当前位置:文档之家› 温度与压力作用下页岩气井环空带压力学分析

温度与压力作用下页岩气井环空带压力学分析

第45卷第3期石 油 钻 探 技 术Vol 畅45No 畅32017年5月PETROLEUM DRILLING TECHNIQUES May ,2017

收稿日期:20170310;改回日期:20170427。

作者简介:刘奎(1987—),男,重庆大足人,2010年毕业于中国石油大学(北京)环境工程专业,油气井工程专业在读博士研究生,主要从事油气井力学与控制工程方面的研究工作。E mail :liukui _2006@163畅com 。

基金项目:国家自然科学基金创新研究群体项目“复杂油气井钻井与完井基础研究”(编号:51521063)、国家重点研发计划课题“钻井工艺及井筒工作液关键技术研究”(编号:2016Y FC 0303303)、国家科技重大专项“复杂结构井、丛式井设计与控制新技术”(编号:2017ZX 05009003)联合资助。

磼钻井完井磾doi :10.11911/syztjs .201703002

温度与压力作用下页岩气井环空带压力学分析

刘 奎,高德利,曾 静,房 军,王宴滨

(石油工程教育部重点实验室(中国石油大学(北京)),北京102249)

摘 要:为解决页岩气井环空带压的问题,进行了压裂及生产过程中温度和压力变化对页岩气井环空带压影响的力学分析。以弹性力学为基础,建立了页岩气井直井段双层套管系统的力学模型,基于界面上应力相等及位移连续条件,推导了各界面的径向应力计算方程,并讨论了套管内压、温度、地应力等因素对水泥环封隔能力的影响规律。研究结果表明:温度升高、内压及地应力增大、水泥环弹性模量增大均有利于提高水泥环的封隔能力,减小套管壁厚有利于增加界面的径向应力;随着井深的增加,界面径向应力变大,水泥环封隔能力增强,提高直井段下部水泥环的封隔能力是降低井口环空带压风险的关键;第一界面和第二界面是固井失效的危险点,提高第一、第二界面的固井质量,有利于降低形成环空带压的风险。

关键词:温度;压力;页岩气井;环空带压;双层套管;水泥环;径向应力

中图分类号:T E 21 文献标志码:A 文章编号:10010890(2017)03000807

Annulus Pressure Analysis of a Shale Gas Well under Varied

Temperatures and Pressures

LIU Kui ,GAO Deli ,ZENG Jing ,FANG Jun ,WANG Yanbin

(MOE K e y L aborator y o f Petroleum En g ineering (China Universit y o f Petroleum (Bei j ing )),Bei ‐j ing ,

102249,China )Abstract :With consideration of the severe problems related to annulus pressure in shale gas wells ,me ‐chanical analysis were performed to clarify the impact of changes in temperatures and pressures during frac ‐turing and production on the annulus pressure in shale gas wells .According to elastic mechanical theories ,a mechanical model of a double casing system was established .T he formula in calculating the stress of each contact surface was derived based on a displacement continuity condition .In addition ,the impact of casing internal pressures ,temperatures and in ‐situ stresses on the sealing ability of a cement sheath were re ‐viewed .Research results suggest that the increase in temperatures ,internal pressures ,in ‐situ stresses ,and elastic modulus of cement are beneficial and may improve the sealing ability of the cement sheath .On the other hand ,decreasing casing thicknesses can be damaging because it increases the radial stress on the in ‐terfaces .Radial stresses on interfaces may increase with well depths ,so the key to relieving the annulus p ressure in the wellhead is to improve the sealing ability of the cement in the lower section of the vertical well .T he first and second interfaces are the dangerous positions and they are w here there is maximum risk of cementing failure .Improving the cementing quality of the first and second interfaces is helpful in reduc ‐ing the risk of annulus pressure generation .

Key words :temperature ;p ressure ;shale gas well ;annulus pressure ;double layer casing ;cement sheath ;radial stress 页岩气是指赋存于富有机质泥页岩及其夹层中,以吸附和游离状态为主要存在方式的非常规天然气。由于页岩气藏具有低孔隙度、低渗透率的特

征,需要对储层进行压裂才能获得较高的产量[1]

。在利用水力压裂改造时,页岩气储层裂缝会增加,压裂裂缝走向的不确定性也容易造成储层流体沿着裂

缝流入直井段井筒环空中[2]

