当前位置:文档之家› 大规模图数据划分算法综述

大规模图数据划分算法综述

大规模图数据划分算法综述
大规模图数据划分算法综述

万方数据

万方数据

万方数据

万方数据

万方数据

万方数据

万方数据

大规模图数据划分算法综述

作者:许金凤, 董一鸿, 王诗懿, 何贤芒, 陈华辉, Xu Jinfeng, Dong Yihong, Wang Shiyi,He Xianmang, Chen Huahui

作者单位:宁波大学信息科学与工程学院 宁波315211

刊名:

电信科学

英文刊名:Telecommunications Science

年,卷(期):2014,30(7)

本文链接:https://www.doczj.com/doc/6e13699869.html,/Periodical_dxkx201407016.aspx

超分辨率算法综述

超分辨率复原技术的发展 The Development of Super2Re solution Re storation from Image Sequence s 1、引言 在图像处理技术中,有一项重要的研究内容称为图像融合。通常的成像系统由于受到成像条件和成像方式的限制,只能从场景中获取部分信息,如何有效地弥 补观测图像上的有限信息量是一个需要解决的问题。图像融合技术的含义就是把相关性和互补性很强的多幅图像上的有用信息综合在一起,产生一幅(或多幅) 携带更多信息的图像,以便能够弥补原始观测图像承载信息的局限性。 (图象融合就是根据需要把相关性和互补性很强的多幅图象上的有用信息综合在一起,以供观察或进一步处理,以弥补原始单源观测图象承载信息的局限性,它是一门综合了传感器、图象处理、信号处理、计算机和人工智能等技术的现代高新技术,于20 世纪70 年代后期形成并发展起来的。由于图象融合具有突出的探测优越性,在国际上已经受到高度重视并取得了相当进展,在医学、遥感、计算机视觉、气象预报、军事等方面都取得了明显效益。从图象融合的目标来看,主要可将其归结为增强光谱信息的融合和增强几何信息的融合。增强光谱信息的融合是综合提取多种通道输入图象的信息,形成统一的图象或数据产品供后续处理或指导决策,目前在遥感、医学领域都得到了比较广泛的应用。增强几何信息的融合就是从一序列低分辨率图象重建出更高分辨率的图象(或图象序列) ,以提 高图象的空间分辨率。对图象空间分辨率进行增强的技术也叫超分辨率 (super2resolution) 技术,或亚像元分析技术。本文主要关注超分辨率(SR) 重建技术,对SR 技术中涉及到的相关问题进行描述。) (我们知道,在获取图像的过程中有许多因素会导致图像质量的下降即退化,如 光学系统的像差、大气扰动、运动、离焦和系统噪音,它们会造成图像的模糊和变形。图像复原的目的就是对退化图像进行处理,使其复原成没有退化前的理想图像。按照傅里叶光学的观点,光学成像系统是一个低通滤波器,由于受到光学衍射的影响,其传递函数在由衍射极限分辨率所决定的某个截止频率以上值均为零。显然,普通的图像复原技术如去卷积技术等只能将物体的频率复原到衍射极

大数据文献综述

信息资源管理文献综述 题目:大数据背景下的信息资源管理 系别:信息与工程学院 班级:2015级信本1班 姓名: 学号:1506101015 任课教师: 2017年6月 大数据背景下的信息资源管理 摘要:随着网络信息化时代的日益普遍,我们正处在一个数据爆炸性增长的“大数据”时代,在我们的各个方面都产生了深远的影响。大数据是数据分析的前沿技术。简言之,从各种各样类型的数据中,快速获得有价值信息的能力就是大数据技术,这也是一个企业所需要必备的技术。“大数据”一词越来越地别提及与使用,我们用它来描述和定义信息爆炸时代产生的海量数据。就拿百度地图来说,我们在享受它带来的便利的同时,无偿的贡献了我们的“行踪”,比如说我们的上班地点,我们的家庭住址,甚至是我们的出行方式他们也可以知道,但我们不得不接受这个现实,我们每个人在互联网进入大数据时代,都将是透明性的存在。各种数据都在迅速膨胀并变大,所以我们需要对这些数据进行有效的管理并加以合理的运用。

关键词:大数据信息资源管理与利用 目录 大数据概念.......................................................... 大数据定义...................................................... 大数据来源...................................................... 传统数据库和大数据的比较........................................ 大数据技术.......................................................... 大数据的存储与管理.............................................. 大数据隐私与安全................................................ 大数据在信息管理层面的应用.......................................... 大数据在宏观信息管理层面的应用.................................. 大数据在中观信息管理层面的应用.................................. 大数据在微观信息管理层面的应用.................................. 大数据背景下我国信息资源管理现状分析................................ 前言:大数据泛指大规模、超大规模的数据集,因可从中挖掘出有价值 的信息而倍受关注,但传统方法无法进行有效分析和处理.《华尔街日

