当前位置:文档之家› 磨耗形踏面

磨耗形踏面

磨耗形踏面
磨耗形踏面

为了使轮对在钢轨上平稳运行,顺利通过曲线,降低轮缘及踏面的磨耗,延长镟轮里程,踏面和轮缘应有合理的外形。

如图3-12所示,我国规定的机车锥形踏面的特点如下:

(1)轮缘厚度为33mm,高度28mm,轮缘外侧与水平面成65度叫角(俗称轮缘角)。

(2)踏面有1:20和1:10两段斜面,在外侧有5X45度的侧角。

(3)轮缘与踏面连接处有一段R16的圆弧,轮缘内侧有R16的倒角,以便引分一车轮顺利通过护轨。

锥形踏面其有斜度,可以减少轮对通过曲线时车轮的纵向滑动;直线运行时轮对自动对中,避免轮缘单靠而形成偏磨。但是,随着机车运行速度提高,锥形踏面斜度引起转向架的蛇行运动会加剧,影响机车的横向稳定性及平稳性,因此踏面斜度不宜很大。

斜度为1:20的一段踏面是经常与钢轨接触的,磨耗较快,易使踏面形成凹陷,轮对在进入道岔或小半径弯道时可能产生剧烈跳动。为了避免这种情况,在l:20斜度的外侧有一段1:10的斜度,这一段仅在小半径曲线上才与轨面接触。

近20多年来,对于踏面外形的研究有了很大的进展,低斜度锥形踏面及磨耗形踏面得到了应用。

日本及法国的高速列车,为了提高机车的蛇行临界速度,把l:20斜度的锥形踏面改为1:40斜度。但在运用中踏面磨耗后,斜率显著增大,需及时嵌轮,尽量保持踏面原有外形。

锥形踏面相对横动数毫米时,踏面的接触范围很窄,在这狭小的接触面积上产生局部磨耗,使踏面呈现凹形。但踏面达到某种凹形程度后,外形便相对稳定,磨耗变慢。如果把踏面外形设计成磨耗形(凹形),则轮轨接触一开始就比较稳定,磨耗较慢,这就是近30年来世界各国广泛采用的磨耗形踏面。

新设计的磨耗形踏面与锥形踏面相比,在外形上的主要特点是:

(l)在直线上踏面与圆弧形轨头接触部不是锥形而是圆弧形的凹面。轨头表面圆弧半径通常为R300,踏面圆弧半径宜为R500左右,这两个圆弧半径相差不宜过小,否则踏面的等效斜率过大。

(2)轮缘根部与踏面连接处有一段小圆弧R14~R16,磨耗形踏面在此小圆弧与踏面连接处加了一段过渡圆弧,通常为R100左右,正是这段过渡圆弧避免了踏面和轮缘与钢轨的两点接触。

图3一13所示为我国钢轨断面图。图3一14所示为我国定型的机车磨耗形踏面―JM踏面外形。

(3)磨耗踏面的等效斜率越大,有利于曲线导向。

(4)锥形踏面轮缘向钢轨贴靠时,轮轨呈两点接触{如图3-15(a)所示}:一点接触于踏面,传递轮荷重;一点接触与轮缘C,传递轮缘力,该点与钢轨有相对速度,磨耗较快。而磨耗形踏面到从踏面到轮缘接触的过渡是连续过程,轮轨间总是一点接触,如图3-15(b)所示。接触点C’的位置随轮缘力的大小而变化,接触处的轮缘角随轮缘力的增大而增大。由于轮轨一点接触,故轮缘磨耗大为减少,通常可较锥形踏面减少一半。

(5)与锥形踏面相比,磨耗形踏面的磨耗也较少。其原因:一是凹形踏面与轨头的接触面积较大,接触应力小;二是通过曲线轮对横动时,踏面与轨头接触点的变动范围较宽,亦即磨耗带较宽(见图3-16),减轻了踏面及轨面的磨耗。

磨耗形踏面的优点是:

(1)延长了镟轮里程,减少了镟轮时的车削量。

(2)在同样的轴重下,接触面积增大,接触应力较小;在同样的接触应力下,容许更大的轴重。

(3)减少了曲线上的轮缘磨耗。

磨耗形踏面的缺点是:等效斜率较大,对机车的蛇形稳定性不利。为此,对于速度较高的机车,必须采用相应的措施来保证机车具有足够的蛇形稳定性。

关于车轮踏面圆周磨耗原因、危害及处理方法的调研报告

关于车轮踏面圆周磨耗原因、危害及处理方法的调研报告 摘要随着铁路货运经营管理模式的多元化发展,铁路货车高速、重载的运输需求日益升温,如何稳步提升铁路货车车辆安全运行品质,有效防止列车惯性故障,维护安全稳定的运输环境是铁路货车车辆运用部门的重要难题之一。轮对作为铁路车辆转向架中的关键部件,对车辆的安全运行起着至关重要的影响。常见的轮对故障有:车轮踏面擦伤、剥离及局部凹入、熔堆、欠损,车轮踏面圆周磨耗过限,轮缘磨耗过限及其它设备故障。通过对现场作业车辆车轮踏面圆周磨耗故障的调研,总结出可能引发车轮踏面圆周磨耗故障发生的原因、危害及车辆运用的控制措施。 关键词铁路货车;踏面圆周磨耗;控制措施 1 车轮踏面外形结构 在很长的一段时间里,车轮的踏面结构为锥形,即车轮踏面由具有一定锥度的两段直线组成。在锥形踏面长期运行过程中,每次旋削后,存在踏面外形和钢轨顶部断面形状不匹配、运用初期磨耗较快、旋削切削量大等问题。从大量的现场运用实践中总结出:不论车轮踏面初始形状如何,经过运用磨耗后,车轮踏面趋向一个“稳定形状”,并且形状一旦稳定,磨耗就会减慢,在认识了锥形踏面存在的问题和踏面磨耗规律之后,我国铁路货车采用了现在的LM磨耗型踏面。LM磨耗型踏面的外形结构如图1所示。 2 车轮踏面圆周磨耗超限的原因 1)在充分满足铁路货车高速、重载运输需求的前提下,铁路货物列车的制动距离也相应延长,闸瓦与轮对的粘着摩擦时间延长、摩擦作用力增大,在制动过程中,闸瓦表面与车轮踏面圆周的磨耗也必然相对增加,势必增大了车轮踏面圆周的磨损,然而,闸瓦可以随时更换,而轮对的更换与处理,则需要将故障轮对车辆扣送到具有一定资质的检修部门,检修不及时,形成车轮踏面圆周磨耗超限故障; 2)部分车辆的制动机发生故障或制动机作用不良,个别司机制动、缓解操作不当,致使车辆长期带闸运行,闸瓦与车轮踏面长时间磨损,轮对沿钢轨长距离滑行,产生巨大的滑动摩擦力等诸多情况,都会形成车轮踏面圆周磨耗超限问题的发生; 3)高磷磨合闸瓦材质不良,工艺标准低下的影响。个别高磷磨合闸瓦生产厂家不按工艺要求制作闸瓦,致使闸瓦整体硬度偏大,从车轮和闸瓦构成的摩擦副考虑,车轮踏面的磨耗没能得到有效控制,闸瓦中含有过硬的金属粉沫较多且不均匀或局部有硬点硬面,对高速运行的车辆,突然进行列车制动,闸瓦的局部硬点极易刮坏车轮踏面。加之磷受热易氧化的化学特性,车辆运用过程中,闸瓦、踏面之间还会产生闸瓦鎏铁、金属镶嵌现象,导致车轮踏面出现10mm~60mm