,如果井筒环空内的水

泥环封隔失效,就会造成页岩气井井口环空带压。

万方数据

页岩气开采压裂技术分析与思考

页岩气开采压裂技术分析与思考 摘要:目前,社会进步迅速,页岩气存储于致密泥页岩地层中,页岩连续分布、区域广,含有一定量的黏土矿物,塑性强,在高应力载荷下易发生形变,页岩储 层具有低孔低渗等特性,需对页岩储层进行改造才具备商业开发价值。目前涪陵 区块和川东南区块,均已实现页岩气大规模开发,形成一套成熟的页岩气开采工艺,工艺实施需借助现场施工实现,只有严格把控施工质量,确保工艺有效实施,才能够实现对页岩气资源的高效开发。下文对此进行简要的阐述。 关键词:页岩气;开采压裂技术分析;思考 引言 伴随着油田行业的深入发展,如今能源紧缺问题已经成为了社会性现实。页 岩气储层低孔低渗,往往要投入巨大的精力对其进行压裂改造才能够保障产能稳定。水力压裂中压裂液性能带来的影响十分直观与突出。 1页岩气压裂施工质量技术现状 当前,经常使用的技术大多是多级压裂、清水、压裂、水力喷射压裂、重复 压裂与同步压裂等等,页岩气开发过程中所使用的储层改造技术还有氮气泡沫压 裂和大型水力压裂也是国内外目前的主流压裂技术。影响页岩气产量的主要原因 是裂缝的发育程度,如何得到较多的人造裂缝是压裂设计主要应该考虑的。如何 才能得到有效而又经济的压裂成果,在实行水力压裂以前,经常要实行压裂的设计。然而,压裂设计的工作确双有许多,最为主要的核心应属压裂效果的模拟, 经过压裂的模拟才可以预测裂缝发育的宽度及长度,从而知道压裂能否顺利成功。 2页岩气压裂开采中对环境的影响 页岩气压裂在开采的过程当中必定会因为一些噪声及废水废气等开采事故灾 害对环境造成一些污染影响,通常会对水资源进行大量的消耗以及地下水层进行 污染。目前,有些专家和环保人士在对页岩气压裂开采的过程也是提出了很多相 关环境污染的影响问题,同时,岩气压裂在开采过程中确实造成了较为严重的环 境污染。 2.1大量消耗水资源 页岩气压裂的开采使用的水力压裂法是压裂液最为重要的,分别由高压水、 砂以及化学添加剂而组成的。页岩气压裂的开采其用水量也是较大的,一般情况 页岩气压裂开采需消耗四至五百万加化的水资源才能使页岩断裂。 2.2污染地下水层 页岩气压裂开采过程当中,其化学物质有可能会直接通过断裂及裂缝由地下 深处慢慢转向向上移动到地表或者浅层,同时也可能页岩气压裂开采过程中由于 质量问题或者某些操作的不当导致破裂或者空洞。某些石油公司把页岩气压裂使 用过程中的的压裂液中的化学添加剂当成非常重要化学物质,然而,也因为这些 化学物质就可能会造成地下水层的污染。其中的化学物质可能会泄露到地下水层 当中,从而就污染了湖泊及蓄水池等等的地下水资源。当整个开采过程完成以后,其很大部分的压裂液又转回流向了地面,而流回地面的压裂液当中不光只有压裂 液里面某些化学物质,也还有部分地壳中原本就存在的放射性物质以及大量盐之类。当一些有毒污水再流回现场时,转而再流向污水处理厂以及回收再利用,当 遇到雨季来临时,整个过程就造成了严重的地下水层污染。 3页岩气压裂施工工艺 随着页岩气开发力度的不断增大,常规的压裂施工技术已经不能满足大规模

水在不同温度下的饱和蒸气压

饱和蒸气压(saturated vapor pressure) 在密闭条件中,在一定温度下,与液体或固体处于相平衡的蒸气所具有的压力称为饱和蒸气压。同一物质在不同温度下有不同的蒸气压,并随着温度的升高而增大。不同液体饱和蒸汽压不同,溶剂的饱和蒸汽压大于溶液的饱和蒸汽压;对于同一物质,固态的饱和蒸汽压小于液态的饱和蒸汽压。例如,在30℃时,水的饱和蒸气压为4132.982Pa,乙醇为10532.438Pa。而在100℃时,水的饱和蒸气压增大到101324.72Pa,乙醇为222647.74Pa。饱和蒸气压是液体的一项重要物理性质,如液体的沸点、液体混合物的相对挥发度等都与之有关。 饱和蒸气压曲线 水在不同温度下的饱和蒸气压 Saturated Water Vapor Pressures at Different Temperatures

编辑本段饱和蒸汽压公式 (1)Clausius-Claperon方程:dlnp/d(1/T)=-H(v)/(R*Z(v)) 式中p为蒸汽压;H(v)为蒸发潜热;Z(v)为饱和蒸汽压缩因子与饱和液体压缩因子之差。 该方程是一个十分重要的方程,大部分蒸汽压方程是从此式积分得出的。 (2)Clapeyron方程: 若上式中H(v)/(R*Z(v))为与温度无关的常数,积分式,并令积分常数为A,则得Clapeyron 方程:ln p=A-B/T 式中B=H(v)/(R*Z(v))。 (3)Antoine方程:ln p=A-B/(T+C) 式中,A,B,C为Antoine常数,可查数据表。Antoine方程是对Clausius-Clapeyron方

