当前位置:文档之家› 第一节 方差分析的基本原理与步骤

第一节 方差分析的基本原理与步骤

第一节 方差分析的基本原理与步骤
第一节 方差分析的基本原理与步骤

第一节方差分析的基本原理与步骤

方差分析有很多类型,无论简单与否,其基本原理与步骤是相同的。本节结合单因素试验结果的方差分析介绍其原理与步骤。

一、线性模型与基本假定

假设某单因素试验有k个处理,每个处理有n次重复,共有nk个观测值。这类试验资料的数据模式如表6-1所示。

表6-1k个处理每个处理有n个观测值的数据模式

处理

观测值合

A1 x11 x12 …x1j …x 1n

A2 x21 x22 …x2j …x 2n

A i x i1 x i2 …x ij …x in

A k x k1 x k2 …x kj …x kn xk .

表中表示第i个处理的第j个观测值(i=1,2,…,k;j=1,2,…,n);

表示第i个处理n 个观测值的和;

表示全部观测值的总和;

表示第i 个处理的平均数;表示全部观测值的总平均数;可以分解为

(6-1)

表示第i个处理观测值总体的平均数。为了看出各处理的影响大小,将再进行分解,令

(6-2)

(6-3)

(6-4)

其中μ表示全试验观测值总体的平均数,是第i个处理的效应(treatmenteffects)表示处理i对试验结果产生的影响。显然有

(6-5)

εij是试验误差,相互独立,且服从正态分布N(0,σ2)。

(6-4)式叫做单因素试验的线性模型(linearmodel)亦称数学模型。在这个模型中表示为总平均数μ、处理效应αi、试验误差εij之和。由εij相互独立且服从正态分布N(0,σ2),可知各处理Ai(i=1,2,…,k)所属总体亦应具正态性,即服从正态分布N(μi,σ2)。尽管各总体的均数可以不等或相等,σ2则必须是相等的。所以,单因素试验的数学模型可归纳为:效应的可加性(additivity)、分布的正态性(normality)、方差的同质性(homogeneity)。这也是进行其它类型方差分析的前提或基本假定。

若将表(6-1)中的观测值xij(i=1,2,…,k;j=1,2,…,n)的数据结构(模型)用样本符号来表示,则

(6-6)

与(6-4)式比较可知,、、分别是μ、(μi-μ)

=、(xij-)=的估计值。

(6-4)、(6-6)两式告诉我们:每个观测值都包含处理效应(μi-μ或),与误差(或),故kn个观测值的总变异可分解为处理间的变异和处理

内的变异两部分。

二、平方和与自由度的剖分

我们知道,方差与标准差都可以用来度量样本的变异程度。因为方差在统计分析上有许多优点,而且不用开方,所以在方差分析中是用样本方差即均方(meansquares)来度量资料的变异程度的。表6-1中全部观测值的总变异可以

用总均方来度量。将总变异分解为处理间变异和处理内变异,就是要将总均方分解为处理间均方和处理内均方。但这种分解是通过将总均方的分子──称为总离均差平方和,简称为总平方和,剖分成处理间平方和与处理内平方和两部分;将总均方的分母──称为总自由度,剖分成处理间自由度与处理内自由度两部分来实现的。

(一)总平方和的剖分在表6-1中,反映全部观测值总变异的总平方和是各观测值xij与总平均数的离均差平方和,记为SST。即

因为

其中

所以(6-7)

(6-7)式中,为各处理平均数与总平均数的离均差平方和与

重复数n的乘积,反映了重复n次的处理间变异,称为处理间平方和,记为SSt,即

(6-7)式中,为各处理内离均差平方和之和,反映了各处理内的变

异即误差,称为处理内平方和或误差平方和,记为SSe,即

于是有

SST=SSt+SSe(6-8)

(6-7),(6-8)两式是单因素试验结果总平方和、处理间平方和、处理内平方和的关系式。这个关系式中三种平方和的简便计算公式如下:

(6-9)

其中,C=x2··/kn称为矫正数。

(二)总自由度的剖分在计算总平方和时,资料中的各个观测值要受

这一条件的约束,故总自由度等于资料中观测值的总个数减一,即kn-1。总自由度记为dfT,即dfT=kn-1。

在计算处理间平方和时,各处理均数要受这一条件的约束,故处理间自由度为处理数减一,即k-1。处理间自由度记为dft,即dft=k-1。

在计算处理内平方和时,要受k个条件的约束,即(i=1,2,…,k)。故处理内自由度为资料中观测值的总个数减k,即kn-k。处理内自由度记为dfe,即dfe=kn-k=k(n-1)。

因为

所以

(6-10)

综合以上各式得:

(6-11)

各部分平方和除以各自的自由度便得到总均方、处理间均方和处理内均方,分别记为(MS T或)、MSt(或)和MSe(或)。即

(6-12)

总均方一般不等于处理间均方加处理内均方。

【例6.1】某水产研究所为了比较四种不同配合饲料对鱼的饲喂效果,选取了条

件基本相同的鱼20尾,随机分成四组,投喂不同饲料,经一个月试验以后,各组鱼的增重结果列于下表。

表6-2饲喂不同饲料的鱼的增重(单位:10g)

这是一个单因素试验,处理数k=4,重复数n=5。各项平方和及自由度计算如下:

矫正数

总平方和

处理间平方和

处理内平方和

总自由度

处理间自由度

处理内自由度

用SSt、SSe分别除以dft和dfe便得到处理间均方MSt及处理内均方MSe。

因为方差分析中不涉及总均方的数值,所以不必计算之。

三、期望均方

如前所述,方差分析的一个基本假定是要求各处理观测值总体的方差相等,即

(i=1,2,…,k)表示第i个处理观测值总体的方差。如果所分析的资料满足这个方差同质性的要求,那么各处理的样本方差S21,S22,…,S2k都是σ2的无偏估计(unbiasedestimate)量。(i=1,2,…,k)是由试验资料中第i个处理的n个观测值算得的方差。

显然,各的合并方差(以各处理内的自由度n-1为权的加权平均数)也是σ2的无偏估计量,且估计的精确度更高。很容易推证处理内均方MSe就是各

的合并。

其中SSi、dfi(i=1,2,…,k)分别表示由试验资料中第i个处理的n个观测值算得的平方和与自由度。这就是说,处理内均方MSe是误差方差σ2的无偏估计量。

试验中各处理所属总体的本质差异体现在处理效应的差异上。我们把

称为效应方差,它也反映了各处理观测值总体平均数的变异程度,记为。

(6-13)

因为各未知,所以无法求得的确切值,只能通过试验结果中各处理均数的差异去估计。然而,并非的无偏估计量。这是因为处理观测值的均数间的差异实际上包含了两方面的内容:一是各处理本质上的差异即αi (或μi)间的差异,二是本身的抽样误差。统计学上已经证明,

是+σ2/n的无偏估计量。因而,我们前面所计算的处理间均方MSt实际上是n+σ2的无偏估计量。

因为MSe是σ2的无偏估计量,MSt是n+σ2的无偏估计量,所以σ2为MSe 的数学期望(mathematicalexpectation),n+σ2为MSt的数学期望。又因

为它们是均方的期望值(expectedvalue),故又称期望均方,简记为EMS (expectedmeansquares)。

当处理效应的方差=0,亦即各处理观测值总体平均数(i=1,2,…,k)相等时,处理间均方MSt与处理内均方一样,也是误差方差σ2的估计值,方差分析就是通过MSt与MSe的比较来推断是否为零即是否相等的。

四、F分布与F检验

(一)F分布设想我们作这样的抽样试验,即在一正态总体N(μ,σ2)中随机抽取样本含量为n的样本k个,将各样本观测值整理成表6-1的形式。此时所谓

的各处理没有真实差异,各处理只是随机分的组。因此,由(6-12)式算出的

和都是误差方差的估计量。以为分母,为分子,求其比值。统计学上把两个均方之比值称为F值。即

(6-14)

F具有两个自由度:。

若在给定的k和n的条件下,继续从该总体进行一系列抽样,则可获得一系列的F值。这些F值所具有的概率分布称为F分布(F distribution)。F分布密度曲线是随自由度df1、df2的变化而变化的一簇偏态曲线,其形态随着df1、df2的增大逐渐趋于对称,如图6-1所示。

F分布的取值范围是(0,+∞),其平均值=1。

用表示F分布的概率密度函数,则其分布函数为:

(6-15)

因而F分布右尾从到+∞的概率为:

(6-16)

附表4列出的是不同df1和df2下,P(F≥)=0.05和P(F≥)=0.01时的F值,即右尾概率α=0.05和α=0.01时的临界F值,一般记作,

。如查附表4,当df1=3,df2=18时,F0.05(3,18)=3.16,

F0.01(3,18)=5.09,表示如以df1=dft=3,df2=dfe=18在同一正态总体中连续抽样,则所得F值大于3.16的仅为5%,而大于5.09的仅为1%。

(二)F检验附表4是专门为检验代表的总体方差是否比代表的总体方差大而设计的。若实际计算的F值大于,则F值在α=0.05的水平上显著,我们以95%的可靠性(即冒5%的风险)推断代表的总体方差大于代表的总体