聚类分析K-means算法综述

聚类分析K-means算法综述 摘要:介绍K-means聚类算法的概念,初步了解算法的基本步骤,通过对算法缺点的分析,对算法已有的优化方法进行简单分析,以及对算法的应用领域、算法未来的研究方向及应用发展趋势作恰当的介绍。 关键词:K-means聚类算法基本步骤优化方法应用领域研究方向应用发展趋势 算法概述 K-means聚类算法是一种基于质心的划分方法,输入聚类个数k,以及包含n个数据对象的数据库,输出满足方差最小标准的k个聚类。 评定标准:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算。 解释:基于质心的划分方法就是将簇中的所有对象的平均值看做簇的质心,然后根据一个数据对象与簇质心的距离,再将该对象赋予最近的簇。 k-means 算法基本步骤 (1)从n个数据对象任意选择k 个对象作为初始聚类中心 (2)根据每个聚类对象的均值(中心对象),计算每个对象与这些中心对象的距离;并根据最小距离重新对相应对象进行划分 (3)重新计算每个(有变化)聚类的均值(中心对象) (4)计算标准测度函数,当满足一定条件,如函数收敛时,则算法终止;如果条件不满足则回到步骤(2) 形式化描述 输入:数据集D,划分簇的个数k 输出:k个簇的集合 (1)从数据集D中任意选择k个对象作为初始簇的中心; (2)Repeat (3)For数据集D中每个对象P do (4)计算对象P到k个簇中心的距离 (5)将对象P指派到与其最近(距离最短)的簇;

(6)End For (7)计算每个簇中对象的均值,作为新的簇的中心; (8)Until k个簇的簇中心不再发生变化 对算法已有优化方法的分析 (1)K-means算法中聚类个数K需要预先给定 这个K值的选定是非常难以估计的,很多时候,我们事先并不知道给定的数据集应该分成多少个类别才最合适,这也是K一means算法的一个不足"有的算法是通过类的自动合并和分裂得到较为合理的类型数目k,例如Is0DAIA算法"关于K一means算法中聚类数目K 值的确定,在文献中,根据了方差分析理论,应用混合F统计量来确定最佳分类数,并应用了模糊划分嫡来验证最佳分类数的正确性。在文献中,使用了一种结合全协方差矩阵RPCL算法,并逐步删除那些只包含少量训练数据的类。文献中针对“聚类的有效性问题”提出武汉理工大学硕士学位论文了一种新的有效性指标:V(k km) = Intra(k) + Inter(k) / Inter(k max),其中k max是可聚类的最大数目,目的是选择最佳聚类个数使得有效性指标达到最小。文献中使用的是一种称为次胜者受罚的竞争学习规则来自动决定类的适当数目"它的思想是:对每个输入而言不仅竞争获胜单元的权值被修正以适应输入值,而且对次胜单元采用惩罚的方法使之远离输入值。 (2)算法对初始值的选取依赖性极大以及算法常陷入局部极小解 不同的初始值,结果往往不同。K-means算法首先随机地选取k个点作为初始聚类种子,再利用迭代的重定位技术直到算法收敛。因此,初值的不同可能导致算法聚类效果的不稳定,并且,K-means算法常采用误差平方和准则函数作为聚类准则函数(目标函数)。目标函数往往存在很多个局部极小值,只有一个属于全局最小,由于算法每次开始选取的初始聚类中心落入非凸函数曲面的“位置”往往偏离全局最优解的搜索范围,因此通过迭代运算,目标函数常常达到局部最小,得不到全局最小。对于这个问题的解决,许多算法采用遗传算法(GA),例如文献中采用遗传算法GA进行初始化,以内部聚类准则作为评价指标。 (3)从K-means算法框架可以看出,该算法需要不断地进行样本分类调整,不断地计算调整后的新的聚类中心,因此当数据量非常大时,算法的时间开销是非常大 所以需要对算法的时间复杂度进行分析,改进提高算法应用范围。在文献中从该算法的时间复杂度进行分析考虑,通过一定的相似性准则来去掉聚类中心的候选集,而在文献中,使用的K-meanS算法是对样本数据进行聚类。无论是初始点的选择还是一次迭代完成时对数据的调整,都是建立在随机选取的样本数据的基础之上,这样可以提高算法的收敛速度。