页岩气开采技术

页岩气开采技术 1 综述 页岩气是一种以游离或吸附状态藏身于页岩层或泥岩层中的非常规天然气,是一种非常重要的天然气资源,主要成分是甲烷。页岩气的形成和富集有其自身的特点,往往分布在盆地内厚度较大、分布广的页岩烃源岩地层中。如图1.1所示。页岩气一般存储在页岩局部宏观孔隙体系中、页岩微孔或者吸附在页岩的矿物质和有机质中。页岩孔隙度低而且渗透率极低,可以把页岩理解为不透水的混凝土,这也是页岩气与其他常规天然气矿藏的关键区别。可想而知,页岩气的开采过程极为艰难。根据美国能源情报署(EIA)2010年公布的数据,全球常规天然气探明储量有187.3×1012m3,然而页岩气总量却高达456×1012m3,是常规天然气储量的2.2倍。与常规天然气相比,页岩气具有开采潜力大,开采寿命长和生产周期长等优点,至少可供人类消费360年。从我国来看,中国页岩气探明储量为36×1012m3,居世界首位,在当今世界以化石能源为主要消费能源的背景下,大力发展页岩气开采技术,对我国减少原油和天然气进口,巩固我国国防安全有很重要的意义。我国页岩气主要分布在四川盆地、长江中下游、华北盆地、鄂尔多斯盆地、塔里木盆地以及准噶尔盆地,如图1.2所示。 图1.1页岩气藏地质条件图1.2中国页岩气资源分布页岩气开采是一种广分布、低丰度、易发现、难开采、自生自储连续型非常规低效气藏,气开采过程需要首先从地面钻探到页岩层,再通过开凿水平井穿越页岩层内部,并在水平井内分段进行大型水力加砂压裂,获得大量人工裂缝,还需要在同一地点,钻若干相同的水平井,对地下页岩层进行比较彻底的改造,造成大面积网状裂缝,最后获得规模产量的天然气。因此,水平井技术和水力压裂技术的页岩气成功开采的关键。 2 页岩气水平井技术 1821年,世界上第一口商业性页岩气井在美国诞生,在井深21米处,从8米厚的页岩裂缝中产出了天然气。美国也是页岩气研究开采最先进的国家,也是技术最成熟的国家。国外页岩气开采主要在美国和加拿大(因为加拿大和美国地质条件类似,因此可以承接美国的开采技术),主要得益于水平井技术、完井及压裂技术的成功应用。 2.1 开采技术 早期的页岩气开采主要运用直井技术,直井开采技术简单,开始投入成本低,但是开采

水在不同温度下的饱和蒸气压

饱和蒸气压(s a t u r a t e d v a p o r p r e s s u r e) 在密闭条件中,在一定温度下,与液体或固体处于相平衡的蒸气所具有的压力称为饱和蒸气压。同一物质在不同温度下有不同的蒸气压,并随着温度的升高而增大。不同液体饱和蒸汽压不同,溶剂的饱和蒸汽压大于溶液的饱和蒸汽压;对于同一物质,固态的饱和蒸汽压小于液态的饱和蒸汽压。例如,在30℃时,水的饱和蒸气压为4132.982Pa,乙醇为10532.438Pa。而在100℃时,水的饱和蒸气压增大到101324.72Pa,乙醇为222647.74Pa。饱和蒸气压是液体的一项重要物理性质,如液体的沸点、液体混合物的相对挥发度等都与之有关。 饱和蒸气压曲线 水在不同温度下的饱和蒸气压 SaturatedWaterVaporPressuresatDifferentTemperatures

编辑本段饱和蒸汽压公式 (1)Clausius-Claperon方程:dlnp/d(1/T)=-H(v)/(R*Z(v)) 式中p为蒸汽压;H(v)为蒸发潜热;Z(v)为饱和蒸汽压缩因子与饱和液体压缩因子之差。 该方程是一个十分重要的方程,大部分蒸汽压方程是从此式积分得出的。 (2)Clapeyron方程: 若上式中H(v)/(R*Z(v))为与温度无关的常数,积分式,并令积分常数为A,则得Clapeyron 方程:lnp=A-B/T 式中B=H(v)/(R*Z(v))。 (3)Antoine方程:lnp=A-B/(T+C)

式中,A,B,C为Antoine常数,可查数据表。Antoine方程是对Clausius-Clapeyron方程最简单的改进,在1.333~199.98kPa范围内误差小。 编辑本段附录 在表1中给出了采用Antoine公式计算不同物质在不同温度下蒸气压的常数A、B、C。其公式如下 lgP=A-B/(t+C)(1) 式中:P—物质的蒸气压,毫米汞柱; t—温度,℃ 公式(1)适用于大多数化合物;而对于另外一些只需常数B与C值的物质,则可采用(2)公式进行计算 lgP=-52.23B/T+C(2) 式中:P—物质的蒸气压,毫米汞柱; 表1不同物质的蒸气压 名称分子式范围(℃)ABC 银Ag1650~1950公式(2)2508.76 氯化银AgCl1255~1442公式(2)185.58.179 三氯化铝AlCl370~190公式(2)11516.24 氧化铝Al2O31840~2200公式(2)54014.22 砷As440~815公式(2)13310.800 砷As800~860公式(2)47.16.692 三氧化二砷As2O3100~310公式(2)111.3512.127 三氧化二砷As2O3315~490公式(2)52.126.513 氩Ar-207.62~-189.19公式(2)7.81457.5741 金Au2315~2500公式(2)3859.853 三氯化硼BCl3……6.18811756.89214.0 钡Ba930~1130公式(2)35015.765 铋Bi1210~1420公式(2)2008.876 溴Br2……6.83298113.0228.0 碳C3880~4430公式(2)5409.596 二氧化碳CO2……9.641771284.07268.432 二硫化碳CS2-10~+1606.851451122.50236.46 一氧化碳CO-210~-1606.24020230.274260.0 四氯化碳CCl4……6.933901242.43230.0 钙Ca500~700公式(2)1959.697 钙960~1100公式(2)37016.240 镉Cd150~320.9公式(2)1098.564 镉500~840公式(2)99.97.897 氯Cl2……6.86773821.107240 二氧化氯ClO2-59~+11公式(2)27.267.893 钴Co2374公式(2)3097.571 铯Cs200~230公式(2)73.46.949 铜Cu2100~2310公式(2)46812.344 氯化亚铜Cu2Cl2878~1369公式(2)80.705.454 铁Fe2220~2450公式(2)3097.482

