当前位置:文档之家› 汉国结构超限报告

汉国结构超限报告

深圳市广海投资有限公司

Shenzhen GuangHai Investment Co. Ltd.

汉国城市商业中心

Hon Kwok City Commercial Center

超限高层建筑抗震设计可行性论证报告Feasibility Study Report for High-rise Building Structure Exceeding Code Limits ISSUE 1

深圳市广海投资有限公司Shenzhen GuangHai Investment Co. Ltd

汉国城市商业中心

Hon Kwok City Commercial Center

超限高层建筑抗震设计可行性论证报告

Feasibility Study Report for High-rise Building Structure Exceeding Code Limits

设计单位

Prepared by

Skidmore, Owings & Merrill LLP

San Francisco, California, USA

2008年10月18日

October 18, 2008

Job number 207023

目录

页数

1.引言1 1.1项目概况1 1.2报告简介1

2.设计依据2 2.1设计规范2 2.2工程技术文档3

3.材料4 3.1混凝土4 3.2钢筋4 3.3结构钢材5

4.荷载作用与设计要求6 4.1楼面荷载6 4.2雪荷载6 4.3风荷载7 4.4地震作用8 4.5作用效应组合13 4.6验算要求14 4.7基础作用效应组合 16 4.8结构构件耐火极裉 16

5.场地工程地质与水文地质条件 17 5.1地形地貌17 5.2地质构造17 5.3地层构成与岩土工程特性 17 5.4场地稳定性和地震效应 17 5.5地基设计参数18 5.6地下水18 5.7基础选型建议19 5.8总结19

6.结构体系与控制参数 20 6.1塔楼20 6.2结构超限检查与超限措施 23 6.3地下室25 6.4基础26

7.ETABS弹性分析28 7.1分析软件与假定28 7.2周期与振型30 7.3层间位移角31 7.4地震剪重比33 7.5框架承担的地震剪力比 34 7.6扭转位移比367.8抗倾覆验算和整体稳定验算 39 7.9主要构件验算39 7.10弹性时程分析42

8.ETABS与SATWE分析结果的对比 45 8.1模型质量45 8.2振型和周期45 8.3基底剪力45 8.4地震层间位移46 8.5风荷载层间位移46 8.6总结46

9.结构问题专项研究 47 9.1结构体系研究47 9.2伸臂桁架中震验算 51 9.3屋顶桁架研究51 9.4特殊楼板分析52 9.5风荷载作用下舒适度 53 9.6徐变与收缩分析56 9.7施工阶段分析57 9.8剪力墙中震和大震下受拉检查 58 9.9柱子大震下受拉检查 59 9.10抗浮验算60 9.11由徐变和收缩沉降在梁内引起的附加弯矩 61

10.罕遇地震弹塑性时程分析 65 10.1分析目的65 10.2弹塑性时程分析方法 65 10.3罕遇地震下的性能要求 66 10.4弹塑性时程分析结果 66

11.总结68附录A 建筑初步设计图纸

附录B 结构初步设计图纸

附录C Etabs模型平面图与荷载图

附录D Etabs输入输出文本文件

附录E SATWE主要输入输出数据

附录F 伸臂桁架和屋顶桁架计算

附录G 特殊楼板分析

附录H 风舒适度研究参考资料

附录I 徐变与收缩分析

附录J 徐变与收缩引起的梁内附加弯矩

附录K 弹塑性时程分析(由RBS完成)

附录L 其它验算

CONTENTS

Page 1.INTRODUCTION 1 1.1Outline of the Project 1

1.2Contents of the Report 1

2.DESIGN BASIS 2 2.1Design Codes 2

2.2Project Technical Documents 3

3.MATERIAL DATA 4 3.1Concrete 4 3.2Reinforcement 4

3.3Structural Steel 5

4.LOADING AND DESIGN CRITERIA 6 4.1Floor Loads 6 4.2Snow Loads 6 4.3Wind Loads 7 4.4Earthquake Action 8 4.5Design Load Combination 13 4.6Design Criteria 14 4.7Foundation design load combination 16

4.8Fire Resistance for Structural Elements 16

5.GEOTECHNICAL AND HYDROLOGICAL CONDITIONS 17 5.1Topography 17 5.2Tectonic Setting 17 5.3Stratigraphy and Geotechnical Characteristics 17 5.4Geotechnical Stability and Seismic Effects 17 5.5Foundation Design Parameters 18 5.6Hydrology 18 5.7Suggestion on Foundation Selection 19

5.8Summary 19

6.STRUCTURAL SYSTEM AND MAJOR PARAMETERS 20 6.1Main Tower 20 6.2Code Exceeding Aspects and Structural measures 23 6.3Basement 25

6.4Foundation 26

7.ETABS ELASTIC ANALYSIS OF THE STRUCTURE 28 7.1Software and Assumptions 28 7.2Periods and Modal Shapes 30 7.3Inter-story Drift 31 7.4Seismic Shear-Weight Ratios 33 7.5Moment Frame Shear Ratios 34 7.6Torsion Ratio 36 7.7Story Lateral Stiffness 38 7.8Check for Overturning Moment and Global Stability 39 7.9Check of Key Members 39 7.10Elastic Time-history Analysis 428.1Model Mass 45 8.2Modes and Periods 45 8.3Base Shear 45 8.4Inter-story Drift In Earthquake 46 8.5Inter-story Drift In Wind Load 46

8.6Summary 46

9.STUDIES ON VARIOUS STRUCTURAL ISSUES 47 9.1Study on Structural System 47 9.2Moderate Earthquake Check for Outriggers 51 9.3Roof Truss Study 51 9.4Special Diaphragm Slab Analysis 52 9.5Comfortability in Wind Load 53 9.6Creep and Shrinkage Analysis 56 9.7Construction Stage Analysis 57 9.8Walls Tension Check in Moderate Earthquake and Rare Earthquake 58 9.9Columns Tension Check in Rare Earthquake 59 9.10Hydrostatic Uplift Checks 60

9.11Additional Moments in Beams due to Creep and Shrinkage Settlement 61

10.ELASTIO-PLASTIC TIME-HISTORY ANALYSIS IN RARE EARTHQUAKE 65 10.1Aim of Elasto-plastic Time-history Analysis 65 10.2Analysis Method 65 10.3Performance Objectives in Rare Earthquake 66

10.4Key Results of Time-history Analysis 66

11.SUMMARY 68

Appendix A Architectural Design Development Drawings

Appendix B Structural Design Development Drawings

Appendix C Etabs Framing Plans and Loading Plans

Appendix D Etabs Input and Output Text File

Appendix E Key SATWE Input and Output Data

Appendix F Outrigger and Roof Truss Calculations

Appendix G Special Diaphragm Slab Analysis

Appendix H Reference for Wind Acceleration Study

Appendix I Creep and Shrinkage Analysis

Appendix J Additional Moments in Beams due to Creep and Shrinkage

Appendix K Elasto-plastic Time-history Analysis (by RBS)

