当前位置:文档之家› 基于最小二乘法的热电偶热电势_温度特性的线性化处理

基于最小二乘法的热电偶热电势_温度特性的线性化处理

基于最小二乘法的热电偶热电势_温度特性的线性化处理
基于最小二乘法的热电偶热电势_温度特性的线性化处理

现代检测技术 实验四__K热电偶测温性能实验

检测技术实验报告 院(系):自动化专业:自动化姓名:学号: 同组人员: 评定成绩:评阅教师:

K热电偶测温性能实验 一、实验目的: 了解热电偶测温原理及方法和应用。 二、基本原理: 热电偶测量温度的基本原理是热电效应。将A和B二种不同的导体首尾相连组成闭合回路,如果二连接点温度(T,T0)不同,则在回路中就会产生热电动势,形成热电流,这就是热电效应。热电偶就是将A和B二种不同的金属材料一端焊接而成。A和B称为热电极,焊接的一端是接触热场的T端称为工作端或测量端,也称热端;未焊接的一端(接引线)处在温度T0称为自由端或参考端,也称冷端。T与T0的温差愈大,热电偶的输出电动势愈大;温差为0时,热电偶的输出电动势为0;因此,可以用测热电动势大小衡量温度的大小。国际上,将热电偶的A、B热电极材料不同分成若干分度号,如常用的K(镍铬-镍硅或镍铝)、E(镍铬-康铜)、T(铜-康铜)等等,并且有相应的分度(见附录)表即参考端温度为0℃时的测量端温度与热电动势的对应关系表;可以通过测量热电偶输出的热电动势值再查分度表得到相应的温度值。 三、需用器件与单元: 主机箱、温度源、P t100热电阻(温度源温度控制传感器)、K热电偶(温度特性实验传感器)、温度传感器实验模板、应变传感器实验模板(代mV发生器)。 四、实验步骤: 热电偶使用说明:热电偶由A、B热电极材料及直径(偶丝直径)决定其测温范围,如K(镍铬-镍硅或镍铝)热电偶,偶丝直径3.2mm时测温范围0~1200℃,本实验用的K热电偶偶丝直径为0.5mm,测温范围0~800℃;E(镍铬-康铜),偶丝直径3.2mm时测温范围-200~+750℃,实验用的E热电偶偶丝直径为0.5mm,测温范围-200~+350℃。由于温度源温度<200℃,所以,所有热电偶实际测温范围<200℃。 从热电偶的测温原理可知,热电偶测量的是测量端与参考端之间的温度差,必须保证参考端温度为0℃时才能正确测量测量端的温度,否则存在着参考端所处环境温度值误差。 热电偶的分度表(见附录)是定义在热电偶的参考端(冷端)为0℃时热电偶输出的热电

K型热电偶测温实验报告

实验报告 实验课程名称传感器与自动检测技术 实验项目名称 K型热电偶测温实验 专业班测仪161班 实验班测仪161班 学生姓名袁利 学号 1600160290 小组编号第七组 实验时间: 2 0 1 8 年 10 月 8 日

实验目的及要求:了解K 型热电偶得特性与应用 实验仪器设备:智能调节仪、PT100、K 型热电偶、温度源、温度传感器实验模块 实验原理:热电偶是一种使用最多的温度传感器,它的原理是基于1821年发现的塞贝尔效应,即两种不同的导体或半导体A 或B 组成一个回路,其两端相互连接,只要两节点处的温度不同,一端温度为T ,另一端温度为0T ,则回路中就有电流产生,即回路中存在电动势, 该电动势被称为热电势。 当回路断开时,在断开处a,b 之间便有一电动势T E ,其极性和量 值与回路中的热电势一致,并规定在冷端,当电流由A 流向B 时,称A 为正极,B 为负极,实验表明,当T E 较小时,0=()T AB E S T T (AB S 是热电势率)。 热电偶基本定律: (1) 均质导体定律:由一种均质导体组成的闭合回路,不论导体的 截面积和长度如何,也不论各处的温度如何,都不能产生电动势。 (2) 中间导体定律:在热电偶回路中,只要中间导体C 两端温度相 同,那么接入中间导体对热电偶回路总热电势0(,)AB E T T 没有影响。 (3) 中间温度定律:热电偶的两个结点温度为12,T T 时,热电势为AB E (12,T T ),两结点温度为23,T T 时,热电势为AB E 23,T T (),那么当两结 点温度为13,T T 时的热电势则为

热电偶测温系统实验报告材料书

热电偶测温系统 实验报告书 班级:铁道自动化091班 小组成员:何俊峰、严云钧、王鹏远、倪森 瑜、康宁

目录 一热电偶的工作原理,补偿方法及其应用1热电偶的工作原理 2热电偶的补偿方法 3热电偶的实际应用 二热电偶测温系统的相关介绍 1线路原理图 2主要原件及其作用 3调试方法及其注意事项 三实验收尾及总结报告 1处理实验数据 2 实验总结

