当前位置:文档之家› 磁控溅射

磁控溅射

磁控溅射
磁控溅射

磁控溅射

1、磁控溅射

磁控溅射是一个磁控运行模式的二极溅射。它与二~四极溅射的主要不同点:一是,在溅射的阴极靶后面设置了永久磁钢或电磁铁。在靶面上产生水平分量的磁场或垂直分量的磁场(例如对向靶),由气体放电产生的电子被束缚在靶面附近的等离子区内的特定轨道内运转;受电场力和磁场力的复合作用,沿一定的跑道作旋轮转圈。靶面磁场对荷电粒子具有约束作用,磁场愈强束缚的愈紧。由于电磁场对电子的束缚和加速,电子在到达基片和阳极前,其运动的路径也大为延长,使局部Ar气的碰撞电离几率大大增加,氩离子Ar+在电场作用下加速,轰击作为阴极的靶材。把靶材表面的分子、原子及离子及电子等溅射出来,提高了靶材的飞溅脱离率。被溅射出来的粒子带有一定的动能,沿着一定的方向射向基体,最后沉积在基体上成膜。经过多次碰撞后电子的能量逐渐降低,摆脱磁力线的束缚,最终落在基片、真空室内壁及靶电源阳极上。

工作气体电离几率的增加和靶材离化率的提高,使真空气体放电时内阻减小,故磁控靶发生溅射沉积时的工作电压较低(多数在4-600V之间),有的工作电压略高(例如>700V),有的工作电压较低(例如300V左右)。磁控溅射发生时,其溅射工作电压主要降落在磁控靶的阴极位降区上。

由于磁控溅射沉积的膜层均匀、致密、针孔少,纯度高,附着力强,可以在低温、低损伤的条件下实现高速沉积各种材料薄膜,已经成为当今真空镀膜中的一种成熟技术与工业化的生产方式。磁控溅射技术在科学研究与各行业工业化生产中得到了迅速发展和广泛应用。

总之,磁控溅射技术就是利用电磁场来控制真空腔体内气体“异常辉光放电”中离子、电子的运动轨迹及分布状况的溅射镀膜的工艺过程。

2、产生磁控溅射的三个条件

磁控气体放电进而引起溅射,必须满足三个必要而充分的条件:

(1)第一,具有合适的放电气体压强P:直流或脉冲中频磁控放电,大约在0. 1 Pa~10Pa 左右),典型值为5×10-1Pa;射频磁控放电大约在10-1~10-2Pa。

(2)第二,磁控靶面具有一定的水平(或等效水平)磁场强度B(大约10mT~100mT),典型值为30~50mT,最低也要达到10~20 mT(100~200高斯)。

(3)第三,真空腔体内,具有与磁场正交(或等效正交)的电场V,典型值500~700V。

我们通称以上三条为P-B-V条件。

3、磁控溅射离子镀

(1)在基体和工件上是否施加(直流或脉冲)负偏压,利用负偏压对离子的吸引和加速作用,是离子镀与其它镀膜类型的一个主要区别。蒸发镀时基体和工件上加有负偏压就是蒸发离子镀;多弧镀时基体和工件上加有负偏压就是多弧离子镀;磁控溅射时基体和工件上加有负偏压就是磁控溅射离子镀,这是磁控溅射离子镀技术的一个重要特点。

(2)磁控溅射离子镀是把磁控溅射和离子镀结合起来的技术。在同一个真空腔体内既可实现氩离子对磁控靶材的稳定溅射,又实现了高能靶材离子在基片负偏压作用下到达基片进

行轰击、溅射、注入及沉积作用过程。整个镀膜过程都存在离子对基片和工件表面的轰击,可有效清除基片和工件表面的气体和污物;使成膜过程中,膜层表面始终保持清洁状态。

(3) 磁控溅射离子镀可以在膜-基界面上形成明显的混合过渡层(伪扩散层),提高膜层附着强度;可以使膜层与工件形成金属间化合物和固熔体,实现材料表面合金化,甚至出现新的晶相结构。

(4)磁控溅射离子镀形成膜层的膜基结合力好、膜层的绕镀性好、膜层组织可控参数多、膜层粒子总体能量高,容易进行反应沉积,可以在较低温度下获得化合物膜层。

(5)磁控溅射离子镀可以消除膜层拄状晶结构,生成均匀的颗粒状晶结构。

4、磁控溅射偏置电压

(1)偏置电压的类别:根据磁控溅射基片即工件偏置电压的不同作用,可分为直流负偏压、脉冲负偏压、交流偏压、零偏压与悬浮偏压五个类别。

(2)偏置电压的不同作用

在基片上加负偏压后,基-阳极间可产生更大的电场力,可使等离子体中的正离子获得更大的能量和加速度轰击基片和工件;可对从靶材表面被溅射出来的原子或分子团等带电粒子进行某种程度的导向和沉积,绕镀性好;在基片和工件上施加不同的负偏压可以消除基片和工件膜层表面在不同的真空度条件下形成的锥状晶和拄状晶;在工件上施加交流偏压,可以中和绝缘膜层上积累的正电荷,减少和消除工件表面打弧;在工件上施加脉冲偏压,因其占空比可连续调节,可以在一定程度上调节工件表面温升。

基片电位直接影响入射的电子流或离子流。基片有目的地选择与施加不同的偏压、选择合适的幅值或“占空比”、使其按电的极性接收电子或正离子,不仅可以净化基片,增强薄膜附着力,而且还可以改变薄膜的结晶结构。基片选用和施加何种偏置电压对溅射、沉积及镀膜的工艺过程和薄膜质量可以产生严重影响。如果偏压的类别和参数(电流、电压与占空比)选择合适,膜层的品质和性能可以大为改善。

①直流负偏压

在基片上加直流负偏压,在基-阳极间可产生更大的电场力,使等离子体中的正离子获得更大的能量和加速度轰击基片和工件;另外,还可以对从靶材表面被溅射出来的原子或分子团等带电离子进行某种程度的导向和沉积。由于直流负偏压连续无中断,故对基片有一定的加热升温作用。

②脉冲负偏压

在基片上加中频脉冲直流负偏压可以改变基片与工件沉积离子束流大小;可以减少基片与工件表面打弧,优化膜层结构,提高膜层附着力;由于占空比可连续调节,可以在一定程度上调节或改变工件表面膜层的温度和加热时间;加中频脉冲负偏压还可以提高各个单脉冲的幅值,提高工件反溅射清洗和镀膜的效果。加中频脉冲负偏压有利于降低等离子体的内阻,使工作气体离化几率有一定程度的提高。另外,通过改变中频脉冲直流负偏压数值和占空比大小可以对反应磁控溅射化合物薄膜的颜色及颜色深浅产生影响。

③交流偏压

交流偏压分为中频对称双极脉冲偏压、非对称双极脉冲偏压和射频偏置电压几种;因正弦波不存在占空比可调的问题,故正弦波中频偏压与双极矩形脉冲偏压相比优势不明显,实际使用较少。在工件上施加交流偏压,偏压正负极性来回变换互倒,可以中和绝缘膜层上积累的正电荷,减少和消除工件表面打弧;由于占空比连续可调,可以在一定程度上调节和降低工件表面膜层的温升;特别适合于溅射沉积介质膜层和高品质膜层。

若工件和基体接射频偏置电压,13.56MHZ的高频交流偏压可将工作气体的离花率提高到一个比较高的水平,最后导致靶材离化率的上升和溅射沉积速率的提高;工件和基体接射频偏置电压,可以使溅射沉积膜层光华致密。但是,如果射频偏置电压过大,轰击靶材离子能量过大,容易造成膜层较大的内应力,导致薄膜的开裂和脱落。

④零偏压与悬浮偏压

根据镀膜不同工艺需要,工件和基体可接负极性的直流偏置电压和脉冲直流偏置电压,也可接交流偏置电压(双极脉冲和射频);既可接零电位,也可以悬浮不接(这时基片处于等离子体中自感应偏压值为负十几伏)。这里需要注意的是两点:第一,零偏置电压,不是没有偏压,不是无的概念;第二,基片悬浮不接任何偏置电压,既不是无偏置电压的概念,又不是零偏置电压的概念。

一般允许耐受温度较低的工件在磁控溅射镀膜时,为了防止工件变形,可以选用“零偏置电压”、“悬浮偏置电压”或选用小占空比低幅值偏置电压。

(3)偏压的两个基本特性

不同类别的偏压在镀膜设备的实际使用时,还受到“靶-基距”的共同制约与影响:

