当前位置:文档之家› 无线电波的基本概念、发射与接收原理

无线电波的基本概念、发射与接收原理

无线电波的基本概念、发射与接收原理
无线电波的基本概念、发射与接收原理

无线电波的基本概念、发射与接收原理

19世纪60年代,英国物理学家麦克斯韦总结前人的科学技术,提出了电磁波学说。20多年后,德国科学家赫兹通过实验,证明了电磁波的存在。

什么是电磁波呢?从电工学电磁感应现象知道,在电磁场里,磁场的任何变化会产生电场,电场的任何变化也会产生磁场。交变的电磁场不仅可能存在于电荷、电流或导体的周围,而且能够脱离其产生的波源向远处传播,这种在空间以—定速度传播的交变电磁场,就称为电磁波。无线电技术中使用的这一段电磁波称为无线电波。

无线电波的传播

理论分析和实验都表明无线电波是横波,即电场和磁场的方向都与波的传播方向垂直。而且电场强度与磁场强度的方向也总是相互垂直的。

无线电波在空间传播时,必然要受到大气层的影响,尤其以电离层的影响最为显著。电离层是由于从太阳及其他星体发出的放射性辐射进入大气层,使大气层被电离而形成的。电离层内含有自由电子是影响无线电波的主要因素。

电离层对无线电波的主要影响是使传播方向由电子密度较大区域向密度较小区域弯曲,即发生电波折射。这种影响随波段的不同而不相同。波长越长,折射越显著。30MHz以下的波被折回地面;30MHz以上的波,则穿透电离层。另外,电波受电离层的另—影响是能量被吸收而衰减。电离程度越大,衰减越大;波长越长,衰减亦越大。

无线电波的传播方式,因波长的不同而有不同的传播特性,分为地波、天波和空间波三种形式。

地波――沿地球表面空间向外传播的无线电波。中、长波均利用地波方式传播。

天波――依靠电离层的反射作用传播的无线电波叫做天波。短波多利用这种方式传播。

空间波――沿直线传播的无线电波。它包括由发射点直接到达接收点的直射波和经地面反射到接收点的反射波。超短波的电视和雷达多采用空间波方式传播。

各种波长的传播特性如下

长波(见波段划分表)波长在3000M以上,中波在100—1000M。长波段主要用作发射标准时间信号。而中波主要用作本地无线电广播和海上通信及导航。

短波主要靠天波传播。传送距离较远,甚至可以用作国际无线电广播,远距离无线电话和电报通信等。

超短波是波长在10M—1m的波,只能用空间波传播,其主要以直线传播为主,由于有地球曲率的影响,传播距离较短,不得不靠增加天线高度来增加通信距离。如无线电视等。

利用对流层和电离层散射,超短波传播距离大大增加,使雷达技术得到广泛应用。

频谱的高端300兆赫以上,我们称微波,主要是穿过电离层,用于卫星通信与无线电遥感等。

无线电波的接收

理论上讲,接收与发射是一个相反的过程。首先要使天线与电子线路都工作在发射载波的频率上,然后经解调与放大得到发端传送的信息。将调制信号还原出来的过程叫做解调。解调又有检波与鉴频和鉴相之分。

接收设备最重的任务是把远距离无线电发射机发送的载息无线电波中的有用信息提取出来。然后进入“解调器”。检波之后的音频信号经音频输出放大之后送到收音机的喇叭。

无线电接收机的技术参数:

灵敏度衡量接收机对微弱信号接收能力的重要参数,它与噪声系数可以相互换算。灵敏度可用电压表示uV或dBuV,也可以用功率表示dBm。以收音机为例,这是能否收到、或能否稳定收到电台广播的指标。

选择性衡量接收机对所需信号频率、频带的选择能力。接收机的调谐和通频带对选择性起决定作用。

频率特性接收机频率特性就是接收机的通频带。它的宽度应准确适应接收信号的频带宽度,只选信号,不需嗓声和干扰。

接收机的增益常常不是重要指标,而接收机的动态范围却是重要指标。所谓动态范围是指接收机在输入信号从非常微弱到非常强的范围内变动时,它能维持稳定的输出,并保持其额定灵敏度的能力。良好的接收机动态范围会达到甚至超过100dB。

《通信的基本概念》word版

◆通信的基本概念 ?通信---- 由一地向另一地进行消息的有效传递 ?信道---- 载荷着信息的信号所通过的通道(或称媒质) ◆信息及其度量 ?信息---- ?传输信息的多少可直观地使用“ ”进行衡量◆信息及其度量 ?信息----指消息中包含的有意义的内容 ?传输信息的多少可直观地使用“信息量”进行衡量?消息中的信息量I与消息发生的概率P(x)紧密相关 消息出现的概率愈小,则消息中包含的信 息量就() 概率为0时(不可能发生事件),信息量 为() 概率为1时(必然事件),信息量为( ?消息中的信息量I与消息发生的概率P(x)紧密相关 消息出现的概率愈小,则消息中包含的信 息量就(愈大) 概率为0时(不可能发生事件),信息量 为(无穷大) 概率为1时(必然事件),信息量为( 0 ) ◆I与 P(x)的关系式 当a取2时,单位为比特(bit)

当a取e时,单位为奈特(nit) 当a取10时,单位为哈特(hart) ◆通信系统的基本概念 通信系统----指传递信息所需的一切设备的总和 通信系统的任务----将不同形式的消息从发送端传递到接收端 通信系统的一般模型----由信源,发送设备,信道,接收设备,信宿和噪声源六部分组成◆数字通信系统的组成 ?信源和信宿 ?信源编码和信源解码 ?信道编码和信道解码 ?调制和解调 ?信道 ?噪声源 ?信源—把消息转换成原始的电信号,完成非电/电的转换 ?信宿—把复原的电信号转换成相应的消息,完成电/非电的转换 ?信源编码—有两个作用:一是进行模/数转换;一是数字压缩(即降低数字信号的数 码率) 信源译码是信源编码的逆过程 ?信道编码器—对传输的信号码元按一定的规则加入保护成分(监督元),组成所谓的 “抗干扰编码” ?信道译码器—按一定规则进行解码,从解码的过程中发现错误或纠正错误,从而提高 系统的抗干扰能力 ?调制—把各种数字基带信号转换成适应于信道 传输的数字频带信号(已调信号)