货车车轮踏面损伤有限元分析

货车车轮踏面损伤 温度场与应力场的有限元分析 货车车轮踏面损伤温度场与应力场的有限元分析 摘要:本文通过对21t轴重、120km/h的货车车轮在一次紧急制动过程中的温度场和应力场分布进行有限元模拟,探讨分析了温度场和应力场分布与货车车轮踏

面损伤的关系,为车轮的热疲劳损伤机理研究提供了技术储备和参考。 关键词:货车车轮,温度场,应力场,有限元模拟,热疲劳损伤。 正文: 提速和重载是提高铁路运输能力的有效措施,已成为铁路货车发展的趋势。我国货车目前制动方式仍然是踏面制动,列车车轮在强摩擦、高热负荷以及大轮轨作用力等恶劣条件下工作。列车在制动过程中,动能逐渐转变为制动装置产生的热能,对于采用踏面制动的高速重载铁路货车,这样的制动过程非常严苛,由此产生的热疲劳损伤已成为车轮失效的主要形式之一。车轮经过多次制动后,会在车轮与铁轨的接触踏面上产生均匀分布的横向裂纹,周围会伴随剥离、掉块等现象。因此,在国家倡导货运列车提速的前提下,现有的踏面制动正面临的严峻的挑战,也对车轮的抗热损伤能力和疲劳寿命提出了更高的要求。由于热损伤和疲劳损伤都与车轮在紧急制动过程中的温度场和应力场分布有密切的关系,本文以21t轴重、120km/h的货运列车车轮为研究对象,拟结合具体货车车轮的结构,利用建模软件对其建模,通过有限元模拟其紧急制动过程中的温度场和应力场分布,并针对实际踏面损伤情况对其模拟准确性给予评估,为进一步研究车轮的热疲劳损伤提供技术参考。 1、车轮紧急制动温度场模拟 货车车轮的轮径为840mm,轮辋内侧内径为710mm,轮毂孔直径为170mm,轮辋外径为273mm,理论重量351 kg。车轮材料为CL60,材料各项物热参数如下:弹性模量E =2.05×105 MPa,泊松比μ=0.3,密度ρ=7800 kg/m3,热膨胀系数α=10.3×10-6℃-1,比热容c=470 J/(kg·K),热传导率k =51W/(m·K),对流换热系数h=40W/(m2·K)。 由于车轮是周向对称的结构,在考虑热流输入车轮踏面和车轮的热耗散时,可以认为在车轮的周向是无变化的,即温度场是轴对称的,因此,选取车轮的1/18进行分析,即取周向20°的模型。车轮的三维模型如图1。

地铁列车转向架轮对损伤

地铁列车转向架轮对损伤分析及建议 摘要:本文总结了地铁列车轮对的主要损伤形式,包括车轮轮缘异常磨耗、车轮踏面擦伤和剥离及轮对失圆等,对形成这些损伤的原因进行了分析,并且根据这些原因提出了一些个人的建议和防范措施。 关键词:地铁列车,转向架轮对,损伤,分析及建议abstract: this paper summarizes the subway train wheels of the main form of damage, including the wheel rim abnormal abrasion wheel tread, bruises and stripping and round round of loss, etc, to form the damage causes are analyzed, and based on these reasons put forward some personal advice and preventive measures. key words: the subway train, wheel bogie to, damage, analysis and advice 1转向架轮对的损伤形式 1.1轮缘损伤 轮缘磨耗过快或轮缘偏磨都属于构成轮缘损伤的异常磨耗形式。轮缘的磨耗主要是指车轮在做蛇行运动时,轮缘经常与钢轨内侧面发生冲撞磨耗;以及车辆在通过曲线时由于离心力的作用,外侧车轮轮缘与钢轨侧面经常发生磨耗。左右两侧中一侧的平均轮缘磨耗

率明显高于另一侧的现象称之为轮缘偏磨。 1.2踏面损伤 踏面的损伤形式有踏面圆周磨耗、踏面擦伤、擦面剥离等。 1.2.1踏面圆周磨耗 车轮踏面圆周磨耗是指车轮踏面在运用过程中直径尺寸减小,并改变了踏面标准轮廓。 由于踏面的异常磨耗,其磨耗速度大于轮缘的磨耗速度,使轮缘厚度测量值过大,这种现象被称为轮缘“虚假”增厚。深圳地铁1号线车辆在计划修过程中发现轮缘“虚假”增厚现象较为频繁,其中2008年共发现36根轮对因踏面磨耗致使轮缘厚度不断增厚超出标准。 由于轮对踏面磨耗,还有可能造成一些其他形式的损伤。比如在踏面上出现凹状的沟槽,这种现象在拖车上尤为明显;还比如在车轮踏面外侧产生一个错误的“轮缘”,如图1所示。用第四种检查器分别检测以车轮踏面最底点及错误轮缘顶点为基准点时轮缘高度,取其差值。该轮缘高度不应超过3.5 mm。 图1 1.2.2踏面擦伤 车轮踏面擦伤问题一直困扰着地铁车辆的检修部门,由于车轮踏面擦伤后将导致车辆运行时振动异常,噪声增大,乘坐舒适性降低,因此需要对擦伤的车轮及时镟修,这将增大车辆的维护成本,降低

浅谈材料对铁道车辆车轮踏面接触疲劳的影响

浅谈材料对铁道车辆车轮踏面接触疲劳 的影响 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 日前,经笔者调研发现,国内25B、25G、25T 型铁路客车和南京地铁、深圳地铁、上海地铁的部分车辆轮对踏面出现了不同程度的剥离损伤。相关资料显示,国内外很多铁路机车车辆在运营过程中都被车轮踏面剥离所困扰。踏面剥离这种踏面非正常磨耗,对世界许多国家的铁路工业而言都是一个相当严重的问题且形势愈加严峻。轮对踏面的非正常磨耗,不仅增加了运营维护成本,到一定程度甚至将直接影响行车安全。 踏面剥离问题基本可分为三类:接触疲劳剥离、制动剥离、擦伤剥离。其中制动剥离仅在踏面制动条件下才会发生,原因是制动工况不良导致踏面产生热裂纹而造成的,擦伤剥离在踏面制动、非踏面制动条件下均可能发生,原因是轮轨间滑动或滚滑导致车轮踏面表面产生马氏体而造成的,对于这两类剥离问题,可从改善车辆制动和运用工况来进行缓解;本文主要从材料的角度探索和分析踏面接触疲劳剥离现象。