①恒流型偏压

当靶—基距较大,基片位于距靶面较远的弱等离子区内。其特点是:最初偏流是随负偏压而上升,当负偏压上升到一定程度以后,偏流基本上饱和,处于恒流状态,称为恒流型偏压。

②恒压型偏压

“靶-基距”较小,基片位于距靶面较近的强等离子区内;偏流为受正电荷空间分布限制的离子电流。其特点是:偏流始终随负偏压的上升而上升。当负偏压上升到一定程度,例如200多伏以后,基本处于恒稳状态,称为恒压型偏压(偏压具体数值与设备的真空条件有关)。由于“靶-基距”较小,造成基片附近有较高的电子密度,撞击加热基片和工件,致使镀件表面膜层的温度较高。

5、基片与工件的“反溅清洗”

(1)将真空金属腔体外壳接地同时接偏压电源输出正极,将基片和工件接偏压电源输出负极,当偏压电源输出的负偏压值足够高,到达的高能离子会将基片和工件表面的原子溅射下来,这种将基材原子溅射下来的过程称为“反溅射”。反溅射可以在镀件表面形成“伪扩散层”。可以清除基片和工件表面的氧化层、加工毛刺、油渍和污物,故又称为基片和工件的“反溅清洗”。

(2)基片和工件的“反溅清洗”可以选用500V~1KV左右的直流或单极脉冲电压;反溅完毕,应该将电压改为正常溅射工艺值,达到低温磁控溅射的要求。

(3)除用基片正偏压来轰击清洗真空腔体内的接地构件外,正常溅射镀膜时基片和工件应该避免使用正的偏置电压。

6、基片架设计要求

(1)由于基片需要加偏压,一般采用导电金属材料制成。如果待镀膜的工件是导电材料,只要与基片上的偏压能够连接导电就行了,对基片的机械几何形状无特殊要求。

(2)若待镀膜的工件是玻璃、陶瓷等不导电的绝缘材料,基片架的机械几何形状设计,除了需考虑导电和悬挂、固定工件外,还应考虑如何发挥偏压对金属离子的某种吸引导向作用,兼顾偏压对绝缘材料工件表面薄膜均匀性的影响。

(3)为了兼顾工件表面薄膜的均匀性和多工件镀膜可以一次完成,通常整个基片架设计成旋转式(公转),各圆拄面或立体面工件局部设计成自旋转(自转)结构。

7、反应磁控溅射

以金属、合金、低价金属化合物或半导体材料作为靶阴极,在溅射过程中或在基片表面沉积成膜过程中与通入的少量反应气体( 氧、氮、碳氢化合物等)反应生成化合物薄膜和绝缘薄膜(如氧化物或氮化物),沉积在工件表面,这就是反应磁控溅射。可以通过调节反应磁控溅射中的工艺参数来调控薄膜特性。

反应磁控溅射分为直流反应磁控溅射和交流反应磁控溅射两种。如果溅射采用的是直流(包括纯直流和脉冲直流)靶电源,这就是直流反应磁控溅射;若溅射采用的是交流(对称或非对称双极脉冲、正弦波或射频)靶电源的,就是交流反应磁控溅射;交流反应磁控溅射电压的

频率处于10~80KHZ范围的,称为中频反应磁控溅射;若反应磁控溅射电压的频率为工业射频(如13.56MHZ)的,我们称为射频反应磁控溅射。射频反应磁控溅射一般不反应溅射沉积绝缘薄膜;绝缘材料可用射频靶电源直接溅射,缺点是靶材的溅射沉积速率较低。

在直流反应磁控溅射镀制绝缘薄膜过程中,反应气体容易在磁控靶面和真空金属腔体内壁反应覆盖一层高阻绝缘介质膜层,造成“阳极消失”和“靶中毒”。阴极靶面的电荷积累,容易引发弧光放电,导致等离子体放电的不稳定和溅射沉积速率的降低,进而影响薄膜的均匀性及重复性,甚至可能造成磁控靶损坏和工件报废。直流反应磁控溅射除了会产生“靶中毒”、“阳极消失”现象外,还会出现溅射速率与反应气体流量之间“迟滞现象”。

在直流反应磁控溅射中,可以利用等离子发射光谱监测等离子体中的被溅金属粒子含量,调节反应气体流量使等离子体放电电压或电流稳定,从而使溅射沉积稳定进行。选用“反应溅射控制器”进行反应气体流量的闭环自动控制,可以取得比较好的镀膜效果;人工控制调节反应气体等工艺参数,调节范围窄,需要掌握熟练的工艺操作技术。

为了保证膜层的成分,又要保证足够的沉积速率,一般工作点要选取在反应磁控溅射“迟滞效应”的过度区内;具体位置可由试生产中实验确定。可将靶电压作为采样参数,调节反应气体流量,使靶电压向预定方向变化:当靶电压偏高时,控制器控制针式电磁阀或控制质量流量计,增加反应气体流量,促使靶面向“反应态”变化,这时靶电压下降,接近流量设定值;当靶电压偏低时,减少反应气体流量,靶面趋于金属化,致使靶电压上升,反向接近流量设定值。最后,根据给定电压,反应气体电磁阀或质量流量计精确控制阀门开启的大小,使反应气体的流量大小可以确保反应溅射的工作点在“过度区”的合适点上。

进行交流中频反应磁控溅射镀制绝缘薄膜时,采用对称双极脉冲或正弦波中频靶电源与磁控双靶(对靶或孪生靶)替代DC溅射,进行交流中频反应磁控溅射,可以克服和解决在直流反应磁控溅射过程中,因“靶中毒”、“阳极消失”和“迟滞现象”和“靶面频繁打弧”等引起等离子体放电不稳定现象。在溅射过程中,几乎没有打弧放电现象发生。当一个磁控靶加的电压处于负半周时,该靶受正离子轰击发生溅射;当电压处于正半周时,电子被加速到靶面,中和了靶面积累的正电荷,解决了靶面“中毒”和打弧放电的问题。两个靶周期性轮流作为阴极与阳极,不存在阳极被高阻绝缘介质膜覆盖而造成的“阳极消失”问题;由于上述两个问题的消失,由反应气体造成的“迟滞效应”大大减小。

中频双靶反应磁控溅射与直流反应磁控溅射相比具有以下几个显巨优点:

(1)消除了靶面打弧放电现象,中频反应磁控溅射镀制的绝缘薄膜与直流反应磁控溅射镀制的同种膜相比,膜面缺陷要少几个数量级;

(2)可以得到比直流反应磁控溅射高出数倍的溅射沉积速率;

(3)中频双靶反应磁控溅射的整个溅射沉积过程,可以始终稳定在所设定的工作点上,为大规模工业化稳定生产提供了条件。

选用非对称双极脉冲靶电源与选用“双靶-中频靶电源”不同,仅使用单个磁控靶进行反应磁控溅射,调节相应的镀膜工艺参数,可以消除磁控靶面打弧放电现象和实现长时间稳定的薄膜沉积,可以达到上述“中频-双靶反应磁控溅射”的同样效果。

磁控溅射镀膜原理和工艺设计

磁控溅射镀膜原理及工艺 摘要:真空镀膜技术作为一种产生特定膜层的技术,在现实生产生活中有着广泛的应用。真空镀膜技术有三种形式,即蒸发镀膜、溅射镀膜和离子镀。这里主要讲一下由溅射镀 膜技术发展来的磁控溅射镀膜的原理及相应工艺的研究。 关键词:溅射;溅射变量;工作气压;沉积率。 绪论 溅射现象于1870年开始用于镀膜技术,1930年以后由于提高了沉积速率而逐渐用于工业生产。常用二极溅射设备如右图。 通常将欲沉积的材料制成板材-靶,固定在阴 极上。基片置于正对靶面的阳极上,距靶一定距 离。系统抽至高真空后充入(10~1)帕的气体(通 常为氩气),在阴极和阳极间加几千伏电压,两极 间即产生辉光放电。放电产生的正离子在电场作 用下飞向阴极,与靶表面原子碰撞,受碰撞从靶 面逸出的靶原子称为溅射原子,其能量在1至几十 电子伏范围内。溅射原子在基片表面沉积成膜。 其中磁控溅射可以被认为是镀膜技术中最突出的 成就之一。它以溅射率高、基片温升低、膜-基结 合力好、装置性能稳定、操作控制方便等优点, 成为镀膜工业应用领域(特别是建筑镀膜玻璃、透 明导电膜玻璃、柔性基材卷绕镀等对大面积的均 匀性有特别苛刻要求的连续镀膜场合)的首选方 案。 1磁控溅射原理 溅射属于PDV(物理气相沉积)三种基本方法:真空蒸发、溅射、离子镀(空心阴极离子镀、热阴极离子镀、电弧离子镀、活性反应离子镀、射频离子镀、直流放电离子镀)中的一种。 磁控溅射的工作原理是指电子在电场E的作用下,在飞向基片过程中与氩原子发生碰撞,使其电离产生出Ar正离子和新的电子;新电子飞向基片,Ar正离子在电场作用下加速飞向阴极靶,并以高能量轰击靶表面,使靶材发生溅射。在溅射粒子中,中性的靶原子或分子沉积在基片上形成薄膜,而产生的二次电子会受到电场和磁场作用,产生E(电场)×B(磁场)所指的方向漂移,简称E×B漂移,其运动轨迹近似于一条摆线。若为环形磁场,则电子就以近似摆线形式在靶表面做圆周运动,它们的运动路径不仅很长,而且被束缚在靠近靶表面的等离子体区