无线电波的发射与接收

第一章无线电波的发射与接收 我们在物理学的学习中知道,通有交流电的导线,会在它周围产生变化的磁场,变化的磁场又能在它周围引起变化的电场,而变化的电场还将在它周围更远的空间引起变化的磁场。这种不断交替变化,由近及远传播的电磁场就叫电磁波。无线电技术中使用的电磁波叫无线电波。 无线电广播、电视广播都是利用无线电波进行传播信号的。现代通讯离不开无线电波。本章将介绍无线电波的波长、频率、波段划分,以及它的发射与接收。 第一节无线电波的波长、频率与波段划分 一、无线电波波段的划分 表1-1无线电波波段的划分 理论和实验都可以证明,无线电波在真空中的传播速度跟实验测得的光速相等,即 C=3.0×108m/s 无线电波在一个振荡周期T内传播的距离叫做波长。波长、频率和无线电波传播速度c的关系为 λ=c/f

式中:λ一无线电波的波长,单位m ; c 一无线电波的传播速度,单位m/s; f 一无线电波的频率,单位H Z 无线电波的波长从不到一毫米到几十千米(频率范围由几十千赫到几十万兆赫)。通常根据波长〔频率)把无线电波划分成几个波段,如表1-1所示。 二、无线电波的传播 无线电波是横波,即电场和磁场的方向都跟波的传播方向垂直。在无线电波中各 处 的电场强度和磁感应强度的方向也总是互相垂直的,如图1-1所示。不同波长的电磁波,传播特性不相同;其传播方式大致可分为地波、天波和空间波三种形式。 (一)地波 沿地球表面空间向外传播的无线电波叫地波,如图1-2(a)所示。波具有衍射特性,当无线电波的波长大于或相当于山坡、建筑物等障碍物的尺寸时,它可以绕过障碍物继续向前传播。 地球是导体,地波沿地面传播时,地球表面因电磁感应而产生感应电流,因此要消耗能量,并且能量损耗随频率升高而增大。考虑到能量损失,只有中、长波才利用地波方式传播。由于地波传播稳定可靠,在超远 程无线电通讯和导航等方面多采用中长波。 图1-1无线电波传播示意图 (二)天波 依靠电离层的反射作用传播的无线电波叫做天波,如图1-2(b 〕所示。在地球表面的大气层中,大约在60km 到400km 的范围内,由于太阳光的照射,气体分子分解为带正电的离子和自由电子,这就是电离层。电离层一方面可以反射无线电波,反射本领随频率增大而减小。实践表明,波长短于10m 的微波会穿过电离层飞向宇宙,它只能反射短波或波长更长的无线电波。电离层另一方面要吸收无线电波,吸收本领随频率减小而增大,中波和中短波一部分被吸收,因此,只有短波多采用天波方式传播。 天波传播受外界影响较大,它与电离层强度、太阳辐射强度等多种因素有关,.由于这些原因,收音机夜晚收到的电台比白天多, (三)空间波 沿直线传播的无线电波叫做空间波,它包括由发射点直接到达接收点的直射波和经地面反射到接收点的反射波,如图1-2(C 〉所示。

无线电波传播方式与各频段的利用

无线电波传播方式与各频段的利用 无线电通信是利用电磁波在空间传送信息的通信方式。电磁波由发射天线向外辐射出去,天线就是波源。电磁波中的电磁场随着时间而变化,从而把辐射的能量传播至远方。无线电波共有以下七种传播方式(附图为无线电波传播方式示意图)。 (1)波导方式当电磁波频率为30kHz以下(波长为10km以上)时,大地犹如导体,而电离层的下层由于折射率为虚数,电磁波也不能进入,因此电磁波被限制在电离层的下层与地球表面之间的空间内传输,称为波导传波方式; (2)地波方式沿地球表面传播的无线电波称为地波(或地表波),这种传播方式比较稳定,受天气影响小; (3)天波方式射向天空经电离层折射后又折返回地面(还可经地面再反射回到天空)的无线电波称为天波,天波可以传播到几千公里之外的地面,也可以在地球表面和电离层之间多次反射,即可以实现多跳传播。 (4)空间波方式主要指直射波和反射波。电波在空间按直线传播,称为直射波。当电波传播过程中遇到两种不同介质的光滑界面时,还会像光一样发生镜面反射,称为反射波。 (5)绕射方式由于地球表面是个弯曲的球面,因此电波传播距离受到地球曲率的限制,但无线电波也能同光的绕射传播现象一样,形成视距以外的传播。 (6)对流层散射方式地球大气层中的对流层,因其物理特性的不规则性或不连续性,会对无线电波起到散射作用。利用对流层散射作用进行无线电波的传播称为对流层散射方式。 (7)视距传播指点到点或地球到卫星之间的电波传播。 附表给出了从甚低频(VLF)至极高频(EHF)频段的电波传播方式、传播距离、可用带宽以及可能形成的干扰情况。

在确定无线电系统实际通信距离、覆盖范围和无线电干扰影响范围时,无线电传播损耗是一个关键参数。无线电通信系统若不进行科学的频率指配和严格的系统设计与场强预测,会使系统之间产生严重干扰而不能正常工作。为了保证无线电通信用户的通信质量,确保无线电波发射的业务覆盖服务区和电波传播的可靠程度,必须仔细地计算从接收天线到发射天线之间的传播损耗。理论上讲,在自由空间无线电波的传播损耗大小与传播距离的平方及使用频率的平方成正比关系,但是在确定无线电系统实际通信距离、覆盖范围和无线电干扰影响范围时,同时还要考虑在传播路径上存在着各种各样的影响,如高空电离层影响,高山、湖泊、海洋、地面建筑、植被以及地球曲面的影响等,因而电波具有反射、绕射、散射和波导传播等传播方式。在研究电波传播特性时,通常以数学表达式来描述这些传播损耗特性,即所谓的数学模型。无线电波传播模型通常是很复杂的,必须对不同的频段使用不同的电波传播模型,以预测电台覆盖和传播场强。下面简要地叙述几种传播方式(详细数学公式略)。 VLF(f< 30kHz) 频率低于30kHz的电波,传播损耗近似等于自由空间传播损耗,即相当于电波在理想的、均匀的、各向同性的介质中传播,不发生反射、折射、绕射和吸收现象,只存在因电磁能量扩散引起的传播损耗。在此频段内,电波在电离层与地球之间可以以波导方式沿地球表面进行传播。 LF(30kHz< f< 300kHz) 在这个频段内,有两种重要的传播方式:地波方式及电离层天波方式。天波信号幅度具有明显的昼夜变化,这是由于电离层吸收和变化