1 原因分析 轮对的主要工作方式是在钢轨上做类似于滚动的运动(实际上是蠕滑)。车轮通过一个很小的轮轨接触面积将车辆载荷传递给了钢轨,通常会使局部载荷超过车轮或钢轨材料的弹性极限,轮轨接触面在接触压应力的反复长期作用后,会引起接触表面因疲劳损伤而使局部区域产生小块金属剥离,这种疲劳破坏现象称为接触疲劳。接触疲劳与一般疲劳一样,同样有疲劳裂纹产生和疲劳裂纹扩展两个阶段。长时间的接触疲劳被认为是受到循环载荷作用的接触面的主要失效机制。 接触疲劳破坏形式有麻点剥离(点蚀)、浅层剥离和深层剥离三类。在接触表面出现深度在以下的针状或痘状凹坑,称为麻点剥离;深度为~ 的剥离为浅层剥离,浅层剥离剥块底部大致与接触表面平行。深层剥离的深度和表面强化层深度相当,有较大面积的表层压碎。 轮对踏面同时有麻点剥离、浅层剥离和深层剥离。 影响轮对踏面接触疲劳的因素很多,比如车轮本身材料、踏面表面硬化情况、车轮所采用的踏面型式、轮轨接触面的光洁度、车辆运行工况等。而笔者认为,从本质上讲,决定抗疲劳性能的还是车轮材料本身的

铁路货车车轮踏面圆周磨耗及轮缘磨耗的原因分析及改进措施

摘要:随着我国铁路高速和重载的发展,轮轨磨耗问题日趋严重,每年都给铁路运输业造成巨大的经济损失,其解决与否直接影响到铁路的快速发展。为了进一步了解车轮磨耗的原因,从而提出降低磨耗的有效措施,本文分别从转向架形式、车轮位数、轮瓦磨耗、轮轨磨耗等方面对车轮磨耗进行调研,并将影响铁路货车车轮磨耗的主要因素归结为货车轴重、货物周转量、闸瓦质量、车轮硬度、制动形式、闸调器作用影响及基础制动装置制造尺寸等方面。通过对段修车检修轮对磨耗情况的调研、分析,总结了磨耗规律,提出了改进措施,结论表明,推广应用新型车轮以提高车轮踏面及轮辋硬度、进一步提高制动梁、闸瓦托制造、检修质量,严格控制各项尺寸在公差范围之内、加强对闸调器在运用中正确使用、控制同一轮对两车轮的轮径差使车轮踏面磨耗均匀化的有效途径;铁路货车采用状态修的维修管理办法是控制和降低轮缘磨耗发生的有效手段。提出的建议可为改善车轮磨耗,降低检修劳动量,确保运输安全具有实际意义。 关键词:车轮踏面圆周磨耗;轮缘磨耗;原因分析;改进措施 中图分类号: u272 文献标识码: a 文章编号: 1673-1069(2016)21-86-3 0 引言 随着我国铁路高速和重载的发展,车轮损伤形式逐渐呈多样性,尤其是轮对踏面圆周磨耗及轮缘磨耗问题日趋严重,严重影响货车车辆的运行品质,本文对车轮损伤的性质及产生原因进行了分析,对车轮损伤产生的危害进行了阐释,为进一步分析车轮磨耗的规律,探究其产生原因,提出改进措施,本文分别从转向架形式、车轮位数、轮瓦磨耗、轮轨磨耗等方面对车轮磨耗进行调研,并将影响铁路货车车轮磨耗的主要因素归结为货车轴重、货物周转量、车轮硬度、制动形式及基础制动装置制造尺寸等方面。通过对段修车检修轮对磨耗情况的调研、分析,总结了磨耗规律,提出了改进措施,结论表明,推广应用新型车轮以提高车轮踏面及轮辋硬度、进一步提高制动梁、闸瓦托制造、检修质量,严格控制各项尺寸在公差范围之内是降低车轮踏面磨耗并使车轮踏面磨耗均匀化的有效途径。此次调研是为了通过对运用货车轮对故障现象的分析,总结规律,查找损伤产生原因,提出改进措施,降低轴承等零部件的损伤,降低轮对旋修量,提高生产效率,经济效益,保证货车运行平稳性,提高车辆运行品质。 1 车轮损伤及其危害 1.1 车轮的损伤形式 车轮、轮毂是车辆的重要走行部件,在使用中情况较复杂,运用情况恶劣及其在材质及制造工艺上的缺陷等都会造成车轮的损伤,在车轮故障中,踏面擦伤与剥离、车轮裂纹、车轮踏面熔渣、踏面圆周磨耗、轮缘磨耗、轮缘碾堆等,他们都直接威胁着行车安全。 1.1.1 踏面剥离 1.1.1.1 损伤性质 在货车运用中,车轮踏面剥离主要分为制动剥离、接触疲劳剥离及擦伤剥离三种,从材料失效的机理分析,一类是由交变接触应力应力引起的接触疲劳损伤,另一类是由摩擦热循环引起的热疲劳损伤。剥离的产生会加大旋修工作量,降低车轮使用寿命。 1.1.1.2 产生原因 制动剥离是由于制动力不适当,闸瓦与车轮接触部位产生高热导致车轮踏面金属相变,轮瓦接触部位产生高热,在轮轨接触应力作用下,车轮踏面沿疲劳原形成剥离掉块现象。 接触疲劳剥离是由于轮轨接触应力累积所致,当车轮踏面的剪切应力大于踏面剪切屈服强度时,是车轮踏面表层产生塑性变形,在长期的运行中,踏面表面产生疲劳掉块而形成剥离。 擦伤剥离是由于车轮与钢轨之间出现局部摩擦或滑动摩擦,使踏面产生高热,导致车轮

轮对常识

轮对常识 轮对 一、机车车辆上与钢轨相接触的部分,由左右两个车轮牢固地压装在同一根车轴上所组成。轮对的作用是保证机车车辆在钢轨上的运行和转向,承受来自机车车辆的全部静、动载荷,把它传递给钢轨,并将因线路不平顺产生的载荷传递给机车车辆各零部件。此外,机车车辆的驱动和制动也是通过轮对起作用的。对车轴和车轮的组装压力和压装过程有严格要求,轮对内侧距离必须保证在1353±3毫米的范围以内。为保证机车车辆运行平稳,降低轮轨相互作用力和运行阻力,车轴轴颈和车轮踏面的加工椭圆度和偏心度,以及轴颈锥度都不得超过规定限度。随着运行速度的提高,轮对均衡日益具有不可忽视的重要性。 二、分类轮对分为车辆轮对和机车轮对两类。机车轮对又依机车类型分为蒸汽机车轮对、柴油机车轮对、电力机车轮对和动车组的动轴轮对等。柴油机车、电力机车以及动车组的动轴轮对在轴身上装有传动齿轮现代高速客车和动车组均采用盘形制动,在轴身或车轮上装有制动盘。蒸汽机车的轮对有导轮轮对、动轮轮对、从轮轮对和煤水车轮对之分。导轮轮对位于机车前部,起机车导向的作用。动轮轮对起传递机车动力的作用,直接由汽缸活塞(鞲鞴)通过摇杆带动的为主动轮轮对,由主动轮通过连杆带动的为他动轮轮对。动轮轮对的轮心上有曲柄、曲拐销孔和均衡块,且左右两轮的曲柄在组装时应有90°相位差。动轮和导轮的轴承都在车轮内侧。从轮轮对和煤水车轮对与客货车辆轮对形状相似。