网络社区划分算法

网络社区划分算法 目录 ? 1 简介 ? 2 构建一个点击流网络 ? 3 网络社区划分的两种主要思路:拓扑分析和流分析 ? 4 拓扑分析 o 4.1 计算网络的模块化程度Q-Modularity o 4.2 计算网络的连边紧密度Edge betweenness o 4.3 计算网络拉普拉斯矩阵的特征向量Leading eigenvector o 4.4 通过fast greedy方法搜索网络模块化程度Q-Modularity的最大值 o 4.5 通过multi level方法搜索网络模块化程度Q-Modularity的最大值 ? 5 流分析 o 5.1 随机游走算法Walk Trap o 5.2 标签扩散算法label propagation o 5.3 流编码算法 the Map Equation o 5.4 流层级算法 Role-based Similarity ? 6 总结 使用许多互联网数据,我们都可以构建出这样的网络,其节点为某一种信息资源,如图片,视频,帖子,新闻等,连边为用户在资源之间的流动。对于这样的网络,使用社区划分算法可以揭示信息资源之间的相关性,这种相关性的发现利用了用户对信息资源的处理信息,因此比起单纯使用资源本身携带的信息来聚类(例如,使用新闻包含的关键词对新闻资源进行聚类),是一种更深刻的知识发现。 假设我们手头有一批用户在一段期间访问某类资源的数据。为了减少数据数理规模,我们一般只考虑最经常被访问的一批资源。因此在数据处理中,我们考虑UV(user visit)排名前V的资源,得到节点集合|V|,然后对于一个用户i在一段时间(例如一天)访问的资源,选择属于|V|的子集vi。如果我们有用户访问资源的时间,就可以按照时间上的先后顺序,从vi中产生vi-1条有向边。如果我们没有时间的数据,可以vi两两间建立联系,形成vi(vi-1)/2条无向边。因为后者对数据的要求比较低,下文中,暂时先考虑后者的情况。对于一天的n个用户做这个操作,最后将得到的总数为的连边里相同的边合并,得到|M|个不同的边,每条边上都带有权重信息。这样,我们就得到了V个节点,M条边的一个加权无向网络,反应的是在一天之用户在主要的信息资源间的流动情况。在这个网络上,我们可以通过社区划分的算法对信息资源进行分类。

大数据环境下的增强学习综述_仵博

大数据环境下的增强学习综述* 仵 博,冯延蓬,孟宪军,江建举,何国坤 (深圳职业技术学院 教育技术与信息中心,广东 深圳 518055) 摘 要:在大数据应用领域,如何快速地对海量数据进行挖掘是当前大数据应用基础研究的热点和难点,也是制约大数据真正应用的关键.而机器学习是解决该问题的有效途径,本文综述抽象增强学习、可分解增强学习、分层增强学习、关系增强学习和贝叶斯增强学习等五类增强学习方法的研究进展,分析了它们的优势和缺点,指出将监督学习或半监督学习与增强学习相结合是大数据机器学习的有效方法. 关键词:大数据;增强学习;维数灾 中图分类号:TP18 文献标志码:B 文章编号:1672-0318(2014)03-0071-05 增强学习(Reinforcement Learning,简称RL)是一种有效的最优控制学习方法,实现系统在模型复杂或者不确定等条件下基于数据驱动的多阶段优化学习控制,是近年来一个涉及机器学习、控制理论和运筹学等多个学科的交叉研究方向.增强学习因其具有较强的在线自适应性和对复杂系统的自学能力,使其在机器人导航、非线性控制、复杂问题求解等领域得到成功应用[1-4].经典增强学习算法按照是否基于模型分类,可分为基于模型(Model-based)和模型自由(Model-free)两类.基于模型的有TD学习、Q学习、SARSA和ACTOR-CRITIC等算法.模型自由的有DYNA-Q和优先扫除等算法.以上经典增强学习算法在理论上证明了算法的收敛性,然而,在实际的应用领域,特别是在大数据环境下,学习的参数个数很多,是一个典型的NP难问题,难以最优化探索和利用两者之间的平衡[5-8].因此,经典增强学习算法只在理论上有效. 为此,近年来的增强学习研究主要集中在减少学习参数数量、避免后验分布全采样和最小化探索次数等方面,达到算法快速收敛的目的,实现探索和利用两者之间的最优化平衡.当前现有算法按照类型可分为五类:1)抽象增强学习;2)可分解增强学习;3)分层增强学习;4)关系增强学习;5)贝叶斯增强学习. 1 抽象增强学习 抽象增强学习(Abstraction Reinforcement Learning,简称ARL)的核心思想是忽略掉状态向量中与当前决策不相关的特征,只考虑那些有关的或重要的因素,达到压缩状态空间的效果[9].该类算法可以在一定程度上缓解“维数灾”问题.状态抽象原理如图1所示. 目前,状态抽象方法有状态聚类、值函数逼近和自动状态抽象等方法.函数逼近方法难于确保增强学习算法能够收敛,采用线性拟合和神经网络等混合方法来实现函数逼近是当前的研究热点和方向.状态聚类利用智能体状态空间中存在的对称性来压缩状态空间,实现状态聚类.自动状态抽象增 深圳职业技术学院学报 2014年第3期 No.3, 2014 收稿日期:2013-10-14 *项目来源:广东省自然科学基金项目(S2011040004769)和深圳市科技研发资金项目(JCYJ20120617134831736) 作者简介:仵 博(1979-),男,河南桐柏人,副教授,博士,主要研究领域为序贯决策、机器学习和大数据. 冯延蓬(1980-),男,山东潍坊人,讲师,硕士,主要研究领域为无线传感器网络、智能决策和大数据. 孟宪军(1979-),男,北京大兴人,助理研究员,博士,主要研究领域为数据挖掘、自然语言处理和机器学习. 江建举(1976-),男,河南内乡人,高级工程师,硕士,主要研究机器人控制、群智能和大数据. 何国坤(1980-),男,广东深圳人,高级工程师,硕士,主要研究领域为软件工程、机器学习和大数据. https://www.doczj.com/doc/6e13699869.html,- 71 -