通信基本概念名词解释

常用参数缩写解释 参数缩写含义解释参数缩写含义解释 小区名称小区号 基站地址时间 基站名称广播控制信道 基站编号基站色码 载频号经度 位置区号码纬度 帧丢失率小区地识别码 话音质量评估时间提前 路径损耗原则参数帧号码 小区重选信道质量标准参数不连续传输 计录测试标志(切换,掉话等)跳频状态消息内容微小区 当前地基站色码邻小区地广播控制信道 当前地广播控制信道邻小区广播控制信道当前地国家移动码邻小区平均地接收电平当前地移动网号邻小区基站色码 当前地位置区号码邻小区路径损耗原则参数当前服务小区号邻小区小区重选标准参数当前地小区识别码平均地接收电平 业务信道移动配置指数偏移信道接收质量业务信道地跳频序列码平均地接收电平 业务信道号信道接收质量 业务信道时隙天线型号 业务信道类型天线覆盖角 业务信道模型天线下倾角 独立专用控制信道天线水平极化角 无线接续超时计数最大值天线照片文件名无线接续超时计数当前值发信功率电平 同频平均地接收电平基站地最大时隙 同频基站色码手机地最大时隙 邻频平均地接收电平十六制字符 发信功率电平邻小区编号 邻频基站色码十六制字符 邻小区编号 基本概念名词解释 基站识别码()

使移动台能区分相邻地各个基站. 国家色码,识别 注:它不唯一地识别运营者,主要是用来区分国界各侧地运营者. 基站色码,识别基站 在定义地时候,我们需要特别注意,以确保相邻不使用相同地.因此,为了防止可能出现地僵局,建议中给出了所有成员国地定义. 小区全球识别码() 是用来识别一个位置区内地小区.它是在位置区识别码()后加上一个小区识别码(). 小区识别码,识别一个位置区内地小区,最多为. :不连续传输 在系统中,传输方式有普通和不连续传输()两种摸式.所谓不连续传输就是在通话期间:进行地话音编码;在通话间隙:传输低速编码.目地是降低空中地总地干扰电平,节省无线发射机电源地耗电量. 当在上使用时,并非所有均可传输,但以下帧总被传输,因此可用来评价期间地质量和信号电平. (平均接收电平): 描述收到信号强度(电平)地统计参数,作为功率控制和切换过程地依据. 参数范围:() 收信信号电平将被映射到之间地某个值. < … … > 注:定义每个载波地需. (信号接收质量): 描述收信无线链路信号质量地统计参数,该参数作为功率控制和切换过程依据. 参数定义(表:) < 假定值 假定值 假定值 假定值 假定值 假定值 假定值 > 假定值

无线电发射与接收电路

无线电发射与接收电路

————————————————————————————————作者:————————————————————————————————日期:

简易无线遥控发射接收设计--- 315M遥控电路 OOK调制尽管性能较差,然而其电路简单容易实现,工作稳定,因此得到了广泛的应用,在汽车、摩托车报警器,仓库大门,以及家庭保安系统中,几乎无一例外地使用了这样的电路。 早期的发射机较多使用LC振荡器,频率漂移较为严重。声表器件的出现解决了这一问题,其频率稳定性与晶振大体相同,而其基频可达几百兆甚至上千兆赫兹。无需倍频,与晶振相比电路极其简单。以下两个电路为常见的发射机电路,由于使用了声表器件,电路工作非常稳定,即使手抓天线、声表或电路其他部位,发射频率均不会漂移。和图一相比,图二的发射功率更大一些。可达200米以上。 图一 图二 接收机可使用超再生电路或超外差电路,超再生电路成本低,功耗小可达100uA左右,调整良好的超再生电路灵敏度和一级高放、一级振荡、一级混频以及两级中放的超外差接收机差不多。然而,超再生电路的工作稳定性比较差,选择性差,从而降低了抗干扰能力。下图为典型的超再生接收电路。

超外差电路的灵敏度和选择性都可以做得很好,美国Micrel公司推出的单片集成电路可完成接收及解调,其MICRF002为MICRF001的改进型,与MICRF001相比,功耗更低,并具有电源关断控制端。MICRF002性能稳定,使用非常简单。与超再生产电路相比,缺点是成本偏高(RMB35元)。下面为其管脚排列及推荐电路。 ICRF002使用陶瓷谐振器,换用不同的谐振器,接收频率可覆盖300-440MHz。MICRF002具有两种工作模式:扫描模式和固定模式。扫描模式接受带宽可达几百KHz,此模式主要用来和LC振荡的发射机配套使用,因为,LC发射机的频率漂移较大,在扫描模式下,数据通讯速率为每秒2.5KBytes。固定模式的带宽仅几十KHz,此模式用于和使用晶振稳频的发射机配套,数据速率可达每秒钟10KBytes。工作模式选择通过MICRF002的第16脚(SWEN)实现。另外,使用唤醒功能可以唤醒译码器或CPU,以最大限度地降低功耗。

无线电发射设备管理规定(征求意见稿)

附件1 无线电发射设备管理规定 (征求意见稿) 第一章总则 第一条为加强无线电发射设备管理,防止和减少无线电干扰,维护空中电波秩序和保障良好的电磁环境,促进无线电技术应用和产业发展,根据《中华人民共和国无线电管理条例》和相关法律、行政法规,制定本规定。 第二条无线电发射设备的研制、生产、进口等活动应当遵守本规定。 本规定所称无线电发射设备是指为开展各类无线电业务而发射无线电波的设备。辐射无线电波的非无线电设备不适用本规定,但其产生的电磁辐射水平应当符合国家标准和国家无线电管理的有关规定。 第三条研制无线电发射设备使用的无线电频率,应当符合国家无线电频率划分规定。 第四条国家无线电管理机构负责无线电发射设备型号核准和监督管理,按照国家有关规定发布和调整无线电发射设备型号核准目录,制定型号核准有关规定和技术要求。 省、自治区、直辖市无线电管理机构依照本规定负责本

