不断涌现将持续提高市 场对MLCC 的需求 (17) (2)MLCC 对其他类型电容器的替代作用将日趋明显 ........ (3)中国已成为全球电子整机的生产基地,作为电子整机使用 的主要元件之一,国内的MLCC 行业迎来了良好的发展契机... (4)国内经济的发展及人民生活水平的提高所带来的电子消费 品普及化过程,将带动国内对MLCC 的巨大需求.............

固相法制备陶瓷粉体

固相反应法生产陶瓷粉体 一、固相反应法的特点 固相法是通过从固相到固相的变化来制造粉体,其特征是不像气相法和液相法伴随有气相→固相、液相→固相那样的状态(相)变化。对于气相或液相,分子(原子)有很大的易动度,所以集合状态是均匀的,对外界条件的反应很敏感。另一方面,对于固相,分子(原子)的扩散很迟缓,集合状态是多样的。固相法其原料本身是固体,这较之于液体和气体都有很大的差异。固相法所得的固相粉体和最初固相原料可以使同一物质,也可以不是同一物质。[1] 二、物质粉末化机理 一类是将大块物质极细地分割,称作尺寸降低过程,其特点是物质无变化,常用的方法是机械粉碎(用普通球磨、振磨、搅拌磨、高能球磨、喷射磨等进行粉碎),化学处理(溶出法)等。另一类是将最小单位(分子或原子)组合,称作构筑过程,其特征是物质发生了变化,常用的方法有热分解法(大多数是盐的分解),固相反应法(大多数是化合物,包括化合反应和氧化还原反应),火花放电法(常用金属铝产生氢氧化铝)等。 三、固相反应的具体方法 1、机械粉碎法 主要应用是球磨法,机械球磨法工艺的主要目的包括离子尺寸的减小、固态合金化、混合或融合以及改变离子的形状。目前已形成各种方法,如滚转磨、振动磨和平面磨。采用球磨方法,控制适合的条件可以得到纯元素、合金或者是复合材料的纳米粒子。其特点是操作简单、成本低,但产

品容易被污染,因此纯度低,颗粒分布不均匀[2] 。 2、热分解法 热分解反应不仅仅限于固相,气体和液体也可引发热分解反应,在此只讨论固相的分解反应,固相热分解生成新的固相系统,常用如下式子表示(S 代表固相、G 代表气相): 121 1212S S G S S G G →+→++ 第一个式子是最普通的,第二个式子是第一个式子的特殊情况。热分解反应基本是第一式的情况。 3、 固相反应法 由固相热分解可获得单一的金属氧化物,但氧化物以外的物质,如碳化物、硅化物、氮化物等以及含两种金属元素以上的氧化物制成的化合物,仅仅用热分解就很难制备,通常是按最终合成所需组成的原料化合,再用高温使其反应的方法,其一般工序如左图所示。首先是按照规定的组成称量,通常用水等做分散剂,在玛瑙球的球磨内混合,然后通过压滤机脱水后再用电炉焙烧,通常焙烧温度比烧成温度低。在固相反应中粉体间的反应相当的复杂,反应从固体间的接触部分通过离子扩散来进行,但接触状态和各种原料颗粒的分布情况显着地收到颗粒的性质(粒径、颗粒形状和表面状态等)和粉体处理的方法(团聚状态和填充状态等等)的影响。

陶瓷粉末的制备

第五章高纯超细粉末的制备新工艺 一、概述 高技术陶瓷的制造成本 粉体的重要性质: 组成、粒子形状、结晶性、集合状态 理想的陶瓷粉末: 颗粒尺寸小、结晶形态、颗粒形态、颗粒尺寸分布、纯度、无团聚、流动性--- 二、超细粉末制备方法的分类 机械方法(物理制备):球磨、砂磨、振动磨、星形磨、 气流粉碎 化学制备法: (1)固相法:氧化还原法、热分解法、元素直接反应法(2)液相法:共沉淀法、盐溶液水解法、醇盐水解法、溶 胶-凝胶法、水热合成法、溶剂热法、微乳法、 加热煤油(石油)法、喷雾干燥法、火焰喷雾 法、冷冻干燥法--- (3)气相法:气相合成法、等离子体法、激光制粉