Appendix L Miscellaneous Checks

1. 引言

SOM 及深圳方佳建筑设计有限公司受甲方深圳市广海投资有限公司委任为汉国城市商业中心提供设计服务。SOM 将负责主塔楼、裙房及地下室的结构设计至初步设计阶段。方佳为国内设计单位,在初步设计阶段提供咨询服务,在初步设计完成后负责施工图设计。方佳在初步设计阶段将完成人防部分的设计。

广州容柏生建筑工程设计事务所(RBS )受业主委托做为设计咨询方,将在设计及施工过程中提供咨询意见,并且负责对结构进行弹塑性动力时程分析。

1.1 项目概况

汉国城市商业中心项目位于深圳市福田区深南路与福明路交叉路口,为一座超高层综合楼,地上共75层(包括避难层及夹层),地下五层,主楼主要结构屋顶高311.9米,顶部另有装饰性桁架结构,其顶部高329.4米。地下室做为商场、停车以及机电设备用房,其中地下5层局部区域设置战时人防地下室。裙房为6层,屋顶高30米,结构与塔楼连为一体。

1.2 报告简介

本报告包含了结构初步设计与计算的依据、主要假定、设计方法以及主要结果。由于本项目属于超限高层建筑结构,报告中提出了超限应对措施,并且针对若干结构问题进行了专项分析。 结构初步设计初期中,邀请了一些结构设计专家对结构体系进行了讨论,并提出了一些意见。在设计深入中根据这些意见对结构设计进行了相应的调整,详见第6.2节以及第9节。

1. INTRODUCTION

Skidmore, Owings & Merrill LLP (SOM) and Shenzhen Fangjia Architectural Design Co., Ltd. (Fangjia) were appointed by Guanghai Investment to design the Hon Kwok City Commercial Center. SOM will be responsible for the design of the main tower, the podium and basement to Development Design (DD) stage. Fangjia will act as the China Local Design Institution, before and during the DD stage to provide advice on design and responsible for the construction drawings design stage after DD. During the DD stage, Fangjia will also be responsible for the design of bomb shelter area in the basement.

Guangdong RBS Architectural Engineering Design Associates (RBS) is appointed by Client as the design consultant for this project. They will provide consultancy service during the design and construction of the project, and is responsible for the elasto-plastic time-history analysis of the structure.

1.1 Outline of the Project

The Hon Kwok City Commercial Center is located in the Futian District, at the crossing of ShenNan Avenue and FuMing Road. It is a super-high-rise complex with 75 stories (including refuge floors and mezzanines) above grade and 5 stories below grade. The height of the structure at the main structural roof is 311.9m, with decorative roof trusses reaching 324.9m. The basement serves as retail, garage and mechanical rooms, with part of the B5 level as a bomb shelter for war time. There is a 6-story podium,

which is 30m tall and structurally connected to the main Tower.

1.2 Contents of the Report

This report includes the basis, main assumptions, design methods and key results of the Structural Design Development. Relevant structural measures in response to the code exceeding aspects are proposed, and results of studies on several structural issues are presented.

At the early stage of the design, a group of eminent structural experts were invited for a discussion on the structural system for this building. The comments from this discussion were studied and relevant adjustments to the structural design were made in the DD design process based on these comments. Details of these adjustments are listed in Sections 6.2 and Section 9 of the report.

2. 设计依据

2.1 设计规范

本发展项目按中国国家已颁布之各规范及广东、深圳地方规范进行设计,国家规范主要包括:

(1) 建筑结构设计术语和符号标准 GB/T50083-97

(2) 建筑抗震设防分类标准 GB50223-2008

(3) 工程结构设计基本术语和通用符号GBJ132-90

(4) 建筑结构可靠度设计统一标准 GB

50068-2001

(5) 建筑结构荷载规范(2006年版)GB50009-2001

(6) 建筑抗震设计规范(2008年版)GB50011-2001

(7) 混凝土结构设计规范 GBJ50010-2002

(8) 钢结构设计规范 GB50017-2003

(9) 人民防空地下室设计规范 GB

50038-2005

(10) 地下工程防水技术规范 GB

50108-2001

(11) 建筑地基基础设计规范 GB50007-2002

(12) 地下工程防水技术规范 GB50108-2001

(13) 高层民用建筑设计防火规范(2005年版) GB50045-95

(14) 高层民用建筑钢结构技术规程 JGJ99-98

(15) 高层建筑箱形与筏形基础技术规范JGJ6-99

(16) 建筑桩基技术规范 JGJ94-2008

(17) 高层建筑混凝土结构技术规程 JGJ3-2002

(18) 型钢混凝土组合结构技术规程 JGJ138-2001

(19) 钢管混凝土结构设计与施工规程CECS28:90

(20) 建筑钢结构防火技术规范 CECS200:2006

广东省以及深圳地方规范包括:

(1) 建筑地基基础设计规范 DBJ15-31-2003

(2) 广东省实施《高层建筑混凝土结构技术规程》

(JGJ3-2002)补充规定 DBJ/T15-46-2005

(3) 建筑防水工程技术规程 DBJ15-19-2006 2. DESIGN

BASIS

2.1 Design

Codes

The design will comply with current code of practices in China and Guangdong / Shenzhen. National

codes mainly include:

(1) General definitions & symbols Architectural Design GB/T50083-97

(2) Standard for classification of seismic protection of Buildings GB50223-2008

(3) General definitions & symbols Structural Design GBJ132-90

(4) Unified Standard for Reliability Design of Building Structures GB 50068-2001

(5) Load Code for the Design of Building Structures (rev 2006) GB50009-2001

(6) Code for Seismic Design of Buildings (Rev. 2008) GB50011-2001

(7) Code for Design of Concrete Structures GBJ50010-2002

(8) Code for Design of Steel Structures GB50017-2003

(9) Specification for Civil Defence Basements GB 50038-2005

(10) Technical Code for Waterproofing of Underground Works GB 50108-2001

(11) Code for Design of Building Foundation GB50007-2002

(12) Technical Code for Waterproof in Underground Engineering GB50108-2001

(13) Code for Fireproof in Design of Highrise Buildings (rev 2005) GB50045-95

(14) Technical Specification for Steel Structure of Tall Buildings JGJ99-98

(15) Technical Specification for Box and Raft Foundation JGJ6-99

for Tall Buildings

(16) Specification for Pile Foundation of Buildings JGJ94-2008

(17) Technical Specification for Tall Reinforced Concrete Buildings JGJ3-2002

(18) Technical Specification for Steel Reinforced JGJ138-2001

Concrete Composite Structures

(19) Specification for Design and Construction of CFT Structures CECS28:90

(20) Technical Code for Fireproof of Building Steel Structure CECS200:2006

Guangdong and Shenzhen codes include:

(1) Code for Design of Building Foundation DBJ15-31-2003

(2) Supplemental regulation to implement JGJ3-2002

in

Guangdong

Province

DBJ/T15-46-2005

(3) Specification for waterproof engineering

of

construction

DBJ15-19-2006

如结构设计部分不包括在中国规范之内,则参考

(1) 美国 – 国际建筑规范 IBC-2006

(2) 美国 – 统一建筑规范 UBC-1997

(3) 美国 – 房屋抗震加固设计标准及注释 FEMA

356

(4) 美国– NEHRP新建建筑及结构抗震设防条例建议NEHRP

1997

2.2 工程技术文档

设计依据还包括业主提供的场地岩土勘察设计报告、场地地震安全性评价报告、风洞试验报告等

文件。

(1) 汉国城市商业中心岩土工程详细勘察报告 GK2008-11,深圳岩土工程公司,2008年7月;

(2) 汉国城市商业中心工程场地地震安全性评价报告,广东省地震工程试验中心,2008年7月;

(3) 深圳汉国城市商业中心工程风洞试验报告,汕头大学风洞实验室,2008年10月。

In cases where elements are not covered by Chinese Standards, reference to the following standards will

be made.

(1) US – International Building Code IBC-2006

(2)

US

Uniform

Building

Code

UBC-1997

(3) Prestandard and Commentary for the Seismic Rehabilitation of Buildings FEMA356

(4) NEHRP Recommended Provisions for Seismic Regulation NEHRP 1997

for New Buildings and other Structures

2.2 Project Technical Documents

Design basis also includes the site geotechnical investigation report, site seismic hazard assessment

report and wind tunnel report.

(1) Hon Kwok City Commercial Center Geotechnical Investigation Report GK2008-11, Shenzhen

Geotechnical Engineering Co. Ltd., 2008.07;

(2) Hon Kwok City Commercial Center Site Seismic Hazard Assessment Report, GuangDong Seismic

Engineering Test Center, 2008.07;

(3) Hon Kwok City Commercial Center Wind Tunnel Test Report, Wind Tunnel Laboratory of Shan Tou

University, 2008.10.

3. 材料 3.1

混凝土

结构构件所选用之混凝土将不低于C30,按GB50010-2002材料参数如下:

标准值 (MPa)

设计值 (MPa)

强度种类

f ck

f tk

f c

f t

弹性模量 E c (MPa)

C30 20.1 2.01 14.3 1.43 3.00 x 104 C35 23.4 2.20 16.7 1.57 3.15 x 104 C40 26.8 2.39 19.1 1.71 3.25 x 104 C45 29.6 2.51 21.1 1.80 3.35 x 104 C50 32.4 2.64 23.1 1.89 3.45 x 104 C60 38.5 2.85 27.5 2.04 3.60 x 104 C70 44.5 2.99 31.8 2.14 3.70 x 104 C80

50.2 3.11 35.9 2.22 3.80 x 104

3.2 钢筋

钢筋材料应符合中国规定GB50010-2002。

混凝土保护层最小厚度(mm) 一类环境 二a 类环境 (迎水面) 钢筋 板、墙

基础、地下室外墙、顶板

纵向受力

15 25 30 ≥ 50* 箍筋、分布筋及构造筋

10 15 15

≥ 50*

* 保护层厚大于40mm ,应加上细直径钢筋网片。

3. MATERIAL DATA 3.1 Concrete

Grade of concrete for structural components shall not be less than C30, according to GB50010-2002 the

design parameters are as follows:

Standard Value (MPa)

Design Value (MPa)

Concrete Grade

f ck

f tk

f c

f t

Young’s Modulus

E c (MPa)

C30 20.1 2.01 14.3 1.43 3.00 x 104 C35 23.4 2.20 16.7 1.57 3.15 x 104 C40 26.8 2.39 19.1 1.71 3.25 x 104 C45 29.6 2.51 21.1 1.80 3.35 x 104 C50 32.4 2.64 23.1 1.89 3.45 x 104 C60 38.5 2.85 27.5 2.04 3.6 x 104 C70 44.5 2.99 31.8 2.14 3.70 x 104 C80

50.2 3.11 35.9 2.22 3.80 x 104

3.2 Reinforcement

All reinforcement complies with Chinese Standard GB50010-2002. special ordering).

Minimum Concrete Cover (mm)

Class 1 Environmental

Condition

Class 2a Environmental Condition

Rebar Slab, Wall Beam Column Foundation, Basement

Wall, Roof Main Bar

15

25

30

≥ 50* Links, Distribution & Others

10 15 15

≥ 50*

* For cover more than 40mm, wire mesh will be provided.

3.3 结构钢材

结构用钢材将采用中国之标准钢材,其设计值如下:

3.3.1

钢材的物理性能指针

弹性模量E (MPa) 剪变模量G

(MPa)

线膨胀系数α

(以每°C计)

质量密度ρ

(kg/m3)

206×103 79×103 12×10-67850 3.3.2

钢材强度设计值(MPa)

钢材

牌号厚度或直径(mm) 抗拉、抗压

和抗弯

fy/f

抗剪

f v

端面承压

(刨平顶紧)

f ce

≤16 235/215 125 325 >16~40 225/205 120 325

>40~60 215/200 115 325 Q235钢

>60~100 205/190 110 325 ≤16 345/310 180 400 >16~35 325/295 170 400

>35~50 295/265 155 400 Q345钢

>50~100 275/250 145 400 ≤16 345/310 180 400 >16~35 345/310 180 400

>35~50 335/300 175 400

Q345GJ钢

>50~100 325/295 170 400

≤16 390/350 205 415 >16~35 370/335 190 415

>35~50 350/315 180 415 Q390钢

>50~100 330/295 170 415

本项目钢结构用钢主要采用Q345以及Q345GJ等级。其中Q345GJ钢材应满足GBT19879-2005《建筑结构用钢板》的要求。

3.3.3

型钢钢号

所有热轧型钢规格按GB/T 11263-2005《热轧H型钢与剖分T型钢》。3.3 Structural

Steel

All structural steel would be Chinese Standard with the mechanical properties as follow:

3.3.1 Mechanical Properties for Structural Steel

Elastic Modulus E

(MPa)

Shear Modulus G

(MPa)