蚁群聚类算法综述

计算机工程与应用2006.16 引言 聚类分析是数据挖掘领域中的一个重要分支[1],是人们认 和探索事物之间内在联系的有效手段,它既可以用作独立的 据挖掘工具,来发现数据库中数据分布的一些深入信息,也 以作为其他数据挖掘算法的预处理步骤。所谓聚类(clus- ring)就是将数据对象分组成为多个类或簇(cluster),在同一 簇中的对象之间具有较高的相似度,而不同簇中的对象差别大。传统的聚类算法主要分为四类[2,3]:划分方法,层次方法, 于密度方法和基于网格方法。 受生物进化机理的启发,科学家提出许多用以解决复杂优 问题的新方法,如遗传算法、进化策略等。1991年意大利学A.Dorigo等提出蚁群算法,它是一种新型的优化方法[4]。该算不依赖于具体问题的数学描述,具有全局优化能力。随后他 其他学者[5~7]提出一系列有关蚁群的算法并应用于复杂的组优化问题的求解中,如旅行商问题(TSP)、调度问题等,取得 著的成效。后来其他科学家根据自然界真实蚂蚁群堆积尸体分工行为,提出基于蚂蚁的聚类算法[8,9],利用简单的智能体 仿蚂蚁在给定的环境中随意移动。这些算法的基本原理简单懂[10],已经应用到电路设计、文本挖掘等领域。本文详细地讨现有蚁群聚类算法的基本原理与性能,在归纳总结的基础上 出需要完善的地方,以推动蚁群聚类算法在更广阔的领域内 到应用。 2聚类概念及蚁群聚类算法 一个簇是一组数据对象的集合,在同一个簇中的对象彼此 类似,而不同簇中的对象彼此相异。将一组物理或抽象对象分组为类似对象组成的多个簇的过程被称为聚类。它根据数据的内在特性将数据对象划分到不同组(或簇)中。聚类的质量是基于对象相异度来评估的,相异度是根据描述对象的属性值来计算的,距离是经常采用的度量方式。聚类可用数学形式化描述为:设给定数据集X={x 1 ,x 2 ,…,x n },!i∈{1,2,…,n},x i ={x i1 ,x i2 , …,x

基于数据位图的滑动分块算法

——————————————— 收稿日期:年-月-日*投稿时不填写此项*;最终修改稿收到日期:年-月-日 *投稿时不填写此项*. 基金项目:中国农业大学研究生科研创新专项基金(2013YJ008) 基于数据位图的滑动分块算法 邓雪峰,孙瑞志,张永瀚,聂娟 (中国农业大学农业部农业信息获取技术重点实验室 北京100083) (北京农学院计算机与信息工程学院 北京 100083) (dxf75@https://www.doczj.com/doc/6e13699869.html,) Sliding blocking algorithm based on data bitmap Deng Xuefeng, Sun Ruizhi, Zhang Yonghan, Nie Juan (Key laboratory of Agricultural information acquisition technology (Beijing ),Ministry of Agriculture P.R.China, China Agricultural University, Beijing, 100083) (College of Computer and Information Engineering in Beijing University of Agriculture, Beijing, 102206 China) Abstract During similar data synchronization and storage, data blocking is an important step to detect duplication of data. Only after effective data blocking can you find difference between data accurately. This paper first summarizes and analyzes the methods of data blocking, then re-organize data files in the form similar to bitmap based on the sliding blocking algorithm. After that we read data bitmap by column to form a new data chunk and compute fingerprint information of the column. To improve its ability to locate difference in data, fingerprint of column serve as supplement for sliding bolcking algorithm to acquire more accurate information of data difference. Experimental results show that this method is better than sliding blocking algorithm in data duplication detection under the same conditions. Key words Sliding blocking algorithm; Duplicate data detection; data bitmap; data difference; data synchronization 摘 要 网络中相似的数据文件进行同步与存储的过程中,对数据进行分块,是检测数据重复的重要步骤之一,在有效的对数据分块的基础上才能更准确的定位数据间的差异部分。本文就数据分块方法予以分析总结,在滑动分块算法的基础上,重新将数据文件组织成类似位图的排列形式,对数据位图以列向读取数据信息,形成新的数据分块,并计算列向读取数据的分块指纹信息,以列向数据指纹为补充校正滑动分块算法定位差异数据的能力的不足之处,从而获得更精确的数据差异信息。经实验证明,本方法在同源文件的数据重复检测中效果好于相同条件下的滑动分块方法。 关键词 滑动分块算法;重复数据检测;数据位图;数据差异;数据同步 中图法分类号 TP31;TP39 随着大数据时代的到来,大量的数据将通过网络进行更新与存储。在这些数据文件中存在着大量的同源或类似文件。对同源的数据文件进行同步更新的过程中如何降低网络的占用;对内容大部分相同的文件如何利用更少的存储空间进行存储一直是计算机领域研究的热点问题之一。 同源或内容相近的数据文件进行网络同 步过程中,经常采用基于差异的数据传输方法。这种方法是低带宽网络中文件同步的高效方案之一,利用这个技术可以减少网络流量的开销,同时也能提升数据同步更新的速度。利用这种技术为核心定制了相当多的应用系统[1]。该技术在文件的传输过程中,非常重要的一个处理过程就是将数据分块,数据分块的方法是提升查找差异数据精确度的

