当前位置:文档之家› 视频监控系统干扰的一般解决对策

视频监控系统干扰的一般解决对策

视频监控系统干扰的一般解决对策
视频监控系统干扰的一般解决对策

在视频监控系统中,视频讯号的传输,一般采用同轴电缆。但在传输过程中,若有外部干扰讯号侵入,通常会严重影响画面品质,进而降低监控效果。在监控系统中,产生视频干扰的原因很多,包括设备本身及外部环境。对不同的干扰,解决办法也不尽相同。如果是设备本身的原因,通常只要替换故障设备,即可解决;而外部干扰讯号侵入所造成的干扰,则较难以解决。

在探讨产生视频干扰的原因之前,必须先了解视频频谱和同轴电缆的传输特性。视频的电缆传输,目前主要有视频基带传输和视频载波传输,两者通常对应的传输媒介,份别是SYV75系列和SYWV75系列同轴电缆。

前者就是所谓的视频电缆,主要用于视频监控领域,线缆心层和遮罩层之间的填充才料为实心塑胶;后者叫射频电缆,主要用于有线电视领域,线缆心层和遮罩层之间的填充才料为发泡塑胶,其物理特性,更适合传输载波讯号。

同轴电缆所能传输的讯号频宽达1Gh z,而视频监控领域中,由于采用的是基带传输,使用的频带只有0~6MHz,只占传输频宽很小的一部份,因此,电缆的大部份频宽资源遭到闲置。而在视频载波传输中,所用的频宽是50MHz~1000MHz。

同轴电缆在传输讯号时,对于不同频率讯号产生的衰减,也不相同。同轴电缆对于频率越高的讯号,衰减幅度越大。

这个道理其实不难理解,事实上,几乎对于每种传输介质而言,都有类似的衰减特性,亦即频率越高,衰减越大。

举例来说,收音机的FM调频属于超短波,和短波SW比较,FM的波长短,频率高,同样在空气中传播,FM的有效覆盖范围,通常只有一个城市,一旦离开这个城市,就无法继续收听到该城市的FM调频广播,而对于短波SW来说,波长较长,频率较低,在空气中传输的距离则远于调频,所以我们透过短波频道,仍然可以收听到国外的电台节目。

在军事领域中,潜艇之间的通讯,则是采用中波或长波,两者的波长较长,频率较低,在海水中的传输距离很远。例如图像经过一段较长的同轴电缆传递后,在后端的监视器上,虽然清晰度依然不错,但色彩却变淡了,有时甚至变成黑白视频。

为什么会产生这种现象呢?因为对视频来说,视频的波形经过傅立叶变换后,是一系列的正弦波,这些正弦波表现图像的各种细节,如画面内容、清晰度、灰度和色彩等。

其频率份布在前述0~6MHz的范围内,而图像中的色彩部份讯号,恰巧处于这个频宽中的高频部份,由于高频部份的衰减,相对较大,所以经过同一段距离的传输后,色彩讯号的衰减情形,会大于其她讯号,结果造成图像色彩变淡,甚至变成黑白的现象。

同轴电缆对各种频率讯号的隔离程度,亦即抗干扰能力,也不相同。不同频率的等幅电压讯号,施加在同轴电缆上所感应出的电压。频率越低的干扰讯号,在同轴电缆上感应的电压就越高,所以同轴电缆对频率较高的讯号遮罩效果较好,而对频率较低的讯号,遮罩隔离效果较差。

分析完同轴电缆的特性后,接下来份析干扰讯号的特性。首先,干扰讯号也是电磁波,所以,干扰讯号也会「遵守」以上提到的传输规律,也就是低频讯号传的愈远,干扰能力愈强,而高频则反之。

干扰讯号的传输距离和频率呈现反比的关系。也就是在同样传输条件下,低频干扰讯号传输的距离较远,而一旦干扰讯号的频率,落在正常讯号的频宽之内,就会对正常讯号产生干扰。

所以对于频率越低的讯号,受到干扰的机会越多,强度越大。实际的干扰讯号通常是非正弦波,透过傅立叶变换得知,这些干扰讯号由一系列不同频率的正弦波構成,在此频率范围内的正常讯号,都可能受到干扰,但随着频率上升,高次谐波的幅度明显下降。

而在0~6MHz的范围内,干扰讯号的幅度还相当大,干扰讯号虽然由很多不同频率的讯号组成,但能量主要集中在低频的部份,视频监控领域所用的频率,恰巧是0~6MHz的低频宽,而同轴电缆对这部份频率的干扰讯号遮罩效果又比较差,这就是为什么视频监控线路容易受到干扰,以及受到干扰后通常又难以解决的原因。

视频监控系统干扰的解决方法

既然视频的基带传输有这么多不利因素,为什么在采用基带传输的大多数视频监控工程中,监控效果还是不错呢?

原因在于,和一般的干扰相比,视频讯号的幅度通常比干扰讯号大60db,即1,000倍左右,而这么小幅度的视频干扰,由于肉眼无法觉察,因此我们可以认为视频未受干扰。

但是,由于继电器等释放的强电磁干扰幅度很大,要想解决视频干扰问题,首先在工程的设计阶段,就要有意识地避开强干扰源,并在充份了解现场的情况下,仔细选择讯号传输路径,让讯号线缆尽可能远离干扰源,比如尽量避免讯号线缆和强电线缆过于接近,以便降低可能受到的外部干扰。

同时,在施工时,对于可能存在强干扰的路由,如果因受限于现场条件,无法保证讯号线和强电线的最小距离,哪么讯号线最好全程外加镀锌铁管,铁管之间需要有可靠的电气连接,而且铁管两端至少要有一端可靠接地。

室内部份,强电、弱电线缆应份走不同的金属桥架,如果必须在同一个桥架走线,强电、弱电线缆之间,也要有金属隔板隔开。近年来,市场上出现一种新型的双遮罩层同轴电缆。

对于普通的同轴电缆来说,电缆的遮罩层既是讯号传输通路,又具有抗干扰作用,一旦干扰讯号侵入遮罩层(比如强磁场在遮罩层上感应出电压,并迭加在原有正常讯号上),就会对正常讯号产生严重干扰,双遮罩同轴电缆具有两层遮罩铜编织网,内部的一层只用来传输正常讯号,而外层的遮罩层才是真正的抗干扰层,作用相当于原电缆外部的镀锌铁管,此外部遮罩层线缆上的一端应该可靠接地。

在上海地铁视频监控专案中,由于考虑到整个地铁系统复杂、设备众多及列车产生的强烈电磁干扰,所有视频线缆均采用此种双遮罩同轴电缆,在进入监控室后,所有线缆的外部遮罩层统一做了可靠接地,因此能有效避免视频干扰,达到良好的监控效果。

此外,一旦施工中出现干扰,首先应份析出现干扰的原因。大部份干扰和施工操作因素有关,比如接头制作及线缆连接,只要找到干扰产生的部位,把不合规范的作法改正或更换故障设备,通常都能解决。

