当前位置:文档之家› DD3单晶镍基合金蠕变-疲劳及寿命预测

DD3单晶镍基合金蠕变-疲劳及寿命预测

DD3单晶镍基合金蠕变-疲劳及寿命预测
DD3单晶镍基合金蠕变-疲劳及寿命预测

镍基高温合金溅射NiCrALY涂层盐腐蚀行为

第一章绪论 1.1. 铸造高温合金的发展 自从20世纪40年代初期第一台航空喷气发动机采用第一个铸造涡轮工作叶片以来,铸造高温合金的发展经历了一段曲折而又辉煌的历程。半个世纪以来,航空发动机涡轮前温度从40年代的730℃提高到90年代的1677℃,推重比从大约3提高到10,这一巨大进展固然离不开先进的设计思想、精湛的制造工艺以及有效的防护涂层,但是高性能的铸造高压涡轮叶片合金的应用更是功不可没。在这世纪之初回顾铸造高温合金发展的历程,不能不提到如下几件使人难忘的重大事件[1]。美国GE公司为其J33航空发动机选用了钴基合金HS 21制作涡轮工作叶片,代替原先用的锻造高温合金Hasteelloy B。,从此开创了使用铸造高温合金工作叶片的历史。到60年代初,由于发动机工作温度提高,要求叶片合金的热强性能进一步提高,使高温合金合金化程度不断提高,于是出现了复杂合金化与压力加工困难的矛盾,并且越来越尖锐,加之这一时期铸造技术进步,使合金性能和叶片质量提高,出现了大批复杂合金化的高性能合金,使铸造高温合金叶片的应用越来越广泛。我国第一个铸造高温合金是北京航空材料研究院于1958年研制的K401合金,用作WP6发动机的导向叶片。我国第一个铸造涡轮工作叶片是60年代初在黎明发动机厂研制的WP6S发动机一级涡轮叶片(K406合金)。70年代中期,由中科院金属研究所研制成功的K417镍基铸造高温合金制作涡轮叶片用于WP-7型发动机,投入生产,成为我国最先服役于航线的铸造涡轮叶片合金。70年代之后,由于定向凝固和单晶合金的出现,使得所有国家的先进新型发动机几乎无一例外地选用铸造高温合金制作最高温区工作的叶片,从此确立了铸造高温合金叶片的稳固地位[2]。 1.2镍基高温合金的发展 早在60年代,国内外就开始对从高温合金诞生的金属间化合物(Ni3Al、NiAl、Ti3Al、TiAl)为基的合金进行了广泛的研究,因为这些化合物具有诱人的低密度、高模量和良好的抗氧化性,认为是有发展前景的替换材料。70年代中期,美国Howmet公司发展了高温合金细晶铸造法,从而在合金凝固过程的晶粒控制方面

镍基单晶高温合金的发展

镍基单晶高温合金的发展 胡壮麒1 刘丽荣1,2 金 涛1 孙晓峰1 (1.中国科学院金属研究所,沈阳 110016;2.沈阳工业大学,沈阳 110023) 摘要:概述了镍基单晶高温合金的发展历程,分析了其成分、相组成、热处理的特征和持久变形及强化机制,给出了其持久性能数据,并指出了发展趋势。 关键词:镍基单晶高温合金 成分 性能 D evelop m en t of the N i-Ba se S i n gle Crysta l Supera lloys Hu Zhuangqi1 L iu L ir ong1,2 J in Tao1 Sun Xiaofeng1 (1.I nstitute of Metal Research,Chinese Academy of Sciences,Shenyang110016,China) (2.Shenyang University of Technol ogy,Shenyang110023,China) Abstract:The devel opment of the N i-base single crystal superall oys is intr oduced,and its compositi on,phase p re2 ci p itati on,heat treat m ent,endurance p r operty and strengthening mechanis m are analyzed.The data of its endurance p r operty is listed,and the devel opment trend of N i-base single crystal superall oys is pointed out. Key words:N i-base single crystal superall oys;compositi on;p r operty 1 引言 镍基单晶高温合金具有优良的高温性能,是目前制造先进航空发动机和燃气轮机叶片的主要材料。为了满足高性能航空发动机的设计需求,多年来,各国十分重视镍基单晶高温合金的研制和开发。 20世纪80年代以来,单晶高温合金一直沿着其独特的道路发展。随着合金设计理论水平的提高和生产工艺的改进,相继出现耐温能力比第1代单晶合金分别大约高30℃和60℃的第2代单晶合金和第3代单晶合金;第2代单晶高温合金的代表有P WA1484〔1〕、C MSX-4〔2〕等,第3代单晶高温合金的代表有C MSX-10〔3〕、C MSX-11〔4〕、Rene N6〔5〕等。研究表明〔6〕,第3代单晶高温合金C MSX-10的耐温能力比第2代单晶合金C MSX-4(最高使用温度约为1163℃)的大约高30℃,其使用温度可达 收稿日期:2005-07-18 第一作者简介:胡壮麒(1929—),中国工程院院士,从事高温合金的开发与应用研究,详细介绍见封二。1204℃左右,同时,还具有十分明显的蠕变强度优势。近年来出现的第4代单晶合金RR3010的承温能力达到1180°C〔7〕,用在英国RR公司最新研制的Trent发动机上。Re的加入以及Hf、Y、La,Ru等元素的合理应用,使新的单晶合金的持久性能和抗环境性能均有明显的提高。 本文综述了有关镍基单晶高温合金的成分特点、相组成、热处理制度、合金性能、应用情况和发展方向,可为开发和研制该类合金提供参考。 2 单晶高温合金的特征 2.1 成分特征 到目前为止,单晶合金已发展了5代。 典型单晶高温合金的成分及应用见表1。在进行单晶合金成分设计时,要兼顾合金性能和工艺性能。由于单晶合金中不存在晶界,并应用在较为苛刻的环境下,所以要注意某些元素的特殊作用。 分析表1列出的单晶合金的成分,可以看出,单晶高温合金成分的发展有以下特点〔8〕。 1 2005年第31卷第3期航空发动机