圆柱形平面式磁控溅射靶的特点与设计原理

圆柱形平面式磁控溅射靶的特点与设计原理 作者:admin 来源:本站发表时间:2010-2-2 9:49:13 点击:2557 磁控溅射膜常见故障的排除 膜层灰暗及发黑 (1)真空度低于0.67Pa。应将真空度提高到0.13-0.4Pa。 (2)氩气纯度低于99.9%。应换用纯度为99.99%的氩气。 (3)充气系统漏气。应检查充气系统,排除漏气现象。 (4)底漆未充分固化。应适当延长底漆的固化时间。 (5)镀件放气量太大。应进行干燥和封孔处理 膜层表面光泽暗淡 (1)底漆固化不良或变质。应适当延长底漆的固化时间或更换底漆。 (2)溅射时间太长。应适当缩短。 (3)溅射成膜速度太快。应适当降低溅射电流或电压 膜层色泽不均 (1)底漆喷涂得不均匀。应改进底漆的施涂方法。 (2)膜层太薄。应适当提高溅射速度或延长溅射时间。 (3)夹具设计不合理。应改进夹具设计。 (4)镀件的几何形状太复杂。应适当提高镀件的旋转速度 膜层发皱、龟裂 (1)底漆喷涂得太厚。应控制在7—lOtan厚度范围内。 (2)涂料的粘度太高。应适当降低。 (3)蒸发速度太快。应适当减慢。 (4)膜层太厚。应适当缩短溅射时间。 (5)镀件温度太高。应适当缩短对镀件的加温时间 膜层表面有水迹、指纹及灰粒 (1)镀件清洗后未充分干燥。应加强镀前处理。 (2)镀件表面溅上水珠或唾液。应加强文明生产,操作者应带口罩。 (3)涂底漆后手接触过镀件,表面留下指纹。应严禁用手接触镀件表面。 (4)涂料中有颗粒物。应过滤涂料或更换涂料。 (5)静电除尘失效或喷涂和固化环境中有颗粒灰尘。应更换除尘器,并保持工作环境的清洁膜层附着力不良 (1)镀件除油脱脂不彻底。应加强镀前处理。 (2)真空室内不清洁。应清洗真空室。值得注意的是,在装靶和拆靶的过程中,严禁用手或不干净的物体与磁控源接触,以保证磁控源具有较高的清洁度,这是提高膜层结合力的重要措施之一。 (3)夹具不清洁。应清洗夹具。 (4)底涂料选用不当。应更换涂料。

镀膜问题总汇

真空镀膜工艺问题汇总 1.Al2O3打底已增加粘贴性,怎样镀Al2O3溅射镀怎么镀?请问旋转靶磁场加在哪里? 2.一.多弧离子镀做TiAIN膜1.靶材,材质?尺寸?2.偏压,—脉冲,直流对膜有无影响?二.高建钢材质刀具,1.立铣刀的锋利与镀膜前的酸洗工艺存在矛盾。三.多弧炉中结合了磁控柱靶在TiAIN膜制作过程中,可采用或利用其磁控靶的优点进行,四.用高偏压加氢气的辉光放电,是否用对硬膜的形成不利,会影响其硬度吗?是否用离子轰由(加热)来取代此工艺吗?五.靶材中Ti的纯度,对膜质(硬度,外观,粗糙毒等)有无关系?Ti是否对工具镀膜来说是否足够? 六.《真空》杂志中有文章介绍,多弧离子镀中用部分铬靶使TiN膜层中含有铬成分,有助于提高膜的硬度和外观的光亮度等那么能否采用钛铬合金靶,达到其效果?七.TiAl拔能否使其合金化,是否合金化后,在蒸发靶材时,清除或减少熔滴的产生?使其多弧离子镀,并产出的TiAIN膜质光亮,致密。 3.相对来说磁控溅射技术比较深奥些,听的不是太懂之前中设接触过磁控技术书面知识比较理论看不透彻,因为专业知识有限喜欢听笼统一点通俗易懂的。 4.1.如何防止靶的电弧放电问题 2.Si靶Ti靶的氧气是否一定要用压电阀来控制吗? 3.做高反射钳时Si靶Ti 靶的氩气,氧气的比例是多少?4.靶的电弧放电与亮孔是否有联系?5.在同样的工艺条件下,为什么有些会出现膜脱落,有时会出现SiTi膜脱落。 5.镀铝制镜,基片两头打弧,为什么?怎么解决?镀过铝后如何保护? 6.1.由于重复使用的玻璃进行了多次镀膜以后在玻璃表面残存物沉积且由于多次清洗造成玻璃表面划痕增加,最终造成散射光增加反射率降低,如何在不抛光的情况下,改善(提高)反射率?在镀膜工艺上有何可行性的解决方案等!为了增加铅膜和玻璃的粘合度,一般采用什么方法?如果镀一层介质膜,可采用什么材料,不影响反射率?

磁控溅射靶靶型分类

磁控溅射靶靶型分类 发布时间:2010-11-11 磁控溅射靶靶型分类 靶型开发的历程大致如下:首先开发的是轴状靶→圆盘形平面靶→S-枪→矩形平面靶→各种异形靶→对靶或孪生靶→靶面旋转的圆柱靶→靶-弧复合靶→……,目前应用最广泛的是矩形平面靶,未来最受关注的是旋转圆柱靶和靶-弧复合靶。 同轴圆柱形磁控溅射 在溅射装置中该靶接500-600V的负电位,基片接地、悬浮或偏压,一般构成以溅射靶为阴极、基片为阳极的对数电场和以靶中永磁体提供的曲线形磁场。 圆柱形磁控溅射靶的结构 1—水咀座;2—螺母;3—垫片;4—密封圈;5—法兰;6—密封圈; 7—绝缘套;8—螺母;9—密封圈;10—屏蔽罩;11—密封圈;12—阴极靶; 13—永磁体;14—垫片;15—管;16—支撑;17—螺母;18—密封圈;19—螺 帽 圆柱形磁控溅射靶的磁力线 在每个永磁体单元的对称面上,磁力线平行于靶表面并与电场正交。磁力线与靶表面封闭的空间就是束缚电子运动的等离子区域。在异常辉光放电中,离子不断地轰击靶表面并使之溅射,而电子如下图那样绕靶表面作圆周运动。 在圆柱形阴极与同轴阳极之间发生冷阴极放电时的电子迁移简图 平面磁控溅射 圆形平面磁控溅射 圆形平面靶采用螺钉或钎焊方式紧紧固定在由永磁体(包括环形磁铁和中心磁柱)、水冷套和靶外壳等组成的阴极体上。如下图所以结构: 圆形平面磁控溅射靶的结构 1—冷却水管;2—轭铁;3—真空室;4—环形磁铁;5—水管;6—磁柱; 7—靶子;8—螺钉;9—压环;10—密封圈;11—靶外壳;12—屏蔽罩; 13—螺钉;14—绝缘垫;15—绝缘套;16—螺钉 通常,溅射靶接500-600V负电压;真空室接地;基片放置在溅射靶的对面,其电位接地、悬浮或偏压。因此,构成基本上是均匀的静电场。永磁体或电磁线圈在靶材表面建立如下图的曲线形静磁场: 圆形平面磁控靶的磁力线 1—阴极;2—极靴;3—永久磁铁;4—磁力线 该磁场是以圆形平面磁控靶轴线为对称轴的环状场。从而实现了电磁场的正交和对等离子体区域的封闭的磁控溅射所必备的条件。由磁场形状决定了异常辉光放电等离子区的形状,故而决定了靶材刻蚀区是一个与磁场形状相对称的圆环,其形状如下图: 圆形平面靶刻蚀形状 冷却水的作用是控制靶温以保证溅射靶处于合适的冷却状态。温度过高将引起靶材熔化,温度过低则导致溅射速率的下降。 屏蔽罩的设置,是为了防止非靶材零件的溅射,提高薄膜纯度。并且该屏蔽罩接地,还能起着吸收低能电子的辅助阳极的作用。其位置,可以通过合理设计屏蔽罩与阴极体之间的间隙来确定,其值应小于二次电子摆线轨迹的转折点距离d t,一般≤3mm。