如果最后确认干扰是由外部讯号传入传输线路,线路本身没有问题,重新外加铁管或布放新线缆,显然不切实际,此时,采取调频的方法,应该可以解决。

前面已经说明,各种干扰讯号在较高的频率上,幅度会明显低很多,甚至消失,所以我们可以考虑,把基带传输的讯号,透过调频的方式,调到没有干扰,或者改到较高的频率上传递,到接收端再透过解调设备,把讯号从载波中取出,送入终端设备。

由于同轴电缆可以用于传输的频宽很大,一路视频载波只占8MHz左右,所以借助合适的设备,把多路视频调制在不同频率的载波上,哪么在一条同轴电缆上,就可实现传输多路视频。事实上,市面上不少双绞线传输设备,就应用了这个原理。

此外,用户还可以尝试使用视频均衡设备,用来修正补偿视频,可以有效解决干扰和衰减造成的画质不佳问题。

结语

产生视频干扰的途径很多,成因也很复杂,一旦出现干扰后,通常也很难解决。本文试图阐明视频干扰产生的根源和一般对策,希望对读者有些帮助。

模拟量信号干扰分析及11种解决秘诀

模拟量信号干扰分析及11种解决秘诀 关键词:PLC 模拟量信号干扰 1、概述 随着科学技术的发展,PLC在工业控制中的应用越来越广泛。PLC控制系统的可靠性直接影响到工业企业的安全生产和经济运行,系统的抗干扰能力是关系到整个系统可靠运行的关键。自动化系统中所使用的各种类型PLC,有的是集中安装在控制室,有的是安装在生产现场和各种电机设备上,它们大多处在强电电路和强电设备所形成的恶劣电磁环境中。要提高PLC控制系统可靠性,设计人员只有预先了解各种干扰才能有效保证系统可靠运行。 2、电磁干扰源及对系统的干扰 影响PLC控制系统的干扰源于一般影响工业控制设备的干扰源一样,大都产生在电流或电压剧烈变化的部位,这些电荷剧烈移动的部位就是噪声源,即干扰源。 干扰类型通常按干扰产生的原因、噪声的干扰模式和噪声的波形性质的不同划分。其中:按噪声产生的原因不同,分为放电噪声、浪涌噪声、高频振荡噪声等;按噪声的波形、性质不同,分为持续噪声、偶发噪声等;按声音干扰模式不同,分为共模干扰和差模干扰。共模干扰和差模干扰是一种比较常用的分类方法。共模干扰是信号对地面的电位差,主要由电网串入、地电位差及空间电磁辐射在信号线上感应的共态(同方向)电压送加所形成。共模电压有时较大,特别是采用隔离性能差的电器供电室,变送器输出信号的共模电压普遍较高,有的可高达130V 以上。共模电压通过不对称电路可转换成差模电压,直接影响测控信号,造成元器件损坏(这就是一些系统I/O 模件损坏率较高的原因),这种共模干扰可为直流、亦可为交流。差模干扰是指用于信号两极间得干扰电压,主要由空间电磁场在信号间耦合感应及由不平衡电路转换共模干扰所形成的电压,这种让直接叠加在信号上,直接影响测量与控制精度。 3、PLC 控制系统中电磁干扰的主要来源有哪些呢? (1) 来自空间的辐射干扰: 空间的辐射电磁场(EMI)主要是由电力网络、电气设备的暂态过程、雷电、无线电广播、电视、雷达、高频感应加热设备等产生的,通常称为辐射干扰,其分布极为复杂。若PLC 系统置于所射频场内,就回收到辐射干扰,其影响主要通过两条路径;一是直接对PLC 内部的辐射,由电路感应产生干扰;而是对PLC 通信内网络的辐射,由通信线路的感应引入干扰。辐射干扰与现场设备布置及设备所产生的电磁场大小,特别是频率有关,一般通过设置屏蔽电缆和PLC 局部屏蔽及高压泄放元件进行保护。 (2) 来自系统外引线的干扰: 主要通过电源和信号线引入,通常称为传导干扰。这种干扰在我国工业现场较严重。 (3)来自电源的干扰:

干扰处理方法

技术支持 干扰的来源及影响方式 闭路电视监控系统中传输信号的类型主要有两类:一类是模拟视频信号,传输路径由摄象机到矩阵,从矩阵再到显示器或录象机;一类是数字信号包括矩阵与摄象机之间的控制信息传输,矩阵中计算机部分的数字信号。一般设备成为干扰源的可能性很小,因此干扰主要通过信号传输路径进入系统。闭路电视监控系统的信号传输路径是能通过视频电缆和传输控制信号的双绞线耦合进系统的干扰有:各种高频噪声比如大电感负载启停,地电位不等引入的工频干扰,平衡传输线路失衡使抑噪能力下降将共频干扰转成了差模干扰,传输线上阻抗不匹配造成信号的反射使信号传输质量下降,静电放电沿传输线进入设备造成接口芯片损伤或损坏。具体表现如下:由于阻抗不匹配造成的影响在视频图象上表现为重影。在信号传输线上会将在脉冲序列的前后沿形成震荡。震荡的存在使高低电平间的阈值差变小,当震荡的幅值再大或有其他干扰引入时就无法正确分辨出脉冲电平值,导致通信时间变长或通信中断。接地和屏蔽不好会导致传输线抑制外部电磁干扰能力的下降,体现在视频图象就是雪花噪点、网纹干扰以及横纹滚动等;在信号传输线上形成尖峰干扰,造成通信错误。平衡传输线路失衡也会在信号传输线上形成尖峰干扰。静电放电除了会造成设备损坏外,还会影响存储器内的数据,使设备出现些莫名其妙的错误。 抗干扰的方法 从干扰源的分析了解到并没有特别的干扰源,消除或者减少上述干扰的理论探讨也有许多,如何针对闭路电视监控工程解决干扰问题,很少有文献涉及,下面就闭路电视监控工种中常见的干扰及解决方法进行些探讨。 视频信号的干扰 视频信号的干扰在图象上表现为地花点和50HZ横纹滚动,对于雪花点干扰是由于传输线上信号衰减以及耦合了高频干扰所致,这种干扰比较容易消除,在摄象机与控制矩阵之间合理位置增加一个视频放大器,将信号的受噪比提高,或者改变视频电缆的路径避开高频干扰源,高频干扰的问题可基本上得到解决。较难解决的是50HZ横纹滚动及进一步加高频干扰的情况,比如电梯轿厢内摄象机的输出图象。为了抑制上述干扰,首先分析一 下造成上述问题的原因。 摄象机要求的供电电源一般有三种:直流12V、交流24V或220V,大多数工程应用中不从电梯轿厢的供电电源上取,而是另外布设供电电源给摄象机供电,摄象机输出图象经过一条软性的视频电缆从井道的上方