Coefficient for

thermal expansionα

(°C)

Densityρ

(kg/m3)

206×103 79×103 12×10 – 67850

3.3.2 Structural Steel Design Strength (MPa)

Steel

Grade

Thickness or

Diameter (mm)

Tensile,

Compressive and

Bending

f y/ f

Shear

f v

Bearing

(Flat Comfort

Surface)

f ce

≤16 235/215 125 325

>16~40 225/205 120 325

>40~60 215/200 115 325 Q235

>60~100 205/190 110 325

≤16 345/310 180 400

>16~35 325/295 170 400

>35~50 295/265 155 400 Q345

>50~100 275/250 145 400

≤16 345/310 180 400

>16~35 345/310 180 400

>35~50 335/300 175 400 Q345GJ

>50~100 325/295 170 400

≤16 390/350 205 415

>16~35 370/335 190 415

>35~50 350/315 180 415 Q390

>50~100 330/295 170 415

Grade Q345 and Q345GJ will be the main steel grades used for this project. Q345GJ follows GB/T

19879-2005 Steel Plates for Building Structure.

3.3.3 Steel Sections

Rolled steel sections follow GB/T 11263-2005 Hot Rolled H and Cut T Section.

4. 荷载作用与设计要求

4.1 楼面荷载

按照中国国家规范GB50009-2001(2006年版)以及使用要求选用下列之荷载标准值。

典型楼面荷载标准值 (kPa)

位置/荷载机电设备及吊顶找平层间隔墙活荷载

观光平台屋面 1.0 4.8 – 5.0

行政酒廊0.5 2.4 – 5.0

公寓0.5 1.2 1.0 2.0

公寓核心筒0.5 1.2 1.9 2.0

办公室0.5 1.2 1.0 3.0

办公室核心筒0.5 1.2 1.9 3.0

避难层0.5 2.4 – 5.0

空中大堂0.5 1.2 – 5.0

游泳池 1.0 4.0 – 18

消防疏散楼梯0.5 1.2 – 3.5

机电房 7.5或实际重量 1.2 – 1.5

电梯机房0.5 2.4 – 20

幕墙(立面) 1.25

屋面0.5 4.8 – 2.0

屋面(冷却塔) 0.5 4.8 – 12.0

商业0.5 2.4 – 5.0

餐厅 1.5 1.2 1.0 3.0

厨房 1.5 3.0 – 4.0

库房0.5 1.2 – 10

地面绿化区– 覆土20kN/m3– 4.0

消防车道– 5.0 – 35

停车库0.5 1.8 – 4.0

上、落货区0.5 2.0 – 20

对于塔楼隔墙荷载,经过与本地院协商,公寓分户墙采用100mm厚轻质复合墙板,户内隔墙为

75mm厚轻质复合墙板。核心筒内需要支承电梯小构架的隔墙采用150mm厚砌块墙,其余都采

用100mm厚轻质复合墙板。表中隔墙荷载即根据此配置计算。

4.2 雪荷载

深圳地区不考虑雪荷载。4. LOADING AND DESIGN CRITERIA

4.1 Floor

Loads

The following loads based on the Chinese Code GB500009-2001 (rev 2006) and operating requirements

are used in the design.

Typical Floor Loads (kPa)

Location/Loads MEP

&

Ceiling

Finishes

Partitions Live

Load

Observation 1.0

4.8

5.0

Exective Lounge 0.5 2.4 – 5.0

Apartment 0.5

1.2

1.0

2.0

Core (Apartment) 0.5 1.2 1.9 2.0

Office 0.5

1.2

1.0

3.0

Core (office) 0.5 1.2 1.9 3.0

Refuge 0.5

2.4

5.0

Sky lobby 0.5 1.2 – 5.0

Swimming Pool 1.0 4.0 – 18

Fire Escape Stair 0.5 1.2 – 3.5

Plant Room 7.5或实际重量 1.2 – 1.5

Lift Plant Room 0.5 2.4 – 20

Fa?ade (elevation) 1.25

Podium Roof 0.5 4.8 – 2.0

Roof (cooling tower) 0.5 4.8

12.0

Retail 0.5 2.4

5.0

Restaurant 1.5 1.2

1.0

3.0

Kitchen 1.5 3.0

4.0

Storage 0.5 1.2

10

Landscape Area – Fill = 20 kN/m3– 4.0

Fire Truck Access – 5.0

35

Car Park 0.5 1.8

4.0

Loading Bay 0.5 2.0

20

For partition loads, after the discussion with LDI, the following assumptions are adopted. Apartment unit

separation wall is 100mm thick light-weight panel; partition inside unit is 75mm thick light-weight panel;

core partition which needs to support lift secondary members is 150mm thick masonry wall; other

partitions inside core are 100mm light-weight panels. Partition loads in above table are calculated based

on this configuration.

4.2 Snow

Loads

No snow load is required for Shenzhen.

4.3 风荷载

4.3.1 规范风荷载

深圳市基本风压按50年一遇ω0为0.75 kPa,按100年一遇ω0为0.90 kPa。考虑到塔楼高度约

300米,根据当地规定构件强度校核时应采用100年一遇风压,而进行风荷载作用下位移计算时

可以采用50年一遇的风压。另外在风压高度变化系数根据C类地面粗糙度采用。由于高宽比较

大,风荷载体型系数取1.4。

4.3.2 风洞试验

风洞试验结果表明,按照规范计算的风荷载以及风洞试验结果在南北方向(Y方向)比较接近,

而在东西方向(X方向)风洞试验结果较大。设计中将采用两者中较大的数值。

下表比较了ETABS中文版按照荷载规范计算的50年一遇风荷载以及风洞试验给出的50年一遇

风荷载作用下基底剪力数值。可以看到在Y向基底剪力两者相差较小,而在X方向,风洞试验

结果比ETABS大将近75%。风洞试验计算50年风荷载采用阻尼4%。

50年风荷载ETABS 风洞试验风洞/ ETABS X向风-基底剪力 (kN) 26700 46592 174.5%

Y向风-基底剪力 (kN) 34500 40333 116.9%

X向风-倾覆弯矩 (MNm) 5272 9770 185.3%

Y向风-倾覆弯矩 (MNm) 6927 7621 110.0%

下表比较了ETABS按照规范计算的100年一遇风荷载以及风洞试验给出的50年一遇风荷载作用

下基底剪力数值。可以看到在Y向基底剪力两者比较相近,而在X方向,风洞试验结果比

ETABS大将近60%。风洞试验计算100年风荷载采用阻尼比5%。

100年风荷载ETABS 风洞试验风洞/ ETABS X向风-基底剪力 (kN) 32040 51393 160.4%

Y向风-基底剪力 (kN) 41400 47663 115.1%

X向风-倾覆弯矩 (MNm) 6326 11011 174.0%

Y向风-倾覆弯矩 (MNm) 8312 8862 106.6%

在检查风荷载作用下的加速度时,由于深圳10年一遇风荷载包含了台风影响,而台风影响(在

国外设计中)通常在舒适度评估时不予考虑。国际上通常认为采用一年一遇的风荷载,按照

CTBUH或者ISO的条件,并考虑风玫瑰效应来评估舒适度是比较合适的。对1年和10年一遇风

荷载,将分别采用1%和2%阻尼比。详细信息请参见第9.5节。4.3 Wind

Loads

4.3.1 Code Wind Load

The reference wind pressureω0 for Shenzhen is 0.75kPa based on 50 years return period and 0.90kPa