一热电偶的工作原理,补偿方法及其应用1热电偶的工作原理 (1)概况:热电偶是一种感温元件,热电偶的工作原理这就要从热电偶测温原理说起。一次仪表,直接测量温度,并把温度信号转换成热电动势信号,通过电气仪表(二次仪表)转换成被测介质温度。热电偶测温的基本原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在Seebeck电动势—热电动势,这就是所谓的塞贝克效应。两种不同成份的均质导体为热电极,温度较高的一端为工作端,温度较低的一端为自由端,自由端通常处于某个恒定的温度下。根据热电动势与温度的函数关系,制成热电偶分度表;分度表是自由端温度在0℃时的条件下得到不同的热电偶具有不同的分度表。热电偶回路中接入第三种金属资料时,只要该资料两个接点的温度相同,热电偶所产生的热电势将坚持不变,即不受第三种金属接入回路中的影响。因此,热电偶测温时,可接入测量仪表,测得热电动势后,即可知道被测介质的温度。 B热电偶工作原理:两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当接合点的温度不同时,回路中就会发生电动势,这种现象称为热电效应,而这种电动势称为热电势。热电偶就是利用这种原理进行温度丈量的其中,直接用作丈量介质温度的一端叫做工作端(也称为丈量端)另一端叫做冷端(也称为弥补端)冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。热电偶实际上是一种能量转换器,将热能转换为电能,用所产生的热电势测量温度 (2)分类:(S型热电偶)铂铑10-铂热电偶 铂铑10-铂热电偶(S型热电偶)为贵金属热电偶。偶丝直径规定为0.5mm,允许偏差-0.015mm,其正极(SP)的名义化学成分为铂铑合金,其中含铑为10%,含铂为90%,负极(SN)为纯铂,故俗称单铂铑热电偶。该热电偶长期最高使用温度为1300℃,短期最高使用温度为1600℃。 S型热电偶在热电偶系列中具有准确度最高,稳定性最好,测温温区宽,使用寿命长等优点。它的物理,化学性能良好,热电势稳定性及在高温下抗氧化性能好,适用于氧化性和惰性气氛中。由于S型热电偶具有优良的综合性能,符合国际使用温标的S型热电偶,长期以来曾作为国际温标的内插仪器,“ITS-90”虽规定今后不再作为国际温标的内查仪器,但国际温度咨询委员会(CCT)认为S型热电偶仍可用于近似实现国际温标。 S型热电偶不足之处是热电势,热电势率较小,灵敏读低,高温下机械强度下降,对污染非常敏感,贵金属材料昂贵,因而一次性投资较大。 (R型热电偶)铂铑13-铂热电偶 铂铑13-铂热电偶(R型热电偶)为贵金属热电偶。偶丝直径规定为0.5mm,允许偏差-0.015mm,其正极(RP)的名义化学成分为铂铑合金,其中含铑为13%,含铂为87%,负极(RN)为纯铂,长期最高使用温度为1300℃,短期最高使用温度为1600℃。 R型热电偶在热电偶系列中具有准确度最高,稳定性最好,测温温区宽,使用寿命长等优点。其物理,化学性能良好,热电势稳定性及在高温下抗氧化性能好,适用于氧化性和惰性气氛中。由于R型热电偶的综合性能与S

热敏电阻温度特性的研究

热敏电阻温度特性的研究 一、实验目的:了解和测量热敏电阻阻值与温度的关系 二、实验仪器:YJ-RZ-4A 数字智能化热学综合实验仪、NTC 热敏电阻传感器、Pt100传感器、万用表 三、实验原理 热敏电阻是其电阻值随温度显著变化的一种热敏元件。热敏电阻按其电阻随温度变化的典型特性可分为三类,即负温度系数(NTC )热敏电阻,正温度系数(PTC )热敏电阻和临界温度电阻器(CTR )。PTC 和CTR 型热敏电阻在某些温度范围内,其电阻值会产生急剧变化。适用于某些狭窄温度范围内的一些特殊应用,而NTC 热敏电阻可用于较宽温度范围的测量。热敏电阻的电阻-温度特性曲线如图1所示。 图1 NTC 半导体热敏电阻是由一些金属氧化物,如钴、锰、镍、铜等过渡金属的氧化物,采用不同比例的配方,经高温烧结而成,然后采用不同的封装形式制成珠状、片状、杠状、垫圈状等各种形状。与金属导热电阻比较,NTC 半导体热敏电阻具有以下特点: 1.有很大的负电阻温度系数,因此其温度测量的灵敏度也比较高; 2.体积小,目前最小的珠状热敏电阻的尺寸可达mm 2.0φ,故热容量很小可作为点温或表面温度以及快速变化温度的测量; 3.具有很大的电阻值(Ω-521010),因此可以忽略线路导线电阻和接触电阻等的影响,特别适 用于远距离的温度测量和控制; 4.制造工艺比较简单,价格便宜。半导体热敏电阻的缺点是温度测量范围较窄。 NTC 半导体热敏电阻具有负温度系数,其电阻值随温度升高而减小,电阻与温度的关系可以用下面的经验公式表示 )/exp(T B A R T = (1) 式中,T R 为在温度为T 时的电阻值,T 为绝对温度(以K 为单位),A 和B 分别为具有电阻量纲和温度量纲,并且与热敏电阻的材料和结构有关的常数。由式(1)可得到当温度为0T 时的电阻值0R , 即 )/exp(00T B A R = (2) 比较式(1)和式(2),可得 )]1 1(exp[0 0T T B A R R T -= (3) 由式(3)可以看出,只要知道常数B 和在温度为 0T 时的电阻值0R ,就可以利用式(3)计算在

