当前位置:文档之家› The basic idea of Network Calculus INF5071 – performance in distributed systems

The basic idea of Network Calculus INF5071 – performance in distributed systems

微积分公式与运算法则

微积分公式与运算法则 1、基本公式 (1)导数公式 (2) 微分公式 (xμ)ˊ=μxμ-1d(xμ)= μxμ-1 dx (ax)ˊ= axlna d(a x)= a x lnadx (logax)ˊ=1/(xlna) d(loga x)= 1/(xlna) dx (sin x)ˊ= cos x d(sin x)= cos xdx (con x)ˊ=-sin x d(con x)= -sin xdx (tan x)ˊ=sec2 x d(tan x)= sec2 x dx (cotx)ˊ= -csc2x d(cot x)= -csc2x dx (sec x)ˊ= sec x·tan x d(secx)= sec x·tan x dx (csc x)ˊ= -csc x·cot x d(csc x)= -csc x·cot x dx (arcsin x)ˊ= 1/(1-x2)1/2d(arcsin x)=1

/(1-x2)1/2 dx (arccos x)ˊ= -1/(1-x2)1/2 d(arccos x)= -1/(1-x2)1/2 dx (arctan x)ˊ= 1/(1+x2) d(arctan x)= 1/(1+x2) dx (arccot x)ˊ= -1/(1+x2) d(arccot x)=-1/(1+x2) dx (sinh x)ˊ= cosh x d(sinh x)= cosh x dx (cosh x)ˊ= sinh x d(cosh x)= sinh x dx 2、运算法则(μ=μ(x),υ=υ(x),α、β∈R) (1)函数的线性组合积、商的求导法则 (αμ+βυ)ˊ=αμˊ+βυˊ (μυ)ˊ=μˊυ+μυˊ (μ/υ)ˊ=(μˊυ-μυˊ)/υ2 (2)函数与差积商的微分法则 d(αμ+βυ)= αdμ+βdυ d(μυ)=υdμ+μdυ d(μ/υ)= (υdμ-μdυ)/υ2

一节课微积分入门

一节课微积分入门 “一节课微积分入门”原本是笔者制作的一个教学视频,在酷6网上点击率一 度突破12万(可惜现在删了,但土豆网上还有),而大学教授的同类视频,点击率最高才2千多。笔者身边好几个学不懂微积分的人都在里面受益。 这是笔者独创的一套最简捷,清晰,易懂的教学方法,从零开始,在短短的 40分钟内,让大家理解:微积分最基本的原理,牛莱公式的本质含义和基本求导方法。希望能在微积分教学的历史长河中留下一朵小小的浪花。 考虑到很多朋友不喜欢看教学视频,而更喜欢阅读文档,笔者把最基本的教 学思路整理下来,供大家学习和参考,(看不懂的可以网上搜视频做为辅助学习) 目录: 1巧妙的叠加方法 2问题的提出:求y=x2曲线围成的面积 3切割法求出近似面积 4寻找“远房表叔”来帮忙 5对“远房表叔”进行切割和叠加 6“表叔”和“表侄”的一一对应。 7一一对应关系式的提出 8一一对应关系式的进一步表达:牛莱公式 9一一对应关系式的变形:导函数的定义 10求导的2个例题 11导函数的意义

1巧妙的叠加方法 方法一非常麻烦,要测1千次,再加1千次,方法二就简单多了,因为反正不需要知道每个小棍子的长度,只测一次就够了。这就是“叠加法”,在后面的微积分学习中,我们会非常巧妙的用到“叠加法”。 2 问题的提出:求y=x2曲线围成的面积

这种曲线围成的面积,显然用初等数学无法解决,这就需要我们巧妙构思,另辟蹊径了。 3 切割法求出近似面积 我们把横坐标切成1000份,然后切割出999个小长方形,每个小长方形的宽都是1/1000,小长方形的长则是该点对应的函数值,这样每个小长方形的面积都可以求出来了。