行政区域内无线电发射设备的临时进关批准和监督管理。 第二章无线电发射设备型号核准 第五条除微功率短距离无线电发射设备外,生产、进口在国内销售、使用的其他无线电发射设备,应当向国家无线电管理机构申请型号核准。 第六条申请无线电发射设备型号核准,应当符合下列条件: (一)申请人有相应的生产能力、技术力量、质量保证体系; (二)无线电发射设备的工作频率、功率等技术指标符合国家标准和国家无线电管理的有关规定; (三)申请人及其法定代表人未被列入无线电发射设备型号核准失信名单。 第七条申请无线电发射设备型号核准,应当向国家无线电管理机构提交下列申请材料: (一)经法定代表人或者其委托人签署的书面申请和承诺书; (二)加盖申请人签章的营业执照副本或者事业单位法人证书复印件,境外申请人提供加盖申请人签章的组织机构说明材料;

移动通信的基本概念

移动通信的基本概念 1.移动通信:是指通信双方或至少一方可以在运动中进行信息交换的通信方式。 2.自由空间:是一个理想的空间,在自由空间中,电波沿直线传播而不被吸收,也不发生反射、折射、绕射和散射等现象。 3.单工通信:指通信双方设备交替地进行收信和发信。根据通信双方是否使用相同频率,单工制又分为同频单工和双频单工。双工通信:也叫全双工通信,指通信双方收发信机均同时工作。即一方讲话的同时也可以听到对方的讲话,双工制一般使用一对频道。半双工通信:通信双方有一方使用双工方式,而另一方则采用双频单工方式。 4.小区制:是把整个服务区域划分为若干个小区,每个小区分别设置一个基站,负责本区移动通信的联络和控制。同时,又在移动业务交换中心的统一控制下,实现小区之间移动通信的转接以及移动用户与市话用户的联系。 5.小区:指基站使用不同的电磁波覆盖不同的区域,即分为不同的小区,通常一个基站分为三个小区。 6.相邻小区(邻区):两个覆盖有重叠并设置有切换关系的小区,一个小区可以有多个相邻小区。 7.频率复用:相同的频率可以用于覆盖不同的小区,只要这些小

区两两相隔的距离足够远,相互间的干扰就可在接受的范围之内,这一为整个系统中所有基站选择和分配频率的设计过程叫做频率复用或频率规划。 8.切换(Handover):当移动用户处于通话状态时,如果出现用户从一个小区移动到另一个小区的情况,为了保证通话的连续,系统要将对移动台的连接控制也从一个小区转移至另一个小区。这种将正在处于通话状态的移动台转移到新的业务信道上(新的小区)的过程称为切换。 9.漫游:指移动用户离开了其归属的局而到其它交换局管辖范围内登记成为移动用户。 10.切换发生的原因:信号的强度或质量,下降到由系统规定的一定参数以下,此时移动台被切换到信号强度较强的相邻小区,这种切换一般由移动台发起。由于某小区业务信道容量全被占用或几乎全被占用,这里移动台被切换到业务信道较空闲的相邻小区,这种一般由上级实体发起。切换与漫游的目的是实现蜂窝移动通信的“无缝隙覆盖”。 11.载波:基站用于传送信息的电磁波的频率。 12.信道(Channel):移动通信中移动台与基站之间的信息通道,分物理信道和逻辑信道。 13.信道号:移动通信使用载频所对应的信道编号。 14.物理信道:是指一个时隙(约577us,156.25个比特)。在GSM900频段的上行(890~915MHz)或下行(935~960MHz) 频率范围内分配

(整理)通信的基本概念

◆通信的基本概念 通信---- 由一地向另一地进行消息的有效传递 信道---- 载荷着信息的信号所通过的通道(或称媒质) ◆信息及其度量 信息---- 传输信息的多少可直观地使用“”进行衡量◆信息及其度量 信息----指消息中包含的有意义的内容 传输信息的多少可直观地使用“信息量”进行衡量 消息中的信息量I与消息发生的概率P(x)紧密相关 消息出现的概率愈小,则消息中包含的信 息量就() 概率为0时(不可能发生事件),信息量 为() 概率为1时(必然事件),信息量为( 消息中的信息量I与消息发生的概率P(x)紧密相关消息出现的概率愈小,则消息中包含的信 息量就(愈大) 概率为0时(不可能发生事件),信息量 为(无穷大) 概率为1时(必然事件),信息量为(0 )◆I与P(x)的关系式 当a取2时,单位为比特(bit)

当a取e时,单位为奈特(nit) 当a取10时,单位为哈特(hart) ◆通信系统的基本概念 通信系统----指传递信息所需的一切设备的总和 通信系统的任务----将不同形式的消息从发送端传递到接收端 通信系统的一般模型----由信源,发送设备,信道,接收设备,信宿和噪声源六部分组成 ◆数字通信系统的组成 信源和信宿 信源编码和信源解码 信道编码和信道解码 调制和解调 信道 噪声源 信源—把消息转换成原始的电信号,完成非电/电的转换 信宿—把复原的电信号转换成相应的消息,完成电/非电的转换 信源编码—有两个作用:一是进行模/数转换;一是数字压缩(即降低数字信号的数码率) 信源译码是信源编码的逆过程 信道编码器—对传输的信号码元按一定的规则加入保护成分(监督元),组成所谓的“抗 干扰编码” 信道译码器—按一定规则进行解码,从解码的过程中发现错误或纠正错误,从而提高系统 的抗干扰能力 调制—把各种数字基带信号转换成适应于信道 传输的数字频带信号(已调信号)

简易无线电发射与接收电路

简易无线电发射与接收电路 OOK调制尽管性能较差,然而其电路简单容易实现,工作稳定,因此得到了广泛的应用,在汽车、摩托车报警器,仓库大门,以及家庭保安系统中,几乎无一例外地使用了这样的电路。 早期的发射机较多使用LC振荡器,频率漂移较为严重。声表器件的出现解决了这一问题,其频率稳定性与晶振大体相同,而其基频可达几百兆甚至上千兆赫兹。无需倍频,与晶振相比电路极其简单。以下两个电路为常见的发射机电路,由于使用了声表器件,电路工作非常稳定,即使手抓天线、声表或电路其他部位,发射频率均不会漂移。和图一相比,图二的发射功率更大一些。可达200米以上。 图一 图二 接收机可使用超再生电路或超外差电路,超再生电路成本低,功耗小可达100uA左右,调整良好的超再生电路灵敏度和一级高放、一级振荡、一级混频以及两级中放的超外差接收机差不多。然而,超再生电路的工作稳定性比较差,选择性差,从而降低了抗干扰能力。下图为典型的超再生接收电路。