热敏电阻的温度特性

测量热敏电阻的温度特性 热敏电阻是用半导体材料制成的热敏器件,根据其电阻率随温度变化的特性不同,大致可分为三种类型:(1)NTC (负温度系数)型热敏电阻;(2)PTC (正温度系数)型热敏电阻;(3)CTC (临界温度系数)型热敏电阻。其中PTC 型和CTC 型热敏电阻在一定温度范围内,阻值随温度剧烈变化,因此可用做开关元件。热敏电阻器在温度测控、现代电子仪器及家用电器(如电视机消磁电路、电子驱蚊器)等中有广泛用途。在温度测量中使用较多的是NTC 型热敏电阻,本实验将测量其电阻温度特性。 1.实验目的 (1)测量NTC 型热敏电阻的温度特性; (2)学习用作图法处理非线性数据。 2.实验原理 NTC 型热敏电阻特性 NTC 型热敏电阻是具有负的温度系数的热敏电阻,即随着温度升高其阻值下降,在不太宽的温度范围内(小于450℃),其电阻-温度特性符合负指数规律。 NTC 热敏电阻值R 随温度T 变化的规律由式(1-1)表示 T B T Ae R = (1-1) 其中A 、B 为与材料有关的特性常数,T 为绝对温度,单位K 。对于一定的热敏电阻, A 、 B 为常数。对式(1-1)两边取自然对数有 T B A R T + =ln ln (1-2) 从T R T 1ln -的线性拟合中,可得到A 、B 的值,写出热敏电阻温度特性 的经验公式。 3.实验内容 (1)连接电路。 (2)观察NTC 型热敏电阻的温度特性。 (3)测量NTC 型热敏电阻的温度特性。

(4)数据处理 R 特性曲线; a. 画出热敏电阻的t

b. 画出T R T 1ln 曲线,求出其直线的截距、斜率,即可求得A 、B ,写 出热敏电阻温度特性的经验公式。 (注:文档可能无法思考全面,请浏览后下载,供参考。可复制、编制,期待你的好评与关注)

热电阻测温特性实验(精)

热电阻测温特性实验 一、实验目的:了解热电阻的特性与应用。 二、基本原理:利用导体电阻随温度变化的特性,热电阻用于测量时,要 求其材料电阻温度系数大,稳定性好,电阻率高,电阻与温度之间最好有线性关系。常用铂电阻和铜电阻在0-630.74℃以内,电阻Rt与温度t的关系为: R t=R0(1+A t+B t2) R0系温度为0℃时的电阻。本实验R0=100℃,A t=3.9684×10-2/℃,B t=-5.847 ×10-7/℃2,铂电阻现是三线连接,其中一端接二根引线主要为消除引线电阻对 测量的影响。 三、需用器件与单元:加热源、K型热电偶(红+,黑-)、P t100热电阻、温度控制单元、温度传感器实验模板、数显单元、万用表。 四、实验步骤: 1、注意:首先根据实验台型号,仔细阅读“温控仪表操作说”,学会基本参 数设定。 2、将热电偶插入台面三源板加热源的一个传感器安置孔中。将K型热电偶自由端引线插入主控面板上的热电偶EK插孔中,红线为正极,黑色为负极,注意热电偶护套中已安置了二支热电偶,K型和E型,它们热电势值不同,从热电偶分度表中可以判别K型和E型(E型热电势大)热电偶。E型(蓝+,绿-);k型(红+,黑-) 3、将加热器的220V电源插头插入主控箱面板上的220V控制电源插座上。 4、将主控箱的风扇源(24V)与三源板的冷风扇对应相连,电机转速电压旋至最大。 5、将P t100铂电阻三根线引入“R t”输入的a、b上:用万用表欧姆档测出 P t100三根线中其中短接的二根线(蓝,黑)接b端。这样R t与R3、R1、R w1、 R4组成直流电桥,是一种单臂电桥工作形式。R w1中心活动点与R6相接,见图 11-5。

热电阻热电偶温度传感器校准实验

湖南大学实验指导书 课程名称:实验类型: 实验名称:热电阻热电偶温度传感器校准实验 学生姓名:学号:专业: 指导老师:实验日期:年月日 一、实验目的 1.了解热电阻和热电偶温度计的测温原理 2.学会热电偶温度计的制作与校正方法 3.了解二线制、三线制和四线制热电阻温度测量的原理 4.掌握电位差计的原理和使用方法 5.了解数据自动采集的原理 6.应用误差分析理论于测温结果分析。 二、实验原理 1.热电阻 (1) 热电阻原理 热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热是阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。常用铂电阻和铜电阻,铂电阻在0—630.74℃以内,电阻Rt与温度t 的关系为: Rt=R0(1+At+Bt2) R0系温度为0℃时的电阻,铂电阻内部引线方式有两线制,三线制,和四线制三种,两线制中引线电阻对测量的影响最大,用于测温精度不高的场合,三线制可以减小热电阻与测量仪之间连接导线的电阻因环境温度变化所引起的测量误差。四线制可以完全消除引线电阻对测量的影响,用与高精度温度检测。本实验是三线制连接,其中一端接二根引线主要是消除引线电阻对测量的影响。 (2) 热电阻的校验 热电阻的校验一般在实验室中进行,除标准铂电阻温度计需要作三定点,(水三相点,水沸点和锌凝固点)校验外,实验室和工业用的铂或铜电阻温度计的校验方法有采用比较法

热敏电阻温度特性的研究带实验数据处理

本科实验报告 实验名称:热敏电阻温度特性的研究 (略写) 实验15热敏电阻温度特性的研究 【实验目的和要求】 1. 研究热敏电阻的温度特性。 2. 用作图法和回归法处理数据。 【实验原理】 1. 金属导体电阻 金属导体的电阻随温度的升高而增加,电阻值t R 与温度t 间的关系常用以下经验公式表示: )1(320 ++++=ct bt t R R t α (1) 式中t R 是温度为t 时的电阻,0R 为00=t C 时的电阻,c b ,,α为常系数。 在很多情况下,可只取前三项: )1(20bt t R R t ++=α (2) 因为常数b 比α小很多,在不太大的温度范围内,b 可以略去,于是上式可近似