镍基单晶合金高温蠕变行为的研究新进展

镍基单晶合金高温蠕变行为的研究新进展 镍基单晶合金是目前航空发动机涡轮叶片的主要制造材料,其蠕变性能是关系到发动机使用安全和服役寿命的重要因素。本文从成分组成、蠕变机制、本构模型等方面论述了近年来镍基单晶合金研究的新进展,特别着重于阐明镍基单晶合金蠕变行为与微结构演化之间的联系,论述了晶体塑性有限元方法在单晶叶片力学行为模拟中的应用,为我国发动机叶片设计和强度分析提供重要的理论参考和技术指导。 标签:镍基单晶合金蠕变微结构晶体塑性 一、引言 航空发动机涡轮叶片长期处于高温下,受到复杂应力和燃气冲击腐蚀等综合作用,工作条件十分恶劣。涡轮叶片等热端部件的可靠性是影响发动机性能和寿命的关键因素和技术难点。镍基单晶合金因具有较高的高温强度、优异的蠕变、疲劳抗力及良好的抗氧化性和抗热腐蚀性,被广泛用于制造航空发动机的涡轮叶片等核心部件。 镍基单晶合金通过定向凝固技术消除了晶界,使其高温抗蠕变、疲劳性能大大增强,成为最受关注、应用最广的高温合金。随着发动机服役温度的不断提高,单晶材料的蠕变行为和变形机制也随温度升高表现出不同的特征。因此,建立合适的本构模型对镍基单晶合金的蠕变行为进行预测,对于我国航空发动机叶片设计、强度分析和寿命预测具有重要的意义。 二、镍基单晶合金的发展趋势及现状 镍基单晶合金由于其优异的抗蠕变、疲劳和耐腐蚀性能,在过去的几十年里得到了世界各国的重视,并形成了合金系列应用到航空发动机的热端部件中,如美国的CMSX-2、CMSX-4、CMSX-10系列,英国的RR2000系列,法国的MC2、MC-NG系列,日本的TMS-75、TMS-138、TMS-162系列等。我国镍基单晶高温合金研制从20世纪80年代初开始,现已发展到以DD22为代表的第四代合金材料,但是,合金性能和发达国家相比尚存在一定的差距,距离大范围实际应用还有较长的路要走。 镍基单晶合金优异的高温性能得益于Re、Ru、W等难熔金属的添加。Re 的添加有助于改善高温合金的显微组织和热稳定性,降低不稳定相及单晶缺陷等的影响,从而显著增强单晶合金的高温抗蠕变性能。研究表明,Re在合金中扩散最慢且Re团簇作为位错运动的障碍,增加位错运动的热激活能;Re的界面富集影响晶格错配和位错攀移;Re还与筏结构和界面位错网有密切关系。因此从第二代单晶合金开始Re的含量从2%不断增加到6%。但是,Re的添加增加了TCP 相的析出,TCP相作为质硬且脆的有害相,极易在蠕变过程中促进微裂纹的萌生,降低单晶叶片的使用寿命。从第四代合金开始,在Re保持较高含量的同时添加

K417镍基铸造高温合金材料报告

K417镍基铸造高温合金材料报告 K417是高强度的镍基铸造高温合金,其成分中的铝和钛含量较高,形成约占合金重量67%的γ′强化相,因而高温强度较高、塑性较好,加之其密度较低(7.8g/cm3),故特别适宜制作高温转动件。但它的组织稳定性较差,特别是当成分偏上限或铸造工艺参数控制不当时,零件在850~950℃长期工作中,有析出片状σ相的倾向。它的耐热腐蚀性能也较差,若长期高温使用,需用保护涂层 . 化学成分 Typical values(Weight %) Cr Ni Co Mo Al Ti 8.50-9.5 余14.0-16.0 2.50-3.20 4.80-5.70 4.50-5.00 Fe C Mn Si P S ≤1.0 0.13-0.22 ≤0.50 ≤0.50 ≤0.015 ≤0.010 力学性能 θ/℃持久性能拉伸性能 σb/ MPa t/h σb/ MPa δБ/% W / % 900 315 ≥70 635 6 8 物理性能 密度:7.8 g/m3 熔点:1260℃-1340℃ 磁性能:无 相近牌号 美国:IN100 技术标准 HB 5161—1988 物理数据 温度 ℃热导率W/mk 温度 ℃线膨胀系数10-6/K 132 10.87 200 13.2 419 14.23 431 13.5 661 19.25 679 13.5 760 25.94 759 14.7 947 38.49 868 15.7 1076 35.98 956 16.8 1109 41.42 1000 17.3 成形性能 用熔模铸造法可铸成壁厚小至1mm的薄壁零件也可铸造整体涡轮 焊接性能 可以进行氩弧堆焊 零件热处理工艺 1. 零件在铸态下使用; 2. 也可进行渗铝和消除应力的退火处理,处理温度低于1120℃。 表面处理工艺