R22制冷剂的温度压力对照表

R22制冷剂的温度压力对照表 温度℃绝对压力kg/cm2 温度℃绝对压力kg/cm2 温度℃绝对压力kg/cm2 50 19.81 20 9.35 -10 3.61 49 19.36 19 9.02 -11 3.49 48 18.92 18 8.77 -12 3.36 47 18.48 17 8.52 -13 3.24 46 18.05 16 8.28 -14 3.13 45 17.63 15 8.04 -15 3.02 44 17.22 14 7.81 -16 2.91 43 16.81 13 7.59 -17 2.80 42 16.42 12 7.37 -18 2.69 41 16.02 11 7.15 -19 2.59 40 15.64 10 6.94 -20 2.50 39 15.26 9 6.73 -21 2.40 38 14.89 8 6.53 -22 2.31 37 14.52 7 6.33 -23 2.22 36 14.17 6 6.14 -24 2.13 35 13.81 5 5.95 -25 2.05 34 13.47 4 5.77 -26 1.97 33 13.13 3 5.59 -27 1.89 32 12.80 2 5.41 -28 1.81 31 12.47 1 5.24 -29 1.74 30 12.26 0 5.07 -30 1.67 29 11.84 -1 4.91 -31 1.60 28 11.63 -2 4.75 -32 1.53 27 11.23 -3 4.59 -33 1.47 26 11.03 -4 4.44 -34 1.40 25 10.64 -5 4.30 -35 1.34 24 10.45 -6 4.15 -36 1.28 23 10.08 -7 4.01 -37 1.23 22 9.80 -8 3.87 -38 1.17 21 9.54 -9 3.74 -39 1.12

不同压力温度条件下水的密度

水的密度 表2.4.1 水的密度3) 压力温度℃ 0 10 20 30 40 50 60 70 80 90 0.001 999.80 00 --------- 0.005 999.80 00 999.700 998.3 028 ------- 0.01 999.80 00 999.800 998.3 029 995. 7184 992 .26 04 ----- 0.05 999.80 00 999.800 998.3 029 995. 7184 962 .26 04 988 .04 47 983.1 875 977.7 083 971.6 284 - 0.1 999.80 00 999.800 998.3 029 995. 7184 992 .26 04 988 .04 47 983.1 875 977.7 083 971.6 284 965.1 578 0.15 999.90 00 999.800 998.3 029 995. 8176 992 .35 88 988 .04 47 983.1 875 977.7 083 971.7 229 965.1 578

仅供个人用于学习、研究;不得用于商业用途。 For personal use only in study and research; not for commercial use. Nur für den pers?nlichen für Studien, Forschung, zu kommerziellen Zwecken verwendet werden. Pour l 'étude et la recherche uniquement à des fins personnelles; pas à des fins commerciales. толькодля людей, которые используются для обучения, исследований и не должны использоваться в коммерческих целях. 以下无正文

页岩气开采压裂技术

页岩气开采压裂技术 摘要:我国页岩气资源丰富但由于页岩地层渗透率很低,页岩气井完井后需要经过储层改造才能获得理想的产量,而水力压裂是页岩气开发的核心技术之一。在研究水力压裂技术开发页岩气原理的基础上,剖析了国外的应用实例,分析了各种水力压裂技术( 多级压裂、清水压裂、水力喷射压裂、重复压裂以及同步压裂技术)的特点和适用性, 探讨了天然裂缝系统和压裂液配制在水力压裂中的作用。 关键词:水力压裂页岩气开采压裂液 0 前言 自1947年美国进行第1次水力压裂以来,经过50多年的发展,水力压裂技术从理论研究到现场实践都取得了惊人的发展。如裂缝扩展模型从二维发展到拟三维和全三维; 压裂井动态预测模型从电模拟图版和稳态流模型发展到三维三相不稳态模型,且可考虑裂缝导流能力随缝长和时间的变化、裂缝中的相渗曲线和非达西流效应及储层的应力敏感性等因素的影响; 压裂液从原油和清水发展到低、中、高温系列齐全的优质、低伤害、具有延迟交联作用的胍胶有机硼和清洁压裂液体系;支撑剂从天然石英砂发展到中、高强度人造陶粒,并且加砂方式从人工加砂发展到混砂车连续加砂;压裂设备从小功率水泥车发展到1000型压裂车和2000 型压裂车;单井压裂施工从小规模、低砂液比发展到超大型、高砂液比压裂作业;压裂应用的领域从特定的低渗油气藏发展到特低渗和中高渗油气藏(有时还有防砂压裂)并举。同时, 从开发井压裂拓宽到探井压裂,使压裂技术不但成为油气藏的增产增注手段,如今也成为评价认识储层的重要方法。 1 国内外现状 水力压裂技术自1947年在美国堪萨斯州试验成功至今近半个世纪了,作为油井的主要增产措施正日益受到世界各国石油工作者的重视和关注,其发展过程大致可分以下几个阶段: 60 年代中期以前, 以研究适应浅层的水平裂缝为主这一时期我国主要以油井解堵为目的开展了小型压裂试验。 60 年代中期以后, 随着产层加深, 以研究垂直裂缝为主。这一时期的压裂目的是解堵和增产, 通常称之为常规压裂。这一时期,我国进入工业性生产实用阶段,发展了滑套式分层压裂配套技术。 70年代,进入改造致密气层的大型水力压裂时期。这一时期,我国在分层压裂技术的基

