当前位置:文档之家› 高层建筑外文翻译

高层建筑外文翻译

高层建筑外文翻译
高层建筑外文翻译

外文资料翻译

High-Rise Buildings

Introduction

It is difficult to define a high-rise building . One may say that a low-rise building ranges from 1 to 2 stories . A medium-rise building probably ranges between 3 or 4 stories up to 10 or 20 stories or more .

Although the basic principles of vertical and horizontal subsystem design remain the same for low- , medium- , or high-rise buildings , when a building gets high the vertical subsystems become a controlling problem for two reasons . Higher vertical loads will require larger columns , walls , and shafts . But , more significantly , the overturning moment and the shear deflections produced by lateral forces are much larger and must be carefully provided for .

The vertical subsystems in a high-rise building transmit accumulated gravity load from story to story , thus requiring larger column or wall sections to support such loading . In addition these same vertical subsystems must transmit lateral loads , such as wind or seismic loads , to the foundations. However , in contrast to vertical load , lateral load effects on buildings are not linear and increase rapidly with increase in height . For example under wind load , the overturning moment at the base of buildings varies approximately as the square of a buildings may vary as the fourth power of buildings height , other things being equal. Earthquake produces an even more pronounced effect.

When the structure for a low-or medium-rise building is designed for dead and live load , it is almost an inherent property that the columns , walls , and stair or elevator shafts can carry most of the horizontal forces . The problem is primarily one of shear resistance . Moderate addition bracing for rigid frames in“short”buildings can easily be provided by filling certain panels ( or even all panels ) without increasing the sizes of the columns and girders otherwise required for vertical loads.

Unfortunately , this is not is for high-rise buildings because the problem is primarily resistance to moment and deflection rather than shear alone . Special structural arrangements will often have to be made and additional structural material is always required for the columns , girders , walls , and slabs in order to made a high-rise buildings sufficiently resistant to much higher lateral deformations .

As previously mentioned , the quantity of structural material required per square foot of floor of a high-rise buildings is in excess of that required for low-rise buildings . The vertical components carrying the gravity load , such as walls , columns , and shafts , will need to be strengthened over the full height of the buildings . But quantity of material required for resisting lateral forces is even more significant .

With reinforced concrete , the quantity of material also increases as the number of

stories increases . But here it should be noted that the increase in the weight of material added for gravity load is much more sizable than steel , whereas for wind load the increase for lateral force resistance is not that much more since the weight of a concrete buildings helps to resist overturn . On the other hand , the problem of design for earthquake forces . Additional mass in the upper floors will give rise to a greater overall lateral force under the of seismic effects .

In the case of either concrete or steel design , there are certain basic principles for providing additional resistance to lateral to lateral forces and deflections in high-rise buildings without too much sacrifire in economy .

1.Increase the effective width of the moment-resisting subsystems . This is

very useful because increasing the width will cut down the overturn force

directly and will reduce deflection by the third power of the width increase ,

other things remaining cinstant . However , this does require that vertical

components of the widened subsystem be suitably connected to actually

gain this benefit.

2.Design subsystems such that the components are made to interact in the

most efficient manner . For example , use truss systems with chords and

diagonals efficiently stressed , place reinforcing for walls at critical

locations , and optimize stiffness ratios for rigid frames .

3.Increase the material in the most effective resisting components . For

example , materials added in the lower floors to the flanges of columns and

connecting girders will directly decrease the overall deflection and increase

the moment resistance without contributing mass in the upper floors where

the earthquake problem is aggravated .

4.Arrange to have the greater part of vertical loads be carried directly on the

primary moment-resisting components . This will help stabilize the

buildings against tensile overturning forces by precompressing the major

overturn-resisting components .

5.The local shear in each story can be best resisted by strategic placement if

solid walls or the use of diagonal members in a vertical subsystem .

Resisting these shears solely by vertical members in bending is usually less

economical , since achieving sufficient bending resistance in the columns

and connecting girders will require more material and construction energy

than using walls or diagonal members .

6.Sufficient horizontal diaphragm action should be provided floor . This will

help to bring the various resisting elements to work together instead of

separately .

7.Create mega-frames by joining large vertical and horizontal components

such as two or more elevator shafts at multistory intervals with a heavy

floor subsystems , or by use of very deep girder trusses .

Remember that all high-rise buildings are essentially vertical cantilevers which are supported at the ground . When the above principles are judiciously applied , structurally desirable schemes can be obtained by walls , cores , rigid frames, tubular construction , and other vertical subsystems to achieve horizontal strength and

rigidity . Some of these applications will now be described in subsequent sections in the following .

Shear-Wall Systems

When shear walls are compatible with other functional requirements , they can be economically utilized to resist lateral forces in high-rise buildings . For example , apartment buildings naturally require many separation walls . When some of these are designed to be solid , they can act as shear walls to resist lateral forces and to carry the vertical load as well . For buildings up to some 20storise , the use of shear walls is common . If given sufficient length ,such walls can economically resist lateral forces up to 30 to 40 stories or more .

However , shear walls can resist lateral load only the plane of the walls ( i.e.not in a diretion perpendicular to them ) . There fore ,it is always necessary to provide shear walls in two perpendicular directions can be at least in sufficient orientation so that lateral force in any direction can be resisted . In addition , that wall layout should reflect consideration of any torsional effect .

In design progress , two or more shear walls can be connected to from L-shaped or channel-shaped subsystems . Indeed , internal shear walls can be connected to from a rectangular shaft that will resist lateral forces very efficiently . If all external shear walls are continuously connected , then the whole buildings acts as tube , and connected , then the whole buildings acts as a tube , and is excellent Shear-Wall Seystems resisting lateral loads and torsion .

Whereas concrete shear walls are generally of solid type with openings when necessary , steel shear walls are usually made of trusses . These trusses can have single diagonals , “X”diagonals , or“K”arr angements . A trussed wall will have its members act essentially in direct tension or compression under the action of view , and they offer some opportunity and deflection-limitation point of view , and they offer some opportunity for penetration between members . Of course , the inclined members of trusses must be suitable placed so as not to interfere with requirements for wiondows and for circulation service penetrations though these walls .