based on 100 years return period. As the tower is about 300mm tall, considering local regulations, wind

pressure based on 100 years return period shall be used for the strength check of members, while wind

pressure based on 50 years return period can be used for lateral drift check under wind load. For

exposure factor for wind load, the terrain roughness used is Category C. Wind load shape factor is 1.4

considering the large H/B ratio.

4.3.2 Wind Load from Wind Tunnel Test

Wind tunnel results show that in the north-south direction (Y Dir) the wind loads calculated from design

code and those from wind tunnel test are quite similar, while in the east-west direction (X Dir) the wind

tunnel test gives larger wind loads. The envelope of code wind load and wind tunnel test results will be

used in the design.

The table below shows the comparison of base shear under wind loads of 50-year return period, given by

code and wind tunnel test. It can be seen that the wind load in Y direction are very close, but in X

direction, wind tunnel test gives wind load about 75% larger than code wind. 4% damping ratio was

adopted in the calculation of 50-year wind loads.

50-year Wind Load ETABS Wind Tunnel Test Test / ETABS Wind X – Base Shear(kN) 26700 46592 174.5%

Wind Y – Base Shear (kN) 34500 40333 116.9% Wind X – Overturning Moment (MNm) 5272 9770 185.3%

Wind Y – Overturning Moment (MNm) 6927 7621 110.0%

The table below shows the comparison of base shear under wind loads of 100-year return period, given

by code and wind tunnel test. It can be seen that the wind load in Y direction are very close, but in X

direction, wind tunnel test gives wind load about 60% larger than code wind. 5% damping ratio was used

for 100-year wind load calculation.

100-year Wind Load ETABS Wind Tunnel Test Test / ETABS Wind X – Base Shear(kN) 32040 51393 160.4%

Wind Y – Base Shear (kN) 41400 47663 115.1% Wind X – Overturning Moment (MNm) 6326 11011 174.0%

Wind Y – Overturning Moment (MNm) 8312 8862 106.6%

In the acceleration check it is expected that the 10-year wind load in Shenzhen includes influences of

storm winds which are typically (in international practice) not considered when evaluating occupant

comfort. It is usually considered appropriate to use 1-year return wind, including directional effects and

the CTBUH or ISO criteria internationally. Damping ratio of 1% and 2% for 1 and 10 year winds are

used, respectively. Please refer to Section 9.5 for more information.

4.4 地震作用

地震荷载依据国标GB50011-2001为标准,并且考虑场地地震安全性评报告的结果。 4.4.1 规范地震作用

地震烈度 50年设计基准期

超越概率

烈度重现期

(年)

地面加速度峰值 PGA (cm/s 2)

水平地震影响系数最大值max α

多遇地震 63% 50 35 0.08 设防烈度 10% 475 98 0.23 罕遇地震

3%~2% 1642~2475 220

0.50

? 抗震设防烈度 7度,设计基本地震加速度 = 0.1g ? 建筑场地类别

第一组,场地类别II 类,g T = 0.35秒 ? 弹性分析阻尼比

0.05(混凝土结构)

?

地震反应谱 (按GB50011-2001,5.1.1条)见图4.4.1

周期T 小于0.1秒

直线上升段

周期T 从0.1秒到g T 水平段 周期T 从g T 到g T 5

曲线下降段max 2αηαγ

???

?

???

?=T

T g

周期T 从g T 5到6秒 直线下降段 max 12)]5(2.0[αηηαγg T T ??= 其中 ξξ

γ55.005.09.0+?+

=,0805.002.011≥?+=ηξη,55.07.106.005.0122≥+?+=ηξ

ξη。

? 2条天然时程波 - 由安评报告提供 ?

人工波 - 由安评报告提供

反应谱分析采用周期折减系数0.85。时程分析法中步长不宜大于0.02秒,时程长度满足规范最

小长度要求。

4.4 Earthquake Action

The data below is based on Chinese Code GB50011-2001, the Seismic Hazard Report for this site will be

considered once available. 4.4.1

Earthquake Action to Design Code

Earthquake

Probability of exceedance in 50

years

Return Period (year)

Peak Ground Acceleration (cm/s2)

Max. Hor. Seismic Force Coefficient max

αFrequent 63% 50 35 0.08 Design Intensity 10% 475 98 0.23 Severe 3%~2% 1642~2475 220

0.50

? Basic seismic intensity Zone 7, Design Basic Acceleration = 0.1g ? Site type:

Group I, Site Category II, , Tg = 0.35s ? Damp ratio for linear analysis

0.05 (concrete structure)

?

Response spectrum (According to GB50011-2001, cl 5.1.5) is shown in Figure 4.4.1

T < 0.1 sec.

Linearly increase

0.1 sec. ≤ T < g T Constant

g T ≤ T < g T 5

Exponentially decrease max 2αηαγ

???

?

????=T

T g

g T 5 ≤ T <6 sec.

Linearly decrease max 12)]5(2.0[αηηαγg T T ??=

where ξξ

γ55.005.09.0+?+

=, 0805.002.011≥?+=ηξη, 55.07.106.005.0122≥+?+=ηξ

ξη.

? Two Natural Time History Curves - provided by Seismic Hazard Study ?

Artificial Time History Curve - provided by Seismic Hazard Study

Period discount factor 0.85 was adopted in the spectrum analysis. For all Time History, time step should not be more than 0.02s and the length of the record shall satisfy code limit on minimum length.