不同压力、温度条件下水的密度

水的密度 表2.4.1? 水的密度 3) 压力温度℃ 0 10 20 30 40 50 60 70 80 90 0.001 999.80 00 --------- 0.005 999.80 00 999.700 998. 3028 ------- 0.01 999.80 00 999.800 998. 3029 995. 7184 992 .26 04 ----- 0.05 999.80 00 999.800 998. 3029 995. 7184 962 .26 04 988 .04 47 983.1 875 977.7 083 971.6 284 - 0.1 999.80 00 999.800 998. 3029 995. 7184 992 .26 04 988 .04 47 983.1 875 977.7 083 971.6 284 965.1 578 0.15 999.90 00 999.800 998. 3029 995. 8176 992 .35 88 988 .04 47 983.1 875 977.7 083 971.7 229 965.1 578 0.20 999.90999.800998.995.992988983.1977.7971.7965.1

00 0 4026 8176 .35 88 .14 23 875 083 229 578 0.25 999.90 00 999.900 998. 4026 995. 8176 992 .35 88 988 .14 23 983.2 842 977.8 039 971.7 229 965.1 578 0.3 999.90 00 999.900 998. 4026 995. 8176 992 .35 88 988 .14 23 983.2 842 977.8 039 971.7 229 965.2 510 0.4 1000 999.900 0 998. 5022 995. 9167 992 .45 73 988 .23 99 983.2 842 977.8 039 971.8 173 965.2 510 0.5 1000 1000 998. 5022 995. 9167 992 .45 73 988 .23 99 983.3 809 977.8 995 971.8 173 965.3 441 0.6 1000.1 1000 998. 5022 996. 0159 992 .55 58 988 .23 99 983.3 809 977.8 995 971.9 118 965.3 441 0.7 1000.1 1000.1 998. 6020 996. 0159 992 .55 58 988 .33 76 983.4 776 977.9 951 971.9 118 965.4 373 0.8 1000.2 1000.1 998. 6020 996. 0159 992 .55 988 .33 983.4 776 977.9 951 972.0 062 965.4 373

页岩气气井压裂用井口

页岩气气井压裂用井口技术规格书 一、产品设计、制造、检验执行的规范和标准: 1、SY/T5127-2002《井口装置和采油树规范》 2、API 5B《石油天然气工业套管油管和管线管螺纹加工测量和检验》 3、NACE MR0175《油田设备用抗硫化物应力开裂的金属材料》 4、API Q1《石油和天然气工业质量纲要规范》 5、A193《高温用合金钢和不锈钢螺栓材料规范》 6、A194《高温高压螺栓用碳钢和合金钢螺母规范》 7、SY5308《石油钻采机械产品用涂漆通用技术条件》 二、页岩气气井压裂用井口内容: 1、页岩气气井井压裂用井口是指安装在油管头之上的采气井口装置。 2、主要技术参数: 规范级别:PSL3 性能级别:PR1 材料级别;EE级 温度级别:P.U 额定工作压力:105MPa 通径:103.2mm 3、主要结构形式、配套和要求: ▲油管挂: 上、下部(两端)为油管长圆扣,主副密封为橡胶密封,油管挂主密封尺寸与原油管头内孔吻合,油管挂上部伸出油管头法兰160mm,外径192mm(7-5/8")。 ▲盖板法兰: 规格为11″×105 MPa-4-1/16"×105 MPa,法兰厚度220mm ?,大端下部内径192mm,装有两道BT或P型密封,设有注脂孔及试压孔。 ▲阀门及仪表法兰: 盖板法兰之上装两只暗杆式阀门,规格4-1/2"×105 MPa。两只阀门之间安装一片仪表法兰,法兰配接头、考克、压力表。

▲异形四通: 异形四通通径103.2mm,通孔面加工法兰规格4-1/2"×105 MPa。 ▲双法兰短接: 三只双法兰短接,规格4-1/2"×105 MPa---3-1/2"×105 MPa,每只总长度400mm。 ▲盲法兰: 数量:6片,规格4-1/2"×105 MPa,配齐与双法兰短接连接螺栓、螺帽。▲“Y”型三通: 数量:3只,通径103.2mm,端部法兰规格4-1/2"×105 MPa。 三,增配转换法兰 增配盖板法兰一只: 规格为11″×70 MPa-4-1/2"×105 MPa,法兰厚度220mm ?,大端下部内径192mm,装有两道BT或P型密封,设有注脂孔及试压孔,。 四,出厂前要求: 页岩气井压裂用井口出厂前使用11″×105 MPa-4-1/2"×105 MPa 进行连接组装并做气密封试压合格后方可出厂。