大数据时代的空间数据挖掘综述

第37卷第7期测绘与空间地理信息 GEOMATICS &SPATIAL INFORMATION TECHNOLOGY Vol.37,No.7收稿日期:2014-01-22 作者简介:马宏斌(1982-),男,甘肃天水人,作战环境学专业博士研究生,主要研究方向为地理空间信息服务。 大数据时代的空间数据挖掘综述 马宏斌1 ,王 柯1,马团学 2(1.信息工程大学地理空间信息学院,河南郑州450000;2.空降兵研究所,湖北孝感432000) 摘 要:随着大数据时代的到来,数据挖掘技术再度受到人们关注。本文回顾了传统空间数据挖掘面临的问题, 介绍了国内外研究中利用大数据处理工具和云计算技术,在空间数据的存储、管理和挖掘算法等方面的做法,并指出了该类研究存在的不足。最后,探讨了空间数据挖掘的发展趋势。关键词:大数据;空间数据挖掘;云计算中图分类号:P208 文献标识码:B 文章编号:1672-5867(2014)07-0019-04 Spatial Data Mining Big Data Era Review MA Hong -bin 1,WANG Ke 1,MA Tuan -xue 2 (1.Geospatial Information Institute ,Information Engineering University ,Zhengzhou 450000,China ; 2.Airborne Institute ,Xiaogan 432000,China ) Abstract :In the era of Big Data ,more and more researchers begin to show interest in data mining techniques again.The paper review most unresolved problems left by traditional spatial data mining at first.And ,some progress made by researches using Big Data and Cloud Computing technology is introduced.Also ,their drawbacks are mentioned.Finally ,future trend of spatial data mining is dis-cussed. Key words :big data ;spatial data mining ;cloud computing 0引言 随着地理空间信息技术的飞速发展,获取数据的手 段和途径都得到极大丰富,传感器的精度得到提高和时空覆盖范围得以扩大,数据量也随之激增。用于采集空间数据的可能是雷达、红外、光电、卫星、多光谱仪、数码相机、成像光谱仪、全站仪、天文望远镜、电视摄像、电子 显微镜、CT 成像等各种宏观与微观传感器或设备,也可能是常规的野外测量、人口普查、土地资源调查、地图扫描、 地图数字化、统计图表等空间数据获取手段,还可能是来自计算机、 网络、GPS ,RS 和GIS 等技术应用和分析空间数据。特别是近些年来,个人使用的、携带的各种传感器(重力感应器、电子罗盘、三轴陀螺仪、光线距离感应器、温度传感器、红外线传感器等),具备定位功能电子设备的普及,如智能手机、平板电脑、可穿戴设备(GOOGLE GLASS 和智能手表等),使人们在日常生活中产生了大量具有位置信息的数据。随着志愿者地理信息(Volunteer Geographic Information )的出现,使这些普通民众也加入到了提供数据者的行列。 以上各种获取手段和途径的汇集,就使每天获取的 数据增长量达到GB 级、 TB 级乃至PB 级。如中国遥感卫星地面站现在保存的对地观测卫星数据资料达260TB ,并以每年15TB 的数据量增长。比如2011年退役的Landsat5卫星在其29年的在轨工作期间,平均每年获取8.6万景影像,每天获取67GB 的观测数据。而2012年发射的资源三号(ZY3)卫星,每天的观测数据获取量可以达到10TB 以上。类似的传感器现在已经大量部署在卫 星、 飞机等飞行平台上,未来10年,全球天空、地空间部署的百万计传感器每天获取的观测数据将超过10PB 。这预示着一个时代的到来,那就是大数据时代。大数据具有 “4V ”特性,即数据体量大(Volume )、数据来源和类型繁多(Variety )、数据的真实性难以保证(Veracity )、数据增加和变化的速度快(Velocity )。对地观测的系统如图1所示。 在这些数据中,与空间位置相关的数据占了绝大多数。传统的空间知识发现的科研模式在大数据情境下已经不再适用,原因是传统的科研模型不具有普适性且支持的数据量受限, 受到数据传输、存储及时效性需求的制约等。为了从存储在分布方式、虚拟化的数据中心获取信息或知识,这就需要利用强有力的数据分析工具来将