54.镍基单晶高温合金的发展概况

镍基单晶高温合金的发展概况 镍基单晶高温合金的发展概况 黄爱华1,崔树森1,王少刚1,杨胜群1,刘秀玲2,于兴福1 (1.沈阳黎明航空发动机(集团)有限责任公司,辽宁沈阳110043; 2.沈阳铸造研究所,辽宁沈阳110022) 摘要:论述了单晶高温合金的制备方法,凝固过程的控制。概述了单晶高温合金的发展历程以及合金成分的发展。最后介绍了我国高温合金的发展状况。 关键词:镍基单晶高温合金;制备方法;合金成分 高温合金由等轴晶经历了定向柱晶发展到单晶,既是发动机工作温度不断提高的要求,也是凝固技术持续发展的结果。镍基单晶高温合金通常划分为五代,早期研制的单晶合金称为第一代单晶合金[1],随着铼(Re)元素的引入,第二代和第三代单晶合金[2]相继出现,近期开始在单晶合金中加入元素钌(Ru),从而研制出第四代至第五代单晶高温合金。 镍基高温合金广泛应用于航空、航天、舰船、发电、机床、石油和化工等工业领域,在航空发动机上主要用于制作热端部件,如涡轮工作叶片、导向叶片、涡轮盘、燃烧室和压气机等部件。在整个高温合金领域中,镍基高温合金占有特殊重要的地位,与铁基和钴基合金相比,镍基合金具有更好的高温性能,良好的抗氧化和抗腐蚀性能,可以说,镍基高温合金的发展决定了航空涡轮发动机的发展,也决定了航空工业的发展。采用定向凝固技术制备出的单晶合金,其使用温度已接近合金熔点的90%,成为当代先进航空发动机热端部件不可替代的重要结构材料。 1情况介绍 铸件形成定向柱晶组织必须具备两个条件,一是热流必须垂直于晶体生长的固液界面单向流动;二是固液界前方的液体中没有稳定的晶核。Bridgman法就是一种广泛应用的由高温熔体生长单晶的方法。 单晶和定向柱晶凝固过程的唯一差别是单晶必须是由一个晶核长大而成的。获得单一晶核的方法通常有两种:即选晶法和籽晶法,两种方法各有优缺点、互相补充。 (1)螺旋生长法制备单晶的基本原理(图1,图2),众多晶粒在经过螺旋形的单晶选择器后,只剩下生长最快的一个晶粒,从而形成单晶。 图1单晶的螺旋生长法生产示意图图2单晶选择示意图

镍基高温合金的特点、制备及应用

镍基高温合金的特点、制备及应用 高温合金是指以铁、镍、钴为基,能在600℃以上的高温及一定应力作用下长期工作的一类金属材料。并具有较高的高温强度,良好的抗氧化和抗腐蚀性能,良好的疲劳性能、断裂韧性等综合性能。高温合金为单一奥氏体组织,在各种温度下具有良好的组织稳定性和使用可靠性。那么,以镍为基体(含量一般大于50%)在650~1000℃范围内具有较高的强度和良好的抗氧化、抗燃气腐蚀能力的高温合金称之为镍基高温合金(以下简称“镍基合金”)。 镍基高温合金的发展包括两个方面:合金成分的改进和生产工艺的革新。镍基高温合金是30年代后期开始研制的。英国于1941年首先生产出镍基高温合金Nimonic75(Ni-20Cr-0.4Ti);为了提高蠕变强度又添加铝,研制出Nimonic80(Ni-20Cr-2.5Ti-1.3Al)。美国于40年代中期,苏联于40年代后期,中国于50年代中期也研制出镍基合金。50年代初,真空熔炼技术的发展,为炼制含高铝和钛的镍基合金创造了条件。初期的镍基高温合金大都是变形合金。50年代后期,由于涡轮叶片工作温度的提高,要求合金有更高的高温强度,但是合金的强度高了,就难以变形,甚至不能变形,于是采用熔模精密铸造工艺,发展出一系列具有良好高温强度的铸造合金。60年代中期发展出性能更好的定向结晶和单晶高温合金以及粉末冶金高温合金。为了满足舰船和工业燃气轮机的需要,60年代以来还发展出一批抗热腐蚀性能较好、组织稳定的高铬镍基合金。在从40年代初到70年代末大约40年的时间内,镍基高温合金的工作温度从700℃提高到1100℃,平均每年提高10℃左右。 镍基高温合金是高温合金中应用最广、高温强度最高的一类合金。其主要原因,一是镍基合金中可以溶解较多合金元素,且能保持较好的组织稳定性;二是可以形成共格有序的A3B型金属间化合物g[Ni3(Al,Ti)]相作为强化相,使合金得到有效的强化,获得比铁基高温合金和钴基高温合金更高的高温强度;三是含铬的镍基合金具有比铁基高温合金更好的抗氧化和抗燃气腐蚀能力。镍基合金含有十多种元素,其中Cr主要起抗氧化和抗腐蚀作用,其他元素主要起强化作用。根据它们的强化作用方式可分为:固溶强化元素,如钨、钼、钴、铬和钒等;沉淀强化元素,如铝、钛、铌和钽;晶界强化元素,如硼、锆、镁和稀土元素等。镍基合金按强化方式有固溶强化型合金和沉淀强化型合金。