轮对按车轴适用的轴承类型可分为滚动轴承轮对和滑动轴承轮对。中国铁路的客车已全部采用滚动轴承轮对,采用滚动轴承轮对的货车也日益增多。 按照最大允许轴重(轮对加于钢轨上的最大静压力)的不同,货车 滑动轴承轮对分为B、C、D、E四种型别,各型轮对的车轴和车轮的各部尺寸除车轮直径外均不相同;客、货车滚动轴承轮对也有RC、RD和RE三种型别,而且同型轮对中还因装用滚动轴承的型号不同而有不同的轴颈长度,用下标号以区别之,如RC、RD等。车轴用中碳优质钢锻造而成具有各段不同直径的圆柱体。按车种可分为机车车轴和客、货车车轴。按轴承类型可分为滑动轴承车轴和滚动轴承车轴。 车轴有下列主要部分:①轮座,车轮压装处,也是车轴上直径最大的部分;②轴颈,车轴上与轴承相作用的部分;③轴身,两车轮之间的部分,有些客、货车车轴的轴身自轮座向中央逐渐缩小,也有一些轴身通长为圆柱形,柴油机车和电力机车的传动齿轮和采用盘形制动的机车车轴的轴装式制动盘即组装在轴身上;④防尘板座,客、货车车轴上轴颈与轮座之间的过渡处,其上装有滑动轴箱的防尘板或滚动轴箱的后挡板;⑤轴领,客、货车车轴两端比轴颈凸出的部分,用以阻挡滑动轴承在轴颈上的过大移动,滚动轴承车轴上没有轴领;⑥轴颈后肩,轴颈上靠近防尘板座的部分,为避免直径突然改变引起应力集中而作成圆弧过渡。 机车车辆在运行中加于车轴的载荷是不断变化的,而且由于轮对不停地旋转,车轴内产生交变应力。因此,必须提高车轴材质的持久极限。为此在制造过程中轴身,须进行全长旋削加工,轴颈和轮座实

货车车轮踏面损伤ansys

货车车轮踏面损伤温度场与应力场的有限元分析 XXXX 专业XX 班XXXX 学号 姓名 摘 要:在铁路运输不断提速及重载的情况下,采用踏面制动方式制动的货车车轮承受着强摩擦、高热载荷及大轮轨作用力的恶劣条件,在反复制动时,车轮将产生热疲劳损伤而造成车轮的失效破坏。本文根据货车的实际工作条件,对21t 轴重、速度为120 km/h 的货车车轮在一次紧急制动过程中的温度场和应力场分布进行了有限元模拟,分析了温度场和应力场的分布与货车车轮踏面损伤之间的关系。研究结果表明,在整个制动过程中,温度与热应力的最高点都集中在闸瓦与车轮的接触摩擦面部位,且随着制动过程的温度不断上升,达到峰值后又缓缓降低;车轮的温度是由踏面向轮轴位置逐渐降低的,越靠近轮轴,温度与热应力值越低;制动结束后,车轮内部的温度高于踏面的温度,最大应力产生在车轮踏面之下。 关键词:货车车轮;温度场;应力场;有限元模拟;热疲劳损伤 FEA of Temperature and Stress Field Distribution on the Touching Area of Freight Train Wheel 1 引言 提速和重载是提高铁路运输能力的有效措施,已成为铁路货车发展的趋势。我国货车目前制动方式仍然是踏面制动,列车车轮在强摩擦、高热负荷以及大轮轨作用力等恶劣条件下工作。列车在制动过程中,动能逐渐转变为制动装置产生的热能,对于采用踏面制动的高速重载铁路货车,这样的制动过程非常严苛,由此产生的热疲劳损伤已成为车轮失效的主要形式之一。车轮经过多次制动后,会在车轮与铁轨的接触踏面上产生均匀分布的横向裂纹,周围会伴随剥离、掉块等现象。因此,在国家倡导货运列车提速的前提下,现有的踏面制动正面临的严峻的挑战,也对车轮的抗热损伤能力和疲劳寿命提出了更高的要求。 由于热损伤和疲劳损伤都与车轮在紧急制动过程中的温度场和应力场分布有密切的关系,本文以21t 轴重、120km/h 的货运列车车轮为研究对象,拟结合具体货车车轮的结构,利用建模软件对其建模,通过有限元模拟其紧急制动过程中的温度场和应力场分布,并针对实际踏面损伤情况对其模拟准确性给予评估,为进一步研究车轮的热疲劳损伤提供技术参考。 2 车轮紧急制动温度场模拟 货车车轮的轮径为840mm ,轮辋内侧内径为710mm ,轮毂孔直径为170mm ,轮辋外径为273mm ,理论重量351 kg 。车轮材料为CL60,材料各项物热参数如下:弹性模量E =2.05×105 MPa ,泊松比μ=0.3,密度ρ=7800 kg/m 3,热膨胀系数α=10.3×10-6℃-1,比热容c=470 J/(kg ·K),热传导率k =51W/(m ·K),对流换热系数h=40W/(m 2·K)。 由于车轮是周向对称的结构,在考虑热流输入车轮踏面和车轮的热耗散时,可以认为在车轮的周向是无变化的,即温度场是轴对称的,因此,选取车轮的1/18进行分析,即取周向20°的模型。 2.1 热流密度的确定: 为简化问题,可以认为在高速行进过程中,踏面的温度在周向是均匀分布的,且热流输入也是均匀的。初速度为120km/h 时,各项制动参数如表1所示。 表1 制动参数 制动初速度(km/h ) 轴重(t ) 减速度(m/s2) 制动距离(m ) 闸瓦压力(kN ) 摩擦系数 热量分配系数 120 21 0.556 1000 21 0.278 0.91 根据热流密度计算公式 f d S t p t q ) ()(η =

轮对镟修作业指导书(2号车轮车床)

作业指导书 轮对镟修作业(2号车轮车床)

轮对镟修岗位作业要领 第2步:镟修前缺陷 检查与测量第3步:车轮镟修作业流程重要质量标准镟修后相关尺寸在规定范围内 根据轮对缺陷及外形尺寸选择镟修 程序劳动防护用品穿戴整齐;工具、量 具准备齐全;量具检定不过期;车 床状态良好 作业要点 第1步:工前准备劳动防护用品齐全,设置防护信号,记录车号按要求测量车轮踏面、轮缘上的剥离等缺陷检 查;轴颈中心孔损伤检查;轮对轮 径等尺寸检测 第4步:轮对镟修后 测量检查镟修后相关尺寸在规定范围内 按要求测量相关尺寸,尺寸在规定范围内第6步:完工清理关闭电源、风源,清理工作场地的 工具备品工完料尽场地清,确保关闭设备电源、风源 第5步:填写记录各数据真实、准确不错、不漏、不涂改 安全风险提示 1. 车轮车削时,工作者必须戴护目镜,防止铁屑溅入眼睛; 2. 工作者工作时必须穿戴防砸皮鞋,防止车轮碾伤或铁屑扎伤; 3. 车床转动时,禁止更换刀具,防止造成人身伤害。 4. 车床转动时切勿用手清理缠绕的铁屑,防止高温烫伤或铁屑割伤;

目次 1.工前准备 (1) 2.镟修前缺陷检查与测量 (2) 3.车轮镟修 (4) 4.轮对镟修后测量、检查 (9) 5.轮对退卸 (14) 6.填写记录 (15) 7.完工清理 (16)

轮对及轴箱装置作业指导书类别:A2修 系统:轮对轴箱装置部件:轮对 轮对镟修作业指导书(2号车轮车床)适用车型:22、25B、25G、19K、25K、25T 作业人员:镟轮工1名作业时间:40-60分钟/条 工装工具:1. 车轮车床; 2. LLJ-B型四种检查器、轮径尺、LM型检查样板、塞尺、 粗糙度样板、游标卡尺、磁力表座及百分表; 3. 护目镜、铁屑钩、铁铲、铁屑小车、扫帚。材料:刀片、轴颈橡胶保护套、擦机布 作业场所:2号车轮车床 环境要求:室内地面清洁,无油泥、杂物,通风良好。操作规程:

南京地铁列车车轮踏面非正常磨耗初析

南京地铁列车车轮踏面非正常磨耗初析 摘要研究了南京地铁列车车轮踏面非正常沟状磨耗的成因。对车轮、钢轨的外形、材质和硬度等进行了测试,分析了轮轨接触和制动磨损的影响,提出了沟状磨耗的原因。测试结果分析表明,该地铁车辆拖车轮踏面上的凹槽磨耗主要是由于在制动施加频度过高、轮轨接触又不均匀的内因作用下产生的。 关键词地铁车辆,轮轨磨耗,踏面磨耗,制动 0 引言 南京地铁自2005年9月开通运行以来,发现轮轨磨耗严重,如:拖车车轮踏面上出现有规律的沟状磨耗,道岔叉心上出现沟状磨损,轮缘和曲线钢轨侧磨等。根据初步观察认为,踏面上的沟状磨耗和道岔叉心上出现沟状磨损与其它地铁系统相比有明显的独特性。因此重点对这两个问题进行研究分析。踏面上的沟状磨耗照片如图1所示。踏面上较深色的部位是沟状磨耗区域,可见一条位于滚动圆附近,另一条位于踏面外侧。道岔叉心沟状磨耗的照片如图2所示,位于左侧轨顶上,长度约70~80mm。据测量的带有沟状磨耗的踏面轮廓线.深度可达 2~3mm。为了及时弄清磨耗的成因,分析非正常磨耗对列车运行的安全影响,南京地铁公司及时组织专家进行会诊,成立专题小组,制定了全面而深入的排查方案。 1 调研方案 一般车轮踏面磨损的主要原因:一是轮轨接触磨损;二是制动闸瓦与踏面的滑动磨损。轮轨接触磨损又以在踏面的不同区域滑动程度不同分为滑动摩擦磨损和滚动疲劳伤损。滑动摩擦磨损发生在轮缘部位,与车辆的曲线通过性能有关;而滚动疲劳发生在踏面部位,以横向裂纹、剥离形式出现。当轮轨接触应力过大时,还会发生接触塑性流动磨损[1-2]。气制动引起的磨损往往与气制动压力、气制动的施加程度、气制动作用时的相对运动速度、闸瓦物理特性和踏面的物理特性等因素有关。 根据动车踏面无类似于拖车踏面的沟状磨耗这一现象,初步将研究重点放在气制动对踏面的磨损上,同时也对轮轨接触进行调研分析。 对于道岔上的沟状磨损主要以测量和轮轨几何接触分析为主。因为没有其它物体与道岔顶面接触的可能性,唯一的可能性就是轮轨的接触引起。 根据以上分析,制定了初步调研范围为:轮轨材质分析,轮轨接触分析,闸瓦特性试验,气制动作用调研和轮轨表面硬度测试等。首期测试项目有:①轮轨材质硬度和成份分析;②闸瓦的成份测试和闸瓦的物理特性试验;③拖车和动车踏面外形的测量和轮轨几何匹配模拟;④测量踏面及钢轨的表面硬度及轮轨接触应力分析;⑤测量不同踏面及钢轨的磨损外形及与道岔的几何匹配分析;⑥气电制动的分配比率及制动压力等。 2 主要测量结果及分析 委托上海材料研究所检测中心对轮轨材质进行检测,50kg/m和60kg/m钢轨样本的材质元素成分含量符合表称值范围;轮子样本(CL60)材质的元素也基本符合表称要求,仅铬(Cr)元素的含量为0.090%(表称值为0.13%~0.23%),略低了些。图3和图4为钢轨的硬度分布图,可见钢轨的硬度分布也正常。对线路上的钢轨也进行了表面硬度测试,测试结果表明,曲线外轨顶面硬度较高可达300~310HB左右;轨头圆角处硬度较低,为260HB;轨头内侧面较高,为350HB左右。而曲线内轨顶面硬度均比外轨顶面高,可达330~350HB左右。 图5和图6为拖车和动车踏面的表面硬度测试结果。由图5可见,第1测点在轮缘角附近,平均硬度为378HB;第2测点位于一较扁平的下凹的槽内,平均硬度为336HB;第3测点在

TB449-1976机车车辆用车轮轮缘踏面外形

中华人民共和国铁道部部标准 TB 449-76 机车车辆用车轮轮缘踏面外形 本标准适用于经过机械加工的机车车辆车轮 标记示例:轮缘踏面外形ATB449-76 车辆用车轮轮缘踏面外形 机车及煤水车用车轮轮缘踏面外形 发布单位 铁 道 部 实施 日 期1977年10月1日 提出单位标准计量研究所 主要起草单位 标准计量研究所 1

TB 449-76 附录一 车辆用车轮轮缘曲线作图说明 1.以OX、OY为座标轴,取OE=16毫米,过E点作BE线垂直于OX,取BE=25毫米。 2.取点A、使A点的横座标为32毫米,纵座标为10毫米。 3.在OX座标上取D、F两点,使DE=1毫米,EF=2毫米,通过D、F两点分别作垂直于OX 的垂线。 4. 在OX座标上,取OK=48毫米,过K点作kk′线段,使kk’与OX成1:20斜度。 5. 求O1、O2、O3、O4各点。 (1)以B为圆为,取R=16为半径作弧,分别相交于D、F垂线,求得O1、O4。 (2)以A为圆心,取AR=18为半径作弧ee′,作线段nn′平行于kk′,两线间垂直距为18毫米,并使nn′相交于ee弧,求得O2。 (3)以O1为圆心,取R=48-16=32毫米为半径作弧dd;又以O2为圆心,取R=18+48=66毫米为半径作ff弧,使dd与ff相交求得O3。 6. 求M与N两点。 (1)以O1为圆心,取R=16毫米为半径作弧bb;通过O3、O1两点作直线延长与bb相交求得M。 (2)以O3为圆心,取R=48毫米为半径作弧gg;通过O2、O3两点作直线相交于gg,求得N。 7. 求BMNP曲线。以O1为圆心,R=16毫米为半径作BM弧;以O3为圆心,R=48 2

轮缘磨耗原因分析及相应对策

轮缘磨耗原因分析及相应对策 1、轮轨不匹配(主要原因) 轮、轨的磨耗与其断面形状有较大关系,在运用调查中发现,在旧线和调车线路上运行的机车,由于钢轨头部已磨耗成稳定的外形,且差异较小,这样磨耗后的踏面外形与钢轨头部相对应部分的外形有较好的匹配,因此减少了磨耗,轮缘偏磨程度也较轻。而那些在新开通时间不长或刚进行换轨的线路上运行的机车,由于钢轨的头部磨耗量不大,还未形成稳定的外形,且内外轨头部磨耗成的外形差异较大,使踏面外形与钢轨头部相对应的形状没有良好的匹配,就加大了磨耗,轮缘偏磨程度也较严重。 解决措施:通过对运行线路的调查,找出对机车轮缘磨耗影响大的弯道,会同工务部门采取对其钢轨内侧面涂油的辅助减磨措施。 2、走形部技术状态不佳 由于左右轮径差、左右轴距差、转向架对角线差、轴颈两侧载荷差及机车球形侧挡间隙等因素,引起轮对的纵向中心线偏向线路的一侧,导致轮缘偏磨。 (1)左右轮径差超过1mm时轮对在运行中就必须依靠踏面斜度来调整左右轮同径,使轮径小的一侧轮缘靠近钢轨,出现轮缘偏磨,踏面异磨。同时迫使整个转向架向轮径小的一侧偏移,其它轮对也产生同向偏移,导致其它轮对也产生不同程度的轮缘磨耗。 (2)左右轴距有偏差时,轴距短的一侧的两个轮子易产生偏磨。 (3)轴颈两侧载荷不均时,载荷小的一侧轮子易产生偏磨。 (4)转向架对角线不等时,对角线较短的两个对角上的轮子易产生偏磨。 (5)车体侧挡间隙变化时,间隙小的一侧轮缘靠近钢轨,易出现偏磨。