R410a制冷剂温度压力对照表

R410a制冷剂温度压力对照表 温度℃ 绝对压力MPa 温度℃ 绝对压力MPa 温度℃ 绝对压力MPa 温度℃ 绝对压力MPa 温度℃ 绝对压力MPa -65 0.052 -39 0.188 -13 0.52 13 1.18 39 2.35 -64 0.054 -38 0.196 -12 0.538 14 1.22 40 2.41 -63 0.057 -37 0.206 -11 0.556 15 1.25 41 2.46 -62 0.061 -36 0.215 -10 0.579 16 1.28 42 2.51 -61 0.064 -35 0.224 -9 0.598 17 1.32 43 2.58 -60 0.068 -34 0.235 -8 0.618 18 1.35 44 2.65 -59 0.072 -33 0.243 -7 0.639 19 1.4 45 2.71 -58 0.076 -32 0.255 -6 0.66 20 1.44 46 2.77 -57 0.08 -31 0.264 -5 0.682 21 1.47 47 2.84 -56 0.084 -30 0.275 -4 0.705 22 1.52 48 2.91 -55 0.089 -29 0.286 -3 0.728 23 1.56 49 2.98 -54 0.093 -28 0.298 -2 0.752 24 1.6 50 3.05 -53 0.098 -27 0.311 -1 0.777 25 1.64 51 3.1 -52 0.103 -26 0.324 0 0.803 26 1.68 52 3.18 -51 0.108 -25 0.334 1 0.823 27 1.73 53 3.25 -50 0.113 -24 0.348 2 0.851 28 1.78 54 3.32 -49 0.119 -23 0.363 3 0.879 29 1.82 55 3.4 -48 0.125 -22 0.375 4 0.903 30 1.88 56 3.48 -47 0.131 -21 0.391 5 0.937 31 1.91 57 3.54 -46 0.138 -20 0.404 6 0.962 32 1.96 58 3.63 -45 0.144 -19 0.424 7 0.994 33 2.03 59 3.72 -44 0.151 -18 0.435 8 1.02 34 2.08 60 3.78 -43 0.157 -17 0.453 9 1.05 35 2.13 61 3.9 -42 0.165 -16 0.468 10 1.09 36 2.18 62 3.97 -41 0.172 -15 0.483 11 1.11 37 2.24 -40 0.181 -14 0.504 12 1.15 38 2.29 注:绝对压力与表压力的换算关系:绝对压力(MPa)-0.1MPa(大气压力)=表压力(MPa)

页岩气开采(压裂技术)对环境、健康的影响

页岩气开采(压裂技术)对环境、健康的影响 Shale gas exploitation (Fracking)and its environmental and health impact 周睿译普红雁程浩毅校 本译文由云南省健康与发展研究会提供 来源:《世界页岩气资源:美国以外14个区域的初步评估》,美国能源信息署,2011年,https://www.doczj.com/doc/6413898262.html, 页岩气开采也涉及到许多其他的环境和健康问题。欧盟2012年8月的一项研究表明,压裂法开采页岩气存在着较高的风险,它有可能引发一系列环境问题,例如污染地下水、地表水和空气,引发水资源安全问题,占用土地资源,影响生物多样性,产生噪声污染及交通问题。

(1)用水 页岩气开采需要大量的水,可能会(导致)对钻井所在地区造成供水压力。每一次压裂操作大约使用1500万升水,而钻井可被压裂多达10次。根据我们的计算,单独一口井所使用的水能够供大约10000欧洲人使用一年。 在水资源供应本已存在压力或是由于气候变化可能存在压力的地区,水量需求水平尤为重要。在欧洲,德国和波兰拥有有丰富的页岩气储量,但其人均可再生水资源位列欧盟国家最末。在英国,目前进行的页岩气开采的地区,其供水情况已经被认为处于“超负荷”水平。2012年美国大部分地区遭遇夏季干旱的侵袭,页岩气开采表现出这种缺水的影响,德克萨斯和堪萨斯的某些地区被迫停止了页岩气的开采,而在宾夕法尼亚州,页岩气的开采则被禁止使用河水。在其他地方,页岩气运营商试图通过收买农场主或向土地所有者支付大量金钱来获得水资源的使用权。 尽管通常认为压裂法比煤和核能用水更少,但却不太可能简单地替代上述两种能源。实际上,如果将多种装置的累积效应考虑在内时,压裂法反而可能会需要更多的水。

水在不同压力下的汽化潜热

水在一个大气压(0.1MPa)100℃时的汽化潜热为2257.2kJ/kg 饱和水和饱和水蒸气热力性质表(按压力排列) 压力/MPa 温度/℃汽化潜热kJ/kg 0.001 6.9491 2484.1 0.002 17.5403 2459.1 0.003 24.1142 2443.6 0.004 28.9533 2432.2 0.005 32.8793 2422.8 0.006 36.1663 2415 0.007 38.9967 2408.3 0.008 41.5075 2402.3 0.009 43.7901 2396.8 0.01 45.7988 2392 0.015 53.9705 2372.3 0.02 60.065 2357.5 0.025 64.9726 2345.5 0.03 69.1041 2335.3 0.04 75.872 2318.5 0.05 81.3388 2304.8 0.06 85.9496 2293.1 0.07 89.9556 2282.8 0.08 93.5107 2273.6 0.09 96.7121 2265.3 0.1 99.634 2257.6 0.12 104.81 2243.9 0.14 109.318 2231.8 0.16 113.326 2220.9 0.18 116.941 2210.9 0.2 120.24 2201.7 0.25 127.444 2181.4 0.3 133.556 2163.7 0.35 138.891 2147.9 0.4 143.642 2133.6 0.5 151.867 2108.2 0.6 158.863 2086 0.7 164.983 2066 0.8 170.444 2047.7 0.9 175.389 2030.7 1 179.916 2014.8 1.1 184.1 1999.9 1.2 187.995 1985.7 1.3 191.644 197 2.1