磁控溅射原理

百科名片 磁控溅射原理:电子在电场的作用下加速飞向基片的过程中与氩原子发生碰撞,电离出大量的氩离子和电子,电子飞向基片。氩离子在电场的作用下加速轰击靶材,溅射出大量的靶材原子,呈中性的靶原子(或分子)沉积在基片上成膜。二次电子在加速飞向基片的过程中受到磁场洛仑磁力的影响,被束缚在靠近靶面的等离子体区域内,该区域内等离子体密度很高,二次电子在磁场的作用下围绕靶面作圆周运动,该电子的运动路径很长, 在运动过程中不断的与氩原子发生碰撞电离出大量的氩离子轰击靶材,经过多次碰撞后电子的能量逐渐降低,摆脱磁力线的束缚,远离靶材,最终沉积在基片上。磁控溅射就是以磁场束缚和延长电子的运动路径,改变电子的运动方向,提高工作气体的电离率和有效利用电子的能量。电子的归宿不仅仅是基片,真空室内壁及靶源阳极也是电子归宿。但一般基片与真空室及阳极在同一电势。磁场与电场的交互作用( E X B drift)使单个电子轨迹呈三维螺旋状,而不是仅仅在靶面圆周运动。至于靶面圆周型的溅射轮廓,那是靶源磁场磁力线呈圆周形状形状。磁力线分布方向不同会对成膜有很大关系。在E X B shift机理下工作的不光磁控溅射,多弧镀靶源,离子源,等离子源等都在次原理下工作。所不同的是电场方向,电压电流大小而已。磁控溅射的基本原理是利用 Ar一02混合气体中的等离子体在电场和交变磁场的作用下,被加速的高能粒子轰击靶材表面,能量交换后,靶材表面的原子脱离原晶格而逸出,转移到基体表面而成膜。磁控溅射的特点是成膜速率高,基片温度低,膜的粘附性好,可实现大面积镀膜。该技术可以分为直流磁控溅射法和射频磁控溅射法。磁控溅射(magnetron-sputtering)是70年代迅速发展起来的一种“高速低温溅射技术”。磁控溅射是在阴极靶的表面上方形成一个正交电磁场。当溅射产生的二次电子在阴极位降区内被加速为高能电子后,并不直接飞向阳极,而是在正交电磁场作用下作来回振荡的近似摆线的运动。高能电子不断与气体分子发生碰撞并向后者转移能量,使之电离而本身变成低能电子。这些低能电子最终沿磁力线漂移到阴极附近的辅助阳极而被吸收,避免高能电子对极板的强烈轰击,消除了二极溅射中极板被轰击加热和被电子辐照引起损伤的根源,体现磁控溅射中极板“低温”的特点。由于外加磁场的存在,电子的复杂运动增加了电离率,实现了高速溅射。磁控溅射的技术特点是要在阴极靶面附件产生与电场方向垂直的磁场,一般采用永久磁铁实现。如果靶材是磁性材料,磁力线被靶材屏蔽,磁力线难以穿透靶材在靶材表面上方形成磁场,磁控的作用将大大降低。因此,溅射磁性材料时,一方面要求磁控靶的磁场要强一些,另一方面靶材也要制备的薄一些,以便磁力线能穿过靶材,在靶面上方产生磁控作用。磁控溅射设备一般根据所采用的电源的不同又可分为直流溅射和射频溅射两种。直流磁控溅射的特点是在阳极基片和阴极靶之间加一个直流电压,阳离子在电场的作用下轰击靶材,它的溅射速率一般都比较大。但是直流溅射一般只能用于金属靶材,因为如果是绝缘体靶材,则由于阳粒子在靶表面积累,造成所谓的“靶中毒”,溅射率越来越低。目前国内企业很少拥有这项技术。

磁控溅射玻璃镀膜电源

磁控溅射玻璃镀膜电源 Dr. Dirk Ochs HüTTINGER Elektronik GmbH + Co KG, Freiburg, Germany 黄新盈 深圳市微普真空系统集成有限公司 介绍: 近年来,建筑玻璃市场对Low‐e镀膜玻璃产生了巨大的需求。特别是经济快速增长的中国,印度和东欧地区。目前高档Low‐e主要采用磁控溅射方式镀膜,关于镀膜设备,Low‐E 制造商们关注的是溅射速率,薄膜质量和生产成本。在Low‐E生产中,连续镀膜系统常用的是30‐200KW的直流和中频磁控溅射电源[1,2,3,4]。 对于建筑玻璃镀膜所使用的电源,则要求高精度的过程控制能力,配备强大的打弧管理系统,并提供可调整的参数。能使生产过程中的干扰最大程度的减少,获得最优化的膜层。为了保证溅射速率和产量,生产过程中对电源的打弧管理提出了很高的要求。比如反应溅射低熔点材料,打弧非常容易在靶面上造成孔洞。快速先进的打弧管理,能预防靶面产生的缺陷并且获得更高的功率,意味着安全可靠的获得更高的溅射速率。 应用: 建筑玻璃的主要应用是阳光控制膜,低辐射膜和减反膜。图1是典型的阳光控制膜系。玻璃基板首先沉积了一层厚度在10‐100nm的SnO2。膜厚从10nm从增加到100nm时,颜色则从银色渐变为青铜色,最后是蓝色。在SnO2上还需要沉积CrNx和SnO2膜。一个典型的低辐射膜系图2,开始也是先在玻璃基板上沉积SnO2,起到减反的作用。然后是反射红外线的银层,再沉积阻挡层NiCrOx,和减反层SnO2。

减反的膜系(图3)由一个高折射系数材料和一个低折射系数的材料交替组合而成。常用的高折射系数的材料有ZrO2,Ta2O5和TiO2。低折射系数材料如MgF2,SiO2,或Al2O3。 金属膜通常是用直流电源驱动单个磁控靶溅射。而氧化物和氮化物膜层则使用中频电源,配合孪生磁控靶进行反应溅射。磁控溅射原理如图4所示 首先是工艺气体通入到已经抽空的腔体中。在靶材上施加几百伏的负高压后,在靶面前方产生辉光放电的(起辉)等离子体,工艺气体的离子(通常是氩气)被靶的负高压吸引而撞向靶材,碰撞后将靶材溅射出来。溅射出的材料则沉积在与靶相对的基板上。而对于介质材料的镀膜,如氧化物或氮化物则需要对等离子体额外通入氧气或氮气。孪生靶的两个阴极各自连接到电源的一极。这样的话,当其中一个阴极处于负压溅射状态时,另一个处于正压可以看作是阳极。以一定频率(中频)交替互为阴阳极 。 对于所有的镀膜过程而言,都要对打弧现象进行控制尤其是在高功率密度下,以增加溅

磁控溅射技术的基本原理

张继成吴卫东许华唐晓红 中国工程物理研究院激光聚变研究中心绵阳 材料导报, 2004, 18(4): 56-59 介绍磁控溅射技术的基本原理、装置及近年出现的新技术。 1 基本原理 磁控溅射技术是在普通直流(射频)溅射技术的基础上发展起来的。早期的直流(射频)溅射技术是利用辉光放电产生的离子轰击靶材来实现薄膜沉积的。但这种溅射技术的成膜速率较低,工作气压高(2~10Pa)。为了提高成膜速率和降低工作气压,在靶材的背面加上了磁场,这就是最初的磁控溅射技术。 磁控溅射法在阴极位极区加上与电场垂直的磁场后,电子在既与电场垂直又与磁场垂直的方向上做回旋运动,其轨迹是一圆滚线,这样增加了电子和带电粒子以及气体分子相撞的几率,提高了气体的离化率,降低了工作气压,同时,电子又被约束在靶表面附近,不会达到阴(阳)极,从而减小了电子对基片的轰击,降低了由于电子轰击而引起基片温度的升高。 2 基本装置 (1) 电源 采用直流磁控溅射时,对于制备金属薄膜没有多大的问题,但对于绝缘材料,会出现电弧放电和“微液滴溅射”现象,严重影响了系统的稳定性和膜层质量。为了解决这一问题,人们采用了射频磁控溅射技术,这样靶材和基底在射频磁控溅射过程中相当于一个电容的充放电过程,从而克服了由于电荷积累而引起的电弧放电和“微液滴溅射”现象的发生。 (2) 靶的冷却 在磁控溅射过程中,靶不断受到带电粒子的轰击,温度较高,其冷却是一个很重要的问题,一般采用水冷管间接冷却的方法。但对于传热性能较差的材料,则要在靶材与水冷系统的连接上多加考虑,同时需要考虑不同材料的热膨胀系数的差异,这对于复合靶尤为重要(可能会破裂损坏)。 (3) 磁短路现象 利用磁控溅射技术溅射高导磁率的材料时,磁力线会直接通过靶的内部,发生刺短路现象,从而使磁控放电难以进行,这时需要在装置的某些部分做些改动以产生空间凝