微积分在生活中的应用

龙源期刊网 https://www.doczj.com/doc/6c11244662.html, 微积分在生活中的应用 作者:曹红亚 来源:《数学大世界·中旬刊》2020年第01期 【摘要】微积分产生于十七世纪后期,完善于十九世纪。在现代社会中,微积分是高等数学中至关重要的组成部分,在数学领域中扮演着不可替代的角色,与此同时,微积分在现实生活中的应用也越来越广泛。本文将就微积分在生活中的应用进行深入的分析与探究。 【关键词】微积分;现实生活;实际应用 众所周知,微积分建立的基础是实数、函数以及极限。关于微积分的定义,其指的是微分学和积分学二者的总称,其更代表着一种数学思想。微积分的发展与现实生活的发展是密切相关的,现在的微积分已经广泛存在于诸多自然科学当中,如天文学、生物学、工程学以及经济学等等,在现实生活着发挥着越来越重要的作用。以下笔者结合自己多年的相关实践经验,就此议题提出自己的几点看法和建议。 一、微积分在日常工作中的应用 微积分不仅仅应用在科研领域,其更实实在在地存在于我们的生活当中。例如日常生活中,我们需要装修或者从事装修工作,都需要进行工程预算,这时我们便会不自觉地应用微积分原理,首先将整个装修工程科学划分成为多个小单元,然后对应用到的材料和工时进行计算,最终得出总的造价。再比如,现在很多人特别是年轻人都希望创造一份属于自己的事业,那么其在创业时可能会应用到微积分。如对所选地址处的车流量以及人流量进行了解,在一天的几个时间段,做一分钟的调查,测出经过的人数或车数,再通过计算得出每天或每月的人流量或车流量,这将是我们创业的一个重要参考面。 二、微积分在曲线领域中的应用 在微积分的现实应用中,最具代表性的便是求曲线的长度、切线以及不规则图形的面积。 如在当前社会中,相关数字音像制品或者正流行的数字油画,其都需要将图像和声音分解成为一个个像素或者音频,利用数字的方式来进行记录、完成保存。在重放的时候,再由设备用数字方式来解读还原,使我们听到或看到几乎和原作一模一样的音像。再比如,中央电视台新闻频道的时事报道中常看到地球转向某一点,放大,现出地名,播送最新动态的新闻画面。它的整体概貌是拼装的,是由卫星将地球分成一个个小区域进行拍照,最后拼接成地球的形状,才让我们形象地、跨时空地欣赏新闻报道的同步魅力。 三、微积分在买卖中的应用

微积分公式与运算法则 (1)

微积分公式与运算法则 1.基本公式 (1)导数公式 (2) 微分公式 (xμ)ˊ= μxμ-1 d(xμ)= μxμ-1 dx (a x)ˊ= a x lna d(a x)= a x lna dx (loga x)ˊ= 1/(xlna) d(loga x)= 1/(xlna) dx (sin x)ˊ= cos x d(sin x)= cos x dx (con x)ˊ= -sin x d(con x)= -sin x dx (tan x)ˊ= sec2 x d(tan x)= sec2 x dx (cot x)ˊ= -csc2 x d(cot x)= -csc2 x dx (sec x)ˊ= sec x·tan x d(sec x)= sec x·tan x dx (csc x)ˊ= -csc x·cot x d(csc x)= -csc x·cot x dx (arcsin x)ˊ= 1/(1-x2)1/2 d(arcsin x)= 1/(1-x2)1/2 dx (arccos x)ˊ= -1/(1-x2)1/2 d(arccos x)= -1/(1-x2)1/2 dx (arctan x)ˊ= 1/(1+x2) d(arctan x)= 1/(1+x2) dx (arccot x)ˊ= -1/(1+x2) d(arccot x)= -1/(1+x2) dx (sinh x)ˊ= cosh x d(sinh x)= cosh x dx (cosh x)ˊ= sinh x d(cosh x)= sinh x dx 2.运算法则(μ=μ(x),υ=υ(x),α、β∈R) (1)函数的线性组合积、商的求导法则 (αμ+βυ)ˊ=αμˊ+βυˊ(μυ)ˊ=μˊυ+μυˊ(μ/υ)ˊ= (μˊυ-μυˊ)/υ2

微积分练习题及解析

练习题 1、质量为2kg 的某物体在平面直角坐标系中运动,已知其x 轴上的坐标为x=3+5cos2t ,y 轴上的坐标为y=-4+5sin2t ,t 为时间物理量,问: ⑴物体的速度是多少? ()'10sin(2)x dx V x t t dt = ==- ()'10cos(2)y dy V y t t dt === 2210x y V V V =+= ⑵物体所受的合外力是多少? 222(3)(4)5x y -+-= 运动轨迹是圆,半径为5,所以是做匀速圆周运动 22*100405 mv F N r === ⑶该物体做什么样的运动? 匀速圆周运动 ⑷能否找出该物体运动的特征物理量吗? 圆心(3,4),半径5 2、一质点在某水平力F 的作用下做直线运动,该力做功W 与位移x 的关系为W=3x-2x 2,试问当位移x 为多少时F 变 为零。 34dW F x dx = =-,所以当x=3/4时,F=0 3、已知在距离点电荷Q 为r 处A点的场强大小为E= KQ r 2, 请验证A点处的电势公式为:U = KQ r 。 规定无穷远处电势为零,A 处的电势即为把单位正电荷缓慢的从无穷远处移到A 点所做的功 我们认为在r 变化dr 时,库仑力F 是不变的, 则2 kQq dW F dr dr r =-?=- ? 所以2 0W r kQq dW dr r ∞=-?? 即21r q kQq dr r ?∞=? 所以1|r kQ kQ r r ?∞=-=