镍基高温合金材料研究进展汇总-共7页

镍基高温合金材料研究进展 姓名:李义锋1 镍基高温合金材料概述 高温合金是指以铁、镍、钴为基,在高温环境下服役,并能承受严酷的机械应力及具有良好表面稳定性的一类合金[1]。高温合金一般具有高的室温和高温强度、良好的抗氧化性和抗热腐蚀性、优异的蠕变与疲劳抗力、良好的组织稳定性和使用的可靠性[2]。因此,高温合金既是航空、航天发动机高温部件的关键材料,又是舰船、能源、石油化工等工业领域不可缺少的重要材料,已成为衡量一个国家材料发展水平的重要标志之一。 在整个高温合金领域中,镍基高温合金占有特殊重要的地位。与铁基和钴基高温合金相比,镍基高温合金具有更高的高温强度和组织稳定性,广泛应用于制作航空喷气发动机和工业燃气轮机的热端部件。现代燃气涡轮发动机有50%以上质量的材料采用高温合金,其中镍基高温合金的用量在发动机材料中约占40%。镍基合金在中、高温度下具有优异综合性能,适合长时间在高温下工作,能够抗腐蚀和磨蚀,是最复杂的、在高温零部件中应用最广泛的、在所有超合金中许多冶金工作者最感兴趣的合金。镍基高温合金主要用于航空航天领域950-1050℃下工作的结构部件,如航空发动机的工作叶片、涡轮盘、燃烧室等。因此,研究镍基高温合金对于我国航天航空事业的发展具有重要意义。 镍基高温合金是以镍为基体(含量一般大于50 )、在650~1000℃范围内具有较高的强度和良好的抗氧化、抗燃气腐蚀能力的高温合金[2]。它是在Cr20Ni80合金基础上发展起来的,为了满足1000℃左右高温热强性(高温强度、蠕变抗力、高温疲劳强度)和气体介质中的抗氧化、抗腐蚀的要求,加入了大量的强化元素,如W、Mo、Ti、Al、Nb、Co等,以保证其优越的高温性能。除具有固溶强化作用,高温合金更依靠Al、Ti等与Ni形成金属问化合物γ′相(Ni3A1或Ni3Ti等)的析出强化和部分细小稳定MC、M23C6碳化物的晶内弥散强化以及B、Zr、Re等对晶界起净化、强化作用。添加Cr的目的是进一步提高高温合金抗氧化、抗高温腐蚀性能。镍基高温合金具有良好的综合性能,目前已被广泛地用于航空航天、汽车、通讯和电子工业部门。随着对镍基合金潜在性能的发掘,研究人员对其使用性能提出了更高的要求,国内外学者已开拓了针对镍基合金的新加工工艺如等温锻造、挤压变形、包套变形等。

镍基高温合金

镍基高温合金 浏览: 文章来源:中国刀具信息网 添加人:阿刀 添加时间:2007-06-28 以镍为基体(含量一般大于50%) 在650~1000℃范围内具有较高的强度和良好的抗 氧化、抗燃气腐蚀能力的高温合金。 发展过程 镍基高温合金(以下简称镍基合金)是30年代后期开始研制的。英国于1941年首先生产出镍基合金Nimonic 75(Ni-20Cr-0.4Ti);为了提高蠕变强度又添加铝,研制出Nimonic 80(Ni-20Cr-2.5Ti-1.3Al)。美国于40年代中期,苏联于40年代后期,中国于50年代中期也研制出镍基合金。镍基合金的发展包括两个方面:合金成分的改进和生产工艺的革新。50年代初,真空熔炼技术的发展,为炼制含高铝和钛的镍基合金创造了条件。初期的镍基合金大都是变形合金。50年代后期,由于涡轮叶片工作温度的提高,要求合金有更高的高温强度,但是合金的强度高了,就难以变形,甚至不能变形,于是采用熔模精密铸造工艺,发展出一系列具有良好高温强度的铸造合金。60 年代中期发展出性能更好的定向结晶和单晶高温合金以及粉末冶金高温合金。为了满足舰船和工业燃气轮机的需要,60年代以来还发展出一批抗热腐蚀性能较好、组织稳定的高铬镍基合金。在从40年代初到70年代末大约40年的时间内, 镍基高温合金的发展趋势