方差。这种用F值出现概率的大小推断两个总体方差是否相等的方法称为F检验(F-test)。

在方差分析中所进行的F检验目的在于推断处理间的差异是否存在,检验某项变异因素的效应方差是否为零。因此,在计算F值时总是以被检验因素的均方作分子,以误差均方作分母。应当注意,分母项的正确选择是由方差分析的模型和各项变异原因的期望均方决定的。

在单因素试验结果的方差分析中,无效假设为H0:μ1=μ2=…=μk,备择假设为HA:各

μi不全相等,或H0:=0,HA:≠0;F=MSt/MSe,也就是要判断处理间均方

是否显著大于处理内(误差)均方。如果结论是肯定的,我们将否定H0;反之,不否定H0。反过来理解:如果H0是正确的,那么MSt与MS e都是总体误差σ2的估计值,理论上讲F值等于1;如果H0是不正确的,那么MSt之期望均方中

的就不等于零,理论上讲F值就必大于1。但是由于抽样的原因,即使H0正确,F值也会出现大于1的情况。所以,只有F值大于1达到一定程度时,才有理由否定H0。

实际进行F检验时,是将由试验资料所算得的F值与根据df1=dft(大均方,即分子均方的自由度)、df2=df e(小均方,即分母均方的自由度)查附表4所得的临

界F值,相比较作出统计推断的。

若F<,即P>0.05,不能否定H0,统计学上,把这一检验结果表述为:各处理间差异不显著,在F值的右上方标记“ns”,或不标记符号;若

≤F<,即0.01<P≤0.05,否定H0,接受HA,统计学上,把这一检验结果表述为:各处理间差异显著,在F值的右上方标记“*”;若F≥,

即P≤0.01,否定H0,接受HA,统计学上,把这一检验结果表述为:各处理间差异极显著,在F值的右上方标记“**”。

对于【例6.1】,因为F=MSt/MSe=38.09/5.34=7.13**;根据df1=df t=3,df2=df e=16查附表4,得F>F0.01(3,16)=5.29,P<0.01,表明四种不同饲料对鱼的增重效果差异极显著,用不同的饲料饲喂,增重是不同的。

在方差分析中,通常将变异来源、平方和、自由度、均方和F值归纳成一张方差分析表,见表6-3。

表6-3表6-2资料方差分析表

表中的F值应与相应的被检验因素齐行。因为经F检验差异极显著,故在F 值7.13右上方标记“**”。

在实际进行方差分析时,只须计算出各项平方和与自由度,各项均方的计算及F 值检验可在方差分析表上进行。

五、多重比较

F值显著或极显著,否定了无效假设H O,表明试验的总变异主要来源于处理间的变异,试验中各处理平均数间存在显著或极显著差异,但并不意味着每两个处理平均数间的差异都显著或极显著,也不能具体说明哪些处理平均数间有显著或极显著差异,哪些差异不显著。

因而,有必要进行两两处理平均数间的比较,以具体判断两两处理平均数间的差异显著性。

统计上把多个平均数两两间的相互比较称为多重比较(multiplecomparisons)。多重比较的方法甚多,常用的有最小显著差数法(LSD法)和最小显著极差法(LSR 法),现分别介绍如下。

(一)最小显著差数法(LSD法,leastsignificantdifference)此法的基本作法是:在F检验显著的前提下,先计算出显著水平为α的最小显著差数,然后将任意两个处理平均数的差数的绝对值与其比较。若>LSD a时,则与在α水平上差异显著;反之,则在α水平上差异不显著。最小显著差数由(6-17)式计算。

(6-17)

式中:为在F检验中误差自由度下,显著水平为α的临界t值,为均数差异标准误,由(6-18)式算得。

(6-18)其中为F检验中的误差均方,n为各处理的重复数。当显著水平α=0.05和0.01时,从t值表中查出和,代入(6-17)式得:

(6-19)

利用LSD法进行多重比较时,可按如下步骤进行:

(1)列出平均数的多重比较表,比较表中各处理按其平均数从大到小自上而下排列;

(2)计算最小显著差数和;

(3)将平均数多重比较表中两两平均数的差数与、比较,作出统计推

断。

对于【例6.1】,各处理的多重比较如表6-4所示。

表6-4四种饲料平均增重的多重比较表(LSD法)

平均数-24.74 -26.28 -27.96

注:表中A4与A3的差数3.22用q检验法与新复极差法时,在α=0.05的水平上不显著。

因为,;查t值表得:

t0.05(dfe)=t0.05(16)=2.120,

t0.01(dfe)=t0.01(16)=2.921

所以,显著水平为0.05与0.01的最小显著差数为

将表6-4中的6个差数与,比较:小于者不显著,在差数的右上方标记“ns”,或不标记符号;介于与之间者显著,在差数的右上方标记“*”;大于者极显著,在差数的右上方标记“**”。检验结果

除差数1.68、1.54不显著、3.22显著外,其余两个差数6.44、4.90极显著。表明A1饲料对鱼的增重效果极显著高于A2和A3,显著高于A4;A4饲料对鱼的增重效果极显著高于A3饲料;A4与A2、A2与A3的增重效果差异不显著,以A1饲料对鱼的增重效果最佳。

关于法的应用有以下几点说明:

1、法实质上就是检验法。它是将检验中由所求得的之绝对值

与临界值的比较转为将各对均数差值的绝对值与最小显著差数的比较而作出统计推断的。但是,由于法是利用F检验中的误差自由度查临界值,利用误差均方计算均数差异标准误,因

而法又不同于每次利用两组数据进行多个平均数两两比较的检验法。它解决了本章开头指出的检验法检验过程烦琐,无统一的试验误差且估计误差的精确性和检验的灵敏性低这两个问题。但法并未解决推断的可靠性降低、犯I 型错误的概率变大的问题。

2、有人提出,与检验任何两个均数间的差异相比较,法适用于各处理组与对照组比较而处理组间不进行比较的比较形式。实际上关于这种形式的比较更适用的方法有顿纳特(Dunnett)法(关于此法,读者可参阅其它有关统计书籍)。

3、因为法实质上是检验,故有人指出其最适宜的比较形式是:在进行试验

设计时就确定各处理只是固定的两个两个相比,每个处理平均数在比较中只比较一次。例如,在一个试验中共有4个处理,设计时已确定只是处理1与处理2、处理3与处理4(或1与3、2与4;或1与4、2与3)比较,而其它的处理间不进行比较。因为这种比较形式实际上不涉及多个均数的极差问题,所以不会增大犯I型错误的概率。

综上所述,对于多个处理平均数所有可能的两两比较,法的优点在于方法比较简便,克服一般检验法所具有的某些缺点,但是由于没有考虑相互比较的处理平均数依数值大小排列上的秩次,故仍有推断可靠性低、犯I型错误概率增大的问题。为克服此弊病,统计学家提出了最小显著极差法。

(二)最小显著极差法(LSR法,Leastsignificantranges)法的特点是把平均数的差数看成是平均数的极差,根据极差范围内所包含的处理数(称为秩次距)的不同而采用不同的检验尺度,以克服法的不足。这些在显著水平α上依秩次距的不同而采用的不同的检验尺度叫做最小显著极差。例如有10个要相互比较,先将10个依其数值大小顺次排列,两极端平均数的差数(极差)的显著性,由其差数是否大于秩次距=10时的最小显著极差决定(≥为显著,<为不显著=;而后是秩次距=9的平均数的极差的显著性,则由极差是否大于=9时的最小显著极差决定;……直到任何两个相邻平均数的差数的显著性由这些差数是否大于秩次距k=2时的最小显著极差决定为止。因此,有个平均数相互比较,就有-1种秩次距(,-1,-2,…,2),因而需求得-1个最小显著极差(),分别作为判断具有相应秩次距的平均数的极差是否显著的标

准。

因为法是一种极差检验法,所以当一个平均数大集合的极差不显著时,其中所包含的各个较小集合极差也应一概作不显著处理。

法克服了法的不足,但检验的工作量有所增加。常用的法有检验法和新复极差法两种。

1、检验法(q test)此法是以统计量的概率分布为基础的。值由下式求得:

(6-20)

式中,ω为极差,为标准误,分布依赖于误差自由度dfe及秩次

距k。

利用检验法进行多重比较时,为了简便起见,不是将由(6-20)式算出的值与

临界值比较,而是将极差与比较,从而作出统计推断。

即为α水平上的最小显著极差。

(6-21)

当显著水平α=0.05和0.01时,从附表5(值表)中根据自由度及秩次距查出和代入(6-21)式得

(6-22)

实际利用检验法进行多重比较时,可按如下步骤进行:

(1)列出平均数多重比较表;

(2)由自由度、秩次距查临界值,计算最小显著极差0.05,k,

0.01,k;

(3)将平均数多重比较表中的各极差与相应的最小显著极差0.05,k,

0.01,k比较,作出统计推断。

对于【例6.1】,各处理平均数多重比较表同表6-4。在表6-4中,极差1.54、1.68、3.22的秩次距为2;极差3.22、4.90的秩次距为3;极差6.44的秩次距为4。

因为,=5.34,故标准误为

根据=16,=2,3,4由附表5查出0.05、0.01水平下临界值,乘以标准误求得各最小显著极差,所得结果列于表6-5。

表6-5q值及LSR值

将表6-4中的极差1.54、1.68、3.22与表6-5中的最小显著极差3.099、4.266比较;将极差3.22、4.90与3.770、4.948比较;将极差6.44与4.184、