超外差电路的灵敏度和选择性都可以做得很好,美国Micrel公司推出的单片集成电路可完成接收及解调,其MICRF002为MICRF001的改进型,与MICRF001相比,功耗更低,并具有电源关断控制端。MICRF002性能稳定,使用非常简单。与超再生产电路相比,缺点是成本偏高(RMB35元)。下面为其管脚排列及推荐电路。 ICRF002使用陶瓷谐振器,换用不同的谐振器,接收频率可覆盖300-440MHz。MICRF002具有两种工作模式:扫描模式和固定模式。扫描模式接受带宽可达几百KHz,此模式主要用来和LC振荡的发射机配套使用,因为,LC发射机的频率漂移较大,在扫描模式下,数据通讯速率为每秒 2.5KBytes。固定模式的带宽仅几十KHz,此模式用于和使用晶振稳频的发射机配套,数据速率可达每秒钟10KBytes。工作模式选择通过MICRF002的第16脚(SWEN)实现。另外,使用唤醒功能可以唤醒译码器或CPU,以最大限度地降低功耗。MICRF002为完整的单片超外差接收电路,基本实现了“天线输入”之后“数据直接输出”,接收距离一般为200米。

无线电波的传播特性

无线电波的传播特性 1、无线电波的传播特性及信号分析 甚低频VLF 3-30KHz 超长波1KKm-100Km 空间波为主海岸潜艇通信;远距离通信;超远距离导航低频LF 30-300KHz 长波10Km-1Km 地波为主越洋通信;中距离通信;地下岩层通信;远距离导航中频MF 0.3-3MHz 中波1Km-100m 地波与天波船用通信;业余无线电通信;移动通信;中距离导航高频HF 3-30MHz 短波100m-10m 天波与地波远距离短波通信;国际定点通信 甚高频VHF 30-300MHz 米波10m-1m 空间波电离层散射(30-60MHz);流星余迹通信;人造电离层通信(30-144MHz);对空间飞行体通信;移动通信 超高频UHF 0.3-3GHz 分米波1m-0.1m 空间波小容量微波中继通信;(352-420MHz);对流层散射通信(700-10000MHz);中容量微波通信(1700-2400MHz) 特高频SHF 3-30GHz 厘米波10cm-1cm 空间波大容量微波中继通信(3600-4200MHz);大容量微波中继通信(5850-8500MHz);数字通信;卫星通信;国际海事卫星通信(1500-1600MHz) ELF 极低频3~30Hz SLF 超低频30~300Hz ULF 特低频 300~3000Hz VLF 甚低频3~30kHz LF 低频30~300kHz 中波,长波 MF 中频300~3000kHz 100m~1000m 中波 AM广播 HF 高频 3~30MHz 10~100m 短波短波广播 VHF 甚高频 30~300MHz 1~10m 米波FM广播 UHF 特高频 300~3000MHz 0.1~1m 分米波 SHF 超高频3~30GHz 1cm~10cm 厘米波 EHF 极高频30~300GHz 1mm~1cm 毫米波 无线电波按传播途径可分为以下四种:天波—由空间电离层反射而传播;地波—沿地球表面传播;直射波—由发射台到接收台直线传播;地面反射波—经地面反射而传播。无线电波离开天线后,既在媒介质中传播,也沿各种媒介质的交界面(如地面)传播,具有一定的规律性,但对它产生影响的因素却很多。 无线电波在传播中的主要特性如下: (1)直线传播均匀媒介质(如空气)中,电波沿直线传播。 (2)反射与折射电波由一种媒介质传导另一种媒介质时,在两种介质的分界面上,传播方向要发生变化。由第一种介质射向第二中介质,在分界面上出现两种现象。一种是射线返回第一种介质,叫做反射; 另一种现象是射线进入第二种介质,但方向发生了偏折,叫做折射。一般情况下反射和折射是同时发生的。 入射角等于反射角,但不一定等于折射角。反射和折射给测向准确性带来很大的不良影响;反射严重是,测向设备误指反射体,给干扰查找造成极大困难。 (3)绕射电波在传播途中,有力图绕过难以穿透的障碍物的能力。绕射能力的强弱与电波的频率有关,又和障碍物大小有关。频率越低的电波,绕射能力越弱;障碍物越大,绕射越困难。工作于80米(375MHZ)波段的电波,绕射能力是较强的,除陡峭高山(相对高度在200米以上)外,一般丘陵均可逾越。2米波段的电波绕射能力就很差了,一座楼房,或一个小山丘,都可能使信号难以绕过去。 (4)干涉直射波与地面反射波或其它物体的反射波在某处相遇时,测向收到的信号为两个电波合成后的信号,其信号强度有可能增强(两个信号跌叠加)也可能减弱(两个信号相互抵消)。这种现象称为波的干涉。产生干涉的结果,使得测向机在某些接收点收到的信号强,而某些接收点收到的信号弱,甚至收不到信号,给判断干扰信号距离造成错觉。天线发射到空间的电波的能量是一定的,随着传播距离的增大,不仅在传播途中能量要损耗,而且能量的分布也越来越广,单位面积上获得的能量越来越小。反之,

无线电波传播途径

无线电波在均匀介质 (如空气)中,具有直线传播的特点。只要测出电波传播的方向,就可以确定出信号源(发射台)所在方向。无线电测向是指通过无线电测向机测定发射台(或接收台)方位的过程,但是无线电测向运动中,要快速寻找隐蔽巧妙的信号源,必须掌握无线电波的传播规律。 一、无线电波的发射与传播 无线电波既看不见,也摸不着,却充满了整个空间。广播、移动通讯、电视等,已经是现代社会生活必不可少的一部分。无线电波属于电磁波中频率较低的一种,它可直接在空间辐射传播。无线电波的频率范围很宽,频段不同,特性也不尽相同。我国目前开展的无线电测向运动涉及三个频段:频率为1.8—2兆赫的中波波段,波长为150—166.6米,称160米波段测向;频率为3.5—3.6兆赫的短波波段,波长为83.3—85.7米,称80米波段测向;频率为144—146兆赫的超短波段,波长为2.08—2.055米,称2米波段测向。 (一)无线电波的发射过程 无线电波是通过天线发射到空间的。当电流在天线中流动时,天线周围的空间不但产生电力线 (即电场),同时还产生磁力线。其相互间的关系,如图2-1-1所示。如果天线中电流改变方向,空间的电力线和磁力线方向随之改变。如果加在天线上的是高频交流电,由于电流的方向变化极快,根据电磁感应的原理,在这些交替变化的电场和磁场的外层空间,又激起新的电磁场,不断地向外扩散,天线中的高频电能以变化的电磁场的形式,传向四面八方,这就是无线电波。从图2-l可知,电力线 (即电场)方向与天线基本平行,磁力线 (磁场)的形状则是以天线为圆心,与天线相垂直的方向随之变化的无数同心圆。 图2-1-1 无线电波的发射 (二)无线电波的特性 l.无线电波的极化 交变电磁场在其附近空间又激起新的电磁场的现象称无线电波的极化。空间传播的无线电波都是极化波。当天线垂直于地平面时,天线辐射的无线电波的电场垂直于地平面称垂直极化波。天线平行于地平面时,天线辐射的无线电波的电