工程技术角度分析页岩气开采

工程技术角度分析页岩气开采 页岩气已成为全世界非常规油气资源勘探开发的重点领域。由于页岩气具有区别于常规气藏的显著特性,导致页岩气资源勘探开发成为一个庞大的系统工程,涉及复杂的技术体系,最主要的不同之处在于将工程技术前移至页岩气资源评价和开发过程。水平钻井、滑溜水多段压裂、裂缝检测等一系列关键技术的突破是美国页岩气近年来飞速发展的重要原因。中国非常规油气藏潜力很大,不同机构的评价结果表明,中国陆域页岩气可采资源量很大,是常规天然气资源量的1.1~2.4倍。目前,中国页岩气第二轮招投标已顺利结束,距离实现65亿立方米/a产量目标只有不到3年的时间,多个区块页岩气的勘探及评价即将陆续展开。目前,页岩气水平井分段压裂已占单井建设投资的40%~50%,进一步体现了工程技术的重要性。为此,在勘探开发过程中提出了工程技术的早期介入、合理应用和深入理解,以有助于页岩气的资源评价。 1 页岩气储层压裂机理及实现策略 1.1压裂改造原理 页岩气之所以能在页岩气中存留,缘于页岩极为致密的孔隙结构和极低的渗透率。页岩气储层中天然气基本无法运移到井筒,其主要原因在于2个方面:1.天然气分子直径在页岩气纳米级孔隙中运移难度大。甲烷的分子直径大小是:0.40nm,乙烷的分子直径大小是0.44nm,而页岩的孔隙大小是0.5~100nm,远远小于砂岩的孔隙(大于1μm)。对于孔隙直径较小的页岩,天然气基本是无法运移的。即使孔隙直径在100nm的页岩,天然气的运移难度也较大。2.天然气在致密孔隙结构中运移时间较长。理论研究表明,基质渗透率在0.000001mD时,流体穿透100m基质流入井筒需要的时间将超过1Ma。因此,页岩气得以开采利用,必须通过水力压裂在页岩储层里形成具有相当大体积、形态分布复杂、具有一定渗透能力的裂缝网络体系,使页岩气通过这个裂缝网络体系流入到井筒。 For personal use only in study and research; not for commercial use 页岩气压裂与常规压裂形成的双翼对称的平面张开缝不同,页岩气压裂(或称之为“体积改造”)旨在形成相互交错的复杂的“网络”裂缝体(含张开缝和剪切缝),增加平面与纵向上的储层改造体积SRV(stimulated reservoir volume),达到与页岩最大裂缝接触面积,提高初始产量和最终采收率。因此,页岩气开采工程技术实质是通过水力压裂把储层“压碎”。 1.2 压裂改造及其分类 人们将储层分为常规和非常规。压裂的目的不同,常规储层和页岩气储层的

苯和水在不同温度下的密度

苯在不同温度下的密度 温度℃----------密度g mL 10--------------0.887 11--------------0.887 12--------------0.886 13--------------0.886 14--------------0.884 15--------------0.883 16--------------0.882 17--------------0.881 18--------------0.880 19--------------0.879 20--------------0.879 21--------------0.879 22--------------0.878 23--------------0.877 24--------------0.876 25--------------0.875 26--------------0.874 27--------------0.874 28--------------0.873 29--------------0.872 水在0℃-4℃热缩冷涨,大于4℃热胀冷缩,4℃是密度最大。 热水的温度与比重 0℃…………0.9998(specific gravity or relative density) 5℃………….0.9999 10℃…………0.9994 15℃…………0.9988 20℃…………0.9980 25℃…………0.9968 30℃…………0.9955 35℃…………0.9939 40℃…………0.9922 45℃…………0.9902 50℃…………0.9880 55℃…………0.9857 60℃…………0.9833 65℃…………0.9806 70℃…………0.9779 75℃…………0.9749 80℃…………0.9719 85℃…………0.9687 90℃…………0.9654 95℃…………0.9620 100℃………..0.9584 105℃………..0.9548 110℃………. 0.9510 115℃………..0.9471 120℃………..0.9431 125℃………..0.9390 130℃……….0.9348

页岩气开采中的水力压裂与无水压裂技术_孙张涛

页岩气开采中的水力压裂与无水压裂技术 孙张涛 吴西顺 (中国地质图书馆,北京 1000813) 摘 要:随着“十二五”规划的发布,页岩气的大规模勘探开发在我国被提上议事日程。对于我国目前的页岩气勘探开发而言,技术配套和攻关是首要任务,还需处理好相关的环境问题。然而,页岩气开采中常用的水力压裂技术始终面临着两大难题:水资源的大量消耗和压裂导致的相关污染等。因此,出于环保和节约水资源的考虑,国外许多公司都加大了对氮气泡沫压裂、CO 2 压裂和液化油气压裂等无水压裂技术的研发投入。无水压裂技术不仅可以解决缺水难题,还能减少页岩气开发对环境造成的污染,可谓一举两得。目前我国尚未完全掌握相关核心技术,水资源又相对缺乏,基于这样的现实考虑,无水压裂技术或许能够解决我国页岩气开发中的水资源难题。 关键词:页岩气开采 水力压裂 无水压裂 压裂技术 基金项目:本文受中国地质调查“国外地质文献资料集成服务与分析研究”项目资助(项目编号:1212011220914)。 收稿日期:2014-05-12 第一作者简介: 孙张涛(1981-),女,助理研究员,主要从事地学文献情报研究。 1引言 我国“十二五”规划明确提出了“推进页岩气等 非常规油气资源的开发利用”,随后《页岩气发展规 划(2011~2015)》(以下简称《规划》)也应运而生, 该《规划》明确要求“加大页岩气勘探开发技术科技 攻关,掌握适用于我国页岩气开发的增产改造核心技 术”。虽然水力压裂技术是现阶段开采页岩气的主流 技术,但由于存在诸多尚未突破的“瓶颈”,已成为欧 美国家页岩气辩论中最具争议性的一个话题。随着人 们对水资源和环境问题的重视,许多国外公司纷纷探 索水力压裂的替代技术。我国“十八大”报告强调要 “全面促进资源节约”以及“加强水源地保护和用水 总量管理”,《规划》中也提出要“减少用水量”以及要 “加强环保监测实现压裂液无污染排放”,在水资源 匮乏、生态环境脆弱的中国,若要大规模开采页岩气, 必须考虑并规避水力压裂可能带来的风险,因此,技术 突破和攻关在现阶段显得尤为重要。 2水力压裂技术 2.1 水力压裂原理 水力压裂是通过高压将数百万加仑的压裂液泵入 油井或气井中,冲破页岩层生成岩层裂隙以实现油气 增产的一项技术,如果注入的压裂液能保证足够的压 力维持荷载,裂隙可以延伸数百米。压裂液中大约99% 为水,其他主要是化学添加剂和支撑剂(如砂粒或陶 粒),以防止压裂裂隙闭合。添加到压裂液中的化学品 包括摩擦减速剂、表面活性剂、胶凝剂、规模抑制剂、 酸性试剂、腐蚀抑制剂、抗菌剂、黏土稳定剂等。表1[1] 为水力压裂过程中可能使用的某种或多种压裂液的组 成和用途。 1947年,在美国堪萨斯州首次应用了水力压裂技 术,但该技术被迅速推广则得益于近年来页岩气在 全球的兴起。2008年,在世界范围内打了5万多口水 力压裂井,据估计,如今一半以上的钻井都要进行压裂 作业[2]。