以ZrO 2为例: 1. ZrSiO 4??→?NaOH Na 2ZrO 3-Na 2SiO 3??→?O H 2Na 2SiO 3﹒nH 2O 过滤→Na 2ZrO 3??→?HCl 过滤掉SiO 2 gel →ZrOCl 2﹒8H 2O →结晶纯 ZrOCl 2﹒8H 2O ??→?煅烧 ZrO 2 2. ZrSiO 4+4C+4Cl 2→ZrCl 4+SiCl 4+4CO, 再氧化→ZrO 2 3. ZrOCl 2﹒8H 2O, Zr(SO 4)2﹒15H 2O, ZrCl 4 , Zr 醇盐等 三、 超细粉的测试与表征 1、粒径 沉降法 (重力沉降法、离心沉降法) 激光光散射法 显微镜法(光学、电子) XRD 法 比表面积法 2、表面电性 Zeta 电位 3、表面成分 光电子能谱(XPS 、UPS ) 俄歇电子能谱 红外光谱 4、成分 化学组成:化学分析、能谱分析、光谱分析、XRF --- 相结构:XRD 、高分辨电镜晶格条纹相 ---

用水热法制备纳米陶瓷粉体技术

Hefei University 题目:水热法制备纳米陶瓷粉体技术 专业:11级粉体材料科学与工程(1)班姓名:施学富 学号:1103011002 二O一三年六月

摘要:文章较为系统地概述了水热法制备纳米陶瓷粉体的技术方法、特点和研究进展。认为水热法是一种极有应用前景的纳米陶瓷粉体的制备方法 关键词:水热法,纳米,陶瓷粉体 1 引言 现代陶瓷材料的性能在一定程度上,是由其显微结构决定的,而显微结构的优劣却取决于制备工艺过程。陶瓷的制备工艺过程主要由粉体制备、成型和烧结等三个主要环节组成。其中,粉体制备是基础,若基础的粉体质量不高,不但烧结条件难以控制,也绝不可能制得显微结构均匀、致密度高、内部无缺陷、外部平整的瓷坯。显微结构,尤其是陶瓷材料在烧结过程中形成的显微结构,在很大程度上由原料粉体的特性决定。因此粉体性能的优劣,直接影响到成型和烧结的质量。粉体的尺寸大小决定了作用于粉体上的单位体积的表面积,进而又决定了粉体的最终行为。粉体达到纳米级时,可以生产出优于普通材料的纳米特异功能。 目前,制备纳米粉体的方法可分为三大类:物理方法、化学方法和物理化学综合法。化学方法主要包括水解法、水热法、溶融法和溶胶一凝胶法等。其中,用水热法制备纳米粉体技术越来越引起人们的

关注?。本文拟对近年来水热法制备纳米陶瓷粉体作一概要介绍。 2 水热法制备纳米陶瓷粉体的原理及特点 2.1水热法概述 水热法(hydrothermal preparation)是指密闭体系如高压釜中,以水为溶剂,在一定的温度和水的自生压力下,原始混合物进行反应的的一种合成方法。由于在高温,高压水热条件下,能提供一个在常压条件下无法得到的特殊的物理化学环境,使前驱物在反应系统中得到充分的溶解,并达到一定的过饱和度,从而形成原子或分子生长基元,进行成核结晶生成粉体或纳米晶。 根据化学反应类型的不同,水热法制备粉体有如下几种方法:(1)水热氧化(Hydrothermal Oxidation)利用高温高压,水、水溶液等溶剂与金属或合金可直接反应生成新的化合物。 (2)水热沉淀(Hydrothermal Precipitation 某些化合物在通常条件下无法或很难生成沉淀,而在水热条件下易反应生成新的化合物沉淀。 (3)水热晶化(Hydrothermal Crystallization):.以非晶态氢氧化物、氧化物或水凝胶为前驱物,在水热条件下结晶成新的氧化物晶粒。(4)水热合成(Hydrothermal Synthesis~.允许在很宽范围内改变参数,使两种或两种以上的化合物起反应,合成新的化合物。 (5)水热分解(Hydrothermal Decomposition):.某些化合物在水热条件下分解成新的化合物,进行分离而得单一化合物微粉。 (6)水热还原(Hydrothermal Reduction):.金属盐类氧化物、氢氧化