As stated above , the walls of elevator , staircase ,and utility shafts form natural tubes and are commonly employed to resist both vertical and lateral forces . Since these shafts are normally rectangular or circular in cross-section , they can offer an efficient means for resisting moments and shear in all directions due to tube structural action . But a problem in the design of these shafts is provided sufficient strength around door openings and other penetrations through these elements . For reinforced concrete construction , special steel reinforcements are placed around such opening .In steel construction , heavier and more rigid connections are required to resist racking at the openings .

In many high-rise buildings , a combination of walls and shafts can offer excellent resistance to lateral forces when they are suitably located ant connected to one another . It is also desirable that the stiffness offered these subsystems be more-or-less symmertrical in all directions .

Rigid-Frame Systems

In the design of architectural buildings , rigid-frame systems for resisting vertical and lateral loads have long been accepted as an important and standard means for designing building . They are employed for low-and medium means for designing buildings . They are employed for low- and medium up to high-rise building perhaps 70 or 100 stories high . When compared to shear-wall systems , these rigid frames both within and at the outside of a buildings . They also make use of the stiffness in beams and columns that are required for the buildings in any case , but the columns are made stronger when rigidly connected to resist the lateral as well as vertical forces though frame bending .

Frequently , rigid frames will not be as stiff as shear-wall construction , and therefore may produce excessive deflections for the more slender high-rise buildings designs . But because of this flexibility , they are often considered as being more ductile and thus less susceptible to catastrophic earthquake failure when compared with ( some ) shear-wall designs . For example , if over stressing occurs at certain portions of a steel rigid frame ( i.e.,near the joint ) , ductility will allow the structure as a whole to deflect a little more , but it will by no means collapse even under a much larger force than expected on the structure . For this reason , rigid-frame construction is considered by some to be a “best”seismic-resisting type for high-rise steel buildings . On the other hand ,it is also unlikely that a well-designed share-wall system would collapse.

In the case of concrete rigid frames ,there is a divergence of opinion . It true that if a concrete rigid frame is designed in the conventional manner , without special care to produce higher ductility , it will not be able to withstand a catastrophic earthquake that can produce forces several times lerger than the code design earthquake forces . therefore , some believe that it may not have additional capacity possessed by steel rigid frames . But modern research and experience has indicated that concrete frames can be designed to be ductile , when sufficient stirrups and joinery reinforcement are designed in to the frame . Modern buildings codes have specifications for the so-called ductile concrete frames . However , at present , these codes often require excessive reinforcement at certain points in the frame so as to cause congestion and result in construction difficulties 。Even so , concrete frame design can be both effective and economical 。

Of course , it is also possible to combine rigid-frame construction with shear-wall systems in one buildings ,For example , the buildings geometry may be such that rigid frames can be used in one direction while shear walls may be used in the other direction。

Summary

Above states is the high-rise construction ordinariest structural style. In the design process, should the economy practical choose the reasonable form as far as possible.

外文资料翻译(译文)

高层建筑

前沿

高层建筑的定义很难确定。可以说2-3层的建筑物为底层建筑,而从3-4层地10层或20层的建筑物为中层建筑,高层建筑至少为10层或者更多。

尽管在原理上,高层建筑的竖向和水平构件的设计同低层及多层建筑的设计没什么区别,但使竖向构件的设计成为高层设计有两个控制性的因素:首先,高层建筑需要较大的柱体、墙体和井筒;更重要的是侧向里所产生的倾覆力矩和剪力变形要大的多,必要谨慎设计来保证。

高层建筑的竖向构件从上到下逐层对累积的重力和荷载进行传递,这就要有较大尺寸的墙体或者柱体来进行承载。同时,这些构件还要将风荷载及地震荷载等侧向荷载传给基础。但是,侧向荷载的分布不同于竖向荷载,它们是非线性的,并且沿着建筑物高度的增加而迅速地增加。例如,在其他条件都相同时,风荷载在建筑物底部引起的倾覆力矩随建筑物高度近似地成平方规律变化,而在顶部的侧向位移与其高度的四次方成正比。地震荷载的效应更为明显。

对于低层和多层建筑物设计只需考虑恒荷载和部分动荷载时,建筑物的柱、墙、楼梯或电梯等就自然能承受大部分水平力。所考虑的问题主要是抗剪问题。对于现代的钢架系统支撑设计,如无特殊承载需要,无需加大柱和梁的尺寸,而通过增加板就可以实现。

不幸的是,对于高层建筑首先要解决的不仅仅是抗剪问题,还有抵抗力矩和抵抗变形问题。高层建筑中的柱、梁、墙及板等经常需要采用特殊的结构布置和特殊的材料,以抵抗相当高的侧向荷载以及变形。

如前所述,在高层建筑中每平方英尺建筑面积结构材料的用量要高于低层建筑。支撑重力荷载的竖向构件,如墙、柱及井筒,在沿建筑物整个高度方向上都应予以加强。用于抵抗侧向荷载的材料要求更多。

对于钢筋混凝土建筑,虽着建筑物层数的增加,对材料的要求也随着增加。

应当注意的是,因混凝土材料的质量增加而带来的建筑物自重增加,要比钢结构增加得多,而为抵抗风荷载的能力而增加的材料用量却不是呢么多,因为混凝土自身的重量可以抵抗倾覆力矩。不过不利的一面是混凝土建筑自重的增加,将会加大抗震设计的难度。在地震荷载作用下,顶部质量的增加将会使侧向荷载剧增。

无论对于混凝土结构设计,还是对于钢结构设计,下面这些基本的原则都有助于在不需要增加太多成本的前提下增强建筑物抵抗侧向荷载的能力。

1.增加抗弯构件的有效宽度。由于当其他条件不变时能够直接减小扭

矩,并以宽度增量的三次幂形式减小变形,因此这一措施非常有效。

但是必须保证加宽后的竖向承重构件非常有效地连接。

2.在设计构件时,尽可能有效地使其加强相互作用力。例如,可以采用

具有有效应力状态的弦杆和桁架体系;也可在墙的关键位置加置钢

筋;以及最优化钢架的刚度比等措施。

3.增加最有效的抗弯构件的截面。例如,增加较低层柱以及连接大梁的

翼缘截面,将可直接减少侧向位移和增加抗弯能力,而不会加大上层

楼面的质量,否则,地震问题将更加严重。

4.通过设计使大部分竖向荷载,直接作用于主要的抗弯构件。这样通过

预压主要的抗倾覆构件,可以使建筑物在倾覆拉力的作用下保持稳

定。

5.通过合理地放置实心墙体及在竖向构件中使用斜撑构件,可以有效地

抵抗每层的局部剪力。但仅仅通过竖向构件进行抗剪是不经济的,因

为使柱及梁有足够的抗弯能力,比用墙或斜撑需要更多材料和施工工

作量。

6.每层应加设充足的水平隔板。这样就会使各种抗力构件更好地在一起

工作,而不是单独工作。

7.在中间转换层通过大型竖向和水平构件及重楼板形成大框架,或者采

用深梁体系。

应当注意的是,所有高层建筑的本质都是地面支撑的悬臂结构。如何合理地运用上面所提到的原则,就可以利用合理地布置墙体、核心筒、框架、筒式结构和其他竖向结构分体系,使建筑物取得足够的水平承载力和刚度。本文后面将对这些原理的应用做介绍。