5.361比较。检验结果,除A4与A3的差数3.22由LSD法比较时的差异显著变为差异不显著外,其余检验结果同法。

2、新复极差法(newmultiplerangemethod)此法是由邓肯(Duncan)于1955年提出,故又称Duncan法,此法还称SSR法(shortestsignificantranges)。

新复极差法与检验法的检验步骤相同,唯一不同的是计算最小显著极差时需查表(附表6)而不是查值表。最小显著极差计算公式为

(6-23)

其中是根据显著水平α、误差自由度、秩次距,由表查得的临

界值,。α=0.05和α=0.01水平下的最小显著极差为:

(6-24)

对于【例6.1】,各处理均数多重比较表同表6-4。

已算出=1.033,依=16,=2,3,4,由附表6查临界0.05(16,k)和

0.01(16,k)值,乘以=1.033,求得各最小显著极差,所得结果列于表6-6。

表6-6SSR值与LSR值

将表6-4中的平均数差数(极差)与表6-6中的最小显著极差比较,检验结果与检验法相同。

当各处理重复数不等时,为简便起见,不论法还是法,可用(6-25)式计算出一个各处理平均的重复数n0,以代替计算或所需的n。

(6-25)

式中为试验的处理数,(i=1,2,…,k)为第处理的重复数。

以上介绍的三种多重比较方法,其检验尺度有如下关系:

法≤新复极差法≤检验法

当秩次距=2时,取等号;秩次距≥3时,取小于号。在多重比较中,法

的尺度最小,检验法尺度最大,新复极差法尺度居中。用上述排列顺序前面方法检验显著的差数,用后面方法检验未必显著;用后面方法检验显著的差数,用前面方法检验必然显著。一般地讲,一个试验资料,究竟采用哪一种多重比较方法,主要应根据否定一个正确的H0和接受一个不正确的H0的相对重要性来决定。如果否定正确的H0是事关重大或后果严重的,或对试验要求严格时,用检验法较为妥当;如果接受一个不正确的H0是事关重大或后果严重的,则宜用新复极差法。生物试验中,由于试验误差较大,常采用新复极差法;F检验显著后,为了简便,也可采用法。

(三)多重比较结果的表示法各平均数经多重比较后,应以简明的形式将结果表示出来,常用的表示方法有以下两种。

1、三角形法此法是将多重比较结果直接标记在平均数多重比较表上,如表6-4所示。由于在多重比较表中各个平均数差数构成一个三角形阵列,故称为三角形法。此法的优点是简便直观,缺点是占的篇幅较大。

2、标记字母法此法是先将各处理平均数由大到小自上而下排列;然后在最大平均数后标记字母,并将该平均数与以下各平均数依次相比,凡差异不显著标记同一字母,直到某一个与其差异显著的平均数标记字母;再以标有字母的平均数为标准,与上方比它大的各个平均数比较,凡差异不显著一律再加标,直至显著为止;再以标记有字母的最大平均数为标准,与下面各未标记字母的平均数相比,凡差异不显著,继续标记字母,直至某一个与其差异显著的平均数标记;……;如此重复下去,直至最小一个平均数被标记比较完毕为止。这样,各平均数间凡有一个相同字母的即为差异不显著,凡无相同字母的即为差异显著。用小写拉丁字母表示显著水平α=0.05,用大写拉丁字母表示显著水平

α=0.01。在利用字母标记法表示多重比较结果时,常在三角形法的基础上进行。此法的优点是占篇幅小,在科技文献中常见。

对于【例6.1】,现根据表6-4所表示的多重比较结果用字母标记如表6-7所示(用新复极差法检验,表6-4中A4与A3的差数3.22在α=0.05的水平上不显著,其余的与LSD法同)。

表6-7表6-4多重比较结果的字母标记(SSR法)

平均数

在表6-7中,先将各处理平均数由大到小自上而下排列。当显著水平α=0.05时,先在平均数31.18行上标记字母;由于31.18与27.96之差为3.22,在α=0.05水平上显著,所以在平均数27.96行上标记字母b;然后以标记字母b 的平均数27.96与其下方的平均数26.28比较,差数为1.68,在α=0.05水平上不显著,所以在平均数26.28行上标记字母b;再将平均数27.96与平均数24.74比较,差数为3.22,在α=0.05水平上不显著,所以在平均数24.74行上标记字母b。类似地,可以在α=0.01将各处理平均数标记上字母,结果见表6-7。q检验结果与SSR法检验结果相同。

由表6-7看到,A1饲料对鱼的平均增重极显著地高于A2和A3饲料,显著高于A4饲料;A4、A2、A3三种饲料对鱼的平均增重差异不显著。四种饲料其中以A1饲料对鱼的增重效果最好。

应当注意,无论采用哪种方法表示多重比较结果,都应注明采用的是哪一种多重比较法。

*六、单一自由度的正交比较

在从事一项试验时,试验工作者往往有一些特殊问题需要回答。这可以通过有计划地安排一些处理,以便从中获得资料进行统计检验,据以回答各种问题。

【例6.2】某试验研究不同药物对腹水癌的治疗效果,将患腹水癌的25只小白鼠随机分为5组,每组5只。其中A1组不用药作为对照,A2、A3为用两个不同的中药组,A4、A5为用两个不同的西药组,各组小白鼠的存活天数如表6-8所示。

表6-8用不同药物治疗患腹水癌的小白鼠的存活天数

这是一个单因素试验,其中k=5,n=5,按照前面介绍的方法进行方差分析(具体计算过程略),可以得到方差分析表,见表6-9。

表6-9表6-8资料方差分析表

对于【例6.2】资料,试验者可能对下述问题感兴趣:

(1)不用药物治疗与用药物治疗;

(2)中药与西药;

(3)中药A2与中药A3;

(4)西药A4与西药A5;

相比结果如何?

显然,用前述多重比较方法是无法回答或不能很好地回答这些问题的。如果事先按照一定的原则设计好(k-1)个正交比较,将处理间平方和根据设计要求剖分成有意义的各具一个自由度的比较项,然后用F检验(此时df1=1)便可明确地回答上述问题。这就是所谓单一自由度的正交比较(orthogonalcomparisonofsingledegreeoffreedom),也叫单一自由度的独立比较(independentcomparisonofsingledegreeoffreedom)。单一自由度的正交比较有成组比较和趋势比较两种情况,后者要涉及到回归分析。这里结合解答【例6.2】的上述四个问题,仅就成组比较予以介绍。

首先将表6-8各处理的总存活天数抄于表6-10,然后写出各预定比较的正交系数C i(orthogonalcoefficient)。

表6-10【例6.2】资料单一自由度正交比较的正交系数和平方和的计算

表6-10中各比较项的正交系数是按下述规则构成的:

(1)如果比较的两个组包含的处理数目相等,则把系数+1分配给一个组的各处理,把系数-1分配给另一组的各处理,至于哪一组应取正号还是负号是无关紧要的。如A2+A3与A4+A5两组比较(属中药与西药比较),A2、A3两处理各记系数+1,A4、A5两处理各记系数-1。

(2)如果比较的两个组包含的处理数目不相等,则分配到第一组的系数等于第二组的处理数;而分配到第二组的系数等于第一组的处理数,但符号相反。如A1与A2+A3+A4+A5的比较,第一组只有1个处理,第二组有4个处理,故分配给

A1处理的系数为+4,而分配给处理A2、A3、A4、A5的系数为-1。又如,假设在5个处理中,前2个处理与后3个处理比较,其系数应是+3、+3、-2、-2、-2。

(3)把系数约简成最小的整数。例如,2个处理为一组与4个处理为一组比较,依照规则(2)有系数+4、+4、-2、-2、-2、-2,这些系数应约简成+2、+2、-1、-1、-1、-1。

(4)有时,一个比较可能是另两个比较互作的结果。此时,这一比较的系数可用该两个比较的相应系数相乘求得。如包含4个处理的肥育试验中,两种水平的试畜(B1,B2)和两种水平的饲料(F1,F2),其比较举例如下:

表中第1和第2两比较的系数是按照规则(1)得到的;互作的系数则是第1、2行系数相乘的结果。

各个比较的正交系数确定后,便可获得每一比较的总和数的差数D i,其通式为:

(6-26)

其中C i为正交系数,xi.为第i处理的总和。这样表6-10中各比较的Di为:

D1=4×81-1×214-1×160-1×134-1×168=-352

D2=1×214+1×160-1×134-1×168=72

D3=1×214-1×160=54

D4=1×134-1×168=-34

进而可求得各比较的平方和SSi:

(6-27)

式中的n为各处理的重复数,本例n=5。对第一个比较:

同理可计算出SS2=259.20,SS3=291.60,SS4=115.60。计算结果列入表6-10中。这里注意到,SS1+SS2+SS3+SS4=1905.44,正是表6-9中处理间平方和SSt。这也就是说,利用上面的方法我们已将表6-9处理间具4个自由度的平方和再度分解为各具一个自由度的4个正交比较的平方和。因此,得到单一自由度正交比较的方差分析表6-11。