写成: )1(0t R R t α+= (3) 式中α称为该金属电阻的温度系数。 2. 半导体热敏电阻 热敏电阻由半导体材料制成,是一种敏感元件。其特点是在一定的温度范围内,它的电阻率T ρ随温度T 的变化而显著地变化,因而能直接将温度的变化转换为电量的变化。一般半导体热敏电阻随温度升高电阻率下降,称为负温度系数热敏电阻,其电阻率T ρ随热力学温度T 的关系为 T B T e A /0=ρ (4) 式中0A 与B 为常数,由材料的物理性质决定。 也有些半导体热敏电阻,例如钛酸钡掺入微量稀土元素,采用陶瓷制造工艺烧结而成的热敏电阻在温度升高到某特定范围(居里点)时,电阻率会急剧上升,称为正温度系数热敏电阻。其电阻率的温度特性为: T B T e A ?'=ρρ (5) 式中A '、 ρ B 为常数,由材料物理性质决定。 对(5)式两边取对数,得 A T B R T ln 1 ln += (6) 可见T R ln 与T 1 成线性关系,若从实验中测得若干个T R 和对应的T 值,通过作图法可求出A (由截距A ln 求出)和B (即斜率)。 3. 实验原理图

热电阻测温特性实验及其数据分析

实验二热电阻测温特性实验 1 实验目的 了解热电阻的特性与应用。 2 基本原理 利用导体电阻随温度变化的特性,热电阻用于测量时,要求其材料电阻温度系数大,稳定性好,电阻率高,电阻与温度之间最好有线性关系。常用铂电阻和铜电阻,铂电阻在0~630.74℃以内,电阻Rt与温度t的关系为Rt = R0(1 + αt + βt2),其中R0是温度为0 °C时的电阻。本实验R0 = 100 Ω,α= 3.9684×10?2°C?1,β= ?5.847×10?7°C?2,铂电阻使用三引线,其中一端接二根引线,主要为消除引线电阻对测量的影响。 3 需用器件与单元 加热源、K 型热电偶、Pt100热电阻、温度控制单元、温度传感器实验模板、数显单元、万用表。

4 实验步骤 4.1 差动放大器调零 将实验模板调节增益电位器RW2顺时针调节大致到中间位置,将±15V电源及地从主控箱接入模板,检查无误后,合上主控箱电源开关,进行差动放大器调零。 4.2 将K 型热电偶插入到热源孔,将自由端按极性正确接至主控板上,用于温度设定。 4.3 将Pt100铂电阻引线接入Rt端的a、b 上。Pt100三根线中,其中两根线为铂电阻的一端。采用三线制的第一对称接法将Pt100接入电桥,这样Rt、R3和Rl、RWl、R4并联组成单臂电桥,见图2.2。

4.4 在端点a 与地之间加直流源4V,合上主控箱电源开关,调RW1使Vi输出为零,即桥路输出为零(平衡)。然后将Pt100热电阻探头插入到热源孔。 4.5 按Δt = 5℃进行升温,温度稳定后,读取数显表值,将结果填入表2.1。实验结束后将温度控制器温度设定为零,关闭电源开关。 表2.1 铂电阻热电势与温度值 5 思考题 5.1 根据表2.1值计算温度测量系统的灵敏度,S =?uO/?t(?uO输出电压变化量,?t温度变化量);及其非线性误差。 5.2 如何根据测温范围和精度要求选用热电阻? 数据处理: 1、计算温度测量系统的灵敏度:其中Δt=5℃,

实验 Pt100热电阻测温特性实验

实验 Pt100热电阻测温特性实验 一、实验目的:了解热电阻的特性与应用。 二、基本原理:利用导体电阻随温度变化的特性。热电阻用于测量时,要求其材料电阻温度系数大,稳定性好,电阻率高,电阻与温度之间最好有线性关系。常用铂电阻和铜电阻,铂电阻在0-6 30、74C以内,电阻Rt与温度t的关系为:Rt = R0(1+At+Bt2)R0系温度为0C时的铂热电阻的电阻值。本实验 R0=100C,A=3、9080210-3 C-1B=-5、10-7 C-2,铂电阻现是三线连接,其中一端接两根引线主要是为了消除引线电阻对测量的影响。 三、需用器件与单元: K型热电偶、Pt100热电阻、温度测量控制仪、温度传感器实验模块、数显单元(主控台电压表)、万用表、直流稳压电源15V 和2V。 四、实验步骤: 1、差动电路调零接主控箱电源输出接主控箱数显表 Vi 地2V 图11-5 热电阻测温特性实验将温度测量控制仪上的220V电源线插入主控箱两侧配备的220V控制电源插座上。首先对温度传感器实验模块的三运放测量电路和后续的反相放大电路调零。具体方法是把R5和R6的两个输入点短接并接地,然后调节Rw2使

V01的输出电压为零,再调节Rw3,使V02的输出电压为零,此后Rw2和Rw3不再调节。 2、温控仪表的使用注意:首先根据温控仪表型号,仔细阅读“温控仪表操作说明”,(见附录一)学会基本参数设定(出厂时已设定完毕)。 3、热电偶的安装选择控制方式为内控方式,将K型热电偶温度感应探头插入“YL系列温度测量控制仪”的上方两个传感器放置孔中的一个。将K型热电偶自由端引线插入“YL系列温度测量控制仪”正前方面板的的“传感器”插孔中,红线为正极。 4、热电阻的安装及室温调零将Pt100铂电阻三根引线引入“Rt”输入的a、b上:用万用表欧姆档测出Pt100三根引线中短接的两根线(蓝色和黑色)接b端,红色接a端。这样Rt (Pt100)与R 3、R 1、Rw 1、R4组成直流电桥,是一种单臂电桥工作形式。Rw1中心活动点与R6相接,见图11-5。 5、测量记录合上内控选择开关(“加热方式”和“冷却方式”均打到内控方式),设定温度控制值为40C,当温度控制在40C时开始记录电压表读数,重新设定温度值为40C+nΔt,建议Δt=5C,n=1……7,到75C每隔1n读出数显表输出电压与温度值。待温度稳定后记下数显表上的读数(若在某个温度设定值点