固相法制备陶瓷粉体

固相反应法生产陶瓷粉体 一、 固相反应法的特点 固相法是通过从固相到固相的变化来制造粉体,其特征是不像气相法和液相法伴随有气相→固相、液相→固相那样的状态(相)变化。对于气相或液相,分子(原子)有很大的易动度,所以集合状态是均匀的,对外界条件的反应很敏感。另一方面,对于固相,分子(原子)的扩散很迟缓,集合状态是多样的。固相法其原料本身是固体,这较之于液体和气体都有很大的差异。固相法所得的固相粉体和最初固相原料可以使同一物质,也可以不是同一物 质。[1] 二、 物质粉末化机理 一类是将大块物质极细地分割,称作尺寸降低过程,其特点是物质无变化,常用的方法是机械粉碎(用普通球磨、振磨、搅拌磨、高能球磨、喷射磨等进行粉碎),化学处理(溶出法)等。另一类是将最小单位(分子或原子)组合,称作构筑过程,其特征是物质发生了变化,常用的方法有热分解法(大多数是盐的分解),固相反应法(大多数是化合物,包括化合反应和氧化还原反应),火花放电法(常用金属铝产生氢氧化铝)等。 三、 固相反应的具体方法 1、 机械粉碎法 主要应用是球磨法,机械球磨法工艺的主要目的包括离子尺寸的减小、固态合金化、混合或融合以及改变离子的形状。目前已形成各种方法,如滚转磨、振动磨和平面磨。采用球磨方法,控制适合的条件可以得到纯元素、合金或者是复合材料的纳米粒子。其特点是操作简单、成本低,但产品容易被污染,因此纯度低,颗粒分布不均匀[2]。 2、热分解法 热分解反应不仅仅限于固相,气体和液体也可引发热分解反应,在此只讨论固相的分解反应,固相热分解生成新的固相系统,常用如下式子表示(S 代表固相、G 代表气相): 121 1212 S S G S S G G →+→++ 第一个式子是最普通的,第二个式子是第一个式子的特殊情况。热分解反应基本是第一式的情况。 3、 固相反应法 由固相热分解可获得单一的金属氧化物,但氧化物以外的物质,如碳化物、硅化物、氮化物等以及含两种金属元素以上的氧化物制成的化合物,仅仅用热分解就很难制备,通常是按最终合成所需组成的原料化合,再用高温使其反应的方法,其一般工序如左图所示。首先是按照规定的组成称量,通常用水等做分散剂,在玛瑙球的球磨内混合,然后通过压滤机脱水后再用电炉焙烧,通常焙烧温度比烧成温度低。在固相反应中粉体间的反应相当的复杂,反应从固体间的接触部分通过离子扩散来进行,但接触状态和各种原料颗粒的分布情况显著地收到颗粒的性质(粒径、颗粒形状和表面状态等)和粉体处理的方法(团聚状态和填充状态等等)的影响。