无线通信基本原理、基本概念(1).doc

无线通信基本原理、基本概念 1、无线频段的划分 2、我国常用移动通信使用频段 (a ) GSM900:上行:890?915MHz ,下行:935?960MHz ,每载波带宽 200 KHz ; GSM1800:上行:1710?1720MHz ,下行:1805?1815MHz ,每载波带宽 200 KHz ; (b ) CDMA2000 :上行:825?835MHz ,下行:870?880MHz ,每载波带宽 1.23MHz ; (C )PHS : 1900?1920MHz ,每载波带宽 300KHz ; (d )集群:上行806?821MHz ,下行851?866MHz ,每载波带宽25KHz ; 3、波长入、频率f 的关系为 c=f* 入 式中:C 为光速,数值为3X 108 m/s ,f 单位为Hz ,入单位为m 。 4、波传播的几种方式 表面波传播:以绕射方式,沿着地球表面传播。 天波传播:通过高 空电离层反射传播。 空间波传播:通过直线传播和地面反射传播。 散射传播:利用大气对流层和电离层的不均匀性来散射传播。 长波一般通过表面波传播;中波、短波一般通过表面波或天波传播;微波 一般通过空间波、散射波传播。 5、仙农(Shannon )定理 C=Blog 2(1+S/N ) 上式中C 为信道容量,B 为信道带宽,S/N 为信噪比。 扩频通信即据此原理。 6、TDD 、FDD 、TDMA 、FDMA 、CDMA 的区别 a ) b )

a ) TDD (时分双工) 收发信共用一射频频带,上、下行链路使用不同的时隙来进行通信。 b ) FDD (频分双工) 收发信使用一个不同的射频频率来进行通信。 C )TDMA (时分多址) 传送给不同终端用户的信息通过同一载波的不同时隙来区分。 d ) FDMA (频分多址) 传送给不同终端用户的信息通过不同载波来区分。 CDMA (码分多址) 传送给不同终端用户的信息通过不同码调制来区分。 7、大尺度路径损耗和小尺度路径损耗 大尺度路径损耗:无线信号经长距离上的场强变化,又叫慢衰落。自由空 间损耗即属于典型的大尺度路径损耗。 小尺度路径损耗:无线信号经过短时间或短距离传播后其幅度快速衰落, 又叫快衰落。多经传播是引起小尺度传播的主要原因。 8、平衰落和选择性衰落 平衰落:发射信号的频谱特性在接收机内仍能保持不变的衰落。 选择性衰落:发射信号的频谱特性在接收机内发生了畸变的衰落。 9、极化 波的极化是指电场的取向随时间变化的方式。 电场矢量的两个正交分量具有不同振幅和相位关系时,可能形成三种不同 的极化:线极化、园极化和椭圆极化。 i L 厂 选择性衰落 ------- ? ----- ? f r ---- \ 功率谱密度 功率谱密度 平衰落 f fO 发信频谱图 fO 收信频谱图 功率谱密度 发信频谱图 fO 收信频谱图

无线电波的传播特性修订版

无线电波的传播特性 Document number:PBGCG-0857-BTDO-0089-PTT1998

无线电波的传播特性 无线电通信就是不用导线,而利用电磁波振荡在空中传递信号,天线就是波源。电磁波中的电磁场随着时间而变化,从而把辐射的能量传播至远方。 在莫尔斯和贝尔先后发明了有线电报和电话之后,很多科学家对电磁现象大量研究。直到1831年,在英国,法拉弟首先发现了电磁感应现象,并且预言:电与磁的传播是和光一样的一种波。 英国科学家麦克斯韦从1850年就开始对法拉弟提出的课题展开研究。他总结了前人的研究成果,用数学方法对法拉弟的电磁场思想做了严格的论证,并在1864年做出“电与磁的交替转化过程,是一种波的传播形式,是一种光波”的论断,他称这种波为电磁波。 在麦克斯韦首先提出电磁理论后,又过了24年,才由德国伟大的物理学家赫兹通过实验证实了麦氏理论的正确。赫兹设计了一个能够接收电火花的装置,结构极简单。把一根导线弯成圆形,使两端之间仅留一微小的间隙,称它为“共振子”。“共振子”为什么也有火花发生呢赫兹认为,这一定是电振荡以电磁波形式通过空间传播过去的。赫兹于1888年公布了自己的实验结果,证实了电磁波的存在。 赫兹的实验成果震惊了世界,许多科学家继续开展对电磁波的研究。1890年,法国物理学家布朗利发现,将金属粉末即紧缩成块,但是它的电阻减小了,使电流容易通过。这种装有金属粉未的玻璃管被称为“布朗利管”,又称“粉末检波器”,它接收电磁波的灵敏度比赫兹的“共振子”要高得多。 1894年,20岁的意大利青年马可尼从杂志上读到悼念赫兹的文章和他生前的感人事迹,受到极大启发:“如果利用赫兹发现的电磁波,不需要导线也可以实现远距离通信了”。马可尼为自己的大胆设想所激动下宏愿,决心开拓无线电通信事业,把赫兹的研究成果付诸实际应用。在家人的支持下,马可尼就在自己家中进行实验,他用赫兹的火花放电器作发射机,用布朗利的金属粉未检波器作接收机经过一个多月的努力,终于完成了电磁波的发送和接收实验,并在实