4、某复合材料制成的一细杆OP 长为L ,其质量分布不均匀。在杆上距离O 端点为x 处取点A ,令M 为细杆上OA 段 的质量。已知M 为x 的函数,函数关系为M=kx 2,现定义线密度ρ=dM dx ,问当x=L 2 处B 点的线密度为何? 2dM kx dx ρ= = ,2L x kL ρ∴== 5、某弹簧振子的总能量为2×10-5J ,当振动物体离开平衡位置12 振幅处,其势能E P =,动能E k =。 首先推导弹簧的弹性势能公式,设弹簧劲度系数为k ,伸长量为x 时的势能为E (x ) 弹簧所具有的弹性势能即为将弹簧从原长拉长x 时所做的功 dW F dx kx dx =?=? 00W x dW kx dx ∴=??? 2 ()2 kx E x ∴= 所以在距平衡位置12振幅处的弹性势能为总能量的14 ,即655*10, 1.5*10p k E J E J --== 6、取无穷远处电势为零。若将对电容器充电等效成把电荷从无穷远处移到电容器极板上,试问,用电压U 对电容为C 的电容器充电,电容器存储的电能为何?开始时电容器存放的电荷量为零。 0022 1122q q E Q q q dE dQ U Q dE dQ C Q E CU C =?∴=∴==?? 7、在光滑的平行导轨的右端连接一阻值为R 的电阻,导轨宽度为L ,整个导轨水平放置在方向竖直向下的磁场中,磁场的磁感应强度为B 。有一导体棒ab 垂直轨杆并停放在导轨上,导体棒与导轨有良好的接触。在t=0时刻,给导

微积分在生活中的应用Word版

微积分在生活中的应用 (何杰东陈新亮连冠才施楠信工一班北二830) 一.摘要 牛顿、莱布尼兹发明微积分以后,人们才有能力把握运动和过程。有了微积分,就有了工业革命,就有了大工业生产,也就有了现代化的社会。航天飞机、宇宙飞船等现代化交通工具都是在微积分的帮助下制造出来的。微积分在人类社会从农业文明跨入工业文明的过程中起到了决定性的作用。 微积分是为了解决变量的瞬时变化率而存在的。从数学的角度讲,是研究变量在函数中的作用。从物理的角度讲,是为了解决长期困扰人们的关于速度与加速度的定义的问题。“变”这个字是微积分最大的奥义。因此,了解微积分在生活中的应用对于我们解决实际问题有很大的帮助。 二.关键词:物理,经济,应用。 三.引言:通过研究微积分在物理,经济等方面的具体应用,得到微积分在现实生活中的重要意义,从而能够利用微积分这一数学工具科学地解决问题。获取资料的途径主要是互联网。 四(一)在物理中的应用 例1,研究物体做匀变速直线运动位移问题时; 对于匀速直线运动,位移和速度之间的关系我们都清楚,x=vt,但如果物体的速度大小时刻发生变化,那么物体的位移如何求解呢?此时,微积分就成了我们有利工具。我们可以把物体运动的时间无限细分。在每一份时间内,速度的变化量非常小,可以忽略这种微小变化,认为物体在做匀速直线运动,因此根据已有知识位移可求;接下来把所有时间内的位移相加,即“无限求和”,则总的位移可以知道。现在我们明白,物体在变速直线运动时候的位移等于速度时间图像与时间轴所围图形的面积; 例2,研究匀速圆周向心加速度的方向问题时; 根据牛顿第二定律,我们可以知道匀速圆周运动加速度的方向指向圆心;同时利用极限思想,也可以加速度的方向。当圆周上的两个点无限靠近时,速度变化量也无限的小,因此由VAVB△V围成的等腰三角形的底角接近90,因此速度变化量和速度垂直,而速度又和半径垂直,因此,匀变速圆周运动中,加速度的方向始终指向圆心。 例3.研究变力做功问题时; 对于恒力做功,我们可以利用公式直接求出;但对于变力,我们不能利用公式;这种情况下,我们要借助于微积分,我们可以把位移无限细分,在每一个小位移上,力的变化很小,可以看作是恒力,根据公式算出力所作的功;然后把每一个小位移上的功无限求和,那么就可以求出变力做的总功是多少。 (二)在经济上的应用 1.1 边际分析在经济分析中的的应用 1.1.1 边际需求与边际供给 设需求函数Q=f(p)在点p处可导(其中Q为需求量,P为商品价格),

高数微积分公式大全 ()

高等数学微积分公式大全 一、基本导数公式 ⑴()0c '=⑵1x x μμμ-=⑶()sin cos x x '= ⑷()cos sin x x '=-⑸()2tan sec x x '=⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=?⑻()csc csc cot x x x '=-? ⑼()x x e e '=⑽()ln x x a a a '=⑾()1ln x x '= ⑿()1 log ln x a x a '= ⒀( )arcsin x '=⒁( )arccos x '= ⒂()21arctan 1x x '= +⒃()2 1arccot 1x x '=-+⒄()1x '= ⒅ '=二、导数的四则运算法则 三、高阶导数的运算法则 (1)()()()()()()()n n n u x v x u x v x ±=±????(2)()() () ()n n cu x cu x =???? (3)()() () ()n n n u ax b a u ax b +=+???? (4)()()() ()()()() n n n k k k n k u x v x c u x v x -=?=????∑ 四、基本初等函数的n 阶导数公式 (1)()()!n n x n =(2)()()n ax b n ax b e a e ++=?(3)()() ln n x x n a a a = (4)()()sin sin 2n n ax b a ax b n π??+=++??? ?????(5)()()cos cos 2n n ax b a ax b n π??+=++??? ???? ? (6)() () () 1 1! 1n n n n a n ax b ax b +???=- ? +?? +(7)()() () ()() 1 1! ln 1n n n n a n ax b ax b -?-+=-????+ 五、微分公式与微分运算法则 ⑴()0d c =⑵()1d x x dx μμμ-=⑶()sin cos d x xdx = ⑷()cos sin d x xdx =-⑸()2tan sec d x xdx =⑹()2cot csc d x xdx =- ⑺()sec sec tan d x x xdx =?⑻()csc csc cot d x x xdx =-?