凝胶固相反应法合成亚微米级钛酸锶钡陶瓷粉体

?电子陶瓷、陶瓷一金属封接与真空开关管用陶瓷管壳应用专辑? 凝胶固相反应法合成亚微米级钛酸锶钡陶瓷粉体 焦春荣,陈大明,仝建峰 (北京航空材料研究院,北京100095) Preparationof Sub-MicroBao.6Sro.4Ti03Ceramic PowdersbyGel-SolidMethod JIAOChun—rong,CHENDa—ming,TONGJian—feng (BeijingInstituteofAeronauticalMaterial,Beijing100095,China) Abstract:Sub—microBao6Sro4Ti03ceramicpowderswerepreparedbythegel—solidreactionmethodu—singTi02,BaC03andSrC03powdersasrawmaterials.DSCthermodynamicswasusedtoanalyzetheheatflowandaccuratetemperatureofeachreactionduringthepreparationprocess.Microstructure,phasestructureandgranularityofthepowderswereinvestigated.TheresultsshowthatreactiontemperatureofBao.6Sro.4Ti03ceramicpowderswasabout857℃.UniformlydispersedBao.6Sro.4Ti03powdersof0.5pmdiametercanbepreparedunderthetemperaturerangeof900。C~1000℃.Theparticlesizeofthesynthe—sizedpowdersisdeterminedbytheparticlesizeoftherawmaterials.Theparticlesizeincreasesduringtheheattreatmentbecauseofthecompositiondiffusion.Therefore,smallsizeparticlesoftherawmaterialsshouldbechosentoprepareforthesynthesizedpowdersofsmallsize. Keywords:Gel—solidmethod;Bao.6Sro4Ti03;Ceramic;Powders 摘要:以Ti0:和BaC0。,SrCO,粉体为原料,采用凝胶同相反应法合成了亚微米级Ba—Sr。TiO。陶瓷粉体。对凝胶固相反应过程进行了DSC热分析,并观察和测定了合成粉体的微观形貌、相结构和粒度分布。结果表明:Ba0。Sro。TiO。粉体合成温度对应于857℃,在9001000℃温度范围煅烧均可获得颗粒尺寸约0.5肛m、粒径分布均匀的Ba0。Sro。TiO。粉体。试验结果表明,凝胶固相合成Bao。Sr。。TiO。的粉体粒径取决于原料粉体尺寸,经高温煅烧后因各组元元素的互扩散导致粉体粒径有所长大,要获得更细的合成粉体应采用更细的粉体原料。 关键词:凝胶固相反应法;钛酸锶钡;陶瓷;粉体 中图分类号:TQl74文献标识码:A文章编号:1002—8935(2009)04—0054—05 钛酸锶钡陶瓷材料是一种优良的热敏材料、电容器材料和铁电压电材料[1_3],应用领域非常广泛。它的诸多优异的介电性能使得该材料系统在无铅电容器、微波传输、信号处理和测量等领域中的应用具有很大优势和潜力[4-s],而高性能的钛酸锶钡粉体是制备钛酸锶钡陶瓷的重要条件。凝胶固相反应法是传统的固相反应制粉工艺与陶瓷注凝成型工艺(Gelcasting)相结合而产生的一种新型粉体制备技术【7-10|。该工艺保证了原料成分在颗粒尺度的均匀混合,并解决了传统固相反应法各组元原料需靠压块达到紧密接触的目的;与化学共沉淀等液相法相比,则具有操作简单、效率高、成本低、原料来源广团至Q盟二些泛、普适性强、环境污染小等诸多优点。本文采用凝胶固相反应法制备出颗粒细小、分散均匀、结晶完好的亚微米级BaⅢSr。.。TiO。陶瓷粉体,并对粉体合成过程和相关问题进行了分析研究。 1试验方法 1.1粉体的合成工艺 凝胶固相反应法制备Ba。Sr…Ti0。粉体的工艺流程如图l所示。详细过程如下:使用BaC0。,SrC03,Ti02为原料,按BaO:SrO:Ti02为0.6:0.4:1.0的摩尔比,加入去离子水和少量聚丙烯酸铵分散剂,混合配制成固含量约50%(体积比)的水

水热法制备PZT压电陶瓷粉体

无机材料学报990427 无机材料学报 JOURNAL OF INORGANIC MATERIALS 1999年 第14卷 第4期 Vol.14 No.4 1999 水热法制备PZT压电陶瓷粉体 古映莹 戴恩斌 黄可龙 摘 要 本文报道了水热法制备PZT压电陶瓷粉体的研究结果,给出了PZT粉体的结晶性与反应温度、反应时间和氢氧化钾添加量之间的关系,用XRD、SEM等测试手段分析了实验结果,表明所得到的PZT粉体为四方晶相钙钛矿结构,粒子粒径为0.6~2.1μm,呈立方体状. 关 键 词 水热合成;PZT粉体;压电陶瓷 分 类 号 TN 304 Hydrothermal Synthesis of PZT Powders GU Ying-Ying DAI En-Bin HUANG Ke-Long (Department of Chemistry, Central South University of Technology Changsha 410083  China) Abstract The results of hydrothermal synthesis of PZT powders were reported. The effect of synthesis temperature, time and catalytic promoter on the crystalline powder was investigated by means of XRD and SEM. The result showed that the PZT powder obtained has a tetragonal perovskite structure, the dimension of the crystalline powder particle is from 0.6μm to 2.1μm, and the particle is cubic.  Key words hydrothermal synthesis, PZT powders, piezoelectric ceramics 1 引言 锆钛酸铅(Pb(Zr x Ti1-x)O3,简称PZT)是一种典型的压电陶瓷,它具有居里温度高、压电性强、易掺杂改性和稳定性好等特点,在压电陶瓷领域中一直占主要地位[1~3]. 过去制备PZT压电陶瓷材料,通常采用传统的固相反应法,这种方法的缺点是:(1)原料中各组份难以混合均匀;(2)高温下氧化铅易挥发,因而烧结体化学组成波动范围较大;(3)整个工艺过程易混杂,难以得到高纯度的粉体;(4)粉体颗粒大小不均匀,表面活性差,易形成团聚体,因而最终影响材料的性能.  近年来,各种湿化学方法用于制备陶瓷粉体的研究获得了广泛的重视,它们在制备高纯、均一、超细的多组份粉体方面显示了令人振奋的应用前景,其中水热法制备陶瓷粉体, 又由于其具有工艺相对较为简单,不需要高温灼烧处理,可直接得到结晶完好、团聚少、粒度分布窄、烧结活性高的粉体等特点,正获得越来越广泛的重视. file:///E|/qk/wjclxb/wjcl99/wjcl9904/990427.htm(第 1/5 页)2010-3-23 9:58:24