镍基合金的工作温度从 700℃提高到1100℃,平均每年提高10℃左右。镍基高温合 金的发展趋势见图1。 成分和性能 镍基合金是高温合金中应用最广、高温强度最高的一类合金。其主要原因,一是镍基合金中可以溶解较多合金元素,且能保持较好的组织稳定性;二是可以形成共格有序的 A 3B 型金属间化合物 '[Ni 3(Al ,Ti)]相作为强化相,使合金得到有效的强化,获得比铁基高温合金和钴基高温合金更高的高温强度;三是含铬的镍基合金具有比铁基高温合金更好的抗氧化和抗燃气腐蚀能力。镍基合金含有十多种元素,其中 Cr

镍基单晶合金叶片疲劳寿命预测方法研究

镍基单晶合金叶片疲劳寿命预测方法研究 潘 冬1,2,杨晓光2,胡晓安2,石多奇2 (1.中航工业燃气涡轮研究院,成都610500;2.北京航空航天大学能源与动力工程学院,北京100191) 摘要:研究了3种针对镍基单晶合金各向异性低循环疲劳寿命建模的方法,分别为基于单晶合金弹性模量与晶体取向相关性的方法,与各向异性屈服函数相关的方法和传统滑移系的方法。对基于屈服函数的方法进行了修正以将其应用于单晶合金。利用公开文献中DD3单晶合金的低循环疲劳数据对修正的模型进行了验证,并对采用这3种方法得到的数据进行了比较。结果表明:修正的疲劳寿命模型和基于取向函数的寿命模型的预测结果与试验数据相比基本落在3倍分散带内,而采用基于滑移系的方法所得结果在4倍分散带内。基于屈服函数的修正模型和另外2种模型均可以较好地与3维有限元应力分析直接衔接,便于涡轮叶片结构级的寿命预测。 关键词:镍基单晶合金;寿命预测;疲劳;各向异性;叶片;涡轮中图分类号:V231.95 文献标识码:A doi :10.13477/https://www.doczj.com/doc/6612743977.html,ki.aeroengine.2014.03.009 Fatigue Life Prediction Method of Nickel-based Single Crystal Blade PAN Dong 1,2,YANG Xiao-guang 2,HU Xiao-an 2,SHI Duo-qi 2 (1.AVIC Gas Turbine Establishment,Chengdu 610500,China;2.School of Jet Propulsion,Beihang University,Beijing 100191,China ) Abstract:Three kinds methods of anisotropic low cycle fatigue life for Nickel-based single crystal fatigue were studied,including the method based on elastic modulus of single crystal and crystal orientation relativity,the anisotropic yield function method,and the traditional slip system method.The yield function method was modified to be applied to single crystal.The correction models were validated by low cycle fatigue data of DD3,and the data was contrasted by three methods.The results show that the predicted lives of correction fatigue models and based on the orientation function models are agree with the experimental lives in coefficient of scatter being three,and the predicted lives of the based on slip system models are in coefficient of scatter being four.The correction model based on the yield function and other two models connect with three dimensional finite element stress analysis result well to predict turbine blades life easily. Key words:nickel-based single crystal;life prediction;fatigue;anisotropy;blade;turbine 航空发动机 Aeroengine 第40卷第3期Vol.40No.3Jun.2014 收稿日期:2013-03-30 作者简介:潘冬(1987),男,硕士,研究方向为航空发动机强度与疲劳;E-mail:pd@https://www.doczj.com/doc/6612743977.html, 。 引用格式:PAN Dong,YANG Xiaoguang , HU et al.life method of single blade[J].,2014,40(3):. 0引言 镍基单晶高温合金已经广泛应用于涡轮叶片上[1]。由于消除了晶界, 使其热、疲劳和蠕变性能得到了显著提高[2]。但材料的各向异性特征给强度和寿命评估带来了挑战;基于各向同性的强度理论和寿命模型不足以给出符合工程精度的预测结果[3]。且由于实际叶片处于多轴应力状态下,发展既能考虑各向异性,又能处理多轴应力的寿命模型对于单晶叶片的设计具有十分重要的现实意义。 针对单晶合金叶片高温低周疲劳损伤研究,Li S X [4]和石多奇等[5-6]通过对各向同性材料的宏观唯象疲劳寿命模型进行扩展,构造1个取向函数来考虑材料的各向异性的影响;Swanson [7]和岳珠峰等[8-9]基于材料细观塑性理论,研究材料特定滑移系的塑性滑移规律,建立晶体滑移疲劳寿命模型;Roland 等[10]通过对应力-寿命法进行扩展,构建基于Hill 屈服函数的等效应力考虑定向凝固合金的各向异性的影响。虽然Roland 等对横观各向同性的定向凝固合金的叶片结构级寿命可以获得较为精准的预测结果,但是由于单晶材料的固有特征,需要对其等效应力的计算方法进