检测技术实验1 热电阻、热电偶测温特性实验

上海电力学院检测技术实验 题目:热电阻、热电偶测温特性实验

一、实验目的 了解热电阻的特性与应用,了解热电偶测量温度的性能与应用范围。。 二、基本原理 (一)热电阻: 利用导体电阻随温度变化的特性,热电阻用于测量时,要求其材料电阻温度系数大,稳定性好,电阻率高,电阻与温度之间最好有线性关系。常用铂电阻和铜电阻在0-630.74℃以内,电阻Rt与温度t的关系为: R t=R0(1+A t+B t2) R0系温度为0℃时的电阻。本实验R0=100℃,A t=3.9684×10-2/℃,B t=-5.847×10-7/℃2,铂电阻现是三线连接,其中一端接二根引线主要为消除引线电阻对测量的影响。 (二)热电偶: 当两种不同的金属组成回路,如二个接点有温度差,就会产生热电势,这就是热电效应。温度高的接点称工作端,将其置于被测温度场,以相应电路就可间接测得被测温度值,温度低的接点就称冷端(也称自由端),冷端可以是室温值或经补偿后的0℃、25℃。 三、需用器件与单元 加热源、K型热电偶(红+,黑-)、P t100热电阻、温度控制单元、温度传感器实验模板、数显单元、万用表,热电偶K型、E型、加热源。 四、实验步骤 (一)热电阻: 1、注意:首先根据实验台型号,仔细阅读“温控仪表操作说”,学会基 本参数设定。 2、将热电偶插入台面三源板加热源的一个传感器安置孔中。将K型热电偶自由端引线插入主控面板上的热电偶EK插孔中,红线为正极,黑色为负极,注意热电偶护套中已安置了二支热电偶,K型和 E型,它们热电势值不同,从热电偶分度表中可以判别K型和E型(E型热电势大)热电偶。E型(蓝+,绿-);k型(红+,黑-) 3、将加热器的220V电源插头插入主控箱面板上的220V控制电源插座上。 4、将主控箱的风扇源(24V)与三源板的冷风扇对应相连,电机转速电压 旋至最大。 5、将P t100铂电阻三根线引入“R t”输入的a、b上:用万用表欧姆档测

测量热敏电阻的温度系数

3.5.2 用热敏电阻测量温度 (本文内容选自高等教育出版社《大学物理实验》) 热敏电阻是由对温度非常敏感的半导体陶瓷质工作体构成的元件。与一般常用的金属电阻相比,它有大得多的电阻温度系数值。根据所具有电阻温度系数的不同,热敏电阻可分三类:1.正电阻温度系数热敏电阻;2.临界电阻温度系数热敏电阻;3.普通负电阻温度系数热敏电阻。前两类的电阻急变区的温度范围窄,故适宜用在特定温度范围作为控制和报警的传感器。第三类在温度测量领域应用较广,是本实验所用的热敏元件。热敏电阻作为温度传感器具有用料省、成本低、体积小、结构简易,电阻温度系数绝对值大等优点,可以简便灵敏地测量微小温度的变化。我国有关科研单位还研制出可测量从-260℃低温直到900℃高温的一系列不同类型的热敏电阻传感器,在人造地球卫星和其他有关宇航技术、深海探测以及科学研究等众多领域得到广泛的应用。本实验旨在了解热敏电阻-温度特性和测温原理,掌握惠斯通电桥的原理和使用方法。学习坐标变换、曲线改直的技巧和用异号法消除零点误差等方法。 实验原理 1. 半导体热敏电阻的电阻——温度特性 某些金属氧化物半导体(如:Fe 3O 4、MgCr 2O 4等)的电阻与温度关系满足式(1): T B T e R R ∞= (1) 式中R T 是温度T 时的热敏电阻阻值,R ∞是T 趋于无穷时热敏电阻的阻值,B 是热敏电阻的材 料常数,T 为热力学温度。 金属的电阻与温度的关系满足(2): )](1[1212t t a R R t t -+= (2) 式中a 是与金属材料温度特性有关的系数,R t1、R t2分别对应于温度t 1、t 2时的电阻值。 根据定义,电阻的温度系数可由式(3)来决定: dt dR R a t t 1= (3) R t 是在温度为t 时的电阻值,由图3.5.2-1(a )可知,在R-t 曲线某一特定点作切线,便可求出该温度时的半导体电阻温度系数a 。 由式(1)和式(2)及图3.5.2-1可知,热敏电阻的电阻-温度特性与金属的电阻-温度特性比较,有三个特点: (1) 热敏电阻的电阻-温度特性是非线性的(呈指数下降),而金属的电阻-温度特性是线性的。