碳化硼陶瓷参数整理2019.6.3

碳化硼陶瓷参数整理 一、物理性能 密度:2.52g/cm3 熔点:2450℃ 沸点:3500℃ 显微硬度:4980kg/mm2 显微硬度:55GPa~67GPa 莫氏硬度:9.36 弹性模量:450GPa 抗弯强度:≥400MPa 二、碳化硼粉体制备 1、硼碳元素直接合成法 将纯硼粉和石焦油(或其他碳粉)按化学计量比B/C约为4:1配制,均匀混合,在真空或保护气氛下加热至1700℃~2100℃混合物发生反应生成B4C。 4B+C→B4C。 生产效率低下,不适合工业化生产。 2、硼酐干碳热还原法 工业上一般采用碳还原硼酸(或硼酐)的方法制备B4C。将硼酐或硼酸碳混合均匀,在电弧炉中加热至1700℃~2300℃合成。 2H3BO3→B2O3+3H2O 2B2O3+7C→B4C+6CO 3、自蔓延高温合成法(SHS) 自蔓延高温合成法是利用化合物合成时自身产生的反应热,使反应持续进行下去的一种工艺。由于采用此法制各碳化硼时以镁作为助熔剂,因而得名“镁热法”。将碳粉、B2O3和镁粉混合均匀,在1000℃~1200℃按下式进行反应: 2B2O3+6Mg+C→B4C+6MgO 4、激光诱导化学气相沉积法(LICVD) 以含有碳源及硼源的气体(BCl3,B2H6,CHCl3,CH4等)为原料,在激光辐照的条件下,混合气体之间发生反应生成B4C纳米颗粒,经过一定的处理后可以得到具有较高纯度的碳化硼纳米粉。