通信企业管理基本概念解析

模拟信号与数字信号 信号幅度在某一范围内可以连续取值的信号称为模拟信号,信号幅度仅能够取有限个离散值的信号称为数字信号。 将模拟信号取样后产生的信号,它虽然在时间上是离散的,但幅值上仍然是连续的,因此仍然是模拟信号。 模拟信号的优势: (1)抗干扰能力强,无噪声累积 (2)数据形式统一,便于计算处理 (3)易于集成化,小型化 (4)易于加密处理 数字通信系统虽然需要占用较宽频带,技术上也较为复杂,但与其所具有的巨大优势相比不构成问题的主要方面。因此,数字化通信已经成为当代通信领域主要技术手段。 调幅、调频、调相 调幅是指载波信号的幅度随调制信号变化而变化。 载波频率ω(t)随调制信号的瞬时幅值变化而变化的调制称为调频。 载波瞬时相位θ(t)随调制信号瞬时幅值呈线性关系变化的调制称为调相。 幅频特性与幅时特性 信号的时域特性表达的是信号幅度随时间变化的规律,简称为幅时特性。 信号的频域特性表达的是信号幅度随频率变化的规律,简称为幅频特性。 它们是以傅立叶理论为基础。 多媒体系统 多媒体系统指的是多种表示媒体结合在一起的系统。多媒体系统与多种媒体系统的重要的区别在于媒体之间的同步性。 多媒体通信系统的基本组成部件包括用户视听设备、多媒体终端和通信网络。 多媒体通信业务主要包括会话型业务、分配型业务、检索型业务和消息型业务等四种类型。数字通信系统 传送数字信号的通信系统称为数字通信系统。 一般来讲,数字通信的信源往往是模拟信号,需要进行模拟/数字转换之后才能进行传输。

通信传输方式 (1)单工与双工通信方式(2)串行与并行通信方式(3)同步与异步通信方式。 移动通信 移动通信指移动用户之间或移动用户与固定用户之间所进行的通信。 相对于固话通信而言移动通信具有如下一些特点: (1)频率资源有限(2)易受外界干扰 (3)具有无线通信的各种效应:a.多径效应 b.阴影效应 c.多普勒效应 d.远近效应 (4) 系统设备复杂(5) 对移动设备的要求高6) 安全与保密问题 光纤通信 光纤通信是以光波信号作为载体,以光导纤维作为传输媒介的一种通信手段。 特点:(1)传输损耗小,中继距离长(2)传输频带宽,通信容量大(3)抗电磁干扰,保密效果好(4)体积小、重量轻、便于运输和敷设(5)原材料丰富、节约有色金属、有利于环保。(6)技术上较复杂:光纤质地脆弱易断,需要增加适当保护层加以保护,保证其能承受一定的敷设张力;切断和连接需要高精度溶接技术和器具。 光纤的传输特性主要包括传输损耗、色散和非线性效应。 光纤损耗: 光纤损耗产生的主要原因是吸收和散射造成的;其次,光纤结构不完善也有可能导致损耗。 光纤通信系统主要由电端机、光端机、光中继器和光缆组成。 在发送端,电发送端机把信源消息转换成电数字信号,光发送端机使用该电数字信号来调制光源,产生光脉冲信号并直接送入光缆传输,到达远端的光接收端机后,用光检测器把光脉冲信号还原成电数字信号,再由电接收端机恢复成原始消息,送达信宿。光中继器起到放大信号,增大传输距离的作用。 微波通信 微波通信是指以微波频率作为载波,通过中继接力方式实现的一种通信方式。 微波通信的特点:(1)频带宽,传输容量大;(2)适于传送宽频带信号;(3)天线增益高,方向性强;(4)外界干扰小,通信线路稳定可靠;(5)投资少,建设快,通信灵活性大;(6)中继通信方式。 在对微波通信频率进行配置时一般应考虑的因素有以下几点:(1)整个频率的安排要紧凑,使得每个频段尽可能获得充分利用;(2)在同一中继站中,一个单向传输信号的接收和发射必须使用不同的频率,以避免自调干扰;(3)在多路微波信号传输频率之间必须留有足够的

无线电波的传播特性

无线电波的传播特性 传播特性(一) 移动通信的一个重要基础是无线电波的传播,无线电波通过多种方式从发射天线传播到接收天线,我们按照无线电波的波长人为地把电波分为长波(波长1000米以上),中波(波长100-1000米),短波(波长10-100米),超短波和微波(波长为10米以下)等等.为了更好地说明移动通信的问题,我们先介绍一下电波的各种传播方式: 1.表面波传播 表面波传播是指电波沿着地球表面传播情况.这时电波是紧靠着地面传播的,地面的性质,地貌,地物等的情况都会影响着电波的传播. 当电波紧靠着实际地面--起伏不平的地面传播时,由于地表面是半导体,因此一方面使电波发生变化和引起电波的吸收.另一方面由于地球表面是球型,使沿它传播的电波发生绕射. 从物理课程中我们已经知道,只有当波长与障碍物高度可以比较的时候,才能有绕射功能.由此可知,在实际情况中只有长波,中波以及短波的部分波段能绕过地球表面的大部分障碍到达较远的地方.在短波的部分波段和超短波,微波波段,由于障碍高度比波长大,因而电波在地面上不绕射,而是按直线传播. 2.天波传播 短波能传至地球上较远的地方,这种现象并不能用绕射或其他的现象做解释.直到1925年,利用在地面上垂直向上发射一个脉冲,并收到其反射回波,才直接证明了高层大气中存在电离层.籍此电离层的反射作用,电波在地面与电离层之间来回反射传播至较远的地方.我们把经过电离层反射到地面的电波叫天波. 电离层是指分布在地球周围的大气层中,60km以上的电离区域.在这个区域中,存在有大量的自由电子与正离子,还可能有大量的负离子,以及未被电离的中性离子.发现电离层后,尤其近三四十年来,随着火箭与卫星技术的发展,利用这些工具对电离层进行了深入的试验和研究.当前电离层的研究已经成为空间物理的一个重要的组成部分,其研究的空间范围和频段也日益宽广. 在电离层中,当被调制的无线电波信号在电离层内传播时,组成信号的不同频率成分有着不同的传播速度.所以波形会发生失真.这就是电离层的色散性.同时,由于自由电子受电波电场作用而发生运动,所以当电波经过电离层,其能量会被吸收一部分.而且,从电离层吸收电波的规律看,若使用电波的工作频率太低,则电离层对电波的吸收作用很强.所以天波传播中有一个最低可用频率,低于这个频率,就会因为电离层对电波的吸收作用太大而无法工作. 传播特性(二) 1.空间波传播 当发射以及接收天线架设得较高的时候,在视线范围内,电磁波直接从发射天线传播到接收天线,另外还可以经地面反射而到达接收天线.所以接收天线处的场强是直接波和反射波的合成场强,直接波不受地面影响,地面反射波要经过地面的反射,因此要受到反射点地质地形的影响. 空间波在大气的底层传播,传播的距离受到地球曲率的影响.收,发天线之间的最大距离被限制在视线范围内,要扩大通信距离,就必须增加天线高度.一般地说,视线距离可以达到50km左右. 空间波除了受地面的影响以外,还受到低空大气层即对流层的影响. 移动通信中,电波主要以空间波的形式传播.类似的还有微波传播.