常见干扰问题怎么解决

常见干扰问题怎么解决 说起视频干扰,要讲一下视频监控信号传输的传统方式视频基带传输。所谓的视频基带传输是指视频信号不经过频率变换等任何处理由图像摄取端通过同轴电缆直接传输到监视端的传输方式,图像在传输时直接利用同轴电缆的0~6MHz来传输,非常容易受到干扰,使图像出现网纹、横纹和噪点影响监视效果。对于基带传输视频干扰,从干扰源角度分为交流声干扰和空间电磁波干扰,从干扰切入方式分为传导式干扰和辐射式干扰。下面分析一下常见视频干扰现象及其原因。 1、工频干扰 干扰现象:图像出现雪花噪点、网纹或很宽暗横带持续不断滚动。 干扰原因:此现象是当摄像端与监控设备端同时接地时,由于地电阻及电缆外皮电阻的存在,在两地之间电力系统各相负载不平衡或接地方式不同引起50Hz电位差,从而产生工频干扰所致。地电位使两接地端存在电压降,电压降加在屏蔽层两端并与大地(地电阻)构成回路产生地电流,地电流经过线缆屏蔽层形成干扰电压,地电流的部分谐波分量落入视频芯线,致使芯线与屏蔽层之间产生干扰电位,使干扰信号加入视频信号中对监控图像形成干扰。 2、空间电磁波干扰 干扰现象:图像出现较密的斜形网纹,严重时会淹没图像。 干扰原因:当监控电缆在空中架设时,空中电磁波干扰信号所产生的空间电场会作用于监控传输线路,使线路两端而产生相当大的电磁干扰电压,其频率约在200Hz~2.3MHz。由于电缆中电位差的存在,使电缆屏蔽层产生干扰电流,而一般情况下摄像端和监控设备端均为接地状态,这就使干扰电流通过线缆两端接地点与大地形成回路,导致终端负载产生干扰电压,干扰信号耦合进视频信号中,产生图像干扰情况。 3、低频干扰(20Hz-nKHz低频噪声干扰) 干扰现象:图像出现静止水平条纹。 现象原因:由于声音、数据等信号属于低频信号,其频带狭窄在传输时只用到20Hz~nKHZ,几乎采用任何种类的电缆都可以传输,一般只受交流声干扰。用于传输视频信号的同轴电缆,其屏蔽层抗干扰曲线特性表明干扰信号频率越高其屏蔽性能越好,对于诸如载波电话、有线电台等低频率信号干扰反而显得苍白无力。低频干扰信号同样会在传输线缆上产生干扰电压,从而影响图像质量。 4、高频干扰 干扰现象:图像出现雪花点或高亮点。 现象原因:虽然视频传输所用同轴电缆抗高频干扰要比抗低频干扰性能强,但是强高频干扰信号还会对

信号抗干扰解决办法

信号抗干扰解决办法 The Standardization Office was revised on the afternoon of December 13, 2020

解决现场的信号干扰问题 时间:2010-04-24 22:30来源:作者:点击: 17次 生产过程监视和控制中要用到多种自动化仪表、计算机及相应执行机构,过程中的信号既有微弱到毫伏级的小信号,又有数十伏的大信号,而且还有高达数千伏、数百安培的信号要处理。从频率上讲,有直流低频范围的,也有高频/脉冲尖峰。设备、仪表间互扰成为系统调试中必须要解决的问题。除了电磁屏蔽之外,解决各种设备、仪表的“地”,也即信号参考点的电位差,将成为重要课题。因为不同设备、仪表的信号要互传互送,那就存在信号参考点问题。换句话说,要使信号完整传送,理想化的情况是所有设备、仪表中的信号有一个共同的参考点,也即共有一个“地”。进一步讲,所有设备、仪表的信号的参考点之间电位为“零”。但是在实际环境中,这一点几乎是不可及的,这里面除了各个设备、仪表“地”之间连线电阻产生的电压降之外,尚有各种设备、仪表在不同环境受到干扰不同,以及导线接点经受风吹雨淋,导致接点质量下降等诸多因素。致使各个“地”之间有差别。以示意图一为例. 图一 PLC与外接仪表示意图 图一中标明有两个现场设备仪表向PLC传送信号以及PLC向两台现场设备仪表发出信号。假定传送的均为0-10VDC信号。理想情况,PLC及两个现场设备“地”电位完全相等。传送过程中又没有干扰,这样从PLC输入来看,接收正确。但正如前所述,两个现场设备通常有“地”电位差,举例来讲,1#设备“地”与PLC“地”同电位,2#设备比它们的“地”电位高,这样1#设备给PLC的信号为0-10V,而2#设备给PLC的为误差就产生了,同时1#,2#设备的“地”线在PLC汇合联接。将电压施加在PLC地线条上,有可能损坏PLC局部“地”线,同时在显示错误数据,由此引起的问题在现场调试中屡有出现。例如某大型建材公司的生产线调试中,使用美国AB-PLC接国内某厂家手操器。AB-PLC的数据采集板有每八个通道,八个通道共用一个12位A/D,经过变换

视频信号的传输方式

视频信号的传输方式 监控系统中,视频信号的传输是整个系统非常重要的一环,也是广大工程商挺挠头的一件事,随着工程中监控设备价格的透明性和工程商竞争的加剧,信号传输部分的费用越来越受到大家的重视;目前,在监控系统中最常用的传输介质是同轴电缆、双绞线、光纤等方式,对于不同场合、不同的传输距离,怎样能保证传输质量、降低费用,根据多年的工程经验,在这里我们作一些介绍供参考。 一、同轴电缆传输 (一)通过同轴电缆传输视频基带信号视频基带信号也就是通常讲的视频信号,它的带宽是0-6MHZ,一般来讲,信号频率越高,衰减越大,一般设计时只需考虑保证高频信号的幅度就能满足系统的要求,视频信号在5.8MHZ的衰减如下:SYV75-3 96编国标视频电缆衰减30dB/1000米, SYV75-5 96编国标视频电缆衰减19dB/1000米,,SYV75-7 96编国标视频电缆衰减13dB/1000米;如对图象质量要求很高,周围无干扰的情况下,75-3电缆只能传输100米,75-5传输160米,75-7传输230米;实际应用中,存在一些不确定的因素,如选择的摄像机不同、周围环境的干扰等,一般来讲,75-3电缆可以传输150米、75-5可以传输

300米、75-7可以传输500米;对于传输更远距离,可以采用视频放大器(视频恢复器)等设备,对信号进行放大和补偿,可以传输2-3公里;另外,通过一根同轴电缆还可以实现视频信号和控制信号的共同传输,即同轴视控传输技术,下面简单介绍一下该技术:在监控系统中,需要传输的信号主要有两种,一个是图像信号,另一个是控制信号。其中视频信号的流向是从前端的摄像机流向控制中心;而控制信号则是从控制中心流向前端的摄像机(包括镜头)、云台等受控对像;并且,流向前端的控制信号,一般又是通过设置在前端的解码器解码后再去控制摄像机和云台等受控对像的。同轴视控传输技术是利用一根视频电缆便可同时传输来自摄象机的视频信号以及对云台、镜头的控制功能,这种传输方式节省材料和成本、施工方便、维修简单化,在系统扩展和改造时更具灵活性;同轴视控实现方法有两类:一是采用频率分割,即把控制信号调制在与视频信号不同的频率范围内,然后同视频信号复合在一起传送,再在现场做解调将两者区分开;由于采用频率分割技术,为了完全分割两个不同的频率,需要使用带通滤波器、带通陷波器和低通滤波器、低通陷波器,这样就影响了视频信号的传输效果;由于需将控制信号调制在视频信号频率的上方,频率越高,衰减越大,这样传输距离受到限制;另外方法是采用双调制的方