三、碳化硼陶瓷制备 1、常压烧结 序号添加剂B4C粒度烧结温度产品性能 1碳4wt%时在2150℃和下常压下 烧结 获得95%的相对密度 2Al、Mg或TiB2 加5-10wt.% 在2150~2250℃致密度达到99% 3Al2O3;加3wt.%于2150℃下 保温15分钟 到理论密度的96%,平 均晶粒尺寸约为7μm, 4 亚微米TiO2(添加量 10-30wt.%)和碳粉 (添加量1-6wt.%), 粒径为0.63μm的 B4C粉 1900-2050℃温度下常 压烧结,保温1h, 致密度达到99%以上的 B4C-TiB2复相陶瓷, 材料的抗弯强度和断裂 韧性分别达到513MPa 和 3.71MPa·m1/2 B4C的无压烧结可制备形状复杂制品,但往往造成晶粒过度生长且含有3-7Vol.%的气孔率,因此材料 的强度和韧性偏低(σf IC≤3MPa·m1/2)。而采用热压烧结技术,可获得致密度更高和力学性能更好的B4C陶瓷。 2、热压烧结 序号添加剂B4C粒度烧结温度及压力产品性能 1/平均粒径为1.21μm 的B4C粉末和 自由碳含量为 3.13wt.%, 热压压力和温度分别为 30-35MPa和 2000-2100℃时 B4C烧结体的相对 密度为92-98%,晶粒尺 寸为3-5μm,抗弯强度 为400-500MPa 2Al2O3添加量为 3-5vol.%, 为1.3μm的B4C粉 末 在2000℃和30MPa压 力下烧结,保温1h 烧结致密度达到98%以 弯曲强度约550MPa, 韧性3.8MPa·m1/2 3 4 3、热等静压烧结 采用热等静压(HIP)烧结碳化硼,可无需添加剂而达到致密化,并且获得细晶显微结构和高的弯曲强度。成功地采用特殊氧化硼玻璃包套填充亚微米级纯B4C粉,于1700℃以上,200MPa压力下保温60min,制得相对密度达到100%的B4C陶瓷,其三点抗弯强度达到714MPa、韦伯摸数m为8.3。目前工业化热等静压烧结用的包套材料还有困难,这是因为通常使用的金属或玻璃包套会与B4C发生反应。 通常是先进行无压烧结得到无开口连通气孔的B4C,再进行热等静压处理来消除剩余的闭口气孔,达到完全致密化,热等静压处理温度在1950-2050℃。

陶瓷粉末成型技术的工艺与控制

陶瓷粉末成型技术的工艺与控制 2008-11-5 1:29:52 人们总是希望陶瓷制品,尤其是特种陶瓷是均质的,能满足良好的机、电、热、化学或某种特殊性能要求,并能实现生产自动化、质量可控、性能一致性好的规模化生产。为此,首先要实现陶瓷坯体在粉末成型过程中是均质的或接近均质的。采用干粉压制、等静压成型是近世纪才发展起来的新型粉末成型工艺。为了最大限度实现陶瓷坯体均质化,不仅需要有先进的粉末成型设备,而且还有陶瓷粉体制备的质量,即每个单一粉末颗粒是均质的,而且是可控的。 1.实现坯体均质化途径 无论是干粉压制或等静压成型,由于粉末颗粒之间、粉体与模具壁之间,都存在内外摩擦而导致坯体密度分布不均匀,尤其是干粉压制,在压制方向上,压力随高度变化而呈指数衰减,形成一个密度梯度,确实很难达到坯体密度上下一致。其次,粉体本身颗粒为满足压制成型所需的粉末成型特性,需要添加一定量的添加剂,它们在每个单一颗粒中是否均匀,也是影响坯体均质的重要因素。 1.1压制方式 影响压坯密度的因素很复杂,除粉体本身特性外,主要有坯体形状和大小、压制件的侧正面积比、压制压力、模具粗糙度、润滑条件以及压制方式和粉末在模具中运动的摩擦系数等都起重要作用。实践证实等静压成型优于干粉压制,湿等静压优于干袋式等静压。现在国际流行的全自动干粉压机结构上采用强制双向拉下压制的曲柄连杆机构,图1给出典型压制过程中上下模头和凹模的运动轨迹,当上模头和凹模同时向下时实现反压,能最大限度地使坯体各部密度均匀。