国内外镍基高温合金

国内外镍基高温合金 镍基高温合金 1、中国牌号:固溶强化型镍基高温合金 GH3007(GH5K);GH3030(GH30);GH3039(GH39);GH3044(GH44);GH3128(GH128);GH3170(GH170);GH3536(GH536);GH3600(GH600);GH3625(GH625);GH3652(GH652); 2、中国牌号:时效强化型镍基高温合金 GH4033(GH33);GH4037(GH37);GH4049(GH49);GH4080A(GH80A);GH4090(GH90);GH4093(GH93);GH4098(GH98);GH4099(GH99);GH4105(GH105);GH4133(GH33A);GH4133B;GH4141(GH141);GH4145(GH145);GH4163(GH163);GH4169(GH169);GH4199(GH199);GH4202(GH202);GH4220(GH220);GH4413(GH413);GH4500(GH500);GH4586(GH586);GH4648(GH648);GH4698(GH698);GH4708(GH708);GH4710(GH710); GH4738(GH738;GH684);GH4742(GH742); 3、美国牌号:固溶强化型镍基高温合金 Haynes 214;Haynes 230;Inconel 600; Inconel 601; Inconel 602CA; Inconel 617; Inconel 625;RA333;Hastelloy B; Hastelloy N; Hastelloy S; Hastelloy W; Hastelloy X; Hastelloy C-276; Haynes HR-120; Haynes HR-160;Nimonic 75; Nimonic 86; 4、美国牌号:沉淀硬化型镍基高温合金 Astroloy;Custom Age 625PLUS; Haynes 242; Haynes 263; Haynes R-41; Inconel 100;

航天用镍基单晶合金研究进展

龙源期刊网 https://www.doczj.com/doc/6612743977.html, 航天用镍基单晶合金研究进展 作者:时龙姜紫薇齐美娜王琳 来源:《科学大众》2019年第12期 摘; ;要:文章介绍了航天用高温合金的分类、一般强化原理及热处理方法。对航空航天用高温合金的基本性能、成分发展的主要特点以及主要强化元素的作用进行了归纳和总结,对航天用高温合金的发展方向和应用前景作出了展望。 关键词:高温合金;单晶;强化元素;稀土 高温合金的发展历史就是航空航天发动机的进步历史。喷气发动机的出现使高温合金的研制进入一个全新的阶段,喷气式发动机热端部件特别是涡轮叶片对材料的耐高温性能与机械性能提出了新的、更高的要求。英、美等发达国家相继开发了很多合金,如Mar-M合金系列等。 高温合金的组织结构为独一的奥氏体,在服役温度下具有优异的组织可靠性。它的合金程度很高,因此,在英、美等发达国家被叫作超合金[1]。 1; ; 单晶高温合金的分类、强化原理与热处理方法 众所周知,单晶合金最重要的优点是晶界的消除,这就导致晶界的强化元素急剧减少,合金的初熔温度却迅速提升,同时使合金固强化处理的温度范围增加。1980年以后,单晶合金 的研制得到了迅猛发展,人們陆续研制出了第一批单晶,如CMSX-2型;第二批单晶高温,如含3 wt.%Re的CMSX-4型,它们的使用温度比第一批单晶高出30 ℃以上;第三代单晶,例如含约6 wt.%Re的CMSX-10型,它的使用温度比第一批高出60 ℃以上。 单晶高温合金含多达十几种元素。通常所说的合金强化就是指把多种合金元素添加到基体中,出现一些强化效应,如固溶强化效应、晶界强化效应等。实质上高温合金的发展演变历程正是高温合金与诸多强化理论相融合的历程。高温合金基本性能可根据其组织结构来决定,因此确定合金元素时,其热处理工艺对合金的组织的影响就更加重要。主要的热处理方法包括:加热温度变化法、保温时间变化法以及冷却速度变化法等多种特殊的热处理技术。 2; ; 合金成分发展的主要特点 单晶高温合金的发展经历了以下几个阶段:第一批无Re单晶、第二批单晶(约3 wt.%的Re元素)、第三批单晶(约6 wt.%的Re元素)。单晶高温合金的化学成分的发展有下变化[2]。

国内外镍基高温合金

国内外镍基高温合金标准化管理部编码-[99968T-6889628-J68568-1689N]

国内外镍基高温合金 镍基高温合金 1、中国牌号:固溶强化型镍基高温合金 GH3007(GH5K);GH3030(GH30);GH3039(GH39);GH3044(GH44);GH3128 (GH128); GH3170(GH170);GH3536(GH536);GH3600(GH600);GH3625(GH625);GH3652(GH652); 2、中国牌号:时效强化型镍基高温合金 GH4033(GH33);GH4037(GH37);GH4049(GH49);GH4080A(GH80A);GH4090(GH90); GH4093(GH93);GH4098(GH98);GH4099(GH99);GH4105(GH105);GH4133 (GH33A); GH4133B;GH4141(GH141);GH4145(GH145);GH4163(GH163);GH4169 (GH169); GH4199(GH199);GH4202(GH202);GH4220(GH220);GH4413(GH413);GH4500(GH500); GH4586(GH586);GH4648(GH648);GH4698(GH698);GH4708(GH708);GH4710(GH710); GH4738(GH738;GH684);GH4742(GH742); 3、美国牌号:固溶强化型镍基高温合金 Haynes 214;Haynes 230;Inconel 600; Inconel 601; Inconel 602CA; Inconel 617; Inconel 625;RA333;Hastelloy B; Hastelloy N; Hastelloy S; Hastelloy W; Hastelloy X; Hastelloy C-276; Haynes HR-120; Haynes HR-160;Nimonic 75; Nimonic 86; 4、美国牌号:沉淀硬化型镍基高温合金 Astroloy;Custom Age 625PLUS; Haynes 242; Haynes 263; Haynes R-41; Inconel 100; Inconel 102;Incoloy 901; Inconel 702; Inconel 706; Inconel 718; Inconel 721; Inconel 722; Inconel 725; Inconel 751; Inconel X-750;M-252;Nimonic 80A; Nimonic 90; Nimonic 95; Nimonic 100; Nimonic 105; Nimonic 115;C-263;Pyromet 860; Pyromet 31;Refractaloy 26;Rene, 41; Rene, 95; Rene, 100;Udimet 500; Udimet 520; Udimet 630; Udimet 700; Udimet 710;Unitemp af2-1DA;Waspaloy; Hastelloy C276、Monel 400等耐蚀合金 产地:北京 型号:C276,B2,Monel 400,Ni,600