光伏材料

光伏材料——硫化锌 邱德鹏 ZnS是II-VI族化合物,为直接带隙半导体材料,室温下带隙约为3.7eV,具有较高的激子束缚能(40meV)[1]。ZnS的研究历史比较长,自从1866年法国化学家Theodore Sidot发现荧光ZnS材料以来,对ZnS的研究已有140多年的历史,但早期的研究主要侧重于ZnS发光及稀磁特性上,对ZnS的制备、掺杂以及将其应用到太阳电池的研究都较少[2]。近年来由于II-VI族二元和三元化合物半导体在太阳电池方面的应用,特别是随着CdS/CdTe薄膜太阳电池转换效率的迅速提高,ZnS薄膜吸引了人们极大的注意,研究人员围绕ZnS薄膜的制备和掺杂开始进行大量的研究工作,并希望能将其集成到太阳电池中,形成新的光电转换器件或是提高现有太阳电池的光电特性[3]。 硫化锌具有两种变形体:高温变体α-ZnS和低温变体β-ZnS,其相变温度为1020℃。α-ZnS为纤锌矿结构,六方晶系,晶格常数为a=0.384nm,c0=0.5180nm,z=2;β-ZnS是闪锌矿结构,面心立方,晶格常数为a=0.546nm,z=4,如图1所示。在自然界中稳定存在的是β-ZnS,常温下很难找到α-ZnS[4]。 图1:硫化锌的两种晶格结构 ZnS的密度为4.30g/cm3,熔点为1050℃,无毒无害,对环境十分友好,其组成元素Zn与S在地球上的储量都较为丰富,开采合成成本低,ZnS具有大规模工业化生产的优势。ZnS作为一种重要的化合物半导体材料,其光电性能优良,禁带宽度较大,使其在短波长半导体激光器、紫外光电探测器等短波处光电器件领域具有巨大的潜在应用价值,被广泛地应用于各种光学和光电器件中,如平板显示器、红外光学窗口材料、发光二极管及太阳电池等领域[5]。 实现ZnS材料n型和p型的高效稳定掺杂,是其在短波长光电器件领域应用的关键。然而,ZnS是一种极性较强的宽禁带半导体,容易产生比较多的施主性本征缺陷(如空位S)。从能带结构看,ZnS的价带顶较低,通常受主能级较深,加上本征施主性缺陷的补偿,高效稳定的p型掺杂不易实现。此外,ZnS的导带底比较高,通常施主能级也偏深,实现低阻n型ZnS掺杂也比较困难。正是由于宽禁带半导体掺杂的这种不对称性和强烈的自补偿效应,使得低阻n型和p型ZnS掺杂非常困难,强烈制约了ZnS在短波长光电器件领域的应用,目前仍没有很好的解决方案[6]。 在太阳电池领域,ZnS主要应用在铜铟镓硒(CIGS)薄膜太阳电池中。近年来,国内外研究人员发现,ZnS可以替代CdS,在CIGS薄膜电池中充当缓冲层,且更有助于提高电池的光电转换效率和太阳电池寿命[7]。Cd、Zn同属IIB 族元素,其化学性质相似,导致其S化物ZnS和CdS的性质也极为相似,但是它们之间性质最明显的不同在于ZnS的光学带隙为3.7eV,高于CdS的2.4eV;从能带匹配的角度说,CdS无疑更具优势,但由于ZnS的禁带宽度更高,因此以ZnS为缓冲层的薄膜在厚度相同的情况下,将比CdS薄膜具有更高的光学透

磁控溅射问题及解决

磁控溅射镀膜工艺六大常见问题点及改善对策: 1.膜层灰暗及发黑 (1)真空度低于0.67Pa。应将真空度提高到0.13-0.4Pa。 (2)氩气纯度低于99.9%。应换用纯度为99.99%的氩气。 (3)充气系统漏气。应检查充气系统,排除漏气现象。 (4)底漆未充分固化。应适当延长底漆的固化时间。 (5)镀件放气量太大。应进行干燥和封孔处理 2.膜层表面光泽暗淡 (1)底漆固化不良或变质。应适当延长底漆的固化时间或更换底漆。 (2)溅射时间太长。应适当缩短。 (3)溅射成膜速度太快。应适当降低溅射电流或电压 3.膜层色泽不均 (1)底漆喷涂得不均匀。应改进底漆的施涂方法。 (2)膜层太薄。应适当提高溅射速度或延长溅射时间。 (3)夹具设计不合理。应改进夹具设计。 (4)镀件的几何形状太复杂。应适当提高镀件的旋转速度 4.膜层发皱、龟裂 (1)底漆喷涂得太厚。应控制在7—lOtan厚度范围内。 (2)涂料的粘度太高。应适当降低。 (3)蒸发速度太快。应适当减慢。 (4)膜层太厚。应适当缩短溅射时间。 (5)镀件温度太高。应适当缩短对镀件的加温时间 5.膜层表面有水迹、指纹及灰粒 (1)镀件清洗后未充分干燥。应加强镀前处理。

(2)镀件表面溅上水珠或唾液。应加强文明生产,操作者应带口罩。 (3)涂底漆后手接触过镀件,表面留下指纹。应严禁用手接触镀件表面。 (4)涂料中有颗粒物。应过滤涂料或更换涂料。 (5)静电除尘失效或喷涂和固化环境中有颗粒灰尘。应更换除尘器,并保持工作环境的清洁 6.膜层附着力不良 (1)镀件除油脱脂不彻底。应加强镀前处理。 (2)真空室内不清洁。应清洗真空室。值得注意的是,在装靶和拆靶的过程中,严禁用手或不干净的物体与磁控源接触,以保证磁控源具有较高的清洁度,这是提高膜层结合力的重要措施之一。 (3)夹具不清洁。应清洗夹具。 (4)底涂料选用不当。应更换涂料。 (5)溅射工艺条件控制不当。应改进溅射镀工艺条件

JGP磁控溅射仪操作步骤

JGP –650型双室超高真空多功能磁控溅射系统操作步骤 一、开机前的准备工作: 1、开动水阀,接通冷水,检查水压是否足够大,水压控制器是否起作用,保证水路畅通。 2、检查总供电电源配线是否完好,地线是否接好,所有仪表电源开关是否处于关闭状态。 3、检查分子泵、机械泵油是否到标注线。 4、检查系统所有的阀门是否全部处于关闭状态,确定磁控溅射室完全处在抽真空前封闭状态。 二、换样品过程: 1、先打开真空显示仪,检查溅射室是否处于真空状态,若处于真空状态,首先要放气,室内的大气压与外界的大气压平衡,打开溅射室内的照明灯,看看机械手是否放在靶档板下面,定位锁是否已经抽出时(拔起),才能决定把屏蔽罩升起。 2、按动进步电机升开关,让屏蔽罩缓缓升起,到合适位置为止,当屏蔽罩升到最高位置时,进步电机升开关将不起作用。 3、换样品(靶材)时:松动螺丝,用清洗干净的镊子小心取出靶材,把靶材放到干净的容器内,以防污染;用纱布沾高纯酒精把溅射室清洗干净;放靶材时,一定要让靶材和靶面接触(即靶材必须是一平面,不平者勿用),把靶材放在中心(与靶的边界相距2-3mm.一定要用万用表来测量靶材(正极与靶外壁(负极)要断开,否则将要烧坏;然后把基片放在上面的样品架上(松动螺丝,把基片放在样品架上,然后上紧螺丝)。把样品架卡在转盘上。 4、按动进步电机降开关,让屏蔽罩缓缓下降,当下降到接近溅射室时,一定要把定位仪贴在屏蔽罩壁上,可以用左手按进步电机降开关,右手推动屏蔽罩使其安全降下来,注意千万不要使溅射室上真空圈损坏,一旦真空圈损坏,整个溅射室就无法抽真空,仪器不能正常工作。 三、抽真空过程 1、换好样品后,磁控溅射室、进样室、和分子泵都处于大气状态,插板阀G2