图1典型压制过程中上下模头和凹模的运动轨迹 很多制品并非简单的等厚坯件,厚薄不一致,甚至有多个台阶,图2给出异形制品成型时模具各部件在压机中的运动轨迹。达到各部位厚度不一样按成型要求密度分层加料,以求成型后坯体各部位基本一致。关于压制成型技术,应视工件形状选择加料方式、上下模头压制次数、压制线的位置以及是否采用保护脱模,即使是1mm厚的制品,也应采用双面压制,也存在压制线位置,即上下压力的调整,且有利于烧成时坯体平整。有关陶瓷压片机设备使用可参阅有关设备说明书。 1.2粉体制备 无论干粉压制或等静压成型均要求粉料呈颗粒状,有较好的流动性;颗粒有一定的强度,以免在运输和加料过程中破碎;有一定的颗粒级配,加料时实现紧密堆积;具有一定的粘结特性和润滑特性,颗粒之间不应相互粘结等造粒特性。 为了达到上述特性要求,无论采用哪种造粒方式,往陶瓷原料中添加各种辅助材料是必然的,这些材料既不能影响坯料组分,又要求它们能均匀分布在每一个粉末颗粒中,从微观上讲是均质的。辅助材料通常有以下几种: 图2 异形制品成型 时候具备部件在机中的运动轨迹 (1)聚乙烯醇:不要以为喷雾造粒就一定能得到均质的粉体,粘结剂选择与搭配是关键。我们希望粘结剂能均匀分给每个粒子,在颗粒内形成的微观结构是均质化的事实上,如果仅往坯料中加入单一的聚乙烯醇作为结合剂,造粒后颗粒表面坚硬,有凹坑,在压制过程中往往存在大量颗粒间隙,坯体难以密实,这种粉末从颗粒上讲就是非均质的。 (2)水溶性聚合物:陶瓷用粘结剂一般采用水溶性聚合物,经验证明往高聚合度粘结剂材料中添加少量低分子粘结剂混合使用,有利于改善粉料颗粒形状和松装密度。实践证明聚乙烯醇是特性最好的粘合剂,但并不能获得最理想的颗粒形状和松装密度,添加少量水溶性低聚合物,如淀粉类及其衍生物,有较好的效果。

碳化硼陶瓷制备工艺

碳化硼陶瓷制备工艺 碳化硼是一种新型非氧化陶瓷材料,因其具有熔点高、硬度高、密度低、热稳定性好,抗化学侵蚀能力强和中子吸收能力强等特点而被广泛应用于能源、军事、核能以及防弹领域。碳化硼又称黑钻石,是仅次于金刚石和立方氮化硼的第三硬材料,故成为超硬材料家族中的重要成员。 目前碳化硼防弹材料主要通过烧结法制备,不过碳化硼是共价键很强的陶瓷材料,共价键占90%以上,而且碳化硼的塑性差,品界移动阻力很大,固态时表面张力很小,从而决定了碳化硼是一种极难烧结的陶瓷材料。纯碳化硼在烧结过程中通常存在烧结温度高、烧结后所得陶瓷致密度低,断裂韧性较差等问题。工业上一般采用无压烧结、热压烧结、热等静压烧结、放电等离子烧结等技术,通过改进烧结工艺、添加烧结助剂提高碳化硼的力学性能,为进一步研究碳化硼的烧结工艺奠定基础。 1、无压烧结 纯B4C的无压烧结致密化非常困难,气孔缺陷和致密度是影响碳化硼陶瓷性能指标的关键因素。而烧结温度和粉末粒度是影响碳化硼陶瓷致密度的重要指标。研究表明,纯碳化硼无压烧结致密化最主要的条件是采用低氧含量的粒度≤3μm的超细粉末且温度范围在2250~2350℃。

无压烧结碳化硼制品工艺简单、加工成本低,对烧结条件没有太多要求,可适用于生产形状复杂的产品,适合大批量工业化生产,是制备陶瓷常用的烧结技术。但由于烧结温度高,晶粒容易异常生长,使烧结过程难以控制,产品性能不稳定。 2、热压烧结 热压是在高温条件下改善粉末塑性,具有成型压力低,变形阻力小,产品密度高,显微组织优良等优点,因而,降低碳化硼的烧结温度可以采用热压烧结工艺。 与单纯热压相比,将液相烧结和热压烧结相结合,烧结温度大大降低,致密度相对提高。 通常热压烧结条件为:真空或惰性气氛,压力20~40MPa,温度2200~2300℃,保温时间0.5~2h。碳化硼是共价键很强的化合物,在高温下烧结扩散速率慢,物质流动发生较少,使其致密化过程非常困难。 为了降低烧结温度和表面能,提高碳化硼陶瓷的综合性能,必须加入添加剂来促进碳化硼的热压烧结。添加剂包括烧结助剂或第二相反应烧结,在高温高压条件下,可以促进烧结,控制晶粒长大,提高力学性能,获得高致密度、高性能的碳化硼陶瓷产品。目前加入的添加剂主要包括金属单质(Fe、Al、Ni、Ti、Cu、Cr等)、金属氧化物(Al2O3、TiO2等)、过渡金属碳化物(CrC、VC、WC、TiC等)及其他添加剂(AlF3、MgF2、Be2C、Si等)。

相关主题
文本预览
相关文档 最新文档