移动通信网络与业务的一些基本概念培训资料

移动通信网络与业务的一些基本概念

一、简介 1995年问世的第一代模拟制式手机(1G)只能进行语音通话。 1996到1997年出现的第二代GSM、CDMA等数字制式手机(2G)便增加了接收数据的功能,如接收电子邮件或网页。 二代GSM、CDMA等数字手机 (2G),第三代手机(3G)一般地讲,是指将无线通信与国际互联网等多媒体通信结合的新一代移动通信系统,未来的3G必将与社区网站进行结合,WAP与web的结合是一种趋势。 3G与2G的主要区别是在传输声音和数据的速度上的提升,它能够在全球范围内更好地实现无线漫游,并处理图像、音乐、视频流等多种媒体形式,提供包括网页浏览、电话会议、电子商务等多种信息服务,同时也要考虑与已有第二代系统的良好兼容性。为了提供这种服务,无线网络必须能够支持不同的数据传输速度,也就是说在室内、室外和行车的环境中能够分别支持至少2Mbps(兆比特/每秒)、384kbps(千比特/每秒)以及144kbps的传输速度(此数值根据网络环境会发生变化)。 二、标准 1、GSM是Global System For Mobile Communications的缩写。由欧洲电信标准组织ETSI制订的一个数字移动通信标准。GSM是全球移动通信系统(Global System for Mobile communications) 的简称。它的空中接口采用时分多址技术。自90年代中期投入商用以来,被全球超过100个国家采用。GSM标准的设备占据当前全球蜂窝移动通信设备市场80%以上。

GSM 是当前应用最为广泛的移动电话标准。全球超过200个国家和地区超过10亿人正在使用GSM电话。所有用户可以在签署了"漫游协定"移动电话运营商之间自由漫游。GSM 较之它以前的标准最大的不同是它的信令和语音信道都是数字式的,因此GSM被看作是第二代(2G)移动电话系统。这说明数字通讯从很早就已经构建到系统中。GSM是一个当前由3GPP开发的开放标准。 操作维护中心(OMC):操作维护系统中的各功能实体。依据厂家的实现方式可分为无线子系统的操作维护中心(OMC-R)和交换子系统的操作维护中心(OMC-S)。与移动台(MS)、基站子系统(BSS)、移动业务交换中心(MSC)、访问位置寄存器(VLR)、归属位置寄存器(HLR)、设备识别寄存器(EIR)、认证中心(AUC)等功能单元总体结构组成GSM系统. 2、3G是第三代通信网络,目前国内支持国际电联确定三个无线接口标准,分别是中国电信的CDMA2000,中国联通的WCDMA,中国移动的TD-SCDMA,GSM设备采用的是时分多址,而CDMA使用码分扩频技术,先进功率和话音激活至少可提供大于3倍GSM网络容量,业界将CDMA技术作为3G的主流技术,国际电联确定三个无线接口标准,分别是美国CDMA2000,欧洲WCDMA,中国TD-SCDMA。原中国联通的CDMA现在卖给中国电信,中国电信已经将CDMA升级到3G网络,3G主要特征是可提供移动宽带多媒体业务。 三、移动通信技术: 与传统的TDMA、FDMA或CDMA方式相比,智能天线引入了第四维多址方式:空分多址(SDMA)方式。

无线电发射与接收电路

简易无线遥控发射接收设计--- 315M遥控电路 OOK调制尽管性能较差,然而其电路简单容易实现,工作稳定,因此得到了广泛的应用,在汽车、摩托车报警器,仓库大门,以及家庭保安系统中,几乎无一例外地使用了这样的电路。 早期的发射机较多使用LC振荡器,频率漂移较为严重。声表器件的出现解决了这一问题,其频率稳定性与晶振大体相同,而其基频可达几百兆甚至上千兆赫兹。无需倍频,与晶振相比电路极其简单。以下两个电路为常见的发射机电路,由于使用了声表器件,电路工作非常稳定,即使手抓天线、声表或电路其他部位,发射频率均不会漂移。和图一相比,图二的发射功率更大一些。可达200米以上。 图一 图二 接收机可使用超再生电路或超外差电路,超再生电路成本低,功耗小可达100uA左右,调整良好的超再生电路灵敏度和一级高放、一级振荡、一级混频以及两级中放的超外差接收机差不多。然而,超再生电路的工作稳定性比较差,选择性差,从而降低了抗干扰能力。下图为典型的超再生接收电路。

超外差电路的灵敏度和选择性都可以做得很好,美国Micrel公司推出的单片集成电路可完成接收及解调,其MICRF002为MICRF001的改进型,与MICRF001相比,功耗更低,并具有电源关断控制端。MICRF002性能稳定,使用非常简单。与超再生产电路相比,缺点是成本偏高(RMB35元)。下面为其管脚排列及推荐电路。 ICRF002使用陶瓷谐振器,换用不同的谐振器,接收频率可覆盖300-440MHz。MICRF002具有两种工作模式:扫描模式和固定模式。扫描模式接受带宽可达几百KHz,此模式主要用来和LC振荡的发射机配套使用,因为,LC发射机的频率漂移较大,在扫描模式下,数据通讯速率为每秒2.5KBytes。固定模式的带宽仅几十KHz,此模式用于和使用晶振稳频的发射机配套,数据速率可达每秒钟10KBytes。工作模式选择通过MICRF002的第16脚(SWEN)实现。另外,使用唤醒功能可以唤醒译码器或CPU,以最大限度地降低功耗。

相关主题
文本预览
相关文档 最新文档