表6-11表6-8资料单一自由度正交比较方差分析

将表6-11中各个比较的均方与误差均方MS e相比,得到F值。查F值表,df1=1,df2=20时,F0.05(1,20)=4.35,F0.01(1,20)=8.10。所以,在这一试验的上述4个比较差异都极显著。

正确进行单一自由度正交比较的关键是正确确定比较的内容和正确构造比较的正交系数。在具体实施时应注意以下三个条件:

(1)设有k个处理,正交比较的数目最多能安排k-1个;若进行单一自由度正交比较,则比较数目必须为k-1,以使每一比较占有且仅占有一个自由度。

(2)每一比较的系数之和必须为零,即ΣC i=0,以使每一比较都是均衡的。

(3)任两个比较的相应系数乘积之和必须为零,即ΣCiCj=0,以保证SSt的独立分解。

对于条件(2),只要遵照上述确定比较项系数的四条规则即可。对于条件(3),主要是在确定比较内容时,若某一处理(或处理组)已经和其余处理(或处理组)作过一次比较,则该处理(或处理组)就不能再参加另外的比较。否则就会破坏

ΣCiCj=0这一条件。只要同时满足了(2),(3)两个条件,就能保证所实施的比较是正交的,因而也是独立的。若这样的比较有k-1个,就是正确地进行了一次单一自由度的正交比较。

单一自由度正交比较的优点在于:

(1)它能给人们解答有关处理效应的一些特殊重要的问题;处理有多少个自由度,就能解答多少个独立的问题,不过这些问题应在试验设计时就要计划好。

(2)计算简单。

(3)对处理间平方和提供了一个有用的核对方法。即单一自由度的平方和累加起来应等于被分解的处理间的平方和。否则,不是计算有误,就是分解并非独立。

七、方差分析的基本步骤

在本节中,结合单因素试验结果方差分析的实例,较详细地介绍了方差分析的基本原理和步骤。关于方差分析的基本步骤现归纳如下:

(一)计算各项平方和与自由度。

(二)列出方差分析表,进行F检验。

(三)若F检验显著,则进行多重比较。多重比较的方法有最小显著差数法(LSD 法)和最小显著极差法(LSR法:包括q检验法和新复极差法)。表示多重比较结果的方法有三角形法和标记字母法。

此外,若有一些特殊重要的问题需要回答,多重比较又无法或不能很好地回答这些问题时,则应考虑单一自由度正交比较法。对这些特殊问题正确而有效的回答,依赖于正确的试验设计和单一自由度正交比较法的正确应用。

统计学第八章方差分析

第八章方差分析 Ⅰ.学习目的 本章介绍方差分析的理论、方法与运用。通过学习,要求:1.了解方差分析的基本概念和思想;2.理解方差分解原理;3.掌握单因素、双因素(有、无交互作用)方差分析的原理和流程;4学会针对资料提出原假设,并能利用Excel进行方差分析。 Ⅱ.课程内容要点 第一节方差分析方法引导 一、方差分析问题的提出 方差分析,简称ANOVA(analysis of variance),就是利用试验观测值总偏差的可分解性,将不同条件所引起的偏差与试验误差分解开来,按照一定的规则进行比较,以确定条件偏差的影响程度以及相对大小。当已经确认某几种因素对试验结果有显著影响时,可使用方差分析检验确定哪种因素对试验结果的影响最为显著及估计影响程度。 二、方差分析的有关术语和概念 1.试验结果:在一项试验中用来衡量试验效果的特征量,也称试验指100

101 标或指标,类似函数的因变量或者目标函数。 2.试验因素:试验中,凡是对试验指标可能产生影响的原因都称为因素,或称为因子,类似函数的自变量。试验中需要考察的因素称为试验因素,简称为因素。一般用大写字母A 、B 、C 、……表示。方差分析的目的就是分析实验因素对实验或抽样的结果有无显著影响。如果在实验中变化的因素只有一个,这时的方差分析称为单因素方差分析;如果在实验中变化的因素不止一个,这时的方差分析就称为多因素方差分析。 3.因素水平:因素在试验中所处的各种状态或者所取的不同值,称为该因素的水平,简称水平。一般用下标区分。同样因素水平有时可以取得具体的数量值,有时只能取到定性值(如好,中,差等)。 4.交互作用:当方差分析过程中的影响因素不唯一时,这种多个因素的不同水平的组合对指标的影响称为因素间的交互作用。 三、方差分析的基本原理 (一)方差分解原理 一般地,试验结果的差异性可由离差平方和表示,离差平方和又可分解为组间方差与组内方差。其中,组间方差为因素对试验结果的影响的加总;组内方差则是各组内的随机影响的加总。如果组间方差明显高于组内方差,说明样本数据波动的主要来源是组间方差,因素是引起波动的主要原因,则认为因素对试验的结果存在显著的影响;否则认为波动主要来自组内方差,即因素对试验结果的影响不显著。 (二)检验统计量 检验因素影响是否显著的统计量是F 统计量: 组内方差的自由度 组内方差组间方差的自由度 组间方差// F

spss学习系列23.协方差分析

(一)原理 一、基本思想 在实际问题中,有些随机因素是很难人为控制的,但它们又会对结果产生显著影响。如果忽略这些因素的影响,则有可能得到不正确的结论。这种影响的变量称为协变量(一般是连续变量)。 例如,研究3种不同的教学方法的教学效果的好坏。检查教学效果是通过学生的考试成绩来反映的,而学生现在考试成绩是受到他们自身知识基础的影响,在考察的时候必须排除这种影响。 协方差分析将那些难以控制的随机变量作为协变量,在分析中将其排除,然后再分析控制变量对于观察变量的影响,从而实现对控制变量效果的准确评价。 协方差分析要求协变量应是连续数值型,多个协变量间互相独立,且与控制变量之间没有交互影响。前面单因素方差分析和多因素方差分析中的控制变量都是一些定性变量,而协方差分析中既包含了定性变量(控制变量),又包含了定量变量(协变量)。 协方差分析在扣除协变量的影响后再对修正后的主效应进行方差分析,是一种把直线回归或多元线性回归与方差分析结合起来的方法,其中的协变量一般是连续性变量,并假设协变量与因变量间存在线性关系,且这种线性关系在各组一致,即各组协变量与因变量所建立的回归直线基本平行。 当有一个协变量时,称为一元协方差分析,当有两个或两个以上的协变量时,称为多元协方差分析。

二、协方差分析需要满足的条件 (1)自变量是分类变量,协变量是定距变量,因变量是连续变量;对连续变量或定距变量的协变量的测量不能有误差; (2)协变量与因变量之间的关系是线性关系,可以用协变量和因变量的散点图来检验是否违背这一假设;协变量的回归系数(即各回归线的斜率)是相同的,且不等于0,即各组的回归线是非水平的平行线。否则,就有可能犯第一类错误,即错误地接受虚无假设; (3) 自变量与协变量相互独立,若协方差受自变量的影响,那么协方差分析在检验自变量的效应之前对因变量所作的控制调整将是偏倚的,自变量对因变量的间接效应就会被排除; (4)各样本来自具有相同方差σ2的正态分布总体,即要求各组方差齐性。 三、基本理论 1. 观测值=均值+分组变量影响+协变量影响+随机误差. 即 ()ij i ij ij y u t x x βε=++-+ (1) 其中,X 为所有协变量的平均值。 注:在方差分析中,协变量影响是包含在随机误差中的,在协方差分析中需要分离出来。 用协变量进行修正,得到修正后的y ij (adj)为 (adj)()ij ij ij i ij y y x x u t βε=--=++ 就可以对y ij (adj)做方差分析了。关键问题是求出回归系数β. 2. 总离差=分组变量离差+协变量离差+随机误差,

方差分析和协方差分析,协变量和控制变量

方差分析和协方差分析,协变量和控制变量 方差分析 方差分析(Analysis of Variance,简称ANOVA),又称“变异数分析”或“F检验”,是R.A.Fisher发明的,用于两个及两个以上样本均数差别的显著性检验。由于各种因素的影响,研究所得的数据呈现波动状。造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。 方差分析是从观测变量的方差入手,研究诸多控制变量中哪些变量是对观测变量有显著影响的变量。 假定条件和假设检验? 1. 方差分析的假定条件为:(1)各处理条件下的样本是随机的。(2)各处理条件下的样本是相互独立的,否则可能出现无法解析的输出结果。(3)各处理条件下的样本分别来自正态分布总体,否则使用非参数分析。(4)各处理条件下的样本方差相同,即具有齐效性。 2. 方差分析的假设检验假设有K个样本,如果原假设H0样本均数都相同,K个样本有共同的方差σ,则K个样本来自具有共同方差σ和相同均值的总体。如果经过计算,组间均方远远大于组内均方,则推翻原假设,说明样本来自不同的正态总体,说明处理造成均值的差异有统计意义。否则承认原假设,样本来自相同总体,处理间无差异。 作用 一个复杂的事物,其中往往有许多因素互相制约又互相依存。方差分析的目的是通过数据分析找出对该事物有显著影响的因素,各因素之间的交互作用,以及显著影响因素的最佳水平等。方差分析是在可比较的数组中,把数据间的总的“变差”按各指定的变差来源进行分解的一种技术。对变差的度量,采用离差平方和。方差分析方法就是从总离差平方和分解出可追溯到指定来源的部分离差平方和,这是一个很重要的思想。经过方差分析若拒绝了检验假设,只能说