解决措施:严格控制机车走行部的检修质量,按范围、工艺及限度进行检修,保证机车机车转向架各结构参数的最佳匹配,从而有效降低机车转向架在不平顺线路或过曲线时产生的横向冲击,以减轻轮缘的偏磨。 3、驱动机构的轮齿上载荷分布不均 由于抱轴承与车轴间存在间隙而使牵引电机壳体产生倾斜、轮齿圆周力引起电枢轴的弯曲、车轴轴颈荷重引起的车轴变形导致大齿轮偏斜等,使牵引齿轮没能正常啮合,作用在齿宽上的力不是均匀分布而是集中在轮齿上靠电动机一侧。在牵引齿轮传递较大的扭矩时,使大齿轮受到一个轴向分力作用,导致轮对发生向齿侧钢轨的横向位移,引起齿端侧轮缘的偏磨。 4、机车运用保养不良 轮缘润滑装置保养、管理不当,故障不及时发现、消除,润滑脂(棒)没有及时补充、更换,使轮缘润滑不良,导致轮缘偏磨;左右制动缸行程不一样,闸瓦间隙不同时,影响两侧的上闸时间,也会出现轮缘偏磨。 解决措施:建立健全机车轮缘润滑装置的管理体制,实施“管、用、修、养”管理考核;增强机车乘务员在运用、保养中的责任心,加强整备作业检查,发现问题及时处理。 5、机车运行速度变化 主要发生在通过曲线时,机车牵引重量少、速度高时外侧轮缘易磨耗,机车牵引重量多、速度低时内侧轮缘易磨耗,其中第1位偏磨较明显。 解决措施:机车定期换向,可以缓解部分机车轮缘的磨耗。

车轮踏面擦伤及剥离故障对车辆安全的影响

车轮踏面擦伤及剥离故障对车辆安全的影响 部门 : 唐山北运用车间 姓名:张学建 专业技术职务:工程师 联系电话: 023—52354

丰台车辆段专业技术干部论文评价标准

目录 摘要 (4) 一、车轮踏面擦伤、剥离故障调查 (5) 二、车轮踏面擦伤、剥离对车辆的影响 (7) (一)对车辆本身方面的影响 (7) (二)对线路的影响 (8) (三)对货物装载的影响 (8) 三、车轮踏面擦伤、剥离的原因 (9) (一)车轮踏面的构造 (9) (二)车轮本身方面的原因 (9) (三)调车方面的原因 (9) (四)线路方面的原因 (10) (五)环境方面的影响 (10) 四、几点建议 (11) 参考资料 (11)

摘要:随着铁路货车运行速度越来越高,车轮踏面擦伤、剥离故障对行车安全构成巨大的威胁,本文车轮踏面擦伤、剥离故障进行了深入的调查和分析,并提出了防范建议。 关键词:车轮踏面、擦伤、剥离、车辆安全、故障。

车轮踏面擦伤及剥离故障 对车辆安全的影响 一、车轮踏面擦伤、剥离故障调查 第六次大提速以来,铁路发展进入了一个新的历史阶段,不光是动车350的高速得以实现,铁路货车也达到了120公里/小时,高速运行对车辆部门来说是一个非常严峻的考验,为保证车辆安全,部局多次强调车辆必须把预防重点放在走行部的安全上,段在对轮对故障防止上采取了加严措施,在很大程度上降低了运用限度标准,(踏面擦伤深度滚动轴承由原来的1mm减少到0.5mm,剥离长度由原来的一处不大于50mm两处每处不大于40mm改为一处不大于20mm两处每处不大于10mm),之所以采取如此加严措施,就是因为踏面擦伤、剥离故障对车辆质量安全影响非常大。然而当前的形势并不乐观,车轮踏面擦伤、剥离故障相当多,从我们各作业场反馈的车轮故障登记表上可以看出这一点,每列车都有几辆踏面擦伤或剥离故障,只不过是有的严重,有的轻微,但不管什么程度,我们都要高度重视,当前车轮故障对安全的影响如(表一),这是我们利用6天时间调查了11列539辆货物列车,发现16辆共计26个车轮有不同程度