页岩气压裂技术现状及发展建议_薛承瑾

第39卷第3期石 油 钻 探 技 术Vo l .39No .32011年5月PET RO L EUM DRIL LI NG T ECHN IQ U ES M ay ,2011 收稿日期:2011-03-16;改回日期:2011-04-27。 作者简介:薛承瑾(1963—),男,江苏涟水人,1984年毕业于华东石油学院采油工程专业,2005年获中国石油大学(北京)油气开发工程专业博士学位,教授级高级工程师,副总工程师,SPE 终身会员,长期从事油气田开发方面的研究工作。 联系方式:(010)84988089,xuecj .sripe @sinopec .com 。基金项目:国家重大科技专项“3000型成套压裂装备应用技术研究及应用示范”(编号:2011ZX05048-006)资助。 页岩气钻井完井技术专题 doi :10.3969/j .issn .1001-0890.2011.03.004 页岩气压裂技术现状及发展建议 薛承瑾 (中国石化石油工程技术研究院,北京 100101) 摘 要:页岩气分布广泛,开发潜力巨大,是常规石油天然气的理想接替能源。但是,页岩气成藏规律、储集空间、渗流规律以及开发模式有其自身特点,特别是储层具有低孔特征和极低的基质渗透率,给有效开发带来很大的困难和挑战,而水平井分段压裂是页岩气成功开发的主体技术。北美地区页岩气开发已实现商业化,并逐渐形成了一系列以实现“体积改造”为目的的页岩气压裂技术。我国页岩气资源丰富,前景广阔,但尚处于起步阶段。因此,了解北美地区页岩气储层特点和开发技术,加快技术研发和应用力度,尽快形成和配套适应我国页岩气压裂技术应用的基础理论与技术系列,对于加快我国页岩气勘探开发步伐具有现实意义。概述了国内外页岩气开发现状,详细分析了页岩气的储层特征,重点介绍了国外页岩气压裂技术进展和形成的系列工艺技术,并结合目前形势对我国页岩气压裂技术的发展提出了一些建议。 关键词:页岩气压裂压裂液发展趋势 中图分类号:T E37;T E357.1+1 文献标识码:A 文章编号:1001-0890(2011)03-0024-06 Technical Advance and Development Proposals of Shale Gas Fracturing Xue Chengjin (S inopec Research Institute o f Petroleum Engineering ,B eijing ,100101,China ) A bstract :Widely distributed shale gas reserves with huge development potentials are an ideal alternative re -source .However ,due to its accumulation characteristics ,reservoir space ,seepage law ,and development pattern ,and its extremely low porosity and matrix permeability ,there are great difficulties and challenges to effective develop -ment of shale gas .H orizontal w ell fracturing has become the main technique in developing shale gas .Commercial development of shale gas in some countries especially in the United States has been achieved and a series of technol -ogies have been developed in shale gas reservoir stimulation .In China ,there is a bright prospect for the abundant shale gas development ,while it is still in its early stage .Understanding No rth American shale gas reservoir charac -teristics and development technology ,and accelerating technology research and application in order to develop and form fundamental theory and technology in shale gas fracturing has practical significance for accelerating the pace of shale gas ex plo ration and development .This paper overviewed worldw ide shale gas development and analyzed its characteristics .The progress on shale gas fracturing technology was highlighted and recommendations on shale gas development in China were provided . Key words :shale g as ;fracturing ;fracturing fluid ;developing trend 1 概 述 页岩气在全球范围内分布广泛,且开发潜力巨大。20世纪90年代以来,美国、加拿大等北美国家页岩气勘探取得成效,开发技术趋于成熟。据测算,全球页岩气资源量约为456×1012 m 3 ,其中美国的 页岩气资源量接近30×1012 m 3[1] 。页岩气的勘探开

相关主题
文本预览
相关文档 最新文档