信号抗干扰解决办法

解决现场的信号干扰问题 时间:2010-04-24 22:30来源:作者:点击: 17次 生产过程监视和控制中要用到多种自动化仪表、计算机及相应执行机构,过程中的信号既有微弱到毫伏级的小信号,又有数十伏的大信号,而且还有高达数千伏、数百安培的信号要处理。从频率上讲,有直流低频范围的,也有高频/脉冲尖峰。设备、仪表间互扰成为系统调试中必须要解决的问题。除了电磁屏蔽之外,解决各种设备、仪表的“地”,也即信号参考点的电位差,将成为重要课题。因为不同设备、仪表的信号要互传互送,那就存在信号参考点问题。换句话说,要使信号完整传送,理想化的情况是所有设备、仪表中的信号有一个共同的参考点,也即共有一个“地”。进一步讲,所有设备、仪表的信号的参考点之间电位为“零”。但是在实际环境中,这一点几乎是不可及的,这里面除了各个设备、仪表“地”之间连线电阻产生的电压降之外,尚有各种设备、仪表在不同环境受到干扰不同,以及导线接点经受风吹雨淋,导致接点质量下降等诸多因素。致使各个“地”之间有差别。以示意图一为例.

图一PLC与外接仪表示意图 图一中标明有两个现场设备仪表向PLC传送信号以及PLC向两台现场设备仪表发出信号。假定传送的均为0-10VDC信号。理想情况,PLC及两个现场设备“地”电位完全相等。传送过程中又没有干扰,这样从PLC输入来看,接收正确。但正如前所述,两个现场设备通常有“地”电位差,举例来讲,1#设备“地”与PLC“地”同电位,2#设备比它们的“地”电位高0.1V,这样1#设备给PLC的信号为0-10V,而2#设备给PLC的为0.1V-10.1V,误差就产生了,同时1#,2#设备的“地”线在PLC汇合联接。将0.1V电压施加在PLC地线条上,有可能损坏PLC局部“地”线,同时在显示错误数据,由此引起的问题在现场调试中屡有出现。例如某大型建材公司的生产线调试中,使用美国AB-PLC接国内某厂家手操器。AB-PLC的数据采集板有每八个通道,八个通道共用一个12位A/D,经过变换后,由12个光耦实现与主机隔离。它的八个通道输入之间并没有隔离,致使八个通道输入信号每个单独接入采集板均正常,接入两个或多于两个外部信号时,显示数字乱跳,故障无法排除。又如航天某部门测试发动机各点温度,使用K型偶作为传感器,同上述相似,仅测试一点一切正常,但是向主机接入两点或两点以上温度时,显示的温度明显错误。这两种情况在接入隔离器后,均正常。隔离器之所以能起到这个作用,就是它具有使输入/输出在电气上完全隔离的特点。换句话讲,输入/输出之间没有共同“地”,外来信号不管是0-10V,或带着+10V干扰的10V-20V经隔离后均为0-10V,也即隔离后新建立的PLC“地”与外部设备、仪表“地”没关系。正是由于这个原因,也实现输入到PLC主机

视频监控中的常见几种视频传输方式介绍

视频监控中的常见几种视频传输方式介绍 目前,在安防监控行业中用来传输图象信号的方式有很多,但主要传输介质是同轴电缆、双绞线和光纤,对应的传输设备分别是同轴视频放大器、双绞线视频传输设备和光端机。同轴电缆是较早使用,也是最传统的视频传输方式。后来,由于远距离和大范围图象监控的需要以及人们对监控图象质量的要求提高,监控网络中开始大量使用光纤来传输图象信号。虽然双绞线被使用到图象监控网络中是近来的事,但双绞线的视频平衡传输技术是很早就出现了。它也是视频传输技术的一个分支。下面详细介绍下常见视频传输方式: 1、视频基带传输:是最为传统的电视监控传输方式,对0~6MHz视频基带信号不作任何处理,通过同轴电缆(非平衡)直接传输模拟信号。其优点是:短距离传输图像信号损失小,造价低廉,系统稳定。缺点:传输距离短,300米以上高频分量衰减较大,无法保证图像质量;一路视频信号需布一根电缆,传输控制信号需另布电缆;其结构为星形结构,布线量大、维护困难、可扩展性差,适合小系统。 2、光纤传输:常见的有模拟光端机和数字光端机,是解决几十甚至几百公里电视监控传输的最佳解决方式,通过把视频及控制信号转换为激光信号在光纤中传输。其优点是:传输距离远、衰减小,抗干扰性能好,适合远距离传输。其缺点是:对于几公里内监控信号传输不够经济;光熔接及维护需专业技术人员及设备操作处理,维护技术要求高,不易升级扩容。 3、网络传输:是解决城域间远距离、点位极其分散的监控传输方式,采用MPEG2/ 4、 H.264音视频压缩格式传输监控信号。其优点是:采用网络视频服务器作为监控信号上传设备,只要有Internet网络的地方,安装上远程监控软件就可监看和控制。其缺点是:受网络带宽和速度的限制,目前的ADSL只能传输小画面、低画质的图像;每秒只能传输几到十几帧图像,动画效果十分明显并有延时,无法做到实时监控。 4、微波传输:是解决几公里甚至几十公里不易布线场所监控传输的解决方式之一。采用调频调制或调幅调制的办法,将图像搭载到高频载波上,转换为高频电磁波在空中传输。其优点是:综合成本低,性能更稳定,省去布线及线缆维护费用;可动态实时传输广播级图像,图像传输清晰度不错,而且完全实时;组网灵活,可扩展性好,即插即用;维护费用低。其缺点是:由于采用微波传输,频段在1GHz以上,常用的有L波段(1.0~2.0GHz)、S波段(2.0~3.0GHz)、Ku波段(10~12GHz),传输环境是开放的空间,如果在大城市使用,无线电波比较复杂,相对容易受外界电磁干扰;微波信号为直线传输,中间不能有山体、建筑物遮挡;如果有障碍物,需要加中继加以解决,Ku波段受天气影响较为严重,尤其是雨雪天气会有比较严重的雨衰现象。不过现在也有数字微波视频传输产品,抗干扰能力和可扩

解决监控视频干扰的二个方法

解决监控视频干扰的二 个方法 The manuscript was revised on the evening of 2021

解决监控视频干扰的二个方法 第一:在建设的时候就要考虑 视频监控信号传输的传统方式为视频基带传输。视频基带传输是指视频信号不经过频率变换等任何处理,由图像摄取端通过同轴电缆直接传输到监视端的传输方式。图像在传输时直接利用同轴电缆的0~6MHz来传输,非常易受到干扰,使图像出现网纹、横纹和噪点影响监视效果。对于基带传输视频干扰,从干扰源角度分为交流声干扰和空间电磁波干扰,从干扰切入方式分为传导式干扰和辐射式干扰。 闭路电视监控系统,在建筑物内的应用越来越多,由于建筑物内的电气环境比较复杂,容易形成各种干扰源,如果未采取恰当的防范措施,各种干扰就会通过传输线缆进入闭路电视监控系统,造成视频图象质量下降、系统控制失灵、运行不稳定等现象。 一、干扰是如何产生的 闭路电视监控系统中传输信号的类型主要有两类:一类是模拟视频信号,传输路径由摄像机到矩阵,从矩阵再到显示器或录像机;一类是数字信号包括矩阵与摄像机之间的控制信息传输,矩阵中计算机部分的数字信号。一般设备成为干扰源的可能性很小,因此干扰主要通过信号传输路径进入系统。闭路电视监控系统的信号传输路径是,能通过视频电缆和传输控制信号的双绞线耦合进系统的干扰有:各种高频噪声比如大电感负载启停,地电位不等引入的工频干扰,平衡传输线路失衡使抑噪能力下降将共频干扰转成了差模干扰,传输线上阻抗不匹配造成信号的反射使信号传输质量下降,静电放电沿传输线进入设备造成接口芯片损伤或损坏。具体表现如下:

做安防工程,经常遇到的就是干扰问题,现实中的干扰现象越来越多,如果按照工艺要求施工的话,工程量将非常巨大。所有的管线要地埋或者穿屏蔽,电源线缆与视频线缆要隔开距离传输,另外线缆不能太长,75-5的视频线缆不能超过500米。另外在布线的过程中暴力布线很严重,往往会将线缆的屏

常见视频信号传输特性(精)

常见视频信号传输特性 1. 分量视频(Component Signal) 摄像机的光学系统将景像的光束分解为三种基本的彩色:红色、绿色和蓝色。感光器材再把三种单色图像转换成分离的电信号。为了识别图像的左边沿和顶部,电信号中附加有同步信息。显示终端与摄像机的同步信息可以附加在绿色通道上,有时也附加在所有的三个通道,甚至另作为一个或两个独立的通道进行传输,下面是几种常见的同步信号附加模式和表示方法: - RGsB:同步信号附加在绿色通道,三根75Ω同轴电缆传输。 - RsGsBs:同步信号附加在红、绿、蓝三个通道,三根75Ω同轴电缆传输。 - RGBS:同步信号作为一个独立通道,四根75Ω同轴电缆传输。 - RGBHV:同步信号作为行、场二个独立通道,五根75Ω同轴电缆传输。 RGB分量视频可以产生从摄像机到显示终端的高质量图像,但传输这样的信号至少需要三个独立通道分别处理,使信号具有相同的增益、直流偏置、时间延迟和频率响应,分量视频的传输特性如下: - 传输介质:3-5根带屏蔽的同轴电缆 - 传输阻抗:75Ω- 常用接头:3-5×BNC接头 - 接线标准:红色=红基色(R)信号线,绿色=绿基色(G)信号线,蓝色=蓝基色(B)信号线,黑色=行同步(H)信号线,黄色=场同步(V)信号线,公共地=屏蔽网线(见附图VP-03) 2. 复合视频(Composite-Video)

由于分量视频信号各个通道间的增益不等或直流偏置的误差,会使终端显示的彩色产生细微的变化。同时,可能由于多条传输电缆的长度误差或者采用了不同的传输路径,这将会使彩色信号产生定时偏离,导致图像边缘模糊不清,严重时甚至出现多个分离的图像。 插入NTSC或PAL编解码器使视频信号易于处理而且是沿单线传输,这就是复合视频。复合视频格式是折中解决长距离传输的方式,色度和亮度共享 4.2MHz(NTSC)或 5.0-5.5MHz(PAL)的频率带宽,互相之间有比较大的串扰,所以还是要考虑频率响应和定时问题,应当避免使用多级编解码器,复合视频的传输特性如下: - 传输介质:单根带屏蔽的同轴电缆 - 传输阻抗:75?- 常用接头:BNC接头、莲花(RCA)接头 - 接线标准:插针=同轴信号线,外壳公共地=屏蔽网线(见附图VP-01) 3. 色差信号(Y,R-Y,B-Y) 对视频信号进行处理而传输图像时,RGB分量视频的方式并不是带宽利用率最高的方法,原因是三个分量信号均需要相同的带宽。 人类视觉对亮度细节变化的感受比彩色的变化更加灵敏,因此我们可以将整个带宽用于亮度信息,把剩余可用带宽用于色差信息,以提高信号的带宽利用率。 将视频信号分量处理为亮度和色差信号,可以减少应当传输的信息量。用一个全带宽亮度通道(Y)表示视频信号的亮度细节,两个色差通道(R-Y和B-Y)的带宽限制在亮度带宽的大约一半,仍可提供足够的彩色信息。采用这种方法,可以通过简单的线性矩阵实现RGB与Y,R-Y,B-Y的转换。色差通道的带宽限制在线性矩阵之后实现,将色差信号恢复为RGB分量视频显示时,亮度细节按全带宽得以恢复,而彩色细节会限制在可以接受的范围内。 色差信号也有多种不同的格式,有着不同的应用范围,在普遍使用的复合PAL、SECAM和NTSC制式中,编码系数是各不相同的,见下表:

抗干扰处理方法(1)

PLC抗干扰处理办法 一、模拟量抗干扰处理办法 1.1、模拟量类型: 1.1.1模拟量输入类型(可根据客户需求定制) 1.1.2 模拟量输出类型 1.2模拟量输入抗干扰处理办法 1.2.1热电偶 特点: 1.测温范围广: 2.K型:抗氧化性能强,宜在氧化性、惰性气氛中连续使用,长期使用温度1000℃,短期1200℃。 3.E型:在常用热电偶中,其热电动势最大,即灵敏度最高。宜在氧化性、惰性气氛中连续使用 4.J型:既可用于氧化性气氛(使用温度上限750℃),也可用于还原性气氛(使用温度上限950℃),并且耐H2及CO气体腐蚀,多用于炼油及化工; 5.S型:抗氧化性能强,宜在氧化性、惰性气氛中连续使用,长期使用温度1400℃,短期

1600℃。在所有热电偶中,S分度号的精确度等级最高,通常用作标准热电偶; 注意: 1.热电偶不能和强电放在一个线槽内 2.使用隔离型热电偶(信号线与屏蔽线分开的热电偶) 处理方法: 1.检测冷端温度,冷端(查看冷端寄存器)与室温(环境温度)是否一致,如有偏差,现将冷端修正准确; 1.冷端温度温度正常时,将EK热电偶放在外部,不接其他负载,且不能与强电放在一个线槽时检测温度(AD模拟量对应寄存器) 2.将机壳接地,EK模拟量的线上加锡箔纸,并与其它干扰源隔开 3.加104瓷片电容、磁环做防干扰处理 4.开关量信号和模拟量信号分开走,模拟信号最好采用单独屏蔽线 5.集成电路或晶体管设备的输入输出信号线,必须使用屏蔽电缆,在输入输出侧悬空,而在控制器侧接地。 6.信号线缆要远离强干扰源,如电焊机、大功率硅整流装置和大型动力设备。 7.交流输入输出信号与直流输入输出信号应分别使用各自的电缆,并按传输信号种类分层敷设 8.采用隔离器,把信号源与PLC隔离开,通过隔离器在把信号输入到PLC。 9.采用隔离变送器,将温度信号通过隔离变送器转换成电压信号或电流信号在送入到PLC。 1.2.2 PT100 特点: 1.测温范围:-99.9~499.9℃,线距越长线损越大 注意: 1.三线制PT100需要并成两线制接线,AD端接信号线,其余两根接在GND端 2.线距1.5m左右,若测温距离长需使用特殊的延长线(线损小) 3.滤波,(1)电容滤波:如果串模干扰频率比被测信号频率高,则采用输入低同滤波器来抑制高频串模干扰,(这里我们可以采用一个47UF\16V的电解电容来处理)(2)数字滤波:PLC内部有特需寄存器,可以改变数值的大小来确定温度采集的频率。 4.采用双绞线作为信号线:串模干扰和被测信号的频率相当,这时很难用滤波的方法消除,此时可在信号源到PLC之间选用带屏蔽层的双绞线作为信号电缆,并确保接地正确可靠。采用双绞线作为信号线的目的是减少电磁干扰,双绞线能使各个小环路的感应电势相互抵消。 5.信号线缆要远离强干扰源,如电焊机、大功率硅整流装置和大型动力设备。 6.交流输入输出信号与直流输入输出信号应分别使用各自的电缆,并按传输信号种类分层敷设 7,采用隔离器,把信号源与PLC隔离开,通过隔离器在把信号输入到PLC。 8,采用隔离变送器,将温度信号通过隔离变送器转换成电压信号或电流信号在送入到PLC 1.2.3 NTC10K/50K/100K