微积分中10大经典问题

微积分中10大经典问题 最初的想法来自大一,当时想效仿100个初等数学问题,整理出100个经典的 高等数学问题(这里高等数学按广义理解)。可惜的是3年多过去了,整理出 的问题不足半百。再用经典这把尺子一量,又扣去了一半。 这里入选原则是必须配得起“经典”二字。知识范围要求不超过大二数学系水平, 尽量限制在实数范围内,避免与课本内容重复。排名不分先后。 1)开普勒定律与万有引力定律互推。绝对经典的问题,是数学在实际应用中的光辉 典范,其对奠定数学科学女皇的地位起着重要作用。大家不妨试试,用不着太多的专业知识,不过很有挑战性。重温下牛顿当年曾经做过的事,找找当牛人的感觉吧,这个问题是锻炼数学能力的好题! 2)最速降线问题。该问题是变分法中的经典问题,不少科普书上也有该问题。答案 是摆线(又称悬轮线),关于摆线还有不少奇妙的性质,如等时性。其解答一般变分书上均有。本问题的数学模型不难建立,即寻找某个函数,它使得某个积分取最小值。这个问题往深层次发展将进入泛函领域,什么是泛函呢?不好说,一个通俗的解释是“函数的函数”,即“定义域”不是区间,而是“一堆”函数。最速降线问题通过引 入光的折射定律可以直接化为常微分方程,大大简化了求解过程。不过变分法是对这类问题的一般方法,尤其在力学中应用甚广。 3)曲线长度和曲面面积问题。一条封闭曲线,所围面积是有限的,但其周长却可以 是无限的,比如02年高中数学联赛第14题就是这样一条著名曲线-----雪花曲线。 如果限制曲线是可微的,通过引入内折线并定义其上确界为曲线长度。但把这个方法搬到曲面上却出了问题,即不能用曲面的内折面的上确界来定义曲面面积。德国数学家H.A.Schwarz举出一个反例,说明即使像直圆柱面这样的简单的曲面,也可以具有面积任意大的内接折面。 4)处处连续处处不可导的函数。长久以来,人们一直以为连续函数除了有限个或可数无穷个点外是可导的。但是,魏尔斯特拉斯给出了一个函数表达式,该函数处处连续却处处不可导。这个例子是用函数级数形式给出的,后来不少人仿照这种构造方式给出了许多连续不可导的函数。现在教材中举的一般是范德瓦尔登构造的比较简单的例子。至于魏尔斯特拉斯那个例子,可以在齐民友的《重温微积分》中找到证明。其实上面那个雪花曲线也是一条处处连续处处不可导的曲线。

微积分在现实中的应用

微积分的应用 微积分是研究函数的微分、积分以及有关概念和应用的数学分支。微积分是建立在实数、函数和极限的基础上的。微积分学是微分学和积分学的总称。它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。微积分最重要的思想就是用"微元"与"无限逼近",好像一个事物始终在变化你不好研究,但通过微元分割成一小块一小块,那就可以认为是常量处理,最终加起来就行。微积分是与实际应用联系着发展起来的,它在天文学、力学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学等多个分支中,有越来越广泛的应用。特别是计算机的发明更有助于这些应用的不断发展。客观世界的一切事物,小至粒子,大至宇宙,始终都在运动和变化着。因此在数学中引入了变量的概念后,就有可能把运动现象用数学来加以描述了。 微积分建立之初的应用:第一类是研究运动的时候直接出现的,也就是求即时速度的问题。第二类问题是求曲线的切线的问题。第三类问题是求函数的最大值和最小值问题。第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。 微积分学极大的推动了数学的发展,同时也极大的推动了天文学、力学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支中的发展。并在这些学科中有越来越广泛