磁控溅射

磁控反应溅射。就是用金属靶,加入氩气和反应气体如氮气或氧气。当金属靶材撞向零件时由于能量转化,与反应气体化合生成氮化物或氧化物。若磁铁静止,其磁场特性决定一般靶材利用率小于30%。为增大靶材利用率,可采用旋转磁场。但旋转磁场需要旋转机构,同时溅射速率要减小。冷却水管。 旋转磁场多用于大型或贵重靶。如半导体膜溅射。用磁控靶源溅射金属和合金很容易,点火和溅射很方便。这是因为靶(阴极),等离子体,和被溅零件/真空腔体可形成回路。但若溅射绝缘体如陶瓷则回路断了。于是人们采用高频电源,回路中加入很强的电容。这样在绝缘回路中靶材成了一个电容。但高频磁控溅射电源昂贵,溅射速率很小,同时接地技术很复杂,因而难大规模采用。为解决此问题,发明了 磁控溅射 磁控溅射是为了在低气压下进行高速溅射,必须有效地提高气体的离化率。通过在靶阴极表面引入磁场,利用磁场对带电粒子的约束来提高等离子体密度以增加溅射率的方法。 磁控溅射的工作原理是指电子在电场E的作用下,在飞向基片过程中与氩原子发生碰撞,使其电离产生出Ar 和新的电子;新电子飞向基片,Ar在电场作用下加速飞向阴极靶,并以高能量轰击靶表面,使靶材发生溅射。在溅射粒子中,中性的靶原子或分子沉积在基片上形成薄膜,而产生的二次电子会受到电场和磁场作用,产生E(电场)×B(磁场)所指的方向漂移,简称E×B漂移,其运动轨迹近似于 一条摆线。若为环形磁场,则电子就以近似摆线形式在靶表面做圆周运动,它们的运动路径不仅很长,而且被束缚在靠近靶表面的等离子体区域内,并且在该区域中电离出大量的Ar 来轰击靶材,从而实现了高的沉积速率。随着碰撞次数的增加,二次电子的能量消耗殆尽,逐渐远离靶表面,并在电场E的作用下最终沉积在基片上。由于该电子的能量很低,传递给基片的能量很小,致使基片温升较低。磁控溅射是入射粒子和靶的碰撞过程。入射粒子在靶中经历复杂的散射过程,和靶原子碰撞,把部分动量传给靶原子,此靶原子又和其他靶原子碰撞,形成级联过程。在这种级联过程中某些表面附近的靶原子获得向外运动的足够动量,离开靶被溅射出来。

射频磁控溅射详细操作流程与真空系统

磁控溅射操作流程 1、开循环水(总阀、分子泵),放气(两个小金属片打开;旁抽阀;V6)放完气后关闭; 2、开总电源,开腔装样品,开机械泵,抽到10pa以下; 3、开电磁阀,抽到10pa以下,开分子泵(按下绿色start按钮,分子泵加速,显示为400) 时,关旁抽阀,再打开高阀;开溅射室烘烤,将电压调节至75V,烘烤时间为1h; 4、抽到1·10-4pa后,抽管道(缓慢打开V1截止阀,V2阀);打开质量流量计电源,待示 数稳定后,将阀开关拨至“阀控”位置,再将设定旋钮向右调节至最大,待示数变为“0” 时,将阀门开关拨至“关闭”,同时将设定旋钮设定为0; 5、开气瓶(一定要确定阀开关处于“关闭”位置,调节分压阀数值约为0.1mp;待质量流 量计示数稳定后,将阀开关拨至“阀控”位置,调节到所需设定值,如20sccm; 6、开A靶、水冷盘、其他靶的循环水; 7、慢慢讲高阀回调,调节气压至1~3pa,起辉(开总控制电源、A靶射频电源、A靶),调 节功率至60w,(A靶处的tune、load先处于WN状态,要进行调节时,应调节至Auto),调节tune为50%,Load值为10%~20之间(调节后需调回WN状态);再按R.F起辉; 8、将高阀门调至最外,待气压稳定之后预溅射15分钟,在此期间要对齿轮挡板进行定位(先 将小刚圈上提右转放下,然后向外旋转“马达”旁边的齿轮,直到听到“啪”的一声,最后左转上提小刚圈); 9、打开电脑后面右边的三个电源开关,开电脑; 10、实验。调节好实验所需压强、功率、气体等,设置“样品位置”,“样品编号”,“挡板位 置”(样品位置以A靶为标准,样品编号即为此时位于A靶上方样品的编号,挡靶位置在装挡板时就已位于B靶处,所以挡板默认为B靶所在位置,所有参数、位置设定好后即可开始镀膜; 11、每次镀膜完,要对其参数进行设定—应用—运行,待齿轮旋转不动时,用机械手推动挡 板至B靶所在位置(上中下三孔对齐),—确定—两个360°—样品放在E靶—挡板放在B靶—开始。 12、镀膜结束。先关闭电脑,然后关闭R.F,将功率调节至0,依次关闭三个电源(最后关 总溅射电源),关闭气瓶总阀,调节气体质量流量计至最大,待其示数变小为零;关闭分压阀,待流量计示数变为零,关闭质量流量计,依次关闭V2、V1阀,随后关闭高阀,按分子泵Stop键,待其示数降为零,再关闭分子泵电源; 13、依次关闭电磁阀、溅射室机械泵、设备总电源,关闭所有循环水。

磁控溅射

磁控溅射 1、磁控溅射 磁控溅射是一个磁控运行模式的二极溅射。它与二~四极溅射的主要不同点:一是,在溅射的阴极靶后面设置了永久磁钢或电磁铁。在靶面上产生水平分量的磁场或垂直分量的磁场(例如对向靶),由气体放电产生的电子被束缚在靶面附近的等离子区内的特定轨道内运转;受电场力和磁场力的复合作用,沿一定的跑道作旋轮转圈。靶面磁场对荷电粒子具有约束作用,磁场愈强束缚的愈紧。由于电磁场对电子的束缚和加速,电子在到达基片和阳极前,其运动的路径也大为延长,使局部Ar气的碰撞电离几率大大增加,氩离子Ar+在电场作用下加速,轰击作为阴极的靶材。把靶材表面的分子、原子及离子及电子等溅射出来,提高了靶材的飞溅脱离率。被溅射出来的粒子带有一定的动能,沿着一定的方向射向基体,最后沉积在基体上成膜。经过多次碰撞后电子的能量逐渐降低,摆脱磁力线的束缚,最终落在基片、真空室内壁及靶电源阳极上。 工作气体电离几率的增加和靶材离化率的提高,使真空气体放电时内阻减小,故磁控靶发生溅射沉积时的工作电压较低(多数在4-600V之间),有的工作电压略高(例如>700V),有的工作电压较低(例如300V左右)。磁控溅射发生时,其溅射工作电压主要降落在磁控靶的阴极位降区上。 由于磁控溅射沉积的膜层均匀、致密、针孔少,纯度高,附着力强,可以在低温、低损伤的条件下实现高速沉积各种材料薄膜,已经成为当今真空镀膜中的一种成熟技术与工业化的生产方式。磁控溅射技术在科学研究与各行业工业化生产中得到了迅速发展和广泛应用。

总之,磁控溅射技术就是利用电磁场来控制真空腔体内气体“异常辉光放电”中离子、电子的运动轨迹及分布状况的溅射镀膜的工艺过程。 2、产生磁控溅射的三个条件 磁控气体放电进而引起溅射,必须满足三个必要而充分的条件: (1)第一,具有合适的放电气体压强P:直流或脉冲中频磁控放电,大约在0. 1 Pa~10Pa 左右),典型值为5×10-1Pa;射频磁控放电大约在10-1~10-2Pa。 (2)第二,磁控靶面具有一定的水平(或等效水平)磁场强度B(大约10mT~100mT),典型值为30~50mT,最低也要达到10~20 mT(100~200高斯)。 (3)第三,真空腔体内,具有与磁场正交(或等效正交)的电场V,典型值500~700V。 我们通称以上三条为P-B-V条件。 3、磁控溅射离子镀 (1)在基体和工件上是否施加(直流或脉冲)负偏压,利用负偏压对离子的吸引和加速作用,是离子镀与其它镀膜类型的一个主要区别。蒸发镀时基体和工件上加有负偏压就是蒸发离子镀;多弧镀时基体和工件上加有负偏压就是多弧离子镀;磁控溅射时基体和工件上加有负偏压就是磁控溅射离子镀,这是磁控溅射离子镀技术的一个重要特点。 (2)磁控溅射离子镀是把磁控溅射和离子镀结合起来的技术。在同一个真空腔体内既可实现氩离子对磁控靶材的稳定溅射,又实现了高能靶材离子在基片负偏压作用下到达基片进