视频信号干扰原因和解决方法

视频信号干扰原因和解决方法 2009-05-13 11:39 在电厂,变电站,电台,,泵站,基站,车间等恶劣电磁环境下,有必要事先考虑传输线缆,最好是用光缆、其次用双绞线传输,再次用同轴视频线传输。 以下转摘EIE工程师的技术文章,他提供了全面的解决思路,请参考;如果是真干扰,用他们公司的加权信号抗干扰器的效果还是明显的。 1.BNC头接触不良会造成干扰——属于施工水平和经验问题,也有BNC公母头质量问题和75/50欧姆混卖混用问题; 2.电缆伤断造成干扰:穿管时拉断电缆,垂直或倾斜自承重布线拉断电缆——如电梯视频线,弱电井多路捆绑垂直走线等——属于施工水平和经验问题; 3.使用了劣质电缆,产生了干扰,劣质线质甚至用铁包铜来卖; 4.摄像机因素造成干扰:摄像机本身质量问题,输出视频信号中含有干扰信号。 5.摄像机电源因素造成干扰:电源适配器质量不好,波纹太大,实际供电功率不够;集中供电线路衰减太大,电压太低;设备漏电等。 6.主机问题:相邻通道串扰,采集卡或主机质量问题等产生了干扰; 7.引入了电网传导干扰——电源没有净化; 8.云台运动时,视频信号闪动;红外夜视晚上背景有噪点,画面一层白雾等,以为是干扰; 9.系统多点接大地引入地电位环路干扰:摄像机安装在接地金属物体上,金属立柱,金属塔架,接触了建筑物钢筋,电缆破损触到接地金属体等等——属于施工经验不足,不当的失误;或者使用了不合格防雷器,被个别防雷厂家“等电位体连接”误导,把摄像机外壳接了大地。 10.其他工程中各种“低级错误”造成的干扰现象。解决这类主观因素造成的假干扰,从外部找原因,用抗干扰设备来解决,您觉得思路对吗? 问题是工程中发现的是“干扰现象”,这类与主观因素有关的“干扰现象”,并没有打上“人工制造的”标签。工程中最现实,最急切的问题是,怎么判断它是“假干扰”呢? “真干扰”是指空间电磁波与传输线发生电磁耦合,在传输线上产生了感应电动势,干扰感应电动势进入信号传输回路,在信号有效负载上,产生了干扰信号电压。这就是安防工程的“真干扰”。

如何消除变频器对PLC模拟量的干扰

如何消除变频器对PLC模拟量的干扰 在控制系统中,使用PLC的模拟量控制多台变频器,由于变频器本身产生强干扰信号的特性和模拟量抗干扰能力不与数字量抗干扰能力强的特性;因此为了最大程度的消除变频器对模拟量的干扰,在布线和接地等方面就需要采取更加严密的措施。 一.关于布线 1.信号线与动力线必须分开走线 使用模拟量信号进行远程控制变频器时,为了减少模拟量受来自变频器和其它设备的干扰,请将控制变频器的信号线与强电回路(主回路及顺控回路)分开走线。距离应在30cm 以上。即使在控制柜内,同样要保持这样的接线规范。该信号与变频器之间的控制回路线最长不得超过50m。 2.信号线与动力线必须分别放置在不同的金属管道或者金属软管内部 由于水系统的两台富士变频器离控制柜较远分别为30m和20m,因此连接PLC和变频器的信号线如果不放置在金属管道内,极易受到变频器和外部设备的干扰;同时由于变频器无内置的电抗器,所以变频器的输入和输出级动力线对外部会产生极强的干扰,因此放置信号线的金属管或金属软管一直要延伸到变频器的控制端子处,以保证信号线与动力线的彻底分开。 3.模拟量控制信号线应使用双股绞合屏蔽线,电线规格为0.5~2mm2。在接线时一定 要注意,电缆剥线要尽可能的短(5-7mm左右),同时对剥线以后的屏蔽层要用绝缘胶布包起来,以防止屏蔽线与其它设备接触引入干扰。 4.为了提高接线的简易性和可靠性,推荐信号线上使用压线棒端子。 5.如无使用压线端子,接线时请注意。 二.关于接地 1.变频器的接地应该与PLC控制回路单独接地,在不能够保证单独接地的情况下,为了减少变频器对控制器的干扰,控制回路接地可以浮空,但变频器一定要保证可靠接地。在控制系统中建议将模拟量信号线的屏蔽线两端都浮空,同时由于在机组上PLC与变频器共用一个大地,因此建议在可能的情况下,将PLC单独接地或者将PLC与机组地绝缘开来。 2.变频器的接地 ·400V级:C种接地(接地电阻10Ω以下)。 ·接地线切勿与焊机及动力设备共用。 ·接地线请按照电气设备技术基准所规定的导线线径规格。 如35KW的变频器接地线线径推荐为22mm2,87KW的接地线线径推荐为50mm2。 ·接地线在可能范围内尽量短。由于变频器产生漏电流,与接地点距离太远则接地端子的电位不安定。 ·使用两台以上变频器的场合,请勿将接地线形成回路。