的应用,特别是计算机的出现更有助于这些应用的不断发展。 微积分作为一种实用性很强的数学方法和根据,在数学发展中的地位是十分重要的。例如,微分可以解决近似计算问题。比如:求sin29°的近似值,求不规则图形面积或几何体体积的近似值等。通过微积分求极限、利用微分中值定理,能够及时的放缩多项式,有利于不等式的化简和证明。极限求和、导数求和、积分求和也都是解决求数列前n项和的好方法。其次,数理化不分家。而且微积分在不等式中也有很大的运用,我们可以运用微积分中值定理,泰勒公式,函数的单调性,极值,最值,凸函数法等来证明不等式。在物理问题上,通过解微分方程研究物体运动问题、气体问题、电路问题也是非常普遍的。已知位移——时间函数计算速度,已知速度——时间函数计算加速度(即生活中交通管理方面的应用);运动学中的曲线轨迹求解(即生活中在篮球投篮训练中的应用);求不规则物体的重心;力学工程中计算变力和非恒力做功等等。在化学领域,用气相色谱仪和液相色谱仪做样品化学成分分析时,我们得到的并不是直观的数字结果,而是一张色谱图。色谱图是由一个一个的峰组成的,而我们进行定量计算的根据,就是这些峰的面积。而求这些峰的面积,就需要用到积分。现在的仪器里都集成了自动积分仪,只要选定某一个峰,它就能把积分计算出来。最终得到的成分含量就是基于积分原理计算出来的 微积分的应用不仅仅遍及各个学科,也渗透到了社会的各个行业,甚至深入人们日常生活和工作。利用微积分进行边际分析(经济函数的

微积分心得体会范文

微积分心得体会范文 学好微积分的意义有如下几点: 1 重要性 西方分析权威 R. 柯朗说 :" 微积分 , 或者数学分析 , 是人类思维的伟大成果之一 . 它处于自然科学与人文科学之间的地位 , 使它成为高等教育的一种特别有效的工具 . 微积分是人类智力的伟大结晶 . 它给出一整套的科学方法 , 开创了科学的 __ , 并因此加强与加深了数学的作用 . 恩格斯说 :" 在一切理论成就中 , 未必再有什么像 17 世纪下半叶微积分的发现那样被看作人类精神的最高胜利了 . 微积分已成为现代人的基本素养之一 , 微积分将教会你在运动和变化中把握世界 , 它具有将复杂问题化归为简单规律和算法的能力 . 没有微积分很难理解现代社会正在发生的变化 , 很难跟上时代的脚步 . 2 牛顿革命 牛顿把他的书定名为《自然哲学的数学原理》 , 目的在于向世人昭示他将原理数学化的过程 , 即他构造了一种自然哲学 , 而不是一般的哲学 . 牛顿的《自然哲学的数学原理》 , 不仅在原理的发展上 , 在命题的证明和应用上是数学的。在哲学上引出了 " 决定论

" 的世界观 . 那就是 , 大自然有规律 , 我们能够发现它们 . 对这一世界观表达最清楚的是数学家拉普拉斯 . 在他的《概率的哲学导论》中 , 他雄辩地指出 ," 假设有一位智者 , 在任意给定的时刻 , 他都能洞见所有支配自然界的力和组成自然界的存在物的相互位置 , 假使这一智者的智慧巨大到足以使自然界的数据得到分析 , 他就能将宇宙中最大的天体和最小的原子的运动统统纳入单一的公式之中。 " 3 微积分产生的主要因素 当代著名数学家哈尔莫斯说 , 问题是数学的心脏 . 那么促使微积分产生的主要问题是什么呢微积分的创立首先是为了处理下列四类问题 . 1) 已知物体运动的路程与时间的关系 , 求物体在任意时刻的速度和加速度 . 反过来 , 已知物体运动的加速度与速度 , 求物体在任意时刻的速度与路程 . 困难在于 17 世纪所涉及的速度和加速度每时每刻都在变化 . 计算平均速度可用运动的时间去除运动的距离 . 但对瞬时速度 , 运动的距离和时间都是 0, 这就碰到了 0/0 的问题 . 这是人类第一次碰到这样微妙而费解的问题 .

微积分在生活中的应用论文

课程论文专业酒店管理

微积分在生活中的应用 摘要:我们学习了微积分,然而只学习不行的,学了的目的是为了应用,本篇论文主要讲微积分在生活中的应用,有哪些应用,怎么应用的。主要集中几何,经济以及我们在生活中的应用 关键词:微积分,几何,经济学,物理学,极限,求导

绪论 作为一个刚刚上大学的新生,高等数学是大学学习中十分重要的一部分,但在学习的过程中,我不禁慢慢产生了一个问题,老师都说微积分就是高等数学的精髓,那么微积分的意义又是什么呢?它对人类的生活造成的影响又是什么呢?存在必合理,微积分的应用一定很广,带着这个思想,我查找了一点资料,我想从几何,经济,物理三个角度来阐述关于微积分在我们生活中的应用,下面可能有些我在网上查找的题目,基本上都是直接摘录的,在此特向老师说明。 我了解到微积分是从生产技术和理论科学的需要中产生,又反过来广泛影响着生产技术和科学的发展。如今,微积分已是广大科学工作者以及技术人员不可缺少的工具。如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。微积分堪称是人类智慧最伟大的成就之一。 从17世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代,即微积分不断完善成为一门学科。通过研究微积分能够在几何,物理,经济等方面的具体应用,得到微积分在现实生活中的重要意义,从而能够利用微积分这一数学工具科学地解决问题。 希望通过本文的介绍能使人们意识到微积分与其他各学科的密切关系,让大家能意识到理论与实际结合的重要性。 一、微积分在几何中的应用 微积分在我看来在几何中主要是为了研究函数的图像,面积,体积,近似值等问题,对工程制图以及设计有不可替代的作用。很高兴我在网上找到了一些内容与现在我们学的定积分恰巧联系上了。顿觉微积分应用真的很广! 1.1求平面图形的面积 (1)求平面图形的面积 由定积分的定义和几何意义可知,函数y=f(x)在区间[a,b]上的定积分等于由函数y=f(x),x=a ,x=b 和轴所围成的图形的面积的代数和。由此可知通过求函数的定积分就可求出曲边梯形的面积。 例如:求曲线2f x 和直线x=l ,x=2及x 轴所围成的图形的面积。 分析:由定积分的定义和几何意义可知,函数在区间上的定积分等于由曲线和直线,及轴所围成的图形的面积。 所以该曲边梯形的面积为