图 4.4.1中国规范反应谱曲线

Figure 4.4.1 Response Spectrum to Chinese Code

4.4.2 重力荷载代表值

在抗震验算时,不计入屋面活荷载,不考虑活荷载折减系数。竖向荷载取重力荷载代表值,G e : G e =恒荷载+λL 活荷载+λS 雪荷载

λL =0.5 (一般情况),0.8(书库、档案库),1.0(按实际情况计算的楼面活荷载) λS =0.5 (本项目雪荷载为零) 4.4.3

竖向地震作用

深圳抗震设防烈度为7度,按照中国抗震规范设计中无需考虑竖向地震作用。 4.4.4 楼层水平地震剪力

结构抗震验算时,任一楼层的水平地震剪力应符合下式要求:

∑=≥n

i

j j Eki G V λ

式中:

V Eki —第i 层对应于水平地震作用标准值的楼层剪力;对竖向不规则结构的薄弱层,尚应乘以

1.15的增大系数;

λ—剪力系数,对于扭转效应明显或基本周期小于3.5s 的结构取为0.016,对于基本周期大于

5.0s 的结构取为0.012,对于基本周期介于3.5s 和5.0s 之间的结构,可插入取值;对竖向不规则结构的薄弱层,尚应乘以1.15的增大系数;

j

G —第j 层的重力荷载代表值。

4.4.5 双向水平地震效应

双向水平地震作用的扭转效应,可按下列公式确定:

()

2

222)85.0(,)85.0(max y x y x EK S S S S S ++=

4.4.6 场地地震安全性评价

广东省地震工程试验中心对拟建场地进行了场地地震安全性评价报告,报告认为拟建场地属地震

活动水平相对较弱的地区。场地地表下的淤泥质砂和粗砾砂层在Ⅶ度地震作用下不会产生液化,而本工程桩基直接座落在基岩上,场地可不考虑地基的砂土液化问题。本场地未发现淤泥质软土层,且主塔楼地基将直接建在基岩上,故不可能发生软土震陷。地表断裂距离场地较远,按《建筑抗震设计规范》(GB50011-2001)的有关要求,可不考虑断裂在地震时对场地的影响。 根据地表20米内等效剪切波速测试结果, 本工程场地土类型为中软-中硬土,建筑场地类别为Ⅱ类。本场地地面脉动平均卓越周期为0.31秒。

4.4.2

Vertical Load Representative Value

In seismic design, live load on roof is not considered, and live load reduction cannot be applied. The

vertical load, representative value G e is:

G e = Dead Load +λL Live Load +λs Snow Load λL =

0.5(for general area), 0.8(book store, file storage area) 1.0(for live load calculated based on actual weight)

λS = 0.5 (there is no snow load in this project)

4.4.3 Vertical Seismic Effect

Seismic intensity for Shenzhen is 7, and no vertical seismic effect need to be considered in the design

according to seismic code in China. 4.4.4

Horizontal Seismic Story Shear

Under seismic load condition, the shear force in each story should satisfy the following:

∑=≥n

i

j j Eki G V λ

where

V Eki — The standard horizontal seismic shear force in i th story; for soft story structure with

vertical irregularity, a 1.15 factor should also be applied.

λ — Shear Force Coefficient, for structures with torsional behavior or fundamental period less than

3.5s equals to 0.016. For structures with fundamental period larger than 5s use 0.012, for structures with period between 3.5s and 5s, use linear interpolation; for soft story structure with vertical irregularity, a 1.15 factor should also be applied.

j G — The standard vertical load in jth story.

4.4.5

Bi-directional Horizontal Seismic Effect

For torsional effect due to bi-directional horizontal seismic action, the following equation can be used:

()

2

222)85.0(,)85.0(max y x y x EK S S S S S ++=

4.4.6 Seismic Hazard Assessment Report

Guangdong seismic engineering test center provided the seismic hazard assessment report for the proposed construction site. The report pointed out that the site has relatively low seismic activities. The muddy sand and cobble sand layers will not liquefy in seismic action of intensity 7. Also the piled foundation of the building is supported on the rock, so there is not need to consider liquefaction of the soil. There is no muddy soft soil layer found, and the tower is seated on the rock, so there is not risk of sinking of soft soil. All known active faults are far from the site, based on GB50011-2001 there is no need to consider behaviour of faults in seismic activities for this site.

Based on the results of shear wave speed tests, the site category is type II and Predominant Period of the site is 0.31 second.

根据对拟建场地的地震危险性分析,得到其中50年内三个概率水平的概率烈度、基岩加速度峰值PGA 、地震系数K 。根据50年超越概率10%的烈度值和基岩加速度峰值,本场地地震基本烈度为Ⅶ度。

根据本场地岩土力学性能测定结果及相关资料, 采用等效线性化地震反应分析法, 计算得到场址不同孔位的地面加速度峰值、地震系数K 及地面速度峰值。根据这些结果,报告给出三个不同概率设防水准的地面设计地震影响系数如下式,其中5.2max =β,max max βαK =。 (1)水平向(T 0=0.1秒):

???

??

?

??

???

???

?????≤

(205)]

5(2.0[50)]40.0(40.0[)(212

max 2max 02

max 020

max s T T T T T T T T T T T T T T T T T g g g g g g ηηηαηαηαηααγγ

(2)竖向(T 0 = 0.1秒):

???

??

?

??

???

???

?????≤

(205)]

5(2.0[50)]40.0(40.0[)(212

max 2max 02

max 020

max s T T T T T T T T T T T T T T T T T g g g g g g ηηηαηαηαηααγγ

ζζ

γγζ

ζ

ηζ

η55.005.07.106.005.018

05.002.0021+?+

=+?+

=?+

=。

工程场地50年内阻尼比ζ=0.05时三个概率水平的地面地震影响系数max α、特征周期g T 和反应谱衰减指数γ如下表所示。

63%(50年) 10%(50年) 2%(50年) 设防概率P 水平

竖向

水平

竖向

水平

竖向

地震影响系数αmax

0.0935 0.0654 0.2891 0.2127 0.5401 0.3930 g T (s )

0.35 0.32 0.45 0.35 0.60 0.45 0γ

1.0 1.0 1.0 1.0 1.0 1.0

Based on the seismic hazard analysis for the construction site, the probabilistic intensity of three probability levels in 50 years are provided, as well as Peak Ground Accelerations and seismic factor K. based on the probabilistic intensity of 10% exceedance in 50 years and the value of PGA, the basic seismic intensity of the site is intensity 7.

Based on the geotechnical properties of the site and relevant data, the PGA, K and peak velocity at ground level are calculated based on equivalent elastic seismic response analysis method. Based on these analyses, the report provided the design seismic response spectrum for the three probabilities at ground level as following, where 5.2max =β,max max βαK =. (1) Horizontal (T 0=0.1s):

???

??

?

??

???

???

?????≤

(205)]

5(2.0[50)]40.0(40.0[)(212

max 2max 02

max 0

20

max s T T T T T T T T T T T T T T T T T g g g g g g ηηηαηαηαηααγγ

(2) Vertical (T 0=0.1s):

???

??

?

??

???

???