常用算法简介

机器视觉中常用图像处理算法 机器视觉就是用机器代替人眼来做测量和判断。机器视觉系统是指通过机器视觉产品(即图像摄取装置,分CMOS 和CCD 两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,得到被摄目标的形态信息,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。机器视觉是使用计算机(也许是可移动式的)来模拟人的视觉,因此模拟才是计算机视觉领域的最终目标,而真正意义上的图像处理侧重在“处理”图像:如增强,还原,去噪,分割,等等,如常见的Photoshop就是功能强大的图像处理软件。大部分的机器视觉,都包含了图像处理的过程,只有图像处理过后,才能找到图像中需要的特征,从而更进一步的执行其它的指令动作。在我们实际工程应用中研究的一些图像算法,实际上是属于机器视觉,而不是纯粹的图像处理。总的来说,图像处理技术包括图像压缩,增强和复原,匹配、描述和识别3个部分,在实际工程中,这几块不是独立的,往往是环环相扣、相互辅助来达到实际效果。接下来简单介绍一下机器视觉中常用的图像处理算法。 一、滤波 滤波一般在图像预处理阶段中使用,改善图像信息,便于后续处理,当然,这不是绝对的,在图像算法过程中如果有需要,随时可以进行滤波操作。比较常用的滤波方法有以下三种: 1、均值滤波 均值滤波也称为线性滤波,其采用的主要方法为邻域平均法。线性滤波的基本原理是用均值代替原图像中的各个像素值,即对待处理的当前像素点(,) x y,选择一个模板,该模板由其近邻的若干像素组成,求模板中所有像素的均值,再把该均值赋予当前像素点(,) g x y,即 x y,作为处理后图像在该点上的灰度值(,) 波方法可以平滑图像,速度快,算法简单。但是无法去掉噪声,只能减弱噪声。 2、中值滤波

信息加密与网络安全综述文献(附有大量参考文献)

信息加密与网络安全综述 摘要 本文从信息加密问题开始,论述了密码学及其发展、现状和应用,分析了一些加密技术。之后对网络安全问题进行了全面的描述和探讨,分析了不同的网络安全问题。最后探讨了网络安全问题的防范。 关键词:密码学;公钥密码体制;主动攻击

目录 1.信息加密技术 (1) 1.1前言 (1) 1.2密码学的发展 (1) 1.2密码编码与密码分析 (2) 1.2.1密码学分类 (2) 1.2.2密码体制分类 (2) 1.2.2.1对称密码体制 (2) 1.2.2.2公钥密码体制 (2) 1.2.3 密码分析学 (3) 1.2.3.1强力攻击 (3) 1.2.3.2线性密码分析 (4) 1.2.3.3差分密码分析 (4) 1.3密码协议 (4) 1.3.1认证协议 (4) 1.3.1.1数据源认证 (4) 1.3.1.2实体认证 (4) 1.3.1.3密钥建立认证协议 (5) 1.3.2 协议面临的典型攻击 (5) 1.4密码学的发展 (5) 1.4.1标准化趋势 (5) 1.4.2公理化趋势 (5) 1.4.3面向社会的实用化趋 (5) 2. 网络安全问题 (6) 2.1计算机网络 (6) 2.2计算机网络安全 (6) 2.3 面临的威胁 (7) 2.3.1 计算机软件设计上存在的漏洞和缺陷 (7)

2.3.2外部攻击 (7) 2.4 网络安全技术 (8) 2.4.1操作系统安全 (8) 2.4.2 防火墙 (8) 2.4.3 反病毒技术 (8) 2.4.4 入侵检测技术 (8) 2.4.5 数据加密技术 (8) 2.4.6 容灾技术 (8) 2.5网络安全对策 (9) 2.5.1 漏洞和缺陷方面 (9) 2.5.2 外部攻击方面 (9) 2.6总结 (9) 参考文献 (10)