5.2 微积分基本公式-习题

1.设函数0 cos x y tdt = ?,求'(0)y ,'()4 y π。 【解】由题设得'()cos y x x =, 于是得 '(0)cos01y ==,'()cos 4 4 2 y ππ == 。 2.计算下列各导数: ⑴20x d dx ?; 【解】20x d dx ?2)x =2= ⑵ 1t d dt dx ; 【解】1t d dt dx 1 ()t d dt dx =-=-=。 ⑶ cos 2 sin cos()x x d t dt dx π?; 【解】cos 2sin cos()x x d t dt dx π?0cos 2 2sin 0[cos()cos()]x x d t dt t dt dx ππ=+?? 》 0cos 22 sin 0cos()cos()x x d d t dt t dt dx dx ππ= +?? sin cos 2200 [cos()]cos()x x d d t dt t dt dx dx ππ=-+?? 22cos(sin )(sin )cos(cos )(cos )d d x x x x dx dx ππ=-+ 22cos(sin )cos cos[(1sin )](sin )x x x x ππ=-+-- 22cos(sin )cos cos(sin )sin x x x x πππ=--- 22cos(sin )cos cos(sin )sin x x x x ππ=-+ 2cos(sin )(sin cos )x x x π=-。 ⑷2ln 1 x x d dt dx t ?。 【解】 2ln 1x x d dt dx t ?21ln 11 1[]x x d dt dt dx t t =+?? 21ln 111x x d d dt dt dx t dx t =+?? …

微积分公式与运算法则

微积分公式与运算法则文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

微积分公式与运算法则 1.基本公式 (1)导数公式(2)微分公式 (xμ)ˊ=μxμ-1d(xμ)=μxμ-1dx (a x)ˊ=a x lnad(a x)=a x lnadx (loga x)ˊ=1/(xlna)d(loga x)=1/(xlna)dx (sinx)ˊ=cosxd(sinx)=cosxdx (conx)ˊ=-sinxd(conx)=-sinxdx (tanx)ˊ=sec2xd(tanx)=sec2xdx (cotx)ˊ=-csc2xd(cotx)=-csc2xdx (secx)ˊ=secx·tanxd(secx)=secx·tanxdx (cscx)ˊ=-cscx·cotxd(cscx)=-cscx·cotxdx (arcsinx)ˊ=1/(1-x2)1/2d(arcsinx)=1/(1-x2)1/2dx (arccosx)ˊ=-1/(1-x2)1/2d(arccosx)=-1/(1-x2)1/2dx (arctanx)ˊ=1/(1+x2)d(arctanx)=1/(1+x2)dx (arccotx)ˊ=-1/(1+x2)d(arccotx)=-1/(1+x2)dx (sinhx)ˊ=coshxd(sinhx)=coshxdx (coshx)ˊ=sinhxd(coshx)=sinhxdx 2.运算法则(μ=μ(x),υ=υ(x),α、β∈R) (1)函数的线性组合积、商的求导法则 (αμ+βυ)ˊ=αμˊ+βυˊ(μυ)ˊ=μˊυ+μυˊ

(μ/υ)ˊ=(μˊυ-μυˊ)/υ2 (2)函数和差积商的微分法则 d(αμ+βυ)=αdμ+βdυ d(μυ)=υdμ+μdυ d(μ/υ)=(υdμ-μdυ)/υ2 3.复合函数的微分法则 设y=f(μ),μ=ψ(x),则复合函数y=f[ψ(x)]的导数为 dy/dx=fˊ[ψ(x)]·ψˊ(x) 所以复合函数的微分为 dy=fˊ[ψ(x)]·ψˊ(x)dx 由于fˊ[ψ(x)]=fˊ(μ),ψˊ(x)dx=dμ,因此上式也可写成dy=fˊ(μ)dμ 由此可见,无论μ是自变量,还是另一变量的可微函数,微分形式dy=fˊ(μ)dμ保持不变,这一性质称为微分形式不变性。