轮缘磨耗和踏面磨耗

一、轮缘磨耗 机车通过曲线时,轮缘与轨侧发生磨耗。我国铁路曲线所占比重较大,轮缘磨耗一直是个重大问题。影响轮缘磨耗的因素为:通过曲线时前导车轮的轮缘力及对钢轨冲角,轮缘与轨侧的摩擦系数,轮缘的耐磨性。下面具体分析。 1.减少轮缘磨耗的方法 (1)踏面等效斜率**越大,曲线导向性能越好。**足够大时,转向架前导轴内外车轮踏面上的纵向蠕滑力形成的力偶能帮助转向架沿曲线运行,这就是所谓通过曲线蠕滑力导向,在大半径曲线上有可能避免轮缘接触,即使轮缘与钢轨接触,较大的**总能使轮缘力有所减小;但是,较大的**不利于转向架的蛇行稳定性,这就是通常所说的机车蛇行稳定性与曲线通过性能相矛盾的一个方面。 磨耗形踏面的等效斜率**较大,使轮缘力减小;另外,磨耗形踏面避免了与钢轨的两点接触,使轮缘磨耗显著减少。 (2)机车通过曲线时,径向转向架内各轴能自动向径向位置偏转,车轮与钢轨的冲角大为减小(如果转向架完全占径向位置,则冲角为零),使轮缘磨耗大幅度减少。 (3)转向架固定轴距越长,通过曲线就比较困难,其冲角及轮缘力均较大,轮缘磨耗当然也较大;相反,转向架固定轴距越短,通过曲线就比较容易。两轴转向架与三轴转向架相比,前者通过曲线时轮缘力小得多,冲角也小,轮缘磨耗明显改善,这就是两轴转向架的机车特别适用于多曲线的山区铁路的原因。 (4)三轴转向架C0一C0机车因轮缘磨耗严重而不适宜于多曲线的山区铁路。用B0一B0一B0式机车代替C0一C0式六轴机车,可以显著改善机车的曲线通过性能。给三轴转向架中间轴以适当大的自由横动量,可以在不影响转向架在直线上的蛇行稳定性的条件下,改善转向架的曲线通过性能。中间轮对的自由横动量增大后,使它在半径不大的曲线上能贴靠外轨,参与导向,如图3一17所示,结果有可能使第一轴外轮轮缘力减少20%一30%。 一般而言,间轴贴靠外轨,给中间轴以10一15mm自由横动量,就能在机车通过30om半径曲线时使中间轴贴靠外轨,而不贴靠构架。 必须指出,中间轴的自由横动量不应过大,否则会出现中间轴轮缘磨耗比两端严重的情况。这是因为对于两端操作的机车来说,如果中间轴的自由横动量过大,则上行通过去曲线时,第一轴及中间轴轮缘磨耗,下行通过曲线时,第三轴及中间轴磨耗,这样中间轴轮缘磨耗就比第一轴或第三轴严重。对于这种情况,就应稍减中间轴的自由横动量,使通过小半径曲线时中间轴轮缘不贴靠外轨,中间轴及两端的轮缘磨耗同步。这一中间轴的最佳横动量,与机车线路的曲线状况及运行速度有关,只能通过试验确定。 (5)如果车体与转向架连接装置中采用摩擦旁承,则转向架相对车体回转就要克服摩擦力矩。如果车体与转向架的连接采用橡胶堆旁承或高圆簧支承,则转向架相对车体回转时要克服复原力矩。摩擦力矩和复原力矩对机车的蛇行稳定性有利,但不利于曲线通过。因为这样使第一轴的轮缘力增加,加剧了轮缘磨耗。 (6)机车通过曲线时,后转向架前端比前转向架后端离开轨道中心远,如图3一18所示。如果两端用弹性装置相连,则在后转向架前端连接点c‘与前转向架后端的连接点C之间就会产生一对大小相等而方向相反的横向力K和K‘。K和K‘力分别使前、后两转向架后部向外移动,前转向架由。位移至b位,后转向架由a’位移至b’位,使两转向架的导向轮的冲角减少。K和K‘还分别使前后转向架导向轮的轮缘力减少。轮缘力及冲角减少使轮缘磨耗明显减少。 (7)提高轮箍硬度可以提高轮缘的耐磨性。轮箍硬度由布氏硬度250一275提高至320-340,可以使轮缘磨耗减少一半。 (8)为了减小轮缘与钢轨侧面的摩擦系数,可以采用钢轨侧面润滑或轮缘润滑或者兼施的方法。用这种方法可以使轮缘磨耗减少一半甚至更多。目前我国机车普遍采用轮缘润滑器给轮缘润滑,效果显著。但若保养不当或使用不善会引起踏面枯着恶化。 2.轮缘磨耗的两种特殊类型 轮缘磨耗还有两种特殊类型: a,轮缘偏磨 机车在运用中常发生个别轮对轮缘偏磨现象:往往成为难以解决的难题。轮缘偏磨的主要原因如下: (l)轮对组装位位置不正确。轮对应与转向架构架垂直,转向架内各轮对相互平行。如果某一轮对位搜歪斜,则在走行中会造成一侧轮缘偏磨。

磨耗形踏面

为了使轮对在钢轨上平稳运行,顺利通过曲线,降低轮缘及踏面的磨耗,延长镟轮里程,踏面和轮缘应有合理的外形。 如图3-12所示,我国规定的机车锥形踏面的特点如下: (1)轮缘厚度为33mm,高度28mm,轮缘外侧与水平面成65度叫角(俗称轮缘角)。 (2)踏面有1:20和1:10两段斜面,在外侧有5X45度的侧角。 (3)轮缘与踏面连接处有一段R16的圆弧,轮缘内侧有R16的倒角,以便引分一车轮顺利通过护轨。 锥形踏面其有斜度,可以减少轮对通过曲线时车轮的纵向滑动;直线运行时轮对自动对中,避免轮缘单靠而形成偏磨。但是,随着机车运行速度提高,锥形踏面斜度引起转向架的蛇行运动会加剧,影响机车的横向稳定性及平稳性,因此踏面斜度不宜很大。 斜度为1:20的一段踏面是经常与钢轨接触的,磨耗较快,易使踏面形成凹陷,轮对在进入道岔或小半径弯道时可能产生剧烈跳动。为了避免这种情况,在l:20斜度的外侧有一段1:10的斜度,这一段仅在小半径曲线上才与轨面接触。 近20多年来,对于踏面外形的研究有了很大的进展,低斜度锥形踏面及磨耗形踏面得到了应用。 日本及法国的高速列车,为了提高机车的蛇行临界速度,把l:20斜度的锥形踏面改为1:40斜度。但在运用中踏面磨耗后,斜率显著增大,需及时嵌轮,尽量保持踏面原有外形。 锥形踏面相对横动数毫米时,踏面的接触范围很窄,在这狭小的接触面积上产生局部磨耗,使踏面呈现凹形。但踏面达到某种凹形程度后,外形便相对稳定,磨耗变慢。如果把踏面外形设计成磨耗形(凹形),则轮轨接触一开始就比较稳定,磨耗较慢,这就是近30年来世界各国广泛采用的磨耗形踏面。 新设计的磨耗形踏面与锥形踏面相比,在外形上的主要特点是: (l)在直线上踏面与圆弧形轨头接触部不是锥形而是圆弧形的凹面。轨头表面圆弧半径通常为R300,踏面圆弧半径宜为R500左右,这两个圆弧半径相差不宜过小,否则踏面的等效斜率过大。 (2)轮缘根部与踏面连接处有一段小圆弧R14~R16,磨耗形踏面在此小圆弧与踏面连接处加了一段过渡圆弧,通常为R100左右,正是这段过渡圆弧避免了踏面和轮缘与钢轨的两点接触。 图3一13所示为我国钢轨断面图。图3一14所示为我国定型的机车磨耗形踏面―JM踏面外形。 (3)磨耗踏面的等效斜率越大,有利于曲线导向。 (4)锥形踏面轮缘向钢轨贴靠时,轮轨呈两点接触{如图3-15(a)所示}:一点接触于踏面,传递轮荷重;一点接触与轮缘C,传递轮缘力,该点与钢轨有相对速度,磨耗较快。而磨耗形踏面到从踏面到轮缘接触的过渡是连续过程,轮轨间总是一点接触,如图3-15(b)所示。接触点C’的位置随轮缘力的大小而变化,接触处的轮缘角随轮缘力的增大而增大。由于轮轨一点接触,故轮缘磨耗大为减少,通常可较锥形踏面减少一半。

浅淡车轮踏面擦伤的原因

继续教育学院毕业论文 浅淡车轮踏面擦伤的原因及措施建议 姓名:金亮 班级:10铁道车辆 指导教师:罗世民副教授 时间:二0一一年十月

浅淡车轮踏面擦伤的原因及措施建议 摘要 本文对铁路货车车轮踏面擦伤故障原因和危害进行了总结分析,并针对新技术、新设备运用现场及检车员作业的实际,提出了几个方面的建议和应采取的措施、对策。 轮对是转向架的重要部件之一,也是直接影响车辆运行安全的关键部件之一。轮对承受着车辆的全部载荷,且在轨道上高速运行,而轮对踏面局部擦伤后,车辆振动急骤增加,使车辆零部件的损伤加剧、缩短了其使用寿命,同时也增加了对货物的损伤。因此,车轮踏面擦伤将是严重威胁列车提速安全的重要问题之一。为进一步探讨轮对踏面擦伤的原因,在货车检修工作中针对造成擦伤故障的几个原因进行了调查分析,并提出了相关建议。 [关键词]:轮对;踏面;擦伤;分析;措施