?????≤

(205)]

5(2.0[50)]40.0(40.0[)(212

max 2max 02

max 0

20

max s T T T T T T T T T T T T T T T T T g g g g g g ηηηαηαηαηααγγ

ζζγγζ

ζηζ

η55.005.07.106.005.018

05.002.0021+?+

=+?+

=?+

=。

For damping ratio ζ=0.05, the seismic influence factor max α, Characteristic Period g T and the attenuation index γ are listed in the table below.

63% (50 years)

10% (50 years)

2% (50 years)

Exceedance P

Horizontal Vertical Horizontal Vertical Horizontal

Vertical

αmax

0.0935 0.0654 0.2891 0.2127 0.5401 0.3930 g T (s)

0.35 0.32 0.45 0.35 0.60 0.45 0γ

1.0 1.0 1.0 1.0 1.0 1.0

下图对于小震比较了规范反应谱与场地安评反应谱,可以看到场地反应谱的峰值比较高,但是长周期段下降比较快,低于规范反应谱。根据ETABS 分析给出的前两个周期处的比较,场地反应谱数值分别是规范反应谱的83%和90%,而前两个振型在各自方向的振型质量参与系数都在60%以上。所以可以认为规范反应谱是更加保守的。

另外,报告给出了深圳汉国城市商业中心场地基岩和地面加速度时程曲线以及按本场地修正的强震记录,供设计单位选用。

The figure below compared the spectrum from seismic hazard assessment report and code spectrum for frequent earthquakes. It can be seen that the peak value of site spectrum is higher than code spectrum, but it decreases more quickly in the long period portion. At the location of the first two periods by ETABS, site spectrum values are about 83% and 90% of code spectrum values. Considering the modal participation mass ratios of the first two periods both exceed 60% in its own direction, it is reasonable to

The report also provided time-history records at bedrock and ground level, as well as adjusted seismic records of strong motion, for the use of the design team.

4.5 作用效应组合

4.5.1 组合系数

在第一阶段(弹性)抗震设计进行构件承载力验算时,其荷载或作用的分项系数应按表 4.4.1,并应

取各构件可能出现的最不利组合进行截面设计。

表4.5.1 荷载或作用的分项系数

组合恒载活载风地震

不利有利不利有利水平竖向

1 恒载+活载 1.35 1.0 0.7*x1.4

0.0 - - -

1A 恒载+活载 1.20 1.0 1.4 0.0 - - -

2 恒载+活载+风 1.2 1.0

0.7*x1.4

0.0

1.0x1.4

- -

3 恒载+风 1.2 1.0

- -

1.0x1.4

- -

4 重力荷载+水平地震+风 1.20 1.0 0.5x1.2

0.5 0.2x1.4 1.3-

* 如活载> 4kPa则取0.9。

注:

a. 非地震组合时活荷载可以参照下节所述折减。

b. 非地震组合时如活荷载大于4kPa不予折减。

c. 对于只考虑竖向地震的组合,4.6.2节中RE

γ应取1.0。

4.5.2 各层的活荷载折减系数

在设计墙、柱及基础时,酒店和办公室的活荷载可按表4.4.2折减。但此折减系数不适用于剧

院、电影院、商店、餐馆、展览馆、舞厅、储物室及机电用房等。有关资料参见荷载规范

GB50009-2001第4.1.1节。

表4.5.2 活荷载折减系数

墙,柱,基础计算截面

以上的层数

12~34~56~89~20>20

计算截面以上个楼层活荷载总和的折减系数

1.00

(0.90)*

0.850.700.650.600.55

注:* 当楼面梁的受荷面积超过25m时,采用括号内的系数。4.5 Design Load Combination

4.5.1 Combination

Factors

In Stage 1 (Elastic) design, the capacity for structural elements should be designed according to Table

4.4.1 for the worst case load combination.

Table 4.5.1 Load Combination Factors

Combination DL LL Wind Earthquake Adverse

Beneficial

Adverse

Beneficial E hor E ver

1 DL + LL 1.35 1.0 0.7*x1.4 0.0 - - -

1A DL + LL 1.20 1.0 1.4 0.00 - - -

2 DL + LL + Wind 1.20 1.0 0.7*x1.4 0.0 1.0x1.4- -

3 DL + Wind 1.20 1.0 - - 1.0x1.4- -

4 DL + LL+ Wind + Eh 1.20 1.0 0.5x1.2 0.

5 0.2x1.4 1.3 -

* 0.9 if LL > 4kPa

Note:

a. For Load case 1 to 3 (non-seismic load cases), live load reduction for columns as given in next section

can be applied.

b. Load 1 to 3 refers, NO reduction factor shall apply for LL > 4.0 kPa.

c. RE

γ in Section 4.6.2 of the design brief will equal to 1.0 for all elements when considering the vertical

earthquake.

4.5.2 Reduction of Floor Live Loads

When designing for walls, columns and foundations, the live load can be reduced according to Table

4.5.1 for the hotel and office area. However, it does not apply to theatres, cinemas, shops, restaurants,

exhibition halls, dancing rooms, store rooms and M&E areas, etc. Please refer to GB50009-2001 cl 4.1.1

for detail.

Table 4.5.2: Live Load Reduction Factor

Number of Floors

above walls, columns,

and foundations

12~34~56~89~20>20

Reduction factor for the

total imposed loads on

the floors above

1.00

(0.90)*

0.850.700.650.600.55

* Case when the tributary area for beams > 25m2

4.6 验算要求

4.6.1 结构验算

结构在承载力极限状态和正常使用极限状态下应符合下列要求:

S ≤ R

式中 S – 荷载或作用效应

R – 结构抗力

4.6.2 构件验算

4.6.2.1 正常使用极限状态

结构构件在正常使用极限状态下应满足下列公式的要求: S d ≤ C 式中

S d – 荷载效应设计值 (如变形、裂缝) C – 设计对该效应的相应限值

4.6.2.2 承载能力极限状态

1) 验算构件承载力极限状态时,对于非地震组合应满足:

R S ≤0γ

式中 γ0 – 结构重要性系数 (本项目为1.0)

S – 荷载或作用效应组合设计值 R – 结构构件承载力设计值

2) 在第一阶段抗震设计,构件的承载力应满足下列要求:

R S RE ≤γ

式中 γRE – 承载力抗震调整系数(见表4.6.2.1)

S – 结构构件内力组合的设计值

R – 结构构件承载力设计值

4.6 Design Criteria

4.6.1

Structure Resistance Capacity Check

The structure should have the following resistance:

S ≤ R

where S – Load effect of structures

R – Structural resistance capacity

4.6.2 Structure Element Capacity Check 4.6.2.1

Serviceability Limit State

The capacity of the structure should meet the following requirement:

S d ≤ C

where S d – Design value of load effect(such as deflection, cracking etc)

C – Corresponding Limit

4.6.2.2

Ultimate Limit State

1) While checking for non-seismic combination, the capacity of each structural

element should meet the following requirement:

R S ≤0γ

where γ0 – Element Importance Factor(1.0 for this project)

S – Design Load for structural elements

R – Design Capacity for structural elements

2) While checking for seismic combination, the capacity of each structural element should meet the following requirement:

R S RE ≤γ

where γRE – Modified coefficient of seismic bearing capacity of elements (according to table 4.6.2.1) S – Design Load for structural elements R – Design Capacity for structural elements

表4.6.2.1 γRE取值

材料结构构件受力状态γRE

柱、梁0.75

支撑0.80

节点板件,连接螺栓0.85

连接焊缝0.90

梁受弯0.75

轴压比小于0.15的柱偏压0.75

轴压比不小于0.15的柱偏压0.80

抗震墙偏压0.85 混凝土

各类构件受剪、偏拉0.85

梁受弯0.75

柱偏压0.80

支撑压0.85

抗震墙偏压0.85

各类构件及节点受剪0.85 型钢混凝土

焊缝及高强螺栓0.90

4.6.3 轴压比

当考虑地震作用组合时,混凝土柱、型钢混凝土柱和混凝土剪力墙的轴压比需要加以限

制,如下表:

表4.6.3.1 框架-抗震墙结构体系的轴压比限值

抗震等级

一级二级三级

混凝土柱0.75 0.85

0.95

型钢混凝土柱0.7 0.8

0.9

混凝土剪力墙0.4 (9度)

0.5 (8度)

0.6 -

剪跨比小于2时,柱子的轴压比限值应该比上表减少0.05。对于混凝土柱,剪跨比小于1.5时尚需专门研究。

当混凝土强度高于C60时,上表中混凝土柱和型钢混凝土柱的轴压比限值宜降低0.05。Table 4.6.2.1 Value of γRE

Material Structural Element Structural Action γRE

Column, Beam 0.75

Bracing, SRC column 0.80

Connection plate, Bolts 0.85

Steel

Welding 0.90

Beam Bending 0.75

Columns with compressive ratio<0.15 Bending compression 0.75

Columns with compressive ratio>0.15 Bending compression 0.80

Seismic Wall Bending compression 0.85

Concrete

Others Shear, Tension Bending 0.85

Beam Bending

0.75

Column Bending

compression

0.80

Brace Compression

0.85

Wall Bending

compression

0.85

All elements and connections Shear 0.85

Composite

Welding and High-strength bolt 0.90

4.6.3 Axial Compression Ratio

Under seismic loads, the axial compression ratio for reinforcement columns, composite SRC columns

and concrete shear walls shall be controlled below the limits in the table below:

Table 4.6.3.1 Axial Ratio for Vertical members in Frame-Shear Wall System

Seismic Resistance Grade

Grade 1 Grade 2 Grade 3

Reinforced Concrete

Column

0.75 0.85

0.95

SRC Column 0.7 0.8 0.9

Reinforced Concrete

Wall

0.4 (Intensity 9)

0.5 (Intensity 8)

0.6 -

When the shear span-to-depth ratio is less than 2, the axial ratio limit shall be reduced by 0.05. When

shear span-to-depth ratio is less than 1.5, special studies are required for reinforcement concrete columns.

When concrete grade is higher than C60, the axial ratio limits for both concrete columns and SRC

columns are recommended to be reduced by 0.05.

4.7 基础作用效应组合

根据GB 50007-2002和 GB50011-2002,当确定基础或者桩承台高度、计算基础内力、验算配筋和材料强度时,采用承载能力极限状态下荷载效应的基本组合,采用相应的分项系数。这些组合同上部结构的组合相同。

确定计算桩数和地基承载力,以及计算变形、裂缝时,采用正常使用极限状态下的标准组合,见表4.7.1。此时抗力采用地基承载力特征值或者单桩承载力特征值。 表 4.7.1 基础作用效应组合 组合 1 恒载 +活载 2 恒载 ±风 3 恒载 +活载 ± 风

4 恒载 ± 地震荷载(小震)

5 恒载 + 0.5*活载 ± 地震荷载(小震)

6 恒载 ± 0.2*风 ± 地震荷载(小震)

7 恒载 + 0.5*活载 ± 0.2*风 ± 地震荷载(小震)

对所有组合,当不包含地震组合时,活荷载考虑按楼层折减。当包含地震组合时,活荷载不考虑折减。

4.8 结构构件耐火极裉

构件名称

燃烧性能和耐火极限 (小时)

防火墙

3.00 墙

承重墙、楼梯间墙、电梯井墙及单元之间的墙 2.00 柱 3.00 梁

2.00 楼板、疏散楼梯及屋顶承重构件 1.50 其它

抗剪支撑 2.00

注:1.

中庭或屋顶桁架的耐火极限不应低于0.5h ;

2. 楼梯间平台上部设有自动灭火设备时,其楼梯的耐火极限可不限制。

4.7 Foundation design load combination

According to GB 50007-2002 and GB50011-2002, when choosing foundation mat or pile cap thickness, calculating foundation forces and check strength of foundation, the basic combinations for ultimate limit state shall be used, with relevant combination factor for each load case. These combinations are same those for superstructure.

When checking number of piles and bearing strength of soil, the combinations for serviceability limit state shall be used. These combinations are listed in Table 4.7.1. In this case, the characteristic strength of soil and characteristic capacity of single pile shall be used. Table 4.7.1 Load combinations for foundation Combinations

1 Dead + Live

2 Dead ± Wind

3 Dead + Live ± Wind

4 Dead ± Frequent EQ

5 Dead + 0.5*Live ± Frequent EQ

6 Dead ± 0.2*Wind + Frequent EQ

7 Dead + 0.5*Live ± 0.2*Wind ± Frequent EQ

For all above combination, when it is a non-seismic combination, live load reduction is considered; when it is a seismic combination, live load reduction shall not be considered.

4.8 Fire Resistance for Structural Elements

Name of Element

Fire Resistance Period

(h)

Fire Wall

3.00 Wall

Bearing Wall, Stair Partition Wall, Lift Shaft and Units Partition Wall

2.00

Column 3.00

Beam 2.00 Slab, Escape Stair and Roof Load-Bearing Elements

1.50

Others

Bracing 2.00

Note: 1. Atrium or roof truss min. 0.5h;

2. If automatic fire-distinguish system to be provided at landing, fire resistance period for stair

can be ignored.

相关主题
文本预览
相关文档 最新文档