国内外镍基高温合金

国内外镍基高温合金 Prepared on 24 November 2020

国内外镍基高温合金 镍基高温合金 1、中国牌号:固溶强化型镍基高温合金 GH3007(GH5K);GH3030(GH30);GH3039(GH39);GH3044(GH44);GH3128(GH128); GH3170(GH170);GH3536(GH536);GH3600(GH600);GH3625(GH625);GH3652(GH652); 2、中国牌号:时效强化型镍基高温合金 GH4033(GH33);GH4037(GH37);GH4049(GH49);GH4080A(GH80A);GH4090(GH90);GH4093(GH93);GH4098(GH98);GH4099(GH99);GH4105(GH105);GH4133(GH33A);GH4133B;GH4141(GH141);GH4145(GH145);GH4163(GH163);GH4169(GH169); GH4199(GH199);GH4202(GH202);GH4220(GH220);GH4413(GH413);GH4500(GH500);GH4586(GH586);GH4648(GH648);GH4698(GH698);GH4708(GH708);GH4710(GH710);GH4738(GH738;GH684);GH4742(GH742); 3、美国牌号:固溶强化型镍基高温合金 Haynes 214;Haynes 230;Inconel 600; Inconel 601; Inconel 602CA; Inconel 617; Inconel 625;RA333;Hastelloy B; Hastelloy N; Hastelloy S; Hastelloy W; Hastelloy X; Hastelloy C-276; Haynes HR-120; Haynes HR-160;Nimonic 75; Nimonic 86; 4、美国牌号:沉淀硬化型镍基高温合金 Astroloy;Custom Age 625PLUS; Haynes 242; Haynes 263; Haynes R-41; Inconel 100; Inconel 102;Incoloy 901; Inconel 702; Inconel 706; Inconel 718; Inconel 721; Inconel 722; Inconel 725; Inconel 751; Inconel X-750;M-252;Nimonic 80A; Nimonic 90; Nimonic 95; Nimonic 100; Nimonic 105; Nimonic 115;C-263;Pyromet 860; Pyromet 31;Refractaloy 26;Rene, 41; Rene, 95; Rene, 100;Udimet 500; Udimet 520; Udimet 630; Udimet 700; Udimet 710;Unitemp af2-1DA;Waspaloy; Hastelloy C276、Monel 400等耐蚀合金 产地:北京 型号:C276,B2,Monel 400,Ni,600 耐蚀合金系列·常用耐蚀合金系列材料 中国牌号国外牌号特性和用途 NS312Inconel 600耐高温氧化物介质腐蚀,用于热处理及化学加工工业装置 NS112Inconel 800H抗氧化物介质腐蚀,抗高温抗渗碳强度高,合成纤维工程中加热管、炉管及构件 NS322Hastelloy B-2(哈氏B2)耐强还原性介质腐蚀,改善抗晶间腐蚀性,高温中盐酸及中浓度硫酸环境中使用 NS334Hastelloy C276(哈氏C276)耐氧化性氯化物水溶液及湿氯、次氯盐酸腐蚀,用于强腐蚀性氧化-还原复合介质环境