目录 摘要 (1) 第一章轮对踏面擦伤故障造成的危害 (2) 1.1给列车运行安全带来害 (2) 1.2缩短轮对的使用寿命 (2) 第二章轮对踏面擦伤故障原因分析 (3) 2.1闸瓦间隙自动调整器故障 (3) 2.2机车乘务员对车辆制动故障应急处理不当或运行中操作不当 (3) 2.3空重车调整装置调整不正确 (3) 2.4车辆空气制动机故障 (4) 2.5列检职工列车作业质量低 (4) 2.6制动波速不一致 (4) 2.7基础制动故障或调整不当 (4) 2.8同一轮对上两个车轮直径差过大时 (4) 第三章预防及减少车轮踏面擦伤的措施建议 (6) 3.1提高轮对对质量,采用新型铸钢,辗钢或弹性车轮 (7) 3.2加快空重车调整装置的改造 (8) 第四章结论 (9) 致谢 (10) 参考文献 (11)

轮对检修、使用要求

轮对检修、使用要求 质检室 2005年2月 1

关于提速车轮的管理 及使用检修要求 为适应铁路运输提速发展的要求及货车新技术、新工艺的变化,便于了解和掌握提速车轮的基本情况及运用状态,特对提速车轮的管理及使用检修提出如下要求: 一、提速车轮的概念; 1、提速轮对是指采用符合TB/T2817的要求,且新品车轮经过静平衡试验(最大静不平衡值为125g〃m,标记为E2)的HDS或HDZ等型车轮、50钢车轴及能适应120km/h运行速度的SKF197726、352226X2-2RZ、AP130等型轴承的轮对。同一轮对两车轮直径差不大于1mm。 2、减重轮对是指装用HDZB(HDZC)型铸钢车轮或HDSA 型辗钢车轮、50钢车轴及无轴箱滚动轴承的轮对。 3、提速且减重轮对是指提速轮对上装用HDZB(HDZC)和HDSA型车轮。 二、车轮的主要参数及型式尺寸: 1、HDSA型车轮是指轴重为21t,能够满足运行速度120km/h,轮辋设计厚度为50mm,S形辐板的薄轮辋整体碾钢车轮。其主要参数及型式尺寸为: a)静态轴重:≤21t; b)运行速度:≤120km/h; c)车轮滚动圆直径:Φ840+6 +0 mm; d)轮辋厚度最小50mm; e)轮辋宽度:135+5 +2 mm; f)辐板形状:S形。 2、HDZB型车轮是指轴重为21t,能够满足运行速度120km/h,轮辋设计厚度为50mm,大圆弧形辐板的薄轮辋整体铸钢车轮。其主要参数及型式尺寸为: a)静态轴重:≤21t; b)运行速度:≤120km/h; c)车轮滚动圆直径:Φ840+6 +0 mm; d)轮辋厚度最小50mm; e)轮辋宽度:135+5 +2 mm; f)辐板形状:采用大圆弧辐板。 HDZB型车轮在内侧辐板上铸造如下标记: a)车轮制造年月,如0105; b)车轮制造工厂代号:CO; c)车轮级别:B; d)车轮钢代号:Z; e)车轮型号:HDZB; f)车轮制造顺序号:123456。 HDZA型车轮是指轴重为21t,能够满足运行速度120km/h,轮辋设计厚度为65mm,大圆弧辐板的碳素钢整体铸钢车轮。其主要参数及型式尺寸为: a)静态轴重:≤21t; b)运行速度:≤120km/h; c)车轮滚动圆直径:Φ840+10 +0 mm; d)轮辋厚度最小65mm; e)轮辋宽度:135+5 +2 mm; 2

地铁车辆车轮踏面异常磨耗原因初探_乔青峰

文章编号:1002-7602(2011)06-0028-05 地铁车辆车轮踏面异常磨耗原因初探 乔青峰 (南车青岛四方机车车辆股份有限公司技术中心,山东青岛266111) 摘要:运营速度80km/h常规城轨车辆的基础制动方式基本采用踏面制动+合成闸瓦,文章针对城轨车辆合成闸瓦对车轮踏面磨耗的影响、制动力分配方式对踏面磨耗的影响、闸瓦与车轮的匹配及热负荷计算等进行了分析研究,探讨了造成地铁车辆踏面异常磨耗的原因。 关键词:踏面制动;合成闸瓦;热负荷;踏面异常磨耗 中图分类号:U270.35文献标识码:B 1合成闸瓦造成的踏面异常磨耗 目前,对于运营速度低于80km/h的地铁车辆,基础制动方式主要采用踏面制动。由于地铁线路的站间距短、车站多、制动频繁,单纯空气制动无法满足制动热负荷要求,所以一般城轨车辆均采用空气制动+电制动的方式,正常工况下,优先使用电制动,电制动力不足时,空气制动补偿,以满足制动能力的需要。纯空气机械制动仅能满足短时间(约一个折返)运行,比如当电制动发生故障时,使用空气制动能保证车辆安全返回车辆段进行维修。 合成闸瓦的散热性较差,因此制动过程产生的热负荷90%以上被车轮吸收;同时由于车轮承担支撑车辆的重量,运行导向,传递牵引力、制动力等交叉工作,从而使得车轮承受过多的热负荷,当车轮承受的热负荷超过自身承受极限时,车轮踏面出现剥离、热裂纹、异常磨耗等热损伤。 另外由于部分地铁车辆司机的误操作(频繁使用快速制动),使得制动过程中补充了过多的空气制动,制动过程中产生的巨大热负荷在车轮踏面产生很大的温度梯度,导致产生过大的热应力,最终导致热裂纹、异常磨耗的产生。 车轮的异常磨耗最终会导致车辆的振动加大,从而影响整车的舒适度、动力学性能。若踏面旋修不及时,异常振动将会导致钢轨的异常磨耗,从而导致轮轨的工作环境持续互相恶化。 1.1车轮踏面的沟槽状磨耗 在上海地铁、南京地铁、天津地铁、北京地铁均批量出现过此种磨耗(图1)。全国各地曾投入大量的人 收稿日期:2011-01-30 作者简介:乔青峰(1978-),男,工程师。力、物力对此现象进行多方面研究。 对于制动频繁、热负荷较大的城轨车辆,若电空制动力的分配比例、空气制动的切入点设置不合理,很容易导致此种磨耗,且基本全部出现在拖车车轮。其根源在于过高的热负荷使闸瓦温升过高,导致闸瓦的材质、物理性能发生变化,引起合成闸瓦摩擦材料局部摩擦热膨胀,温度越高,这种磨耗在车轮踏面的外侧越容易发展;再加上闸瓦在横向分力下发生横向摩擦,反作用于车轮踏面,使得踏面出现此磨耗。异常磨耗的先期表现为踏面热裂纹、 剥离等缺陷。 图1车轮沟槽状磨耗 1.2车轮踏面的凹形磨耗 在大雾、雨水、冰、雪较多的季节,车轮踏面易发生凹形磨耗(图2)。据相关文献,在北欧诸国,车轮踏面此种磨耗较严重,这是由于制动过程中水介入到闸瓦摩擦表面引起的,这种现象通过试验得到了证实。 造成踏面凹形磨耗的原因是:闸瓦把车轮磨削下来的金属碎屑带入到摩擦界面上,由于闸瓦材质较软, # 28 # 问题讨论铁道车辆第49卷第6期2011年6月

相关主题
文本预览
相关文档 最新文档