剪力墙结构

在能够满足其他功能需求时,高层建筑中采用剪力墙可以经济地进行高层建筑的抗侧向荷载设计。例如,住宅楼需要很多隔墙,如果这些隔墙都设计为实例的,那么他们可以起到剪力墙的作用,既能抵抗侧向荷载,又能承受竖向荷载。对于20层以上的建筑物,剪力墙极为常见。如果给与足够的宽度,剪力墙能够有效地抵抗30-40层甚至更多的侧向荷载。

但是,剪力墙只能抵抗平行于墙平面的荷载(也就是说不能抵抗垂直于墙的荷载)。因此有必要经常在两个相互垂直的方向设置剪力墙,或者在尽可能多的方向布置,以用来抵抗各个方向的侧向荷载。并且,墙体设计还应考虑扭转的问题。

在设计过程中,两片或者更多的剪力墙会布置成L型或者槽形。实际上,四片内剪力墙可以被联结成矩形,以更有效地抵抗侧向荷载。如果所有外部剪力墙都连接起来,整个建筑物就像是一个筒体,将会具有很强的抵抗水平荷载和抵抗

扭矩的能力。

通常混凝土就剪力墙都是实体的,并在有要求时开洞,而钢筋剪力墙常常是做成桁架式。这些桁架上可能布置成蛋单斜撑、X斜撑及K斜撑。在侧向力作用下这些桁架的组合构件受到或拉或压力。从强度和变形控制角度来说,桁架有着很好的功效,并且管道可以在构件之间穿过。当然,钢桁架墙的斜向构件在墙体上要正确放置,以免妨碍开窗、循环以及管道穿墙。

如上所述,电梯强、楼梯间及设备竖井都可以形成筒状体,常常用它们既抵抗竖向荷载又抵抗水平荷载。这些筒的横断面一般驶矩形或圆形,由于筒结构作用,筒状结构能够有效地进行各个方向上的抗弯和抗剪。不过在这样的结构设计中存在的问题是,如何保证在门洞口和其他孔洞的强度。对于钢筋混凝土结构,通过使用特殊的钢筋配置在这些孔洞的周围。对于钢剪力墙,则要求在开洞处加强节点连接,以抵抗洞口变形。

对于很多高层建筑,如果墙体和筒架进行合理地安排与连接,会起到很好的抵抗侧向荷载的作用。还要求由这些结构分体系提供的刚度在各个方向上应大体对称。

框架结构

在建筑物结构设计中,用于抵抗竖向和水平荷载的框架结构,常作为一个重要且标准的型式而被采用。它适用于低层、多层建筑物,亦可用于70-100层高的高层建筑物。同剪力墙结构相比,这种结构更适合在建筑物的内部或者外围的墙体上开设矩形孔洞。同时它还能充分利用建筑物内在任何情况下都要采用的梁和柱的刚度,但当柱子与梁刚性连接时,通过框架受弯来抵抗水平和竖向荷载会使这些柱子的承载能力变得更大。

大多情况下,框架的刚度不如剪力墙,因此对于细长的建筑物将会出现过度变形。但正是因为其柔性,使得其与剪力墙结构相比具有更大的延性,因而地震荷载下不易发生事故。例如,如果框架局部出现超应力时,那么其延性就会允许整个结构出现倒塌事故。因此,框架结构常被视为最好的高层抗震结构。另一方面,设计得好的剪力墙结构也不可能倒塌。

对于混凝土框架结构,还存在较大的分歧。的确。如果在混凝土框架设计时不进行特殊的延性设计,那么他将很难承受比设计标准值大很多倍的地震荷载的冲击。因此,很多人认为它不具备钢框架所具备的超载能力。不过最新的研究i 和实验表明,当混凝土中放入充分的钢箍和节点钢筋时,混凝土框架框架也能表现出很好的延性。新建筑规范对所谓延性混凝土框架有专门的规定。然而,这些规范往往要求在框架的某处增设过多的钢筋,这就增加了施工的难度。尽管这样,混凝土框架设计还是具备既经济又实用的特性。

当然,还可以在建筑结构设计中,将框架结构和剪力墙结构结合起来使用。例如,在房屋建筑上使用框架,而在另一方向上可以使用剪力墙。

结论

以上所述就是高层建筑最普通的结构形式。在设计过程中,应尽可能经济实用地选择合理的形式。

建筑结构设计中英文对照外文翻译文献

中英文对照外文翻译 (文档含英文原文和中文翻译) Create and comprehensive technology in the structure global design of the building The 21st century will be the era that many kinds of disciplines technology coexists , it will form the enormous motive force of promoting the development of building , the building is more and more important too in global design, the architect must seize the opportunity , give full play to the architect's leading role, preside over every building engineering design well. Building there is the global design concept not new of architectural design,characteristic of it for in an all-round way each element not correlated with building- there aren't external environment condition, building , technical equipment,etc. work in coordination with, and create the premium building with the comprehensive new technology to combine together. The premium building is created, must consider sustainable development , namely future requirement , in other words, how save natural resources as much as possible, how about protect the environment that the mankind depends on for existence, how construct through high-quality between architectural design and building, in order to reduce building equipment use quantity and

一维热传导方程的差分格式

《微分方程数值解》 课程论文 学生姓名1:许慧卿学号:20144329 学生姓名2:向裕学号:20144327学生姓名3:邱文林学号:20144349学生姓名4:高俊学号:20144305学生姓名5:赵禹恒学号:20144359学生姓名6:刘志刚学号: 20144346 学院:理学院 专业:14级信息与计算科学 指导教师:陈红斌 2017年6 月25日