PLC控制系统解决现场信号干扰源的方法

PLC控制系统解决现场信号干扰源的方法 随着科学技术的发展,PLC在工业控制中的应用越来越广泛。PLC控制系统的可靠性直接影响到工业企业的安全生产和经济运行,系统的干扰能力是关系到整个系统可靠运行的关键。自动化系统中所使用的各种类型PLC,有的是集中安装在控制室,有的是安装在生产现场和各种电机设备上,它们大多处在强电电路和强电设备形成的恶劣电磁环境中。要提高PLC控制系统可靠性,设计人员只有预先了解到各种干扰才能有效保证系统可靠运行。 电磁干扰源及对系统的干扰 影响PLC控制系统的干扰源于一般影响工业控制设备的干扰源一样,大都产生在电流或电压剧烈变化的部位,这些电荷剧烈移动的部位就是噪声源,即干扰源。 干扰类型通常按干扰产生的原因、噪声的干扰模式和噪声的波形性质的不同 划分。其中:按噪声产生的原因不同,分为放电噪声、偶发噪声等:按声音干扰 模式不同,分为共模干扰和差模干扰是一种比较常用的分类方法。共模干扰是 信号对地面的电位差,主要是由电网串入,、地电位差及空间电磁辐射在信号线 上感应的共态电压所加形成。共模电压有时较大,特别是采用隔离性能差的电 器供电室,变送器输出信号的共模电压普遍较高,有的可高达130V以上。共模电压通过不对称电路可转换成共模电压,直接影响测控信号,造成元器件坏, 这种共模干扰可为直流、亦可谓交流。共模干扰是指用于信号两级间得干扰电压, 主要由空间电磁场在信号间耦合感应及由不平衡电路转换共模干扰所形成的电压,这种让直接叠加在信号上,直接影响测量与控制精度。 PLC控制系统中电磁干扰的主要来源有哪些呢? 1) 来自空间的辐射干扰 空间的辐射电磁场主要是由电力网络、电气设备的暂态过程、雷电、无线电广播、电视、雷达、高频感应加热设备等产生的,通常称为辐射干扰。其分布极 为复杂,若plc系统置于所设频场内,就回收到辐射干扰,其影响主要通过两 条路劲,一是直接对PLC内部的辐射,由电路感应产生干扰,而是对PLC通信内网络的辐射,出通信线路的感应引入干扰。辐射干扰与现场设备所产生的电磁 干场大小,特别是频率有关,一般通过设置屏蔽电缆和PLC局部屏蔽及高压泻放元件进行保护。 2) 来自系统外引线的干扰 主要通过电源和信号线引入,通常称为传导干扰。这种干扰在我国工业现场 教严重。 3) 来自电源的干扰 实践证明,因电源引入的干扰造成控制系统故障的情况很多,在,工程调式中遇到过,后更换隔离性能较高的PLC电源。问题才能得到解决。 PLC系统的正常供电电源均由电网供电,由于电网覆盖范围广,将受到所有 空间电磁干扰而在线路上感应电压和电路,尤其是电网内部的变化,开关操作浪涌、大型电力设备启停、交直流转动装置引起的谐波、电网短路暂态冲击等,都 通过社电线路到电源边PLC电源通常采用隔离电源,但其结构及制造工艺因素使 其隔离性并不理想。实际上,由于分布参数特别是分布电容的存在,绝对隔离 室不可能的。 4) 来自接地系统混乱时引入的干扰

常见的视频传输方式

常见的视频传输方式 1、视频基带传输:是最为传统的电视监控传输方式,对0~6MHz视频基带信号不作任何处理,通过同轴电缆(非平衡)直接传输模拟信号。其优点是:短距离传输图像信号损失小,造价低廉,系统稳定。缺点:传输距离短,300米以上高频分量衰减较大,无法保证图像质量;一路视频信号需布一根电缆,传输控制信号需另布电缆;其结构为星形结构,布线量大、维护困难、可扩展性差,适合小系统。 2、光纤传输:常见的有模拟光端机和数字光端机,是解决几十甚至几百公里电视监控传输的最佳解决方式,通过把视频及控制信号转换为激光信号在光纤中传输。其优点是:传输距离远、衰减小,抗干扰性能好,适合远距离传输。其缺点是:对于几公里内监控信号传输不够经济;光熔接及维护需专业技术人员及设备操作处理,维护技术要求高,不易 升级扩容。 3、网络传输:是解决城域间远距离、点位极其分散的监控传输方式,采用MPEG2/ 4、 H.264音视频压缩格式传输监控信号。其优点是:采用网络视频服务器作为监控信号上传设备,只要有Internet网络的地方,安装上远程监控软件就可监看和控制。其缺点是:受网络带宽和速度的限制,目前的ADSL只能传输小画面、低画质的图像;每秒只能传输几到十几帧图像,动画效果十分明显并有延时,无法做到实时监控。 4、微波传输:是解决几公里甚至几十公里不易布线场所监控传输的解决方式之一。采用调频调制或调幅调制的办法,将图像搭载到高频载波上,转换为高频电磁波在空中传输。其优点是:综合成本低,性能更稳定,省去布线及线缆维护费用;可动态实时传输广播级图像,图像传输清晰度不错,而且完全实时;组网灵活,可扩展性好,即插即用;维护费用低。其缺点是:由于采用微波传输,频段在1GHz以上,常用的有L波段(1.0~2.0GHz)、S波段(2.0~3.0GHz)、Ku波段(10~12GHz),传输环境是开放的空间,如果在大城市使用,无线电波比较复杂,相对容易受外界电磁干扰;微波信号为直线传输,中间不能有山体、建筑物遮挡;如果有障碍物,需要加中继加以解决,Ku波段受天气影响较为严重,尤其是雨雪天气会有比较严重的雨衰现象。不过现在也有数字微波视频传输产品,抗干扰能 力和可扩展性都提高不少。 5、双绞线传输(平衡传输):也是视频基带传输的一种,将75Ω的非平衡模式转换为平衡模式来传输的。是解决监控图像1Km内传输,电磁环境相对复杂、场合比较好的解决方式,将监控图像信号处理通过平衡对称方式传输。其优点是:布线简易、成本低廉、抗共模干忧性能强。其缺点是:只能解决1Km以内监控图像传输,而且一根双绞线只能传输一路图像,不适合应用在大中型监控中;双绞线质地脆弱抗老化能力差,不适于野外传输; 双绞线传输高频分量衰减较大,图像颜色会受到很大损失。 6、宽频共缆传输:视频采用调幅调制、伴音调频搭载、FSK数据信号调制等技术,将数十路监控图像、伴音、控制及报警信号集成到“一根”同轴电缆中双向传输。其优点是:充分利用了同轴电缆的资源空间,三十路音视频及控制信号在同一根电缆中双向传输、实

如何消除变频器对模拟量的干扰

如何消除变频器对模拟量的干扰 在控制系统中,使用PLC的模拟量控制多台变频器,由于变频器本身产生强干扰信号的特性和模拟量抗干扰能力不与数字量抗干扰能力强的特性;因此为了最大程度的消除变频器对模拟量的干扰,在布线和接地等方面就需要采取更加严密的措施。 一.关于布线 1.信号线与动力线必须分开走线 使用模拟量信号进行远程控制变频器时,为了减少模拟量受来自变频器和其它设备的干扰,请将控制变频器的信号线与强电回路(主回路及顺控回路)分开走线。距离应在30cm 以上。即使在控制柜内,同样要保持这样的接线规范。该信号与变频器之间的控制回路线最长不得超过50m。 2.信号线与动力线必须分别放置在不同的金属管道或者金属软管内部 由于水系统的两台富士变频器离控制柜较远分别为30m 和20m,因此连接PLC和变频器的信号线如果不放置在金属管道内,极易受到变频器和外部设备的干扰;同时由于变频器无内置的电抗器,所以变频器的输入和输出级动力线对外部会产生极强的干扰,因此放置信号线的金属管或金属软管一直要延伸到变频器的控制端子处,以保证信号线与动力线的彻底分开。