金属电阻率及其温度系数

金属电阻率及其温度系数金属电阻率及其温度系数 物质物质 温度温度 t/℃ t/℃ t/℃ 电阻率电阻率 Ω·m 电阻温度系数电阻温度系数 a a R /℃-1 银 20 1.586×10-8 0.0038(20℃) 铜 20 1.678×10-8 0.00393(20℃) 金 20 2.40×10-8 0.00324(20℃) 铝 20 2.6548×10-8 0.00429(20℃) 钙 0 3.91×10-8 0.00416(0℃) 铍 20 4.0×10-8 0.025(20℃) 镁 20 4.45×10-8 0.0165(20℃) 钼 0 5.2×10-8 铱 20 5.3×10-8 0.003925(0℃~100℃) 钨 27 5.65×10-8 锌 20 5.196×10-8 0.00419(0℃~100℃) 钴 20 6.64×10-8 0.00604(0℃~100℃) 镍 20 6.84×10-8 0.0069(0℃~100℃) 镉 0 6.83×10-8 0.0042(0℃~100℃) 铟 20 8.37×10-8 铁 20 9.71×10-8 0.00651(20℃) 铂 20 10.6×10-8 0.00374(0℃~60℃) 锡 0 11.0×10-8 0.0047(0℃~100℃) 铷 20 12.5×10-8 铬 0 12.9×10-8 0.003(0℃~100℃) 镓 20 17.4×10-8 铊 0 18.0×10-8 铯 20 20×10-8 铅 20 20.684×10-8 0.00376(20℃~40℃) 锑 0 39.0×10-8 钛 20 42.0×10-8 汞 50 98.4×10-8 锰 23~100 185.0×10-8 锰铜 20 44.0×10-8 康铜 20 50.0×10-8 镍铬合金 20 100.0×10-8 铁铬铝合金 20 140.0×10-8 铝镍铁合金 20 160.0×10-8 不锈钢 0~900 70~130×10-8 不锈钢304 20 72×10-8 不锈钢316 20 74×10-8

检测技术实验1 热电阻热电偶测温特征实验

上海电力学院 检测技术实验 题 目: 热电阻、热电偶测温特性实验 仅可以艺高中资料试

一、实验目的 了解热电阻的特性与应用,了解热电偶测量温度的性能与应用范围。。 二、基本原理 (一)热电阻: 利用导体电阻随温度变化的特性,热电阻用于测量时,要求其材料电阻温度系数大,稳定性好,电阻率高,电阻与温度之间最好有线性关系。常用铂电阻和铜电阻在0-630.74℃以内,电阻Rt与温度t的关系为: R t=R0(1+A t+B t2) R0系温度为0℃时的电阻。本实验R0=100℃,A t=3.9684×10-2/℃,B t=-5.847×10-7/℃2,铂电阻现是三线连接,其中一端接二根引线主要为消除引线电阻对测量的影响。 (二)热电偶: 当两种不同的金属组成回路,如二个接点有温度差,就会产生热电势,这就是热电效应。温度高的接点称工作端,将其置于被测温度场,以相应电路就可间接测得被测温度值,温度低的接点就称冷端(也称自由端),冷端可以是室温值或经补偿后的0℃、25℃。 三、需用器件与单元 加热源、K型热电偶(红+,黑-)、P t100热电阻、温度控制单元、温度传感器实验模板、数显单元、万用表,热电偶K型、E型、加热源。 四、实验步骤 (一)热电阻: 1、注意:首先根据实验台型号,仔细阅读“温控仪表操作说”,学会基 本参数设定。 2、将热电偶插入台面三源板加热源的一个传感器安置孔中。将K型热 电偶自由端引线插入主控面板上的热电偶EK插孔中,红线为正极,黑色为 负极,注意热电偶护套中已安置了二支热电偶,K型和E型,它们热电势 值不同,从热电偶分度表中可以判别K型和E型(E型热电势大)热电偶。E型(蓝+,绿-);k型(红+,黑-) 3、将加热器的220V电源插头插入主控箱面板上的220V控制电源插座上。 4、将主控箱的风扇源(24V)与三源板的冷风扇对应相连,电机转速电压 旋至最大。

电阻温度系数

电阻温度系数(TCR表示电阻当温度改变 1 度时,电阻值的相对变化,当温度每升高1C 时,导体电阻的增加值与原来电阻的比值。单位为ppm/C(即10E (-6 )「C)。定义式如下:T CR=dR/R.dT 实际应用时,通常采用平均电阻温度系数,定义式如下:TCR(平均)=(R2-R1) /( R1*( T 2-T1 )) = (R2-R1) /(R1* △ T) R1--温度为t1时的电阻值,Q; R2--温度为t2时的电阻值,Q。 很多人对镀金,镀银有误解,或者是不清楚镀金的作用,现在来澄清下。。。 1。镀金并不是为了减小电阻,而是因为金的化学性质非常稳定,不容易氧化,接头上镀金是为了防止接触不良(不是因为金的导电能力比铜好) 。 2。众所周知,银的电阻率最小,在所有金属中,它的导电能力是最好的。 3 。不要以为镀金或镀银的板子就好,良好的电路设计和PCB 的设计,比镀金或镀银对电路性能的 影响更大。 4。导电能力银好于铜,铜好于金!现在贴上常见金属的电阻率及其温度系数:物质温度t/C 电阻率电阻温度系数aR/ C-1 银20 1.586 0.0038(20 C ) 铜20 1.678 0.00393(20 C ) 金20 2.40 0.00324(20 C ) 铝20 2.6548 0.00429(20 C ) 钙0 3.91 0.00416(0 C ) 铍20 4.0 0.025(20 C ) 镁20 4.45 0.0165(20 C ) 钼0 5.2 铱20 5.3 0.003925(0 C~100 C) 钨27 5.65 锌20 5.196 0.00419(0 C~100 C) 钴20 6.64 0.00604(0 C~100 C) 镍20 6.84 0.0069(0 C~100 C) 镉0 6.83 0.0042(0 C~100 C) 铟20 8.37 铁20 9.71 0.00651(20 C ) 铂20 10.6 0.00374(0 C~60C ) 锡0 11.0 0.0047(0 C~100 C) 铷20 12.5 铬0 12.9 0.003(0 C~100 C ) 镓20 17.4 铊0 18.0 铯20 20 铅20 20.684 (0.0037620 C~40C ) 锑0 39.0 钛20 42.0 汞50 98.4 锰23?100 185.0 电阻的温度系数,是指当温度每升高一度时,电阻增大的百分数。 例如,铂的温度系数是0.00374/ C。它是一个百分数。 在20 C时,一个1000欧的铂电阻,当温度升高到21 C时,它的电阻将变为1003.74欧。 实际上,在电工书上给出的是电阻率温度系数”,因为我们知道,一段电阻线的电阻由四个 因素决定:1、电阻线的长度;2、电阻线的横截面积;3、材料;4、温度。前三个因素是自身因素,第四个因素是外界因素。电阻率温度系数就是这第四个因素的作用大小。 实验证明,绝大多数金属材料的电阻率温度系数都约等于千分之4左右,少数金属材料的电 阻率温度系数极小,就成为制造精密电阻的选材,例如:康铜、锰铜等。