微积分在实际中的应用

微积分在实际中的应用 一、微积分的发明历程 如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。微积分堪称是人类智慧最伟大的成就之一。微积分是微分学和积分学的总称。它是一种数学思想,“无限细分”就是微分,“无限求合”就是积分。微分学包括求导的运算,是一套关于变化的理论。它使得函数、速度、加速度和曲线的斜率等均可以用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。微积分的产生一般分为三个阶段:极限概念、求面积的无限小方法、积分与微分的互逆关系。前两阶段的工作,欧洲及中国的大批数学家都做出了各自的贡献。 从17世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代,即微积分不断完善成为一门学科。整个17世纪有数十位科学家为微积分的创立做了开创性的研究,但使微积分成为数学的一个重要分枝还是牛顿和莱布尼茨。 二、微积分的思想 从微积分成为一门学科来说,是在17世纪,但是,微分和积分的思想早在古代就已经产生了。公元前3世纪,古希腊的数学家、力学家阿基米德(公元前287~前212)的著作《圆的测量》和《论球与圆柱》中就已含有微积分的萌芽,他在研究解决抛物线下的弓形面积、球和球冠面积、螺线下的面积和旋转双曲线的体积的问题中就隐含着近代积分的思想。作为微积分的基础极限理论来说,早在我国的古代就有非常详尽的论述, 与此同时,战国时期庄子在《庄子·天下篇》中说“一尺之棰,日取其半,万世不竭”,体现了无限可分性及极限思想。公元3世纪,刘徽在《九章算术》中

微积分公式与运算法则

创作编号:BG7531400019813488897SX 创作者:别如克* 微积分公式与运算法则 1.基本公式 (1)导数公式 (2) 微分公式 (xμ)ˊ= μxμ-1 d(xμ)= μxμ-1 dx (a x)ˊ= a x lna d(a x)= a x lna dx (loga x)ˊ= 1/(xlna) d(loga x)= 1/(xlna) dx (sin x)ˊ= cos x d(sin x)= cos x dx (con x)ˊ= -sin x d(con x)= -sin x dx (tan x)ˊ= sec2 x d(tan x)= sec2 x dx (cot x)ˊ= -csc2 x d(cot x)= -csc2 x dx (sec x)ˊ= sec x·tan x d(sec x)= sec x·tan x dx (csc x)ˊ= -csc x·cot x d(csc x)= -csc x·cot x dx (arcsin x)ˊ= 1/(1-x2)1/2 d(arcsin x)= 1/(1-x2)1/2

dx (arccos x)ˊ= -1/(1-x2)1/2 d(arccos x)= -1/(1-x2)1/2 dx (arctan x)ˊ= 1/(1+x2) d(arctan x)= 1/(1+x2) dx (arccot x)ˊ= -1/(1+x2) d(arccot x)= -1/(1+x2) dx (sinh x)ˊ= cosh x d(sinh x)= cosh x dx (cosh x)ˊ= sinh x d(cosh x)= sinh x dx 2.运算法则(μ=μ(x),υ=υ(x),α、β∈R) (1)函数的线性组合积、商的求导法则 (αμ+βυ)ˊ=αμˊ+βυˊ(μυ)ˊ=μˊυ+μυˊ (μ/υ)ˊ= (μˊυ-μυˊ)/υ2 (2)函数和差积商的微分法则 d(αμ+βυ)= αdμ+βdυ d(μυ)=υdμ+μdυ d(μ/υ)= (υdμ-μdυ)/υ2

最新整理读《简单微积分》有感范文.docx

我与数学的二三事 ——读《简单微积分》有感 李红霞 一直说看完书写点什么,第一遍读完,只感受到了“简单”,什么都写不出来,那就开始第二遍,看完之后晚上失眠写了三百字,第二天准备借鉴一下其他人的写作经验,于是看了前面的十几篇、“遇见数学”第一次征文获奖篇以及侯博士《我的爱豆是数学家小平邦彦》之后觉得文学及功底欠缺。被侯博士十年如一日的坚持推广所感动;为两个还没有上初中孩子的博学而感到欣慰...就觉得干脆想到什么写点什么好了。 书名《简单微积分》顾名思义,“简单”在于本书是一本可以不用纸笔,只需要“读”的微积分“入门书”。贯穿了小学面积、体积...初中一次函数、勾股定理...高中导数、幂函数...大学微积分...我首次见到的卡瓦列利原理、魏尔斯特拉斯函数...会用到的知识一一做了介绍,不仅简单,还有深度;“微积分”就是微分、积分、微积分。 作者:神永正博,理学博士,日本东北学院大学教授,还着有《数学思考法》...不出意外下一本就是它。 译者:李慧慧,手边小平邦彦《几何世界的邀请》译者同名,不知道是否是同一人,其他情况未知。 的确,本书共三章,只是顺序变了,第一章积分,第二章微分,理由是积分能够“图形化”,积分的基础是求面积、体积,易于感知理解;而微分研究的东西,我们无法用眼睛看到,很难直观上去把握;毫无疑问第三章微积分。 书中例子有小孩喜欢吃的冰激凌蛋卷筒、甜甜圈,还有成年人感兴趣的钻石、项链、股价...而重点在于介绍的微积分基本定理、公式推导以及实际应用意义。 我一直以来的困惑在这里找到了答案: ①考试为何根据计算结果来确定成绩? 因为根据思路来给分数比较困难。 ②如今软件绘制函数图像如此便捷,为何高中还要考? 其一是考察考生是否记住了“通过微分了解函数的变化”;其二是教学