《偏微分方程数值解》课程论文 《一维热传导方程的差分格式》论文 一、《微分方程数值解》课程论文的格式 1)引言:介绍研究问题的意义和现状 2)格式:给出数值格式 3)截断误差:给出数值格式的截断误差 4)数值例子:按所给数值格式给出数值例子 5)参考文献:论文所涉及的文献和教材 二、《微分方程数值解》课程论文的评分标准 1)文献综述:10分; 2)课题研究方案可行性:10分; 3)数值格式:20分; 4)数值格式的算法、流程图:10分; 5)数值格式的程序:10分; 6)论文撰写的条理性和完整性:10分; 7)论文工作量的大小及课题的难度:10分; 8)课程设计态度:10分; 9)独立性和创新性:10分。 评阅人: - 2 -

一维热传导方程的差分格式 1 引言 考虑如下一维非齐次热传导方程Dirichlet 初边值问题 22(,),u u a f x t t x ??=+?? ,c x d << 0,t T <≤ (1.1) (,0)(),u x x ?= ,c x d ≤≤ (1.2) (,)(),u c t t α= (,)(),u d t t β= 0t T <≤ (1.3) 的有限差分方法, 其中a 为正常数,(,),(),(), ()f x t x t t ?αβ为已知常数, ()(0),c ?α= ()(0).d ?β= 称(1.2)为初值条件, (1.3)为边值条件. 本文将给出(1.1) (1.3)的向前Euler 格式, 向后Euler 格式和Crank Nicolson -格式, 并给出其截断误差和数值例子. 经对比发现, Crank Nicolson -格式误差最小, 向前 Euler 格式次之, 向后Euler 格式误差最大. 2 差分格式的建立 2.1 向前Euler 格式 将区间[,]c d 作M 等分, 将[]0,T 作N 等分, 并记 ()/h d c M =-, /T N τ=, j x c jh =+,0j M ≤≤, k t k τ=,0k N ≤≤. 分别称h 和τ为空间步长和时间步长.用 两组平行直线 j x x =, 0j M ≤≤, k t t =, 0k N ≤≤ 将Ω分割成矩形网格.记{} |0h j x j M Ω=≤≤, {}|0k t k N τΩ=≤≤, h h ττΩ=Ω?Ω. 称() ,j k x t 为结点[1] . 定义h τΩ上的网格函数 {}|0,0k j U j M k N Ω=≤≤≤≤, 其中() ,k j j k U u x t =. 在结点() ,j k x t 处考虑方程(1.1),有

工程成本预算 毕业论文外文文献翻译

外文翻译 Construction projects, private and public alike, have a long history of cost escalation. Transportation projects, which typically have long lead times between planning and construction, are historically underestimated, as shown through a review of the cost growth experienced with the Holland Tunnel. Approximately 50% of the active large transportation projects in the United States have overrun their initial budgets. A large number of studies and research projects have identified individual factors that lead to increased project cost. Although the factors identified can influence privately funded projects the effects are particularly detrimental to publicly funded projects. The public funds available for a pool of projects are limited and there is a backlog of critical infrastructure needs. Therefore, if any project exceeds its budget other projects are dropped from the program or the scope is reduced to provide the funds necessary to cover the cost growth. Such actions exacerbate the deterioration of a state’s transportation infrastructure. This study is an anthology and categorization of individual cost increase factors that were identified through an in-depth literature review. This categorization of 18 primary factors which impact the cost of all types of construction projects was verified by interviews with over 20 state highway agencies. These factors represent documented causes behind cost escalation problems. Engineers who address these escalation factors when assessing future project cost and who seek to mitigate the influence of these factors can improve the accuracy of their cost estimates and program budgets Historically large construction projects have been plagued by cost and schedule overruns Flyvbjerg et al. 2002. In too many cases, the final project cost has been higher than the cost estimates prepared and released during initial planning, preliminary engineering, final design, or even at the start of construction “Mega projects need more study up front to avoid cost overruns.” The ramifica tions of differences between early project cost estimates and bid prices or the final cost of a project can be significant. Over the time span between project initiation concept development and the completion of construction many factors may influence the final project costs. This time span is normally several years in duration but for the highly

工程造价专业外文文献翻译(中英文对照94645

外文文献: Project Cost Control: The Way it Works By R. Max Wideman In a recent consulting assignment we realized that there was some lack of understanding of thewholesystem of project cost control, how it is setup and applied. So we decided to write up adescription ofhow it works. Project cost control is not that difficult to follow in theory. First you establish a set of reference baselines. Then, as work progresses, you monitor the work, analyzethe findings, forecast the end results and compare those with the reference baselines. If the end resultsare not satisfactory then you make adjustments as necessary to the work in progress, and repeat the cycleat suitable intervals. If the end results get really out of line with the baseline plan, you may have tochange the plan. More likely, there will be (or have been) scope changes that change the referencebaselines which means that every time that happens you have to change the baseline plan anyway. But project cost control is a lot more difficult to do in practice, as is evidenced by the number of projectsthat fail to contain costs. It also involves a significant amount of work, as we shall see, and we might aswell start at the beginning. So let us follow the thread of project cost control through the entire projectlife span. And, while we are at it, we will take the opportunity to point out the proper places for several significantdocuments. These include the Business Case, the Request for (a capital) Appropriation (for execution),Work Packages and the Work Breakdown Structure, the Project Charter (or Brief), the Project Budget orCost Plan, Earned Value and the Cost Baseline. All of these contribute to the organization's ability toeffectively control project costs. Footnote I am indebted to my friend Quentin Fleming, the guru of Earned Value, for checking and correcting mywork on this topic. The Business Case and Application for (execution) Funding It is important to note that project cost control is most effective when the executive managementresponsible has a good understanding of how projects should unfold through the project life span. Thismeans that they exercise their responsibilities at the key decision points

土木工程外文文献翻译

专业资料 学院: 专业:土木工程 姓名: 学号: 外文出处:Structural Systems to resist (用外文写) Lateral loads 附件:1.外文资料翻译译文;2.外文原文。