磁控溅射操作流程及注意事项

磁控溅射操作流程及注意事项 一、打开冷却水箱电源()注:水箱电源是设备的总电源。,水压控制器是否起作 用。0.1MPa)检查水压是否足够大(二、放气 2.1 确认磁控溅射室内部温度已经冷却到室温; 2.2 检查所有阀门是否全部处于关闭状态; 2.3 磁控溅射室的放气阀是V2,放气时旋钮缓慢打开,这可以保证进入气流不会太大; 2.4 放气完毕将气阀关紧。 三、装卸试样与靶材 3.1 打开B柜总电源(在B9面板上),电源三相指示灯全亮为正常。 3.2 提升或降落(B4“升”或“降“)样品台要注意点动操作,不要连续操作。 3.3 装卸试样与靶材要戴一次性薄膜手套,避免油污、灰尘等污染。 3.4 磁控靶屏蔽罩与阴极间距为2-3毫米,屏蔽罩与阴极应该为断路状态。 3.5 装载试样要注意试验所用样品座位置与档板上溅射孔的对应,并记录样品座的编号及目前所对应的靶位。 3.6 降落样品台时要注意样品台与溅射室的吻合,并用工业酒精擦洗干净样品台与溅射室的配合面。 四、抽真空 4.1 确认D面板“热电偶测量选择”指示“Ⅰ”时; 4.2 确认闸板阀G2、G4已经关闭; 4.3 打开B4上“机械泵Ⅰ”,再打开气阀V1,开始抽低真空。 4.4 打开B3面板的电源开关,同时关闭“复合”键。可以从B3-1处观察低真空度。(低真空测量下限为0.1Pa)。当真空度小于5Pa可以开始抽高真空。 4.5 关闭气阀V1,打开B4上“电磁阀Ⅰ”(确认听到响声表示电磁阀已开) 4.6 打开B8面板的磁控室分子泵电源,按下“START”键,按下FUNC/DA TA键,数字开始逐步上升,等大于H100.0后打开闸板阀G1,随后分子泵速上升并稳定到H400.0。 4.7 磁控室的高真空度在B2面板显示,不要一直开着高真空的测量,也不要频繁开关, 通常每隔1-2小时可打开观察一次,等示数稳定后再关闭(一般不超过3分钟)。 五、充气 5.1确认高真空度达到了-4、-5的数量级,在充气之前必须关闭高真空计; 5.2 打开A1面板上MFC电源,预热3分钟; 5.3 稍关闭闸板阀G1到一定程度,但不要完全关紧 5.4 打开V4、V6(若是二路进气,V5应和V6同时打开)阀门 5.5 将控制阀扳到“阀控“位置 5.6 打开气瓶阀门,稍旋紧减压阀至压力示数为0.1MPa即可; 5.7 调节MFC阀控的设定(一般在30左右),再进一步关紧闸板阀使得低真空(B3-1)读数接近所需的溅射压强,然后通过微调MFC阀控得到所需的溅射压强。

磁控溅射操作规程

磁控溅射设备操作规程 开机过程 1.开电柜A水阀(注意有两水路,阀门上标签为电柜左(A),电柜右(B)). 2.开电柜A总控制电源. 3.开机械泵,打开旁抽阀V 1 ,开低真空计电源,用机械泵抽至机械泵抽压极限(或5Pa 以下). 4.关闭旁抽阀V 1.开闸板阀G,开前级阀(电磁阀DF 1 ) 5.观察低压真空计示数是否稳定(稳定时即为系统不漏气),待稳定后开分子泵(KYKY) 总电源. 6.观察分子泵显示窗口为闪动的450Hz时,按下分子泵启动按钮,分子泵加速. 7.当分子泵转速稳定,窗口显示为450Hz后,按下高真空计DL-7电源按钮,观察真 空室真空度,等待达到溅射所需的本底真空度(一般为10-4Pa). 溅射过程 1.关闭高真空计DL-7(!进气之前一定要关闭,否则高真空计会被损坏),然后打开充 气阀V2,再打开截止阀V5. 2.开氩气瓶总阀,开减压阀,观察其指示小于1.5格(三个大气压)即可. 3.开质量流量计电源,将MFC1打到阀控位 4.关小闸板阀G,此调节过程配合旋动旋钮调节气体流量,使低压真空计示数(直 流溅射一般为2~5Pa之间,射频一般在5-8Pa之间). 5.开电柜B水阀,开电柜B总控制电源. (1).直流溅射:开电柜B中相对应靶位直流溅射电源,调节功率使使靶上方氩气电离启辉.旋转功率调节旋钮,使溅射功率达到所需要的数值.待板压和板流稳定后,转动挡板和转盘,转动挡板和转盘到相应的靶上,开始溅射并计时.溅射完毕后,将功率调节旋钮逆时针调到最小,按下停止按钮.然后关闭电柜B的总控制电源. (2).射频溅射:按下电柜B中射频功率源的Uf按钮,电子管预热5-10分钟.按下Ua的开始按钮,通过Ua粗调和细调增大板压,使靶上方氩气电离启辉.调节SP-II 型射频匹配器的C1,C2(调节一个时,另一个不动),使反射功率最小,驻波比小于1.5.增大Ua,调节匹配器的电容使反射功率始终最小,如此反复调节使溅射功率达到所需要的数值.预溅射几分钟后,转动挡板和转盘到相应的靶上,即可开始溅射. (3).溅射完毕后,将Ua调到最小,按下Ua的停止按钮.等待几分钟后按下Uf按钮.然后关闭电柜B的总控制电源. (如果需要给衬底加热,方法同退火过程的5,6步骤). 靶挡板和转盘的转动:可通过电脑上的控制软件或手动转动.注意转盘和样品挡板同时转动前一定要检查定位插销,不能使转盘被卡住;只对样品进行转动操作前,需要将样品挡板卡住;为了不使加热电缆缠绕,不能大角度转动转盘. 6.溅射完毕后,关闭氩气的过程:先关气瓶总阀,后关减压阀,再将MFC1打到关闭, 待流量计显示为0后关闭流量计电源.先关V5后关V2,开大闸板阀G,让分子泵将真空室抽至高真空.

等离子增强磁控溅射技术介绍

第二章等离子增强磁控溅射沉积技术 等离子增强磁控溅射(Plasma Enhanced Magnetron Sputtering)沉积技术,简写为PEMS,是物理气相沉积(PVD)技术的一种。它与传统磁控溅射(Conventional Magnetron Sputtering,简写为CMS)的区别在于其运用独立的电子发射源达到等离子体增强的效果,制备出涂层的致密度、硬度和韧性等均有显著提高。运用PEMS技术可以制备传统磁控溅射技术的所有涂层,如TiN,CrN,TiAlN,TiCN 等[]。 2.1 PEMS技术的原理 PEMS技术结合传统磁控溅射技术的优点,在其基础上做了改良,图2.1为PEMS技术的原理图和实际镀膜工作时的图片。如图2.1(a)所示,PEMS真空室的尺寸为700×700×700mm3,左右两边分别有一个圆柱形金属靶,尺寸为1.5cm ×φ170mm。在真空室的中央,有一个旋转的工作台便于悬挂工件,工作台旋转的速度为10~20rpm,钨丝的长度为20cm。 图2.1 (a)PEMS技术的工作原理图(b)实际镀膜工作图 PEMS技术应用了一个电子发射源来产生更多的电子,一般选用加热的钨丝或者空心阴极管作为电子发射源。从实际工作图2.1(b)的下方可以隐约看见耀眼的光线,即钨丝在加热状态发出的光线。当真空室内气压到达几个毫托,在钨丝和真空壁之间施加直流放电电压(DC Discharge Power Supply),即:真空壁接地,钨丝上为恒定负偏压(~-100V)。同时,在钨丝上加载交流电(电压20~30V,电流40~45A),钨丝被加热后向真空室内释放电子,在放电电压的作用下,电子被加速向真空壁飞去,由于真空室内存在大量的气体分子(Ar,TMS,N2等),电子与中性气体分子(原子)发生碰撞,导致气体电离,并最终使真空室内产生等离