3.模拟量控制信号线应使用双股绞合屏蔽线,电线规格为0.5~2mm2。在接线时一定要注意,电缆剥线要尽可能的短(5-7mm左右),同时对剥线以后的屏蔽层要用绝缘胶布包起来,以防止屏蔽线与其它设备接触引入干扰。 4.为了提高接线的简易性和可靠性,推荐信号线上使用压线棒端子。 二.关于接地 1.变频器的接地应该与PLC控制回路单独接地,在不能够保证单独接地的情况下,为了减少变频器对控制器的干扰,控制回路接地可以浮空,但变频器一定要保证可靠接地。在控制系统中建议将模拟量信号线的屏蔽线两端都浮空,同时由于在机组上PLC与变频器共用一个大地,因此建议在可能的情况下,将PLC单独接地或者将PLC与机组地绝缘开来。2.变频器的接地 ·400V级:C种接地(接地电阻10Ω以下)。 ·接地线切勿与焊机及动力设备共用。 ·接地线请按照电气设备技术基准所规定的导线线径规格。 如35KW的变频器接地线线径推荐为22mm2,87KW的接地线线径推荐为50mm2。 ·接地线在可能范围内尽量短。由于变频器产生漏电流,与接地点距离太远则接地端子的电位不安定。

电梯监控干扰解决方法方式

电梯监控抗干扰方式 内容题要:基于对电梯视频监控干扰产生原理的研究成果,对干扰形成和抗干扰技术合理分析取得了理论和实践统一的成果,提供了电梯监控系统设计与施工中更为实用的一些抗干扰技术措施。本文只涉及电梯监控工程中同轴视频传输的抗干扰技术,供设计和施工参考。 在闭路监控工程中,电梯监控视频干扰问题,一直是最常见、最难对付、也是最受关注的问题之一。本文阐明:只要掌握了干扰产生原理,电梯抗干扰工程问题也将迎刃而解。 一、掌握常用同轴电缆类型及特点 1. 考虑传输衰减:当楼层很高,距离监控中心又较远的情况下,应慎重考虑传输衰减问题。选择电缆时,大家都知道粗缆优于细缆,但还应了解SYWV物理发泡电缆优于实心SYV电缆,高编电缆优于低编电缆,铜芯缆优于"铜包钢"缆,铜编网优于铝镁合金编网; 2. 关注高频衰减:低频成分的亮度/对比度衰减容易发现和解决,电缆最重要的传输特性就是频率越高衰减越大,高频衰减主要影响清晰度和分辨率,要特别注意总结图像质量的观察方法。这方面电缆特点和规律是:粗缆优于细缆,发泡优于实心,但同型号的"高编和低编高频衰减一样"; 3. 考虑电缆寿命:软性电缆优于普通电缆,细缆优于粗缆;还有一个最易被忽视的问题:电缆各层间的粘合力,即当电缆各层之间纵向相反方向受力时,是否会发生相对滑动,高层电梯缆长可达100米垂直布线,电缆外护套固定在随行电缆上,这是一种"软固定",固定时不允许电缆变形(破坏同轴性),这样一来,在电梯反复运动中电缆内部层,在重力作用下,会逐渐"下滑",慢慢拉断编织网或芯线,表现为信号逐步减弱,干扰越来越大;目前还没有这项电缆技术标准,简单检查方法是取一米电缆,在一头剥开各层,一人用手握住电缆两端,另一人用钳子拉电缆的内层:依次拉芯线,绝缘层,编织网,体验粘合力的大小,做出合理估计,粘合力差、易滑动的尽量不选用。这项性能很多电缆并不好,应慎重选择。 二、干扰产生原理简介 1. 电梯井内通常布置了动力、照明、风扇、控制、通信等线缆,各种电缆都会产生电磁辐射。与天线接收原理相同,同轴电缆也会"接收"这些干扰,即干扰电磁场在电缆上产生干扰感应电流,这个干扰感应电流也就会在电缆外导体(编织网)纵向电阻上产生干扰感应电压(电动势),这个干扰感应电压刚好串联在视频信号传输回路"长长的地线"中,形成干扰; 2. 更重要的是这些随行电缆都是与视频电缆并行,且近距离捆扎在一起。这就形成了接近"最佳最有效的"干扰耦合关系。在一般工程中可以采用穿金属管

常见的图像干扰及其解决方法

说起视频干扰,要讲一下视频监控信号传输的传统方式视频基带传输。所谓的视频基带传输是指视频信号不经过频率变换等任何处理由图像摄取端通过同轴电缆直接传输到监视端的传输方式,图像在传输时直接利用同轴电缆的0~6MHz来传输,非常容易受到干扰,使图像出现网纹、横纹和噪点影响监视效果。对于基带传输视频干扰,从干扰源角度分为交流声干扰和空间电磁波干扰,从干扰切入方式分为传导式干扰和辐射式干扰。下面分析一下常见视频干扰现象及其原因。 1、工频干扰 干扰现象:图像出现雪花噪点、网纹或很宽暗横带持续不断滚动。 干扰原因:此现象是当摄像端与监控设备端同时接地时,由于地电阻及电缆外皮电阻的存在,在两地之间电力系统各相负载不平衡或接地方式不同引起50Hz电位差,从而产生工频干扰所致。地电位使两接地端存在电压降,电压降加在屏蔽层两端并与大地(地电阻)构成回路产生地电流,地电流经过线缆屏蔽层形成干扰电压,地电流的部分谐波分量落入视频芯线,致使芯线与屏蔽层之间产生干扰电位,使干扰信号加入视频信号中对监控图像形成干扰。 2、空间电磁波干扰 干扰现象:图像出现较密的斜形网纹,严重时会淹没图像。 干扰原因:当监控电缆在空中架设时,空中电磁波干扰信号所产生的空间电场会作用于监控传输线路,使线路两端而产生相当大的电磁干扰电压,其频率约在200Hz~2.3MHz。由于电缆中电位差的存在,使电缆屏蔽层产生干扰电流,而一般情况下摄像端和监控设备端均为接地状态,这就使干扰电流通过线缆两端接地点与大地形成回路,导致终端负载产生干扰电压,干扰信号耦合进视频信号中,产生图像干扰情况。 3、低频干扰(20Hz-nKHz低频噪声干扰) 干扰现象:图像出现静止水平条纹。 现象原因:由于声音、数据等信号属于低频信号,其频带狭窄在传输时只用到20Hz~nKHZ,几乎采用任何种类的电缆都可以传输,一般只受交流声干扰。用于传输视频信号的同轴电缆,其屏蔽层抗干扰曲线特性表明干扰信号频率越高其屏蔽性能越好,对于诸如载波电话、有线电台等低频率信号干扰反而显得苍白无力。低频干扰信号同样会在传输线缆上产生干扰电压,从而影响图像质量。 4、高频干扰(高频噪声干扰) 干扰现象:图像出现雪花点或高亮点。 现象原因:虽然视频传输所用同轴电缆抗高频干扰要比抗低频干扰性能强,但是强高频干扰信号还会对图像的传输产生干扰。大电荷负载启停、变频机及高频机等在工作时除了输

相关主题
文本预览
相关文档 最新文档