第一节 方差分析原理

第一节方差分析原理 一、方差分析基本思想 方差分析(analysis of variance,或缩写ANOVA)又称变异数分析,是一种应用非常广泛的统计方法。其主要功能是检验两个或多个样本平均数的差异是否有统计学意义,用以推断它们的总体均值是否相同。它是真正用来进行上述“多组比较”问题的正确方法,从这个意义上说,它可看成是t检验等“两组比较法”的推广。理解方差分析的原理,主要在于其基本思想,而不在于数学推导。 以单因素完全随机化实验设计为例(这是最简单的多组实验设计)介绍方差分析的原理。注意下面列出的该种设计的数学模式,假设有k 个处理,每个处理下有n 个被试,一共有nk 个被试。K个处理下的数据构成比较中的k个组或k个样本。 不失一般地,其对应的图示如下:

根据测量学中的真分数理论,观测值等于真值和误差之和;据此,对照上面的数据可得到下面的数学模型: 其中: X ij指第j 个处理下的第i 个被试的实验数据; μ指总体均值;在图中样本数据中,即红色线表示的总平均; μj指第j 个处理的均值; τj称为第j 个处理的效应;通常,τj=μj–μ,也即各组均值偏离总平均的离差; εij为随机误差(idd表示误差独立同分布);在该模型中,误差就是各组中数据偏离其组均值的离差。因为根据单因素完全随机化设计的特点,同组中的被试,其各方面条件都相同,接受的处理也相同,其观测值间的差异只能归结为随机误差。 首先对检验的零假设进行变换: 下面我们就需要构造一个统计量使得它在Ho"下无未知量且有精确的分布,以进行假设检验。由于τ2j是每个处理的平均数与总平均之差,所以我们考虑从数据的离均差的平方入手来构造统计量: 对每个观测数据: 即:任意一个数据与总平均数的离差= 该数与所在组平均数的离差+ 所在组的平均数与总平均数的离差。 我们针对第j 组中每个数据的上述分解式的平方求和得:

方差分析的原理

方差分析的原理 (1)方差分析的概念 方差分析的目的是推断多组资料的总体均数是否相同,也即检验多组数据之间的均数差异是否有统计意义。当我们用多个t 检验来完成这一过程时,相当于从t 分布中随机抽取多个t 值,这样落在临界范围之外的可能大大增加,从而增加了Ⅰ型错误的概率。我们可以把方差分析看作t 检验的增强版。 (2)方差的可分解性 方差分析依据的基本原理就是方差的可加性原则。作为一种统计方法,方差分析把实验数据的总变异分解为若干个不同来源的分量。数据的变异由两部分组成: 组内变异:由于实验中一些希望加以控制的非实验因素和一些未被有效控制的未知因素造成的变异,如个体差异、随机误差 组内变异是具体某一个处理水平之内的,因此在对总体变异进行估计的时候不涉及研究的处理效应。 组间差异:不仅包括组内变异的误差因素,还包括了是不同组所接受的实验处理不同造成的影响 如果研究数据的总变异是由处理效应造成的,那么组间变异在总变异中应该占较大比例。 B M S 表示组间方差,B B B SS M S df =,1B df k =-,k 表示实验条件的个数 W M S 表示组内方差,W W W SS M S df =,()1W df k n =-,n 表示每种实验条件中的被试个数

(3)方差分析的基本假定 ①样本必须来自正态分布的总体 ②每次观察得到的几组数据必须彼此独立 ③各实验处理内的方差应彼此无显著差异 为了满足这一假定,我们可采用最大F 比率法2m ax m ax 2m in s F s ,求出各样本中方差最 大值与最小值的比,通过查表判断。 文章来源:博仁教育

协方差分析

第十一节协方差分析 (analysis of covariance) 在各种试验设计中,对应变量(dependent variable)Y 研究时,常希望其他可能影响Y的变量在各组间保持基本一致,以达到均衡可比。例如:比较几种药物的降压作用,各试验组在原始血压、性别、年龄等指标应无差异。

第十一节协方差分析 有时这些变量不能控制,须在统计分析时,通过一定方法来消除这些变量的影响后,再对应变量y作出统计推断。称这些影响变量为协变量(Covariate)。 如果所控制的变量是分类变量时,可用多因素的方差分析; 当要控制的变量是连续型变量时,可用协方差分析,以消除协变量的影响,或将协变量化成相等后,对y的修正均数进行方差分析。

第十一节协方差分析 例如:比较几种不同饲料对动物体重增加的作用,可把动物的进食量作为协变量。 比较大学生和运动员的肺活量时,可把身高作为协变量。 比较治疗后二组舒张压的大小,可把治疗前的舒张压作为协变量。

第十一节协方差分析 协方差分析的基本原理: 协方差分析是把直线回归和方差分析结合起来的一种统计分析方法。当不同处理结果的y值受协变量x的影响时,先找出y与x的直线关系,求出把x值化为相等后y的修正均数,然后进行比较,这样就能消除x对y的影响,更恰当地评价各种处理的作用。

协方差分析的步骤 ±观察指标服从正态分布、方差齐性、各观察相互独立H检验分组因素与协变量x是否有交互作用。对上例,即是否雌雄羔羊进食量相同,它们的体重增加量却不相同。如检验结果分组因素与协变量x间没有交互作用,即说明雌雄羔羊进食量相同的情况下,它们的体重增加量是相同的。进行第二项检验: H检验协变量与应变量之间是否存在线性关系。如果不存在线性关系,则不能简单地运用协方差分析,因为协方差分析是利用协变量x与应变量y之间的线性回归关系扣除协变量x对y的影响。必要时可考虑进行变量转换。如果检验结果协变量与应变量之间存在线性关系,则进行第三项检验: H进一步扣除x对y影响的前提下,检验各组的修正均数差别是否有统计学意义。

检验和方差分析的原理和基本方法

《管理统计学》导学资料六——2χ检验和方差分析这一讲的内容包括两个部分开平方检验和方差分析,重点是方差分析,在本章的学习 χ检验的作用和用途。学会和掌握方差分析表的使用,中,同学们要了解方差分析的用途,2 了解自由度的计算和F检验的作用,记住方差分析表中的五个等式和含义。 本章的关键术语: 方差分析(Analysis of Variance, 常简称为ANOV A)是用来检验两个以上样本的均值差异的显著程度,由此判断样本究竟是否抽自具有同一均值总体的方法。 SST-总离差方和(Sum of Square in Total )为各样本观察值与总均值的离差平方和。 SSTR-组间离差方和(Sum of Square Treatment)表示不同的样本组之间,由于因素取不同的水平所产生的离差平方和。 SSE-组内离差方和(Sum of Square Error)表示同一样本组内,由于随机因素影响所产生的离差平方和,简称为组内离差平方和。 本章学完后,你应当能够: 1、掌握用2χ检验来解决独立性检验和拟合性检验的原理和基本方法,能解决最常见的这类检验问题。 2、了解和懂得单因素方差分析的原理和基本方法,能应用计算机解决最常见的方差分析问题。 一、2χ检验 2 χ检验的用途是检验两个变量之间的独立性和检验数据是否服从某个概率分布得拟合检验。 我们经常会遇到受两个或两个以上因素(变量)影响的实验或观察数据,并要求判断两个变量之间是否存在相互联系的问题。如果两个变量之间没有联系则称作是独立的,否则就是不独立的。 χ分布可以检验两个变量之间的独立性问题。此时我们首先将研究对象的观察用2 数据按两个变量分别进行分类。。例如,按行对第一个变量进行分类,按列对第二个变量进行分类。按这种方法把所有的试验观察数据排列成的表称为列联表。 2 χ独立性检验的程序和前面介绍的参数假设检验一样,首先也要建立假设,然后 χ,再根据问计算检验统计量的值。这次采用的检验统计这次采用的检验统计量就是2 χ分布表,得到当原假设成立时检验统计量允许的最大临界题规定的显著性水平查2 χ值作比较,得出接受或拒绝原假设的结论。具体步骤如下: 值,与计算所得的2 1.提出假设 H:两个变量是独立的,即相互之间没有影响,