附件1:外文资料翻译译文 抗侧向荷载的结构体系 常用的结构体系 若已测出荷载量达数千万磅重,那么在高层建筑设计中就没有多少可以进行极其复杂的构思余地了。确实,较好的高层建筑普遍具有构思简单、表现明晰的特点。 这并不是说没有进行宏观构思的余地。实际上,正是因为有了这种宏观的构思,新奇的高层建筑体系才得以发展,可能更重要的是:几年以前才出现的一些新概念在今天的技术中已经变得平常了。 如果忽略一些与建筑材料密切相关的概念不谈,高层建筑里最为常用的结构体系便可分为如下几类: 1.抗弯矩框架。 2.支撑框架,包括偏心支撑框架。 3.剪力墙,包括钢板剪力墙。 4.筒中框架。 5.筒中筒结构。 6.核心交互结构。 7. 框格体系或束筒体系。 特别是由于最近趋向于更复杂的建筑形式,同时也需要增加刚度以抵抗几力和地震力,大多数高层建筑都具有由框架、支撑构架、剪力墙和相关体系相结合而构成的体系。而且,就较高的建筑物而言,大多数都是由交互式构件组成三维陈列。 将这些构件结合起来的方法正是高层建筑设计方法的本质。其结合方式需要在考虑环境、功能和费用后再发展,以便提供促使建筑发展达到新高度的有效结构。这并

不是说富于想象力的结构设计就能够创造出伟大建筑。正相反,有许多例优美的建筑仅得到结构工程师适当的支持就被创造出来了,然而,如果没有天赋甚厚的建筑师的创造力的指导,那么,得以发展的就只能是好的结构,并非是伟大的建筑。无论如何,要想创造出高层建筑真正非凡的设计,两者都需要最好的。 虽然在文献中通常可以见到有关这七种体系的全面性讨论,但是在这里还值得进一步讨论。设计方法的本质贯穿于整个讨论。设计方法的本质贯穿于整个讨论中。 抗弯矩框架 抗弯矩框架也许是低,中高度的建筑中常用的体系,它具有线性水平构件和垂直构件在接头处基本刚接之特点。这种框架用作独立的体系,或者和其他体系结合起来使用,以便提供所需要水平荷载抵抗力。对于较高的高层建筑,可能会发现该本系不宜作为独立体系,这是因为在侧向力的作用下难以调动足够的刚度。 我们可以利用STRESS,STRUDL 或者其他大量合适的计算机程序进行结构分析。所谓的门架法分析或悬臂法分析在当今的技术中无一席之地,由于柱梁节点固有柔性,并且由于初步设计应该力求突出体系的弱点,所以在初析中使用框架的中心距尺寸设计是司空惯的。当然,在设计的后期阶段,实际地评价结点的变形很有必要。 支撑框架 支撑框架实际上刚度比抗弯矩框架强,在高层建筑中也得到更广泛的应用。这种体系以其结点处铰接或则接的线性水平构件、垂直构件和斜撑构件而具特色,它通常与其他体系共同用于较高的建筑,并且作为一种独立的体系用在低、中高度的建筑中。

一维热传导方程

一维热传导方程 一. 问题介绍 考虑一维热传导方程: (1) ,0),(22T t x f x u a t u ≤<+??=?? 其中a 是正常数,)(x f 是给定的连续函数。按照定解条件的不同给法,可将方程(1)的定解问题分为两类: 第一类、初值问题(也称Cauthy 问题):求具有所需次数偏微商的函数),(t x u ,满足方程(1)(∞<<∞-x )和初始条件: (2) ),()0,(x x u ?= ∞<<∞-x 第二类、初边值问题(也称混合问题):求具有所需次数偏微商的函数),(t x u ,满足方程(1)(l x <<0)和初始条件: (3) ),()0,(x x u ?= l x <<0 及边值条件 (4) .0),(),0(==t l u t u T t ≤≤0 假定)(x ?在相应区域光滑,并且在l x ,0=满足相容条件,使上述问题有唯一充分光滑的解。 二. 区域剖分 考虑边值问题(1),(4)的差分逼近。去空间步长N l h /=和时间步长M T /=τ,其中N,M 都是正整数。用两族平行直线: 将矩形域}0;0{T t l x G ≤≤≤≤=分割成矩形网格,网格节点为),(k j t x 。以h G 表示网格内点集合,即位于开矩形G 的网点集合;h G 表示所有位于闭矩形G 的网点集合;h Γ=h G --h G 是网格界点集合。 三. 离散格式 第k+1层值通过第k 层值明显表示出来,无需求解线性代数方程组,这样的格式称为显格式。 第k+1层值不能通过第k 层值明显表示出来,而由线性代数方程组确定,这样的格式称为隐格式。 1. 向前差分格式 (5) ,221 11j k j k j k j k j k j f h u u u a u u ++-=--++τ

工程管理专业研究建设项目的工程造价大学毕业论文外文文献翻译及原文

毕业设计(论文) 外文文献翻译 文献、资料中文题目:研究建设项目的工程造价 文献、资料英文题目: 文献、资料来源: 文献、资料发表(出版)日期: 院(部): 专业:工程管理 班级: 姓名: 学号: 指导教师: 翻译日期: 2017.02.14

科技文献翻译 题目:研究建设项目的工程造价 研究建设项目的工程造价 摘要 在工程建设中,中国是拥有世界最大投资金额和具有最多建设项目的国家。它是一 项在建设项目管理上可以为广泛的工程管理人员进行有效的工程造价管理,并合理 确定和保证施工质量和工期的条件控制施工成本的重要课题。 在失去了中国建筑的投资和技术经济工程,分离的控制现状的基础上,通过建设成 本控制的基本理论为指导,探讨控制方法和施工成本的应用,阐述了存在的问题在 施工成本控制和对决心和施工成本的控制这些问题的影响,提出了建设成本控制应 体现在施工前期,整个施工过程中的成本控制,然后介绍了一些程序和应用价值工 程造价的方法在控制建设项目的所有阶段。 关键词:建设成本,成本控制,项目 1.研究的意义 在中国,现有的工程造价管理体系是20世纪50年代制定的,并在1980s.Traditional 施工成本管理方法改进是根据国家统一的配额,从原苏联引进的一种方法。它的特 点是建设成本的计划经济的管理方法,这决定了它无法适应当前市场经济的要求。 在中国传统建筑成本管理方法主要包括两个方面,即建设成本和施工成本控制方法 的测定方法。工程造价的确定传统的主要做法生搬硬套国家或地方统一的配额数量 来确定一个建设项目的成本。虽然这种方法已经历了20多年的改革,到现在为止,计划经济管理模式的影响仍然有已经存在在许多地区。我们传统的工程造价控制的