K-means-聚类算法研究综述

K-means聚类算法研究综述 摘要:总结评述了K-means聚类算法的研究现状,指出K-means聚类算法是一个NP难优化问题,无法获得全局最优。介绍了K-means聚类算法的目标函数,算法流程,并列举了一个实例,指出了数据子集的数目K,初始聚类中心选取,相似性度量和距离矩阵为K-means聚类算法的3个基本参数。总结了K-means聚类算法存在的问题及其改进算法,指出了K-means 聚类的进一步研究方向。 关键词:K-means聚类算法;NP难优化问题;数据子集的数目K;初始聚类中心选取;相似性度量和距离矩阵 Review of K-means clustering algorithm Abstract: K-means clustering algorithm is reviewed. K-means clustering algorithm is a NP hard optimal problem and global optimal result cannot be reached. The goal,main steps and example of K-means clustering algorithm are introduced. K-means algorithm requires three user-specified parameters: number of clusters K,cluster initialization,and distance metric. Problems and improvement of K-means clustering algorithm are summarized then. Further study directions of K-means clustering algorithm are pointed at last. Key words: K-means clustering algorithm; NP hard optimal problem; number of clusters K; cluster initialization; distance metric K-means聚类算法是由Steinhaus1955年、Lloyed1957年、Ball & Hall1965年、McQueen1967年分别在各自的不同的科学研究领域独立的提出。K-means聚类算法被提出来后,在不同的学科领域被广泛研究和应用,并发展出大量不同的改进算法。虽然K-means聚类算法被提出已经超过50年了,但目前仍然是应用最广泛的划分聚类算法之一[1]。容易实施、简单、高效、成功的应用案例和经验是其仍然流行的主要原因。 文中总结评述了K-means聚类算法的研究现状,指出K-means聚类算法是一个NP难优化问题,无法获得全局最优。介绍了K-means聚类算法的目标函数、算法流程,并列举了一个实例,指出了数据子集的数目K、初始聚类中心选取、相似性度量和距离矩阵为K-means聚类算法的3个基本参数。总结了K-means聚类算法存在的问题及其改进算法,指出了K-means聚类的进一步研究方向。 1经典K-means聚类算法简介 1.1K-means聚类算法的目标函数 对于给定的一个包含n个d维数据点的数据集 12 {x,x,,x,,x} i n X=??????,其中d i x R ∈,以及要生成的数据子集的数目K,K-means聚类算法将数据对象组织为 K个划分{c,i1,2,} k C K ==???。每个划分代表一个类c k,每个类c k有一个类别中心iμ。选取欧氏距离作为相似性和 距离判断准则,计算该类内各点到聚类中心 i μ的距离平方和 2 (c) i i k i k x C J xμ ∈ =- ∑(1) 聚类目标是使各类总的距离平方和 1 (C)(c) K k k J J = =∑最小。 22 1111 (C)(c) i i K K K n k i k ki i k k k x C k i J J x d x μμ ==∈== ==-=- ∑∑∑∑∑ (2)其中, 1 i i ki i i x c d x c ∈ ? =? ? ? 若 若 ,显然,根据最小二乘 法和拉格朗日原理,聚类中心 k μ应该取为类别 k c类各数据点的平均值。 K-means聚类算法从一个初始的K类别划分开始,然

工业大数据分析综述:模型与算法

摘要:随着条形码、二维码、RFID、工业传感器、自动控制系统、工业互联网、ERP、CAD/CAM/CAE等信息技术在工业领域的广泛应用,大量与工业生产活动相关的数据被实时采集并存储到企业的信息系统中。对这些数据进行分析,有助于改进生产工艺、提高生产效率、降低生产成本,为实现智能制造奠定基础。因此,工业大数据分析引起了工业界和学术界的广泛关注。模型和算法是大数据分析理论和技术中的两个核心问题。介绍了工业大数据分析的基本概念,综述了几种流行的工业大数据分析模型在工业大数据分析领域的应用情况以及相应求解算法方面的研究成果,并探索了大数据分析模型和算法的未来研究方向。 关键词:工业大数据; 大数据分析; 模型; 算法; 智能制造 1 引言 当今时代,信息化和工业化的融合已经成为发展趋势,《中国制造2025》指出:“新一代信息技术与制造业深度融合,正在引发影响深远的产业变革,形成新的生产方式、产业形态、商业模式和经济增长点”。工业大数据在两化融合过程中起着至关重要的作用,国务院颁发的《促进大数据发展行动纲要》把发展工业大数据列为主要任务之一:“推动大数据在工业研发设计、生产制造、经营管理、市场营销、售后服务等产品全生命周期、产业链全流程各环节的应用,分析感知用户需求,提升产品附加价值,打造智能工厂。建立面向不同行业、不同环节的工业大数据资源聚合和分析应用平台”。工业大数据是指在工业领域中产生的大数据。随着信息化与工业化的深度融合,信息技术渗透到了工业企业产业链的各个环节,条形码、二维码、射频识别(radio frequency identification,RFID)、工业传感器、工业自动控制系统、工业互联网、企业资源计划(enterprise resource planning,ERP)、计算机辅助设计(computer

ENVI数据分块

分块写HDF示例源码 算法原理,该图片是从IDL的jpeg2000help中截取,原理基本类似,依次分块写入 程序运行效果如下,将一6000*6000的数据按照tileSize = [1024, 1024]的大小写入一hdf文件中

看看最终结果文件(HDF Explorer查看)

下载 (142.06 KB) 2010/5/9 02:47 运行源码 ;+ ;+ ;:Description: PRO CENTERTLB, tlb, x, y, NoCenter=nocenter COMPILE_OPT StrictArr geom = WIDGET_INFO(tlb, /Geometry)