热电偶温度特性实验

实验四K热电偶温度特性实验 1、实验目的:了解热电偶测温原理及方法和应用。 2、基本原理:K型热电偶是由镍铬-镍硅或镍铝材料制成的热电偶,偶丝直径不同,测量的温度范围也不同。对于确定的热电偶,其温度测量范围和电动势随温度的变化曲线是确定的,可通过查表得到。选用确定的K型热电偶,插入温度源中,把热电偶的输出端通过差分放大,获得热电偶的电动势。记录测量电动势,通过测量热电偶输出的电动势值再查分度表得到相应的温度值。 3、需用器件与单元:主机箱、温度源、Pt100热电阻(温度源温度控制传感器)、K热电偶(温度特性实验传感器)、温度传感器实验模板、应变传感器实验模板(代mV发生器)。 4、原理图如下图4.8所示 图4.8 K热电偶原理图 5、实验步骤: 热电偶使用说明:热电偶由A、B热电极材料及直径(偶丝直径)决定其测温范围,如K(镍铬-镍硅或镍铝)热电偶,偶丝直径3.2mm时测温范围0~1200℃,本实验用的K热电偶偶丝直径为0.5mm,测温范围0~800℃;E(镍铬-康铜),偶丝直径3.2mm时测温范围-200~+750℃,实验用的E热电偶偶丝直径为0.5mm,测温范围-200~+350℃。由于温度源温度<200℃,所以,所有热电偶实际测温范围<200℃。 从热电偶的测温原理可知,热电偶测量的是测量端与参考端之间的温度差,必须保证参考端温度为0℃时才能正确测量测量端的温度,否则存在着参考端所处环境温度值误差。 热电偶的分度表(见附录)是定义在热电偶的参考端(冷端)为0℃时热电偶输出的热电动势与热电偶测量端(热端)温度值的对应关系。热电偶测温时要对参考端(冷端)进行修正

(补偿),计算公式:E(t,t0)=E(t,t0')+E(t0', t0) 式中:E(t,t0)—热电偶测量端温度为t,参考端温度为t0=0℃时的热电势值; E(t,t0')—热电偶测量温度t,参考端温度为t0'不等于0℃时的热电势值; E(t0',t0)—热电偶测量端温度为t0',参考端温度为t0=0℃时的热电势值。 例:用一支分度号为K(镍铬-镍硅)热电偶测量温度源的温度,工作时的参考端温度(室温)t0'=20℃,而测得热电偶输出的热电势(经过放大器放大的信号,假设放大器的增益k=10)32.7mv,则E(t,t0')=32.7mV/10=3.27mV,那么热电偶测得温度源的温度是多少呢? 解:由附录K热电偶分度表查得: E(t0',t0)=E(20,0)=0.798mV 已测得 E(t,t0')=32.7mV/10=3.27mV 故 E(t,t0)=E(t,t0')+E(t0', t0)= 3.27mV+0.798mV=4.068mV 热电偶测量温度源的温度可以从分度表中查出,与4.068mV所对应的温度是100℃。 (1)在主机箱总电源、调节仪电源、温度源电源关闭的状态下,按图4.11示意图接线。 图4.9 K型热电偶温度特性试验接线示意图 (2)调节温度传感器实验模板放大器的增益K=30倍:在图4.9中温度传感器实验模板上的放大器的二输入端引线暂时不要接入。拿出应变传感器实验模板(实验一的模板),将应变传感器实验模板上的放大器输入端相连(短接),应变传感器实验模板上的±15V电源插孔与主机箱的±15V电源相应连接,合上主机箱电源开关(调节仪电源和温度源电源关闭)后调节应变传感器实验模板上的电位器R W4(调零电位器)使放大器输出一个较大的mV信号,如20mV(可用电压表2V档测量),再将这个20mV信号(Vi)输给图30A中温度传感器实

热电偶测温实验指导书

《建筑环境测试技术》 热电偶测温系统实验实验指导书 上海工程技术大学机械工程学院 能源与环境系统工程系 2014.3

一、实验目的 通过本实验掌握热电偶测量温度的主要内容和方法,了解引起测量误差的因素,达到以下实验目的: 1、观察了解热电偶的结构、校验装置; 2、熟悉热电偶工作特性; 3、掌握热电偶测温方法,学习查阅热电偶分度表; 4、掌握数据读取和数据处理方法。 二、实验原理 两种不同成份的导体两端接合成回路,当两接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电势。热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端、自由端、参考端);冷端可以是室温值也可以是经过补偿后的0℃、25℃的模拟温度场。冷端与显示仪表或配套仪表连接,可显示测得的热电势。 国际上,将热电偶的A 、B 热电极材料不同分成若干分度号,如常用的K(镍铬-镍硅或镍铝)、E(镍铬-康铜)、T(铜-康铜)等等,并且有相应的分度表,即参考端温度为0℃时的测量端温度与热电动势的对应关系表。 从热电偶的测温原理可知,热电偶测量的是测量端与参考端之间的温度差,必须保证参考端温度为0℃,才能利用热电偶分度表查得热电势对应的温度,而实际测量时,环境温度T 0(不为0)。对此,有如下关系式: )0,(),()0,(00T E T T E T E += 其中)0,(T E ——测量端温度为T ,参考端为0℃时的热电势 ),(0T T E ——测量端温度为T ,参考端为T 0时的热电势 )0,(0T E ——测量端温度为T 0,参考端为0℃时的热电势 热电偶校验有两种方法:定点法和比较法,后者常用于校验工业用和实验室用热电偶。