框架结构设计外文翻译

毕业设计(论文)外文资料翻译 系:机械工程系 专业:土木工程 姓名: 学号: 外文出处:Design of prestressed (用外文写) concrete structures 附件: 1.外文资料翻译译文;2.外文原文。

附件1:外文资料翻译译文 8-2简支梁布局 一个简单的预应力混凝土梁由两个危险截面控制:最大弯矩截面和端截面。这两部分设计好之后,中间截面一定要单独检查,必要时其他部位也要单独调查。最大弯矩截面在以下两种荷载阶段为控制情况,即传递时梁受最小弯矩M G的初始阶段和最大设计弯矩M T时的工作荷载阶段。而端截面则由抗剪强度、支承垫板、锚头间距和千斤顶净空所需要的面积来决定。所有的中间截面是由一个或多个上述要求,根它们与上述两种危险截面的距离来控制。对于后张构件的一种常见的布置方式是在最大弯矩截面采用诸如I形或T形的截面,而在接近梁端处逐渐过渡到简单的矩形截面。这就是人们通常所说的后张构件的端块。对于用长线法生产的先张构件,为了便于生产,全部只用一种等截面,其截面形状则可以为I形、双T形或空心的。在第5 、 6 和7章节中已经阐明了个别截面的设计,下面论述简支梁钢索的总布置。 梁的布置可以用变化混凝土和钢筋的办法来调整。混凝土的截面在高度、宽度、形状和梁底面或者顶面的曲率方面都可以有变化。而钢筋只在面积方面有所变化,不过在相对于混凝土重心轴线的位置方面却多半可以有变化。通过调整这些变化因素,布置方案可能有许多组合,以适应不同的荷载情况。这一点是与钢筋混凝土梁是完全不同的,在钢筋混凝土梁的通常布置中,不是一个统一的矩形截面便是一个统一的T形,而钢筋的位置总是布置得尽量靠底面纤维。 首先考虑先张梁,如图 8-7,这里最好采用直线钢索,因为它们在两个台座之间加力比较容易。我们先从图(a)的等截面直梁的直线钢索开始讨论。这样的布置都很简单,但这样一来,就不是很经济的设计了,因为跨中和梁端的要求会产生冲突。通常发生在跨度中央的最大弯矩截面中的钢索,最好尽量放低,以便尽可能提供最大力臂而提供最大的内部抵制力矩。当跨度中央的梁自重弯矩M G相当大时,就可以把c.g.s布置在截面核心范围以下很远的地方,而不致在传递时在顶部纤维中引起拉应力。然而对于梁端截面却有一套完全不同的要求。由于在梁端没有外力矩,因为在最后的时刻,安排钢索要以c.g.s与 c.g.c在结束区段一致,如此同样地获得克服压力分配的方法。无论如何,如果张应力在最后不能承受,放置 c.g.s.

热传导方程向后差分格式的MATLAB程序

向后差分格式MATLAB编程: c lear;clc; format short e a=input('请输入系数a的值'); l=input('请输入长度l的值'); M=input('请输入将区间[0,1]等分的个数M '); ot=input('请输入时间增量ot的值'); n=input('请输入运行次数n的值'); ox=1/M; x0=zeros(M+1,1) for ii=1:M x0(ii+1)=ii*ox; end u=sin(pi*x0/l); r=a*ot/(ox)^2; for ii=1:n %数据的输入 B=zeros(M-1,1); A=zeros(M-2,1); C=zeros(M-2,1); S=zeros(M-1,1); for ii=1:M-2 B(ii)=1+2*r;A(ii)=-r;C(ii)=-r; S(ii)=u(ii+1,1); end B(M-1,1)=1+2*r;S(M-1,1)=u(M,1);u(1,2)=0;u(M+1,2)=0; S(1,1)=S(1,1)+r*u(1,2);S(M-1,1)=S(M-1,1)+r*u(M+1,2); %追赶法 S(1)=S(1)/B(1);T=B(1);k=2; while k~=M B(k-1)=C(k-1)/T; T=B(k)-A(k-1)*B(k-1); S(k)=(S(k)-A(k-1)*S(k-1))/T; k=k+1 end k=1; while k~=M-1 S(M-1-k)=S(M-1-k)-B(M-1-k)*S(M-k); k=k+1; end u(2:M,2)=S; u(:,1)=u(:,2); end %计算精确解 for x=0:M

工程造价毕业设计参考文献

参考文献 [1]中华人民共和国住房和城乡建设部.GB50500-2008,建设工程工程量清单计价 规范[S].北京:中国计划出版社,2008. [2]福建省建设工程造价管理总站.FJYD-101-2005,福建省建筑工程消耗量定额 [S].北京:中国计划出版社,2005. [3]福建省建设工程造价管理总站.FJYD-201-2005,福建省建筑装饰装修工程消 耗量定额[S].北京:中国计划出版社,2005. [4]中华人民共和国建设部.GB/T50353-2005,建筑工程建筑面积计算规范[S].北 京:中国计划出版社,2005. [5]刘元芳.建筑工程计量与计价[M].北京:中国建材工业出版社,2009. [6]刘元芳.建设工程造价管理[M].北京:中国电力出版社,2005. [7]幸伟.我国政府采购招标投标问题研究[D].东北师范大学,2009. [8]杨平.工程合同管理[M].北京:人民交通出版社,2007. [9]陈慧玲.建设工程招标投标实务[M].南京:江苏科学技术出版社,2004年. [10]邹伟,论施工企业投标报价策略与技巧[J],建筑经济,2007年. [11]陈娟,杨泽华,谢智明,浅谈工程投标报价的策略[J],招投标研究,2004 年. [12]徐学东主编.《工程量清单的编制与投标报价》中国计划出版社.2005年. [13]田满霞,浅谈建设项目的工程造价控制[J].技术市场,2013,(9):188-188. [14]王雪青,国际工程投标报价决策系统研究[J],天津大学博士论文,2003年. [15]Online Computer Library Center, Inc. History of OCLC[EB/OL],2009. [16]Gray,C.,& Hughes,W.(2001).Building design management.Oxford, UK:Butterworth-Heinemann.