spss协方差分析的基本原理-最棒的

协方差分析的基本原理 1.协方差分析的提出 无论是单因素方差分析还是多因素方差分析,它们都有一些人为可以控制的控制变量。在实际问题中,有些随机因素是很难人为控制的,但它们又会对结果产生显著影响。如果忽略这些因素的影响,则有可能得到不正确的结论。 例如,研究3种不同的教学方法的教学效果的好坏。检查教学效果是通过学生的考试成绩来反映的,而学生现在考试成绩是受到他们自身知识基础的影响,在考察的时候必须排除这种影响。又比如,考查受教育程度对个人工资是否有显著影响,这时必须考虑工作年限因素。一般情况下,工作年限越长,工资就越高。在研究此问题时必须排除工作年限因素的影响,才能得出正确的结论。再如,如果要了解接受不同处理的小白鼠经过一段时间饲养后体重增加量有无差别,已知体重的增加和小白鼠的进食量有关,接受不同处理的小白鼠其进食量可能不同,这时为了控制进食量对体重增加的影响,可在统计阶段利用协方差分析(Analysis of Covariance),通过统计模型的校正使得各组在“进食量”这个变量的影响上相等,即将进食量作为协变量,然后分析不同处理对小白鼠体重增加量的影响。 为了更加准确地控制变量不同水平对结果的影响,应该尽量排除其它在实验设计阶段难以控制或者是无法严格控制的因素对分析结果的影响。利用协方差分析就可以完成这样的功能。协方差分析将那些难以控制的随机变量作为协变量,在分析中将其排除,然后再分析控制变量对于观察变量的影响,从而实现对控制变量效果的准确评价。 协方差分析要求协变量应是连续数值型,多个协变量间互相独立,且与控制变量之间没有交互影响。前面单因素方差分析和多因素方差分析中的控制变量都是一些定性变量,而协方差分析中既包含了定性变量(控制变量),又包含了定量变量(协变量)。协方差分析在扣除协变量的影响后再对修正后的主效应进行方差分析,是一种把直线回归或多元线性回归与方差分析结合起来的方法,其中的协变量一般是连续性变量,并假设协变量与因变量间存在线性关系,且这种线性关系在各组一致,即各组协变量与因变量所建立的回归直线基本平行。当有一个协变量时,称为一元协方差分析,当有两个或两个以上的协变量时,称为多元协方差分析。以下将以一元协方差分析为例,讲述协方差分析的基本思想和步骤。 2.协方差分析的计算公式 以单因素协方差分析为例,总的变异平方和表示为: Q Q Q Q ++ 总控制变量协变量随机变量 = 协方差分析仍然采用F检验,其零假设 H为多个控制变量的不同水平下,各总体平均值没有显著差异。 F统计量计算公式为: 2 2 S F S 控制变量 控制变量 随机变量 =, 2 2 S F S 协变量 协变量 随机变量 = 以上F统计量服从F分布。SPSS将自动计算F值,并根据F分布表给出相应的相伴概率值。 如果F 控制变量 的相伴概率小于或等于显著性水平,则控制变量的不同水平对观察变量产生了显著的影响;如 果F 协变量 的相伴概率小于或等于显著性水平,则协变量的不同水平对观察变量产生了显著的影响。 3.协方差分析需要满足的假设条件 (1)自变量是分类变量,协变量是定距变量,因变量是连续变量; (2)对连续变量或定居变量的协变量的测量不能有误差; (3)协变量与因变量之间的关系是线性关系,可以用协变量和因变量的散点图来检验是否违背这一假设;(4)协变量的回归系数是相同的。在分类变量形成的各组中,协变量的回归系数(即各回归线的斜率)必须是相等的,即各组的回归线是平行线。如果违背了这一假设,就有可能犯第一类错误,即错误地接受虚无假设。

第五章方差分析

单因素方差分析 单因素方差分析也称作一维方差分析。它检验由单一因素影响的一个(或几个相互独立的)因变量由因素各水平分组的均值之间的差异是否具有统计意义。还可以对该因素的若干水平分组中哪一组与其他各组均值间具有显著性差异进行分析,即进行均值的多重比较。One-Way ANOVA过程要求因变量属于正态分布总体。如果因变量的分布明显的是非正态,不能使用该过程,而应该使用非参数分析过程。如果几个因变量之间彼此不独立,应该用Repeated Measure过程。 [例子] 调查不同水稻品种百丛中稻纵卷叶螟幼虫的数量,数据如表5-1所示。 表5-1 不同水稻品种百丛中稻纵卷叶螟幼虫数 数据保存在“DATA5-1.SAV”文件中,变量格式如图5-1。 图5-1 分析水稻品种对稻纵卷叶螟幼虫抗虫性是否存在显著性差异。

1)准备分析数据 在数据编辑窗口中输入数据。建立因变量“幼虫”和因素水平变量“品种”,然后输入对应的数值,如图5-1所示。或者打开已存在的数据文件“DATA5-1.SAV”。 2)启动分析过程 点击主菜单“Analyze”项,在下拉菜单中点击“Compare Means”项,在右拉式菜单中点击“0ne-Way ANOVA”项,系统 打开单因素方差分析设置窗口如图5-2。 图5-2 单因素方差分析窗口 3)设置分析变量 因变量:选择一个或多个因子变量进入“Dependent List”框中。本例选择“幼虫”。 因素变量:选择一个因素变量进入“Factor”框中。本例选择“品种”。 4)设置多项式比较

单击“Contrasts”按钮,将打开如图5-3所示的对话框。该对话框用于设置均值的多项式比较。 图5-3 “Contrasts”对话框 定义多项式的步骤为: 均值的多项式比较是包括两个或更多个均值的比较。例如图5-3中显示的是要求计算“1.1×mean1-1×mean2”的值,检验的假设H0:第一组均值的1.1倍与第二组的均值相等。单因素方差分析的“0ne-Way ANOVA”过程允许进行高达5次的均值多项式比较。多项式的系数需要由读者自己根据研究的需要输入。具体的操作步骤如下: ① 选中“Polynomial”复选项,该操作激活其右面的“Degree”参数框。 ② 单击Degree参数框右面的向下箭头展开阶次菜单,可以选择“Linear”线性、“Quadratic”二次、“Cubic”三次、“4th”四次、“5th”五次多项式。 ③ 为多项式指定各组均值的系数。方法是在“Coefficients”框中输入一个系数,单击Add按钮,“Coefficients”框中的系数进入下面的方框中。依次输入各组均值的系数,在方形显示框中形成—列数值。因素变量分为几组,输入几个系数,多出的无意义。如果多项式中只包括第一组与第四组的均值的系数,必须把第二个、第三个系数输入为0值。如果只包括第一组与第二组的均值,则只需要输入前两个系数,第三、四个系数可以不输入。 可以同时建立多个多项式。一个多项式的一组系数输入结束,激话“Next”按钮,单击该按钮后“Coefficients”框中清空,准备接受下一组系数数据。

23. 协方差分析

23. 协方差分析 一、基本原理 1. 基本思想 在实际问题中,有些随机因素是很难人为控制的,但它们又会对结果产生显著影响。如果忽略这些因素的影响,则有可能得到不正确的结论。这种影响的变量称为协变量(一般是连续变量)。 例如,研究3种不同的教学方法的教学效果的好坏。检查教学效果是通过学生的考试成绩来反映的,而学生现在考试成绩是受到他们自身知识基础的影响,在考察的时候必须排除这种影响。 协方差分析将那些难以控制的随机变量作为协变量,在分析中将其排除,然后再分析控制变量对于观察变量的影响,从而实现对控制变量效果的准确评价。 协方差分析要求协变量应是连续数值型,多个协变量间互相独立,且与控制变量之间没有交互影响。前面单因素方差分析和多因素方差分析中的控制变量都是一些定性变量,而协方差分析中既包含了定性变量(控制变量),又包含了定量变量(协变量)。 协方差分析在扣除协变量的影响后再对修正后的主效应进行方差分析,是一种把直线回归或多元线性回归与方差分析结合起来的方法,其中的协变量一般是连续性变量,并假设协变量与因变量间存在线性关系,且这种线性关系在各组一致,即各组协变量与因变量所建立的回归直线基本平行。 当有一个协变量时,称为一元协方差分析,当有两个或两个以上

的协变量时,称为多元协方差分析。 2. 协方差分析需要满足的条件 (1)自变量是分类变量,协变量是定距变量,因变量是连续变量;对连续变量或定距变量的协变量的测量不能有误差; (2)协变量与因变量之间的关系是线性关系,可以用协变量和因变量的散点图来检验是否违背这一假设;协变量的回归系数(即各回归线的斜率)是相同的,且不等于0,即各组的回归线是非水平的平行线。否则,就有可能犯第一类错误,即错误地接受虚无假设; (3) 自变量与协变量相互独立,若协方差受自变量的影响,那么协方差分析在检验自变量的效应之前对因变量所作的控制调整将是偏倚的,自变量对因变量的间接效应就会被排除; (4)各样本来自具有相同方差σ2的正态分布总体,即要求各组方差齐性。 二、协方差理论 1. 观测值=均值+分组变量影响+协变量影响+随机误差. 即 ()ij i ij ij y u t x x βε=++-+ (1) 其中,X 为所有协变量的平均值。 注:在方差分析中,协变量影响是包含在随机误差中的,在协方差分析中需要分离出来。 用协变量进行修正,得到修正后的y ij (adj)为 (adj)()ij ij ij i ij y y x x u t βε=--=++