电阻温度系数的测定

电阻温度系数的测定 一、实验目的 1.了解电阻温度系数的测定原理; 2. 了解测量电阻温度系数的方法。 二、实验仪器 DZW 型电阻温度特性测定仪 三、实验原理 大多数物质的电阻率会随温度的变化而变化,在设计电子元件及电路时需考虑温度对电阻和元件的影响。为反应电阻率随温度的变化特征,常用电阻温度系数来表示: d dT ραρ= (1) 部分情况下在温度变化不大的范围内常用平均电阻温度系数表示: 21121() R R R T T α-=- (2) 即:温度每升改变一度电阻的相对变化率。 四、实验内容及步骤 1.试样安装:将试样两引线端与两测试探头连接好,紧固连接螺丝,然后将盖板盖上。 2.温度设置:打开电源开关,确定AL810表自动状态已关闭,PV 口显示温度情况下。先按下温控表AL810面板上的“PAR ”键不松,立即再按住“▼”键(3秒不动),PV 栏显示“LC ”时松开两键,然后按“▲”或“▼”键将其设置为“1”;

再次按“PAR”键PV口显示r1,按“▲”或“▼”键将第一段升温速度设置为2.00(℃/分钟);再次按“PAR”键PV口显示L1,按“▲”或“▼”键将第一段目标温度设置为100(℃);再次按“PAR”键PV 口显示d1,按“▲”或“▼”将第一段保温时间设置为2(分钟)。再次按“PAR”键PV口显示r2,此时可设置第二温度控制阶段,设置方法同第一阶段相同,本实验只需第一段升温过程,第二段升温速度r2设置为“END”即可。 3.升温操作:在PV显示温度时,按住“PAR”键3秒,PV口显示“PROG”时松开,按“▲”或“▼”键选择“run”,再次按“PAR”键确认,即进入自动升温状态。开始升温后PV口显示炉膛内部实际测量温度。 4.电阻值测试:测量电阻仪器为内嵌于设备的万用表。打开试验开关,根据试样电阻值选择合适的电阻量程档位,温度到达30℃时开始记录样品的电阻值,从30℃至100℃每隔10℃记录一次,共8组数据。 5.实验完成后关闭试验开关和电源开关。 五、数据处理

实验一 K型热电偶测温实验

实验一K型热电偶测温实验 一、实验目的: 了解K型热电偶的特性与应用 二、实验仪器: 智能调节仪、PT100、K型热电偶、温度源、温度传感器实验模块。 三、实验原理: 智能调节仪控制温度实验 图45-2 1.在控制台上的“智能调节仪”单元中“输入”选择“Pt100”,并按图45-2接线。 2.将“+24V输出”经智能调节仪“继电器输出”,接加热器风扇电源,打开调节仪电源。 3.按住3秒以下,进入智能调节仪A菜单,仪表靠上的窗口显示“”,靠下窗口

显示待设置的设定值。当LOCK等于0或1时使能,设置温度的设定值,按“”可改变小数点位置,按或键可修改靠下窗口的设定值。否则提示“”表示已加锁。再按3秒以下,回到初始状态。 热电偶传感器的工作原理 热电偶是一种使用最多的温度传感器,它的原理是基于1821年发现的塞贝克效应,即两种不同的导体或半导体A或B组成一个回路,其两端相互连接,只要两节点处的温度不同,一端温度为T,另一端温度为T0,则回路中就有电流产生,见图50-1(a),即回路中存在电动势,该电动势被称为热电势。 图50-1(a)图50-1(b)两种不同导体或半导体的组合被称为热电偶。 当回路断开时,在断开处a,b之间便有一电动势E T,其极性和量值与回路中的热电势一致,见图50-1(b),并规定在冷端,当电流由A流向B时,称A为正极,B为负极。实验表明,当E T较小时,热电势E T与温度差(T-T0)成正比,即 E T=S AB(T-T0)(1) S AB为塞贝克系数,又称为热电势率,它是热电偶的最重要的特征量,其符号和大小取决于热电极材料的相对特性。 热电偶的基本定律: (1)均质导体定律 由一种均质导体组成的闭合回路,不论导体的截面积和长度如何,也不论各处的温度分布如何,都不能产生热电势。 (2)中间导体定律 用两种金属导体A,B组成热电偶测量时,在测温回路中必须通过连接导线接入仪表测量温差电势E AB(T,T0),而这些导体材料和热电偶导体A,B的材料往往并不相同。在这种引入了中间导体的情况下,回路中的温差电势是否发生变化呢?热电偶中间导体定律指出:在热电偶回路中,只要中间导体C两端温度相同,那么接入中间导体C对热电偶回路总热电势E AB(T,T0)没有影响。 (3)中间温度定律 如图49-2所示,热电偶的两个结点温度为T1,T2时,热电势为E AB(T1,T2);两结点温度为T2,T3时,热电势为E AB(T2,T3),那么当两结点温度为T1,T3时的热电势则为 E AB(T1,T2)+ E AB(T2,T3)=E AB(T1,T3)(2) 式(2)就是中间温度定律的表达式。譬如:T1=100℃,T2=40℃,T3=0℃,则 E AB(100,40)+E AB(40,0)=E AB(100,0)(3)

相关主题
文本预览
相关文档 最新文档