笔记:线性常差分方程基本知识

本材料是关于线性常差分方程基本知识的笔记,参考了两个文献: 1、《差分方程》【日】福田武雄著穆鸿基译上海科学技术出版社1962年9月第一版 2、《常差分方程》王联、王慕秋著新疆大学出版社1991年2月第一版

目录 第一节差分 第二节和分 第三节对步长及定义域的约定 第四节阶乘多项式与差分 第五节Bernoulli多项式与差分 第六节几个公式,例题 第七节n阶线性常差分方程的解的结构 第八节 Lagrange变易常数法 第九节解n阶常系数齐次线性方程的特征根方法 第十节常系数对称型线性方程的解 第十一节几种特殊常系数非齐次线性方程的解法

第一节 差分 定义1.1:设函数()x f 的定义域是D ,R D ?,R x ∈?,0≠?x ,D x ∈?有D x x ∈?+,定义算子?为 ()()()x f x x f x f -?+=? 称x ?是x 的变化步长,()x f ?是()x f 在x 处的步长为x ?的一阶差分、阶差、有限差;D x ∈,函数()x f ?称为D 上的差分函数,简称差分;算子?是步长为x ?的差分算子。定义为 ()()x x f x f ?+=E 称()x f E 是()x f 在x 处的步长为x ?的一阶位移;称函数()x f E 是D 上的位移函数,简称位移;算子E 是步长为x ?的位移算子。定义算子I 为 ()()x f x f =I 称算子I 为恒等算子。称函数 ()x x f ??是D 上的差商函数,简称差商。 约定算子?与算子E 的步长相等。 注1.1: 大写希腊字母?、E 、I 的小写形式是δ、ε、ι,其英文单词形式是delta /`delt ?/ 、epsilon /ep`sail ?n/ 、 iota /ai`?ut ?/ 。 若D x ∈?,有D x x ∈?+,则N n ∈?,有D x n x ∈?+。 定理1.1:算子?、E 、I 有以下关系: ①()()()()()x f x f x f x f I -E =I -E =?,即I -E =?。 ②()()()()()x f x f x f x f I +?=I +?=E ,即I +?=E 。 ③()()()()x f x f E ?=?E ,即?E =E?。 定理1.2:算子?、E 是线性算子。对R b a ∈,,函数()x f 与()x g ,有以下等式 ()()()()()x g b x f a x bg x af ?+?=+? ()()()()()x g b x f a x bg x af E +E =+E 定义1.2:设N n ∈,作递推定义 ()()()x f x f x f =I =?0,()()() x f x f n n ??=?+1

一维热传导方程

一维热传导方程 一. 问题介绍 考虑一维热传导方程: (1) ,0),(22 T t x f x u a t u ≤<+??=?? 其中a 是正常数,)(x f 是给定的连续函数。按照定解条件的不同给法,可将方程(1)的定解问题分为两类: 第一类、初值问题(也称Cauthy 问题):求具有所需次数偏微商的函数),(t x u ,满足方 程(1)(∞<<∞-x )和初始条件: (2) ),()0,(x x u ?= ∞<<∞-x 第二类、初边值问题(也称混合问题):求具有所需次数偏微商的函数),(t x u ,满足方 程(1)(l x <<0)和初始条件: (3) ),()0,(x x u ?= l x <<0 及边值条件 (4) .0),(),0(==t l u t u T t ≤≤0 假定)(x ?在相应区域光滑,并且在l x ,0=满足相容条件,使上述问题有唯一充分光滑 的解。 二. 区域剖分 考虑边值问题(1),(4)的差分逼近。去空间步长N l h /=和时间步长M T /=τ,其中N,M 都是正整数。用两族平行直线: ),,1,0(N j jh x x j === ),,1,0(M k k t t k ===τ 将矩形域}0;0{T t l x G ≤≤≤≤=分割成矩形网格,网格节点为),(k j t x 。以h G 表示网格内点集合,即位于开矩形G 的网点集合;h G 表示所有位于闭矩形G 的网点集合; h Γ=h G --h G 是网格界点集合。 三. 离散格式 第k+1层值通过第k 层值明显表示出来,无需求解线性代数方程组,这样的格式称为

工程造价外文翻译(有出处)

预测高速公路建设项目最终的预算和时间 摘要 目的——本文的目的是开发模型来预测公路建设项目施工阶段最后的预算和持续的时间。 设计——测算收集告诉公路建设项目,在发展预测模型之前找出影响项目最终的预算和时间,研究内容是基于人工神经网络(ANN)的原理。与预测结果提出的方法进行比较,其精度从当前方法基于挣值。 结果——根据影响因素最后提出了预算和时间,基于人工神经网络的应用原理方法获得的预测结果比当前基于挣值法得到的结果更准确和稳定。 研究局限性/意义——因素影响最终的预算和时间可能不同,如果应用于其他国家,由于该项目数据收集的都是泰国的预测模型,因此,必须重新考虑更好的结果。 实际意义——这项研究为用于高速公路建设项目经理来预测项目最终的预算和时间提供了一个有用的工具,可为结果提供早期预算和进度延误的警告。 创意/价值——用ANN模型来预测最后的预算和时间的高速公路建设项目,开发利用项目数据反映出持续的和季节性周期数据, 在施工阶段可以提供更好的预测结果。 关键词:神经网、建筑业、预测、道路、泰国 文章类型:案例研究 前言 一个建设工程项普遍的目的是为了在时间和在预算内满足既定的质量要求和其他规格。为了实现这个目标,大量的工作在施工过程的管理必须提供且不能没有计划地做成本控制系统。一个控制系统定期收集实际成本和进度数据,然后对比与计划的时间表来衡量工作进展是否提前或落后时间表和强调潜在的问题(泰克兹,1993)。成本和时间是两个关键参数,在建设项目管理和相关参数的研究中扮演着重要的角色,不断提供适当的方法和