IF N_ELEMENTS(x) EQ 0 THEN xc = 0.5 ELSE xc = FLOAT(x[0]) IF N_ELEMENTS(y) EQ 0 THEN yc = 0.5 ELSE yc = 1.0 - FLOAT(y[0]) center = 1 - KEYWORD_SET(nocenter) ; oMonInfo = OBJ_NEW('IDLsysMonitorInfo') rects = oMonInfo -> GetRectangles(Exclude_Taskbar=exclude_Taskbar) pmi = oMonInfo -> GetPrimaryMonitorIndex() OBJ_DESTROY, oMonInfo screenSize =rects[[2, 3], pmi] ; Get_Screen_Size() IF screenSize[0] GT 2000 THEN screenSize[0] = screenSize[0]/2 ; Dual monitors. xCenter = screenSize[0] * xc yCenter = screenSize[1] * yc xHalfSize = geom.Scr_XSize / 2 * center yHalfSize = geom.Scr_YSize / 2 * center XOffset = 0 > (xCenter - xHalfSize) < (screenSize[0] - geom.Scr_Xsize) YOffset = 0 > (yCenter - yHalfSize) < (screenSize[1] - geom.Scr_Ysize) WIDGET_CONTROL, tlb, XOffset=XOffset, YOffset=YOffset END ; ; 测试分块写如HDF文件 ; 读取请参考 C:\Program Files\ITT\IDL71\examples\doc\sdf\hdf_info.pro ; Author: DYQ 2010-5-9; ; ; Blog: https://www.doczj.com/doc/6e13699869.html,/dyqwrp ;- PRO WRITEREADHDF ;创建隐藏tlb,目的为了显示进度条 wtlb = WIDGET_BASE(map = 0) WIDGET_CONTROL,wtlb,/realize ;tlb居中显示 CENTERTLB,wtlb ;创建进度条 process = IDLITWDPROGRESSBAR( TIME=0,$ GROUP_LEADER=wtlb, $ TITLE='测试分块保存HDF... 请等待') IDLITWDPROGRESSBAR_SETVALUE, process, 0

图像配准算法综述

杭州电子科技大学 毕业设计(论文)文献综述 毕业设计题目SIFT特征研究及应用 文献综述题目图像配准算法综述学院生命信息及仪器工程学院 专业电子信息技术及仪器 姓名 班级 学号 指导教师

图像配准算法综述 一.前言 图像配准是指找出场景中同一物体表面的结构点在不同图像上的投影像素点之间的对应关系,是图像信息处理领域中一项非常重要的技术,同时也是其它一些图像分析技术,如立体视觉、运动分析、数据融合等的基础。 目前图像配准广泛应用于虚拟现实、视频压缩、图像复原、图像数据库检索等技术中。图像配准的研究是计算机视觉中最困难也是最重要的任务之一。不同的图像配准方法总是对应于某种适用的图像变换模型,其核心问题是提高配准的速度、精度和算法的稳健度。 随着科学技术的发展现在约40%的机器视觉应用中都会使用图像匹配技术,所涉及的领域有:工业检测,导弹的地形匹配,光学和雷达的图像跟踪,交通管理,工业流水线的自动监控、工业仪表的自动监控,医疗诊断,资源分析,气象预报,文字识别以及图像检索等。 图像匹配研究按其处理步骤可以分为样本采集、样本预处理、样本分割、样本的特征提取等,并且与计算机视觉、多维信号处理和数值计算方法等紧密结合。它也是其它一些图像分析技术,如立休视觉、运动分析、数据融合等的基础。正因为其应用的广泛性,新的应用和新的要求逐步产生,使得匹配算法的研究逐步走向深入,出现了快速、稳定、鲁棒性好的匹配算法。因此,研究图像的匹配算法对于如何提高实际工程中的图像处理质量和识别精度具有非常重要的意义。 本文主要分析图像匹配常用方法的优点和不足之处,讨论了图像匹配中需要进一步研究和解决的问题。 二.图像配准算法的研究现状 图像配准是立体视觉、运动分析、数掘融合等实用技术的基础,在导航、地图与地形配准、自然资源分析、天气预报、环境监测、生理病变研究等许多领域有重要的应用价值。国内外学者针对不同的图像配准应用问题进行了大量的研究工作,早在1992年英国剑桥大学的Lisa Gottesfeld Brown在文献[1]习中就总结了图像配准的主要理论及图像配准在各个领域的应用。当时他讨论的图像配准技术主要还是著眼于医学图像处理、遥感图像处理等传统应用领域。图像配准是图像镶嵌技术的核心问题。 微软研究院的Richard Szeliski在1996年SIGGRAPH上提出了基于运动模型的全景图拼接算法[7]。Szeliski采用了非线性优化的方法来最小化像素两幅图像的亮度差以确定变换参数。该方法使用了全部像素进行优化处理,所以配准精度较高,但是计算速度较慢,且稳健性不佳。 国内的赵向阳。杜立民在2004年提出了一种基于特征点匹配的图像自动拼接算法[2],其中使用了Harris算法[3]提取角点并进行匹配。赵的算法采用了鲁棒变换估计技术,在一定程度上提高配准算法的稳健性,但是计算速度依然较慢,且无法配准重

相关主题
文本预览
相关文档 最新文档