协方差分析理论与案例

协方差分析理论与案例 假设我们有N 个个体的K 个属性在T 个不同时期的样本观测值,用it y ,it x ,…,N,t=1,…,T,k=1,…,K 表示。一般假定y 的观测值是某随机实验的结果,该实验结果在属性向量x 和参数向量θ下的条件概率分布为(,)f y x θ。使用面板数据的最终目标之一就是利用获取的信息对参数θ进行统计推断,譬如常假设假定的y 是关于x 的线性函数的简单模型。协方差分析检验是识别样本波动源时广泛采用的方法。 方差分析:常指一类特殊的线性假设,这类假设假定随机变量y 的期望值仅与所考察个体所属的类(该类由一个或多个因素决定)有关,但不包括与回归有关的检验。而协方差分析模型具有混合特征,既像回归模型一样包含真正的外生变量,同时又像通常的方差一样允许每个个体的真实关系依赖个体所属的类。 常用来分析定量因素和定性因素影响的线性模型为: *,1,,,1,,it it it it it y x u i N t T αβ'=++=???=??? 从两个方面对回归系数估计量进行检验:首先,回归斜率系数的同质性;其 次,回归截距系数的同质性。检验过程主要有三步: (1) 检验各个个体在不同时期的斜率和截距是否都相等; (2) 检验(各个体或各时期的)回归斜率(向量)是否都相等; (3) 检验各回归截距是否都相等。 显然,如果接受完全同同质性假设(1),则检验步骤中止。但如果拒绝了完全同质性性假设,则(2)将确定回归斜率是否相同。如果没有拒绝斜率系数的同质性假设,则(3)确定回归截距是否相等。(1)是从(2)、(3)分离出来的。 基本思想:在作两组或多组均数1y ,2y ,…,k y 的假设检验前,用线性回归分析方法找出协变量X 与各组Y 之间的数量关系,求得在假定X 相等时修定均数1y ',2y ',…,k y '然后用方差分析比较修正均数间的差别,这就是协方差分析的基本思想。 协方差分析的应用条件:⑴要求各组资料都来自正态总体,且各组的方差相等;(t 检验或方差分析的条件)⑵各组的总体回归系数i β相等,且都不等于0(回归方程检验)。因此,应用协方差分析前,要对资料进行方差齐性检验和回归系数的假设检验(斜率同质性检验),只有满足上述两个条件之后才能应用,否则不宜使用。 ⑴各比较组协变量X 与分析指标Y 存在线性关系(按直线回归分析方法进行判断)。 ⑵各比较组的总体回归系数i β相等,即各直线平行(绘出回归直线,看是否

协方差分析

协方差分析 某城市教育局在一次对全市初中一年级至高中三年级学生的调查研究中想要考察身心发展对学习成绩的影响,研究者手机了各学校初一年级至高三年级学生的学业成绩以及相关身心发展量表得分,在分析时以学生所在年级来代表年龄差异,但是由于男同学与女同学的身心发展存在差异,因此需要在结果中排除性别因素,然而无法在收集数据时只收集男同学的数据或收集女同学的数据,那么该如何排除性别因素对结果的影响呢? 在实验设计中,考虑到实际的实验情形,无法一一排除某些会影响实验结果的无关变量(干扰变量),为了排除这些不能在实验处理中所操作的变量,而其结果又会影响因变量,可以通过“统计控制”的方法来弥补实验控制的不足,为了提高实验研究的内在效率,必须将可能干扰实验结果的无关变量加以控制,不致产生严重的系统性误差。控制系统误差的方法有很多,例如以随机的方式将被试分配至不同群体;将系统误差加入实验设计,使其变成一个自变量;尽可能控制可控制的系统误差如光纤亮度、噪音等。 实验研究的优点众所周知,即其严密的逻辑性以及可以良好的控制误差,但是让一个标准的实验设计走出实验室,在社会科学领域实施通常比较困难。因此在社会科学领域中经常实施的是准实验设计,在准实验设计中无法使用实验控制法来完全控制无关的干扰变量,故经常增加实验内在效度的方法——统计控制法,最常用的便是协方差分析(analysis of covariance,ANCOV A)。 顾名思义,协方差分析是方差分析的一种,它也包括自变量与因变量,同方差分析,因变量为连续变量且需要满足方差分析关于因变量的假设条件,自变量为分类变量。不同的是,并不是实验所关注的自变量却为研究者进行控制的一类变量被加入分析,它们被称为“协变量”(covariate),要注意,协变量是连续变量。 1.协方差分析的假设 协方差分析的基本假设与方差分析相同,包括变量的正态性、观测值独立、方差齐性等,此外还有三个重要的假设: 1)因变量与协方差之间直线关系; 2)所测量的协变量不应有误差,如果选用的是多项的量表,应有高的内部一致性信度或重 测信度,α系数最好大于0.80。这一假设若被违反会造成犯一类错误的概率上升,降低统计检验力。 3)“组内回归系数同质性”(homogeneity of with in rgression),各实验处理组中一举 协变量(X)预测因变量(Y)的回归线的回归系数要相等,即斜率相等,各条回归线平行。如果斜率不等则不宜直接进行协方差分析。 2.协方差分析的方差分解 方差分析的原理是将因变量的总方差分解成自变量效果(组间)与误差效果(组内)两个部分,再进行F检验。协方差使用的也是这样的方差分析思路,将因变量的总方差先行分割为协变量可解释部分与不可解释部分,不可解释的部分再由方差分析原理进行拆解。协方差分析的方差拆解如下: 3.协方差分析的步骤 协方差分析结合了回归分析与方差分析的方法,计算方法比较复杂,由于涉及回归分析的基本思路,因此一下内容也许需要在阅读了本章第六部分“一元线性回归分析”后理解得更加透彻。 以单因素协方差分析为例说明协方差分析的步骤: 1)协方差分析的准备 (B:组间;W:组内;T:总和;n:组内样本容量;k:组间容量;x:协变量;y:因变量)

One-Way-ANOVA过程--单因素方差分析

SPSS--One-Way ANOVA过程--单因素方差分析 One-Way ANOVA过程 该命令用于两组及多组独立样本平均数差异显著性的比较,即成组设计的方差分析。还可进行随后的两两成对比较。 1 界面说明 【Dependent List框】 选入需要分析的变量,可选入多个结果变量(因变量)。 【Factor框】 选入需要比较的分组因素,只能选一个。 【Contrast钮】 弹出Contrast对话框,用于对精细趋势检验和精确两两比较的选项进行定义,该对话框比较专业,也较少用,这里做简单介绍。?Polynomial复选框定义是否在方差分析中进行趋势检验。?Degree下拉列表和Polynomial复选框配合使用,可选则从线性趋势一直到最高五次方曲线来进行检验。 ?Coefficients框定义精确两两比较的选项。按分组变量升序给每组一个系数值,注意最终所有系数值相加应为0。如果不为0仍可检验,只不过结果是错的。比如说在下面的例2要对一、三组进行单独比较,则在这里给三组分配系数为1、0、-1,就会在结果中给出相应的检验内容。

【Post Hoc按钮】 弹出Post Hoc Multiple Comparisons对话框,用于选择进行各组间两两比较的方法: ?EquaL Variances Assumed复选框:当各组数据方差齐性时的两两比较方法,共14种。其中最常用的为LSD和S-N-K法。?EquaL Variances Not Assumed复选框:当各组方差不齐性时的两两比较方法,共4种,其中以Dunnetts's C法较常用。?Significance Level框定义两两比较时的显著性水平,默认为0.05。 【Options按钮】 弹出Options对话框,用于定义相关的选项: ?Statistics复选框:选择一些附加的统计分析项目,有统计描述(Descriptive)和方差齐性检验 (Homogeneity-of-variance)。 ?Means plot复选框:用各组均数做图,直观了解它们的差异。 ?Missing Values单选框组:定义分析中对缺失值的处理方法,可以是具体分析时用到的变量有缺失值才去除该记录 (Excludes cases analysis by analysis),或只要相关变

spss方差分析操作示范-步骤-例子

第五节方差分析的SPSS操作 一、完全随机设计的单因素方差分析 1.数据 采用本章第二节所用的例1中的数据,在数据中定义一个group变量来表示五个不同的组,变量math表示学生的数学成绩。数据输入格式如图6-3(为了节省空间,只显示部分数据的输入): 图6-3 单因素方差分析数据输入 将上述数据文件保存为“6-6-1.sav”。 2.理论分析 要比较不同组学生成绩平均值之间是否存在显著性差异,从上面数据来看,总共分了5个组,也就是说要解决比较多个组(两组以上)的平均数是否有显著的问题。从要分析的数据来看,不同组学生成绩之间可看作相互独立,学生的成绩可以假设从总体上服从正态分布,在各组方差满足齐性的条件下,可以用单因素的方差分析来解决这一问题。单因素方差分析不仅可以检验多组均值之间是否存在差异,同时还可进一步采取多种方法进行多重比较,发现存在差异的究竟是哪些均值。 3.单因素方差分析过程 (1)主效应的检验 假如我们现在想检验五组被试的数学成绩(math)的均值差异是否显著性,可依下列操作进行。①单击主菜单Analyze/Compare Means/One-W ay Anova…,进入主对话框,请把math选入到因变量表列(Dependent list)中去,把group选入到因素(factor)中去,如图6-4所示:

图6-4:One-Way Anova主对话框 ②对于方差分析,要求数据服从正态分布和不同组数据方差齐性,对于正态性的假设在后面非参数检验一章再具体介绍;One-Way Anova可以对数据进行方差齐性的检验,单击铵钮Options,进入它的主对话框,在Homogeneity-of-variance项上选中即可。设置如下图6-5所示: 图6-5:One-Way Anova的Options对话框 点击Continue,返回主对话框。 ③在主对话框中点击OK,得到单因素方差分析结果 4.结果及解释 (1)输出方差齐性检验结果 Test of Homogeneity of Variances MATH Levene Statistic df1 df2 Sig. 1.238 4 35 .313 上表结果显示,Levene方差齐性检验统计量的值为1.238,Sig=0.313>0.05,所以五个组的方差满足方差齐性的前提条件,如果不满足方差齐性的前提条件,后面方差分析计算F统计量的方法要稍微复杂,本章我们只考虑方差齐性条件满足的情况。 (2)输出方差分析主效应检验结果(方差分析表)