工具,使施工经理有效处理一个项目,以实现其在前期建设和在施工阶段的目标。在施工阶段,一个常见的问题要求各方参与一个项目,尤其是一个所有者,最终项目的预算到底是多少?或什么时候该项目能被完成? 在跟踪和控制一个建设项目时,预测项目的性能是非常必要的。目前已经提出了几种方法,如基于挣值技术、模糊逻辑、社会判断理论和神经网络。将挣值法视为一个确定的方法,其一般假设,无论是性能效率可达至报告日期保持不变,或整个项目其余部分将计划超出申报日期(克里斯坦森,1992;弗莱明和坎普曼,2000 ;阿萨班尼,1999;维卡尔等人,2000)。然而,挣值法的基本概念在研究确定潜在的进度延误、成本和进度的差异成本超支的地区。吉布利(1985)利用平均每个成本帐户执行工作的实际成本,也称作单位收入的成本,其标准差来预测项目完工成本。各成本帐户每月的进度是一个平均平稳过程标准偏差,显示预测模型的可靠性,然而,接受的单位成本收益在每个报告期在变化。埃尔丁和休斯(1992)和阿萨班尼(1999)利用分解组成成本的结构来提高预测精度。迪克曼和Al-Tabtabai(1992)基于社会判断理论提出了一个方法,该方法在预测未来的基础上的一组线索,源于人的判断而不是从纯粹的数学算法。有经验的项目经理要求基于社会判断理论方法的使用得到满意的结果。Moselhi等人(2006)应用“模糊逻辑”来预测潜在的成本超支和对建设工程项目的进度延迟。该方法的结果在评估特定时间状态的项目和评价该项目的利润效率有作用。这有助于工程人员所完成的项目时间限制和监控项目预算。Kaastra和博伊德(1996)开发的“人工神经网络”,此网络作为一种有效的预测工具,可以利用过去“模式识别”工作和显示各种影响因素的关系,然后预测未来的发展趋势。罗威等人(2006)开发的成本回归模型能在项目的早期阶段估计建筑成本。总共有41个潜在的独立变量被确定,但只有四个变量:总建筑面积,持续时间,机械设备,和打桩,是线性成本的关键驱动因素,因为它们出现在所有的模型中。模型提出了进一步的洞察了施工成本和预测变量的各种关系。从模型得到的估计结果可以提供早期阶段的造价咨询(威廉姆斯(2003))——最终竞标利用回归模型预测的建设项目成本。 人工神经网络已被广泛用在不同的施工功能中,如估价、计划和产能预测。神经网络建设是Moselhi等人(1991)指出,由Hegazy(1998)开发了一个模型,该模型考虑了项目的外在特征,估计加拿大的公路建设成本: ·项目类型 ·项目范围

第二章计算流体力学的基本知识

第二章计算流体力学的基本知识 流体流动现象大量存在于自然界及多种工程领域中,所有这些工程都受质量守恒、动量守恒和能量守恒等基本物理定律的支配。这章将首先介绍流体动力学的发展和流体力学中几个重要守恒定律及其数学表达式,最后介绍几种常用的商业软件。 2.1计算流体力学简介 2.1.1计算流体力学的发展 流体力学的基本方程组非常复杂,在考虑粘性作用时更是如此,如果不靠计算机,就只能对比较简单的情形或简化后的欧拉方程或N-S方程进行计算。20 世纪30~40 年代,对于复杂而又特别重要的流体力学问题,曾组织过人力用几个月甚至几年的时间做数值计算,比如圆锥做超声速飞行时周围的无粘流场就从1943 年一直算到1947 年。 数学的发展,计算机的不断进步,以及流体力学各种计算方法的发明,使许多原来无法用理论分析求解的复杂流体力学问题有了求得数值解的可能性,这又促进了流体力学计算方法的发展,并形成了"计算流体力学" 。 从20 世纪60 年代起,在飞行器和其他涉及流体运动的课题中,经常采用电子计算机做数值模拟,这可以和物理实验相辅相成。数值模拟和实验模拟相互配合,使科学技术的研究和工程设计的速度加快,并节省开支。数值计算方法最近发展很快,其重要性与日俱增。 自然界存在着大量复杂的流动现象,随着人类认识的深入,人们开始利用流动规律来改造自然界。最典型的例子是人类利用空气对运动中的机翼产生升力的机理发明了飞机。航空技术的发展强烈推动了流体力学的迅速发展。 流体运动的规律由一组控制方程描述。计算机没有发明前,流体力学家们在对方程经过大量简化后能够得到一些线形问题解读解。但实际的流动问题大都是复杂的强非线形问题,无法求得精确的解读解。计算机的出现以及计算技术的迅速发展使人们直接求解控制方程组的梦想逐步得到实现,从而催生了计算流体力

基于三阶Adams格式的求解声波方程的多步算法

创新项目论文 一种基于三阶Adams 格式的求解声波方程的多步算法 China University of Mining & Technology-Beijing

摘要 一个准确、高效、低数值频散的正演算法能够提高反演精度、加快反演收敛速度,因此研究地震波场正演模拟技术具有重要意义。区别于传统的空间离散方法,利用空间插值, 用网格点处的函数值及其梯度共同逼近空间高阶偏导数的方法称为近似解析离散化方法。声波方程通过变换,并采用近似解析离散化方法进行空间离散,从而转变成为一个半离散化的常微分方程组,再利用三阶显式Adams格式进行时间推进,求解半离散化的常微分方程组,从而得到了一个新的求解声波方程的有限差分方法(AD-STEM)。对AD-STEM进行了理论误差和数值误差分析、计算效率比较和数值波场模拟。研究表明,与传统方法AD-LWC比较,AD-STEM方法数值精度更高,数值频散更低,更高效,且与解析解匹配更好。AD-STEM方法能够通过压制数值频散而提高计算效率。在无可见数值频散的条件下,AD-STEM的计算速度是AD-LWC的1.88倍,而存储量只有其72%,更适合在粗网格下进行大规模地震波场数值模拟。 关键词:近似解析离散化方法;三阶Adams格式;数值频散;有限差分

目录 1 绪论 (1) 1.1选题背景和研究意义 1.2粘弹性介质国内外研究现状 1.3有限差分国内外研究现状 1.4本文主要研究内容 2 粘弹性介质的基本模型 (6) 3方法介绍....................................................................................................................... 错误!未定义书签。 3.1 Stereo-modeling方法简介 (10) 3.2 Lax-Wendroff correction方法简介 ...................................................................... 错误!未定义书签。 4 粘弹性介质中的波场数值模拟..................................................................................... 错误!未定义书签。 4.1 波场快照 (11) 4.2 波形图.................................................................................................................. 错误!未定义书签。 4.3 SEG模型的地表地震记录 (14) 5 结论 (18) 6 参考文献 (20)

相关主题
文本预览
相关文档 最新文档