磁控溅射操作流程及注意事项

磁控溅射操作流程及注意事项

磁控溅射操作流程及注意事项 一、打开冷却水箱电源(注:水箱电源是设备的总电源。) 检查水压是否足够大(0.1MPa),水压控制器是否起作用。 二、放气 2.1 确认磁控溅射室内部温度已经冷却到室温; 2.2 检查所有阀门是否全部处于关闭状态; 2.3 磁控溅射室的放气阀是V2,放气时旋钮缓慢打开,这能够保证进入气流不会太大; 2.4 放气完毕将气阀关紧。 三、装卸试样与靶材 3.1 打开B柜总电源(在B9面板上),电源三相指示灯全亮为正常。 3.2 提升或降落(B4“升”或“降“)样品台要注意点动操作,不要连续操作。 3.3 装卸试样与靶材要戴一次性薄膜手套,避免油污、灰尘等污染。 3.4 磁控靶屏蔽罩与阴极间距为2-3毫米,屏蔽罩与阴极应该为断路状态。 3.5 装载试样要注意试验所用样品座位置与档板上溅射孔的对应,并记录样品座的编号及当前所对应的靶位。 3.6 降落样品台时要注意样品台与溅射室的吻合,并用工业酒

精擦洗干净样品台与溅射室的配合面。 四、抽真空 4.1 确认D面板“热电偶测量选择”指示“Ⅰ”时; 4.2 确认闸板阀G2、G4已经关闭; 4.3 打开B4上“机械泵Ⅰ”,再打开气阀V1,开始抽低真空。 4.4 打开B3面板的电源开关,同时关闭“复合”键。能够从B3-1处观察低真空度。(低真空测量下限为0.1Pa)。当真空度小于5Pa能够开始抽高真空。 4.5 关闭气阀V1,打开B4上“电磁阀Ⅰ”(确认听到响声表示电磁阀已开) 4.6 打开B8面板的磁控室分子泵电源,按下“START”键,按下FUNC/DATA键,数字开始逐步上升,等大于H100.0后打开闸板阀G1,随后分子泵速上升并稳定到H400.0。 4.7 磁控室的高真空度在B2面板显示,不要一直开着高真空的测量,也不要频繁开关, 一般每隔1-2小时可打开观察一次,等示数稳定后再关闭(一般不超过3分钟)。 五、充气 5.1确认高真空度达到了-4、-5的数量级,在充气之前必须关闭高真空计; 5.2 打开A1面板上MFC电源,预热3分钟; 5.3 稍关闭闸板阀G1到一定程度,但不要完全关紧 5.4 打开V4、V6(若是二路进气,V5应和V6同时打开)

磁控溅射原理

Sputter 磁控溅镀原理
Sputter 在辞典中意思为: (植物)溅散。此之所谓溅镀乃指物体以离子撞击时,被溅射飞 散出。 因被溅射飞散的物体附著于目标基板上而制成薄膜。 在日光灯的插座附近常见的变黑现 象,即为身边最赏见之例,此乃因日光灯的电极被溅射出而附著于周围所形成。溅 镀现象, 自 19 世纪被发现以来,就不受欢迎,特别在放电管领域中尤当防止。近年来被引用于薄膜制 作技术效效佳,将成为可用之物。 薄膜制作的应用研究,当初主要为 Bell Lab.及 Western Electric 公司,于 1963 年制成全长 10m 左右的连续溅镀装置。1966 年由 IBM 公司发表高周波溅镀技术,使得绝缘物之薄膜亦可 制作。后经种种研究至今已达“不管基板的材料为何,皆可被覆盖任何材质之薄膜”目的境地。 而若要制作一薄膜,至少需要有装置薄膜的基板及保持真空状况的道具(内部机构) 。这 种道具即为制作一空间,并使用真空泵将其内气体抽出的必要。 一、真空简介: 所谓真空,依 JIS(日本工业标准)定义如下:较大气压力低的压力气体充满的特定的空 间状态。真空区域大致划分及分子运动如下:
真空划分 Pa 低 真 空 中 真 空 高 真 空 超高真空 105~102 102~10-1 10 ~10 〈10
-5 -1 -5

力 Torr 760~1 1~10-3 10-3~10 〈10
-7 -7
分子运动状态 粘滞流 viscous flow 中间流(过渡流) intermediate flow 分子流 molecular flow 分子流 molecular effusion
真空单位相关知识如下:
标准环境条件 气体的标准状态 压力(压强)p 帕斯卡 Pa 托 Torr 标准大气压 atm 毫巴 mbar 温度为 20℃,相对湿度为 65%,大气压力为: 1atm 101325Pa=1013.25mbar=760Torr 温度为 0℃,压力为:101325Pa 气体分子从某一假想平面通过时,沿该平面的正法线方向的动量改变率,除以该平面 面积或气体分子作用于其容器壁表面上的力的法向分量,除以该表面面积。注: “压 力”这一术语只适用于气体处于静止状态的压力或稳定流动时的静态压力 国际单位制压力单位,1Pa=1N/m2 压力单位,1Torr=1/760atm 压力单位,1atm=101325Pa 压力单位,1mbar=102Pa
二、Sputter(磁控溅镀)原理: 1、Sputter 溅镀定义:在一相对稳定真空状态下,阴阳极间产生辉光放电,极间气体分子 被离子化而产生带电电荷, 其中正离子受阴极之负电位加速运动而撞击阴极上之靶材, 将其原 子等粒子溅出,此溅出之原子则沉积于阳极之基板上而形成薄膜,此物理现象即称溅镀。而透 过激发、解离、离子化……等反应面产生的分子、原子、受激态物质、电子、正负离子、自由

磁控溅射

磁控溅射操作步骤 开机 先开气泵:插入气泵电源,打开气泵上的红色球阀 再开循环水机:插入电源插头,按循环水机上的启动按钮,按设定键,按上下键,设置水温然后开墙壁上的空气开关,再开电源控制柜上的空气开关,此时电源启动红色按钮亮 抽真空步骤 开电源启动,开机械泵,开旁路阀,开截止阀,开流量计,然后把流量开关打至清洗状态,待真空抽至10Pa以下,把流量开关打至关闭状态,待真空抽至5Pa以下,关旁路阀,开前级阀,待前级真空小于5Pa,开分子泵,开主阀。 待真空抽至工作真空,开电机旋转 镀膜 先将限流阀关闭,将流量开关打至阀控状态,调节流量电位器控制腔室气压(此时电离规是开着的,调气压至所需真空)关电离规 射频电源:先开电源总开关按钮,待红色按钮灯亮后,再开绿色按钮,调节粗调旋钮(先小功率),然后调节C1,C2,需慢慢调节,使反射功率调至最小。入射功率越大,说明输出功率越大,射频电源有自偏压时,此时腔室内靶已经起辉,开始溅射。待溅射几分钟后,打开靶挡板。 直流电源:开电源开关,开启动按钮,此时靶已起辉,开始溅射,再调电流调节按钮,增大功率。 射频电源:起辉气压需调至2Pa左右,待起辉后,再将气压降下至0.5Pa。射频清洗时,气压在1-2Pa之间,清洗时射频应小功率。 直流功率过大,电源会保护,需关掉直流电源开关重启 关机:先关电离规,关镀膜电源将旋钮调至最小 关气,将流量开关调至关闭,将旋钮调至最小 开限流阀,关截止阀,关主阀,关分子泵,待分子泵转速为零,关前级阀,关机械泵,关电源启动 关水,关气,关总电源 开机及抽真空操作 打开循环水机通水并确认水温 开控制箱电源启动 打开真空计(电阻规)电源。并将复合真空计打到手动控制档 打开放气阀破真空,手动打开上盖进行基片装卸。装卸完成后盖上上盖并关闭放气阀 打开机械泵 打开旁路阀 当腔室小于5Pa后关闭旁路阀,然后打开前级阀 当前级气压小于5Pa(即电阻规2的读数小于5Pa)后开分子泵,然后打开主阀。按下“分子泵开”按钮后,分子泵电源上的“IED”屏幕显示“转速追踪中。。。”大约3分钟后分子泵开始显示转速,分子泵运转完毕,“LED”显示“当前转速27000转,当前频率450Hz”当腔室压力<1.3×10-1Pa(即电阻规1的读数<1.3×10-1Pa)后将复合真空计调到自动档(按下手动/自动按钮,复合真空计的手动红色指示灯灭表明已经进入自动档,再次按手动/自动按钮即切换到手动档),此时系统会自动打开高真空测计(电离规)。 当腔室压力达到3×10-3Pa(即电离规的读数<3×10-3Pa)抽真空完成。

相关主题
文本预览
相关文档 最新文档