01 第一节 单因素试验的方差分析

第八章 方差分析与回归分析 第一节 单因素试验的方差分析 在科学试验、生产实践和社会生活中,影响一个事件的因素往往很多。例如,在工业生产中,产品的质量往往受到原材料、设备、技术及员工素质等因素的影响;又如,在工作中,影响个人收入的因素也是多方面的,除了学历、专业、工作时间、性别等方面外,还受到个人能力、经历及机遇等偶然因素的影响. 虽然在这众多因素中,每一个因素的改变都可能影响最终的结果,但有些因素影响较大,有些因素影响较小. 故在实际问题中,就有必要找出对事件最终结果有显著影响的那些因素. 方差分析就是根据试验的结果进行分析,通过建立数学模型,鉴别各个因素影响效应的一种有效方法. 内容分布图示 ★ 引言 ★ 基本概念 ★ 例1 ★ 例2 ★ 假设前提 ★ 方差分析的任务 ★ 偏差平方和及其分解 ★ E S 和A S 的统计特性 ★ 检验方法 ★ 例3 ★ 例4 ★ 习题8-1 ★ 返回 内容要点: 一、基本概念 在方差分析中,我们将要考察的对象的某种特征称为试验指标. 影响试验指标的条件称为因素. 因素可分为两类,一类是人们可以控制的(如上例的原材料、设备、学历、专业等因素);另一类人们无法控制的(如上例中员工素质与机遇等因素). 今后,我们所讨论的因素都是指可控制因素。因素所处的状态,称为该因素的水平. 如果在一项试验中只有一个因素在改变,则称为单因素试验;如果多于一个因素在改变,则称为多因素试验. 为方便起见,今后用大写字母,,,C B A 等表示因素,用大写字母加下标表示该因素的水平,如 ,,21A A 等. 二、假设前提 设单因素A 具有r 个水平,分别记为,,,,21r A A A 在每个水平),,2,1(r i A i 下,要考察的指标可以看成一个总体,故有r 个总体,并假设: (1) 每个总体均服从正态分布; (2) 每个总体的方差相同;

第一节 方差分析的基本原理与步骤

第一节方差分析的基本原理与步骤 方差分析有很多类型,无论简单与否,其基本原理与步骤是相同的。本节结合单因素试验结果的方差分析介绍其原理与步骤。 一、线性模型与基本假定 假设某单因素试验有k个处理,每个处理有n次重复,共有nk个观测值。这类试验资料的数据模式如表6-1所示。 表6-1k个处理每个处理有n个观测值的数据模式 处理 观测值合 计 平 均 A1 x11 x12 …x1j …x 1n A2 x21 x22 …x2j …x 2n … … A i x i1 x i2 …x ij …x in … … A k x k1 x k2 …x kj …x kn xk . 合 计 表中表示第i个处理的第j个观测值(i=1,2,…,k;j=1,2,…,n); 表示第i个处理n 个观测值的和; 表示全部观测值的总和; 表示第i 个处理的平均数;表示全部观测值的总平均数;可以分解为 (6-1) 表示第i个处理观测值总体的平均数。为了看出各处理的影响大小,将再进行分解,令

(6-2) (6-3) 则 (6-4) 其中μ表示全试验观测值总体的平均数,是第i个处理的效应(treatmenteffects)表示处理i对试验结果产生的影响。显然有 (6-5) εij是试验误差,相互独立,且服从正态分布N(0,σ2)。 (6-4)式叫做单因素试验的线性模型(linearmodel)亦称数学模型。在这个模型中表示为总平均数μ、处理效应αi、试验误差εij之和。由εij相互独立且服从正态分布N(0,σ2),可知各处理Ai(i=1,2,…,k)所属总体亦应具正态性,即服从正态分布N(μi,σ2)。尽管各总体的均数可以不等或相等,σ2则必须是相等的。所以,单因素试验的数学模型可归纳为:效应的可加性(additivity)、分布的正态性(normality)、方差的同质性(homogeneity)。这也是进行其它类型方差分析的前提或基本假定。 若将表(6-1)中的观测值xij(i=1,2,…,k;j=1,2,…,n)的数据结构(模型)用样本符号来表示,则 (6-6) 与(6-4)式比较可知,、、分别是μ、(μi-μ) =、(xij-)=的估计值。 (6-4)、(6-6)两式告诉我们:每个观测值都包含处理效应(μi-μ或),与误差(或),故kn个观测值的总变异可分解为处理间的变异和处理 内的变异两部分。 二、平方和与自由度的剖分 我们知道,方差与标准差都可以用来度量样本的变异程度。因为方差在统计分析上有许多优点,而且不用开方,所以在方差分析中是用样本方差即均方(meansquares)来度量资料的变异程度的。表6-1中全部观测值的总变异可以

SPSS学习系列23. 协方差分析

23. 协方差分析 (一)原理 一、基本思想 在实际问题中,有些随机因素是很难人为控制的,但它们又会对结果产生显著影响。如果忽略这些因素的影响,则有可能得到不正确的结论。这种影响的变量称为协变量(一般是连续变量)。 例如,研究3种不同的教学方法的教学效果的好坏。检查教学效果是通过学生的考试成绩来反映的,而学生现在考试成绩是受到他们自身知识基础的影响,在考察的时候必须排除这种影响。 协方差分析将那些难以控制的随机变量作为协变量,在分析中将其排除,然后再分析控制变量对于观察变量的影响,从而实现对控制变量效果的准确评价。 协方差分析要求协变量应是连续数值型,多个协变量间互相独立,且与控制变量之间没有交互影响。前面单因素方差分析和多因素方差分析中的控制变量都是一些定性变量,而协方差分析中既包含了定性变量(控制变量),又包含了定量变量(协变量)。 协方差分析在扣除协变量的影响后再对修正后的主效应进行方差分析,是一种把直线回归或多元线性回归与方差分析结合起来的方法,其中的协变量一般是连续性变量,并假设协变量与因变量间存在线性关系,且这种线性关系在各组一致,即各组协变量与因变量所建立的回归直线基本平行。 当有一个协变量时,称为一元协方差分析,当有两个或两个以上

的协变量时,称为多元协方差分析。 二、协方差分析需要满足的条件 (1)自变量是分类变量,协变量是定距变量,因变量是连续变量;对连续变量或定距变量的协变量的测量不能有误差; (2)协变量与因变量之间的关系是线性关系,可以用协变量和因变量的散点图来检验是否违背这一假设;协变量的回归系数(即各回归线的斜率)是相同的,且不等于0,即各组的回归线是非水平的平行线。否则,就有可能犯第一类错误,即错误地接受虚无假设; (3)自变量与协变量相互独立,若协方差受自变量的影响,那么协方差分析在检验自变量的效应之前对因变量所作的控制调整将是偏倚的,自变量对因变量的间接效应就会被排除; (4)各样本来自具有相同方差σ2的正态分布总体,即要求各组方差齐性。 三、基本理论 1. 观测值=均值+分组变量影响+协变量影响+随机误差. 即 ()ij i ij ij y u t x x βε=++-+(1) 其中,X 为所有协变量的平均值。 注:在方差分析中,协变量影响是包含在随机误差中的,在协方差分析中需要分离出来。 用协变量进行修正,得到修正后的y ij (adj)为 (adj)()ij ij ij i ij y y x x u t βε=--=++ 就可以对y ij (adj)做方差分析了。关键问题是求出回归系数β.

[整理]SPSS 方差分析过程.

One-Way ANOVA过程 One-Way ANOVA过程用于进行两组及多组样本均数的比较,即成组设计的方差分析,如果做了相应选择,还可进行随后的两两比较,甚至于在各组间精确设定哪几组和哪几组进行比较。 界面说明 【Dependent List框】 选入需要分析的变量,可选入多个结果变量(应变量)。 【Factor框】 选入需要比较的分组因素,只能选入一个。 【Contrast钮】 弹出Contrast对话框,用于对精细趋势检验和精确两两比较的选项进行定义。 o Polynomial复选框定义是否在方差分析中进行趋势检验。 o Degree下拉列表和Polynomial复选框配合使用,可选则从线

性趋势一直到最高五次方曲线来进行检验。 o Coefficients框定义精确两两比较的选项。这里按照分组变量升序给每组一个系数值,注意最终所有系数值相加应为0。如果不为0仍可检验,只不过结果是错的。比如有三组数据,要对第 一、三组进行单独比较,则在这里给三组分配系数为1、0、-1, 就会在结果中给出相应的检验内容。 【Post Hoc钮】 弹出Post Hoc Multiple Comparisons对话框,用于选择进行各组间两两比较的方法,有: o Equar Variances Assumed复选框组当各组方差齐时可用的两两比较方法,共有14中种这里不一一列出了,其中最常用的为LSD和S-N-K法。 o Equar Variances Not Assumed复选框组一组当各组方差不齐时可用的两两比较方法,共有4种,其中以Dunnetts's C法较常用。

相关主题
文本预览
相关文档 最新文档