国内外镍基高温合金

国内外镍基高温合金 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

国内外镍基高温合金 镍基高温合金 1、中国牌号:固溶强化型镍基高温合金 GH3007(GH5K);GH3030(GH30);GH3039(GH39);GH3044(GH44);GH3128(GH128); GH3170(GH170);GH3536(GH536);GH3600(GH600);GH3625(GH625);GH3652(GH652); 2、中国牌号:时效强化型镍基高温合金 GH4033(GH33);GH4037(GH37);GH4049(GH49);GH4080A(GH80A);GH4090(GH90);GH4093(GH93);GH4098(GH98);GH4099(GH99);GH4105(GH105);GH4133(GH33A);GH4133B;GH4141(GH141);GH4145(GH145);GH4163(GH163);GH4169(GH169); GH4199(GH199);GH4202(GH202);GH4220(GH220);GH4413(GH413);GH4500(GH500);GH4586(GH586);GH4648(GH648);GH4698(GH698);GH4708(GH708);GH4710(GH710);GH4738(GH738;GH684);GH4742(GH742); 3、美国牌号:固溶强化型镍基高温合金 Haynes 214;Haynes 230;Inconel 600; Inconel 601; Inconel 602CA; Inconel 617; Inconel 625;RA333;Hastelloy B; Hastelloy N; Hastelloy S; Hastelloy W; Hastelloy X; Hastelloy C-276; Haynes HR-120; Haynes HR-160;Nimonic 75; Nimonic 86; 4、美国牌号:沉淀硬化型镍基高温合金 Astroloy;Custom Age 625PLUS; Haynes 242; Haynes 263; Haynes R-41; Inconel 100; Inconel 102;Incoloy 901; Inconel 702; Inconel 706; Inconel 718; Inconel 721; Inconel 722; Inconel 725; Inconel 751; Inconel X-750;M-252;Nimonic 80A; Nimonic 90; Nimonic 95; Nimonic 100; Nimonic 105; Nimonic 115;C-263;Pyromet 860; Pyromet 31;Refractaloy 26;Rene, 41; Rene, 95; Rene, 100;Udimet 500; Udimet 520; Udimet 630; Udimet 700; Udimet 710;Unitemp af2-1DA;Waspaloy; Hastelloy C276、Monel 400等耐蚀合金 产地:北京 型号:C276,B2,Monel 400,Ni,600 耐蚀合金系列·常用耐蚀合金系列材料 中国牌号国外牌号特性和用途 NS312Inconel 600耐高温氧化物介质腐蚀,用于热处理及化学加工工业装置 NS112Inconel 800H抗氧化物介质腐蚀,抗高温抗渗碳强度高,合成纤维工程中加热管、炉管及构件 NS322Hastelloy B-2(哈氏B2)耐强还原性介质腐蚀,改善抗晶间腐蚀性,高温中盐酸及中浓度硫酸环境中使用 NS334Hastelloy C276(哈氏C276)耐氧化性氯化物水溶液及湿氯、次氯盐酸腐蚀,用于强腐蚀性氧化-还原复合介质环境

国内外镍基高温合金

国内外镍基高温合金 Last revised by LE LE in 2021

国内外镍基高温合金 镍基高温合金 1、中国牌号:固溶强化型镍基高温合金 GH3007(GH5K);GH3030(GH30);GH3039(GH39);GH3044(GH44);GH3128(GH128); GH3170(GH170);GH3536(GH536);GH3600(GH600);GH3625(GH625);GH3652(GH652); 2、中国牌号:时效强化型镍基高温合金 GH4033(GH33);GH4037(GH37);GH4049(GH49);GH4080A(GH80A);GH4090(GH90);GH4093(GH93);GH4098(GH98);GH4099(GH99);GH4105(GH105);GH4133(GH33A);GH4133B;GH4141(GH141);GH4145(GH145);GH4163(GH163);GH4169(GH169); GH4199(GH199);GH4202(GH202);GH4220(GH220);GH4413(GH413);GH4500(GH500);GH4586(GH586);GH4648(GH648);GH4698(GH698);GH4708(GH708);GH4710(GH710);GH4738(GH738;GH684);GH4742(GH742); 3、美国牌号:固溶强化型镍基高温合金 Haynes 214;Haynes 230;Inconel 600; Inconel 601; Inconel 602CA; Inconel 617; Inconel 625;RA333;Hastelloy B; Hastelloy N; Hastelloy S; Hastelloy W; Hastelloy X; Hastelloy C-276; Haynes HR-120; Haynes HR-160;Nimonic 75; Nimonic 86; 4、美国牌号:沉淀硬化型镍基高温合金 Astroloy;Custom Age 625PLUS; Haynes 242; Haynes 263; Haynes R-41; Inconel 100; Inconel 102;Incoloy 901; Inconel 702; Inconel 706; Inconel 718; Inconel 721; Inconel 722; Inconel 725; Inconel 751; Inconel X-750;M-252;Nimonic 80A; Nimonic 90; Nimonic 95; Nimonic 100; Nimonic 105; Nimonic 115;C-263;Pyromet 860; Pyromet 31;Refractaloy 26;Rene, 41; Rene, 95; Rene, 100;Udimet 500; Udimet 520; Udimet 630; Udimet 700; Udimet 710;Unitemp af2-1DA;Waspaloy; Hastelloy C276、Monel 400等耐蚀合金 产地:北京 型号:C276,B2,Monel 400,Ni,600 耐蚀合金系列·常用耐蚀合金系列材料 中国牌号国外牌号特性和用途 NS312Inconel 600耐高温氧化物介质腐蚀,用于热处理及化学加工工业装置 NS112Inconel 800H抗氧化物介质腐蚀,抗高温抗渗碳强度高,合成纤维工程中加热管、炉管及构件 NS322Hastelloy B-2(哈氏B2)耐强还原性介质腐蚀,改善抗晶间腐蚀性,高温中盐酸及中浓度硫酸环境中使用 NS334Hastelloy C276(哈氏C276)耐氧化性氯化物水溶液及湿氯、次氯盐酸腐蚀,用于强腐蚀性氧化-还原复合介质环境 1.5904L对氯化物间隙腐蚀和应力腐蚀崩裂有高度抗性,抗点蚀能力略优,在纸浆以及造纸工业和化学工业等方面被广泛应用。

相关主题
文本预览
相关文档 最新文档