微积分学习方法

《微积分》学习方法 来源:东财网院 很多同学都会认为,数学是一门比较难学的学科,有那么多的定义、公式、定理,还有图像以及各种曲线等等,总是让人头疼。所以同学们在接触微积分之前,可能就已经对它产生了心理恐惧,甚至是排斥心理。而事实并非如此,之所以会这样是因为你还没有掌握正确的学习方法。 首先,大家应该大致翻一下教科书,或者是看看目录和前言,了解学习这么课程所需具备的基础知识是什么。从第一章的内容中,大家可以了解到,微积分的起点是中学里的函数概念和解析几何。所以,如果以往的知识不牢固,或是没有接触过,那么最好找来中学的教科书复习一下。接下来,大家就接触到了极限,数列的极限以及函数的极限。大家可能会发现,极限的定义很难看懂。那是不是就能以此为借口,停顿在这里呢?当然不能,我们可以先把这个问题放一下,继续向下。实际上,极限的概念是很直观的,理解其思想即可,看不懂定义并不影响下面的学习。 接下来的部分就较为重要了,而且不能跳过。导数的概念其实也很简单,就是一个量关于另一个量的变化率。下面可能牵扯到很多导数的公式和运算技巧,很少有人会马上记住,这也不要紧,可以在平时的练习中慢慢掌握。可能有些同学喜欢解题,喜欢推导和运算,这固然是好事,但不要过度的沉浸在题海中。接触到微分,大家会发现,它和导数没有实质性的区别,只是在表达方式上有所不同,这是需要大家分清楚地。 下一个难点就是积分了。积分的数学定义可能较难理解,那么可以从图形下手,可以充分发挥想象力:为了求得曲线所围的面积,用无数小梯形去无限逼近,这也就是极限的思想。其实积分的本质就是极限。理解它的本质后,运算技巧可以暂放一下,在考试前可以集中解决运算技巧的问题。 对于多数同学来说,微积分的后半部分会更难些。对于无穷级数,同学们还是重在理解思想。多元函数微积分比前面的一元函数稍微复杂了些,但是基本的思路是一样的。最后一个难点,就是关于微分方程了。首先,要理解微分方程的有关概念以及微分方程的解,这样才能对微分方程有所识别。其次,对各种类型的微分方程,都要抓住其特征的本质,领会每一道例题中解题的方法和含义。 在学习数学的过程中,前后的连贯性较为重要,所以要注意知识点之间的衔接。但也不排除个别的情况,比如前文中说到的极限和级数。事实上很多人的亲身经历也证明了,微积分并不可怕,关键看你肯不肯下功夫。相信在大家的努力和老师的帮助下,微积分的难关是可以攻克的。 微 积 分》 的 学 习 方 法 读书好比走路。不知道去那里干什么,走起路来也没 劲儿。读书也是这样,没有目的,读起书来也没兴趣。 走路也得有方法,方法对走起路来才省劲儿。读书也 是这样,方法得当才能收到好效果。学生在校期间, 读书当然应以教科书为主,但是大学生与中小学生不

高等数学在生活中的应用

高等数学在生活中的应 用 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

对高等数学的认识及它在生活中的应用当今世界,国际竞争日趋激烈,而竞争的焦点又是人才的。竞争21世纪哪个国家具有人才优势,哪个国家将占据竞争的制高点。而现在的社会需要的人才已经不是从前那种简单的一个文凭就可以了,而是需要全面的人才,全方位的人才,一种高素质高能力的人才! 与此同时,高等数学恰恰在这方面发挥着巨大的作用!数学培养的就是你的思维能力,是分析问题、解决问题的思维方式。许多实际问题都需要建立数学模型来解决,而你建立模型地基础就是你怎样把实际问题转化为数学问题。再把复杂的问题简单化!这样就更容易的去解决问题、处理问题! 在现代大学课程设置中,大部分学生要学习高等数学这门课程,只是很多学生不知道学这门课程有什么用途,缺乏学习的动力和兴趣,最后逐渐认为数学是一门非常枯燥的学科。这样不能够激发学生学习数学的兴趣。使学生们慢慢的不重视数学的重要性! 高等数学在当今社会有着广泛的应用。如:计算机方面、电子应用方面、航天技术方面、医学方面等等众多领域都起着巨大的作用! 在计算机领域,计算机中许多地方要用到数学模型,特别是算法复杂度,人工智能、业务领域的数学建模等等,都需要有一定的数学功底。 随着现代科学技术的发展和电子计算机的应用与普及,数学方法在医药学中的应用日益广泛和深入。医药学科逐步由传统的定性描述阶段向定

性、定量分析相结合的新阶段发展。数学方法为医药科学研究的深入发展提供了强有力的工具。高等数学是医学院校开设的重要基础课程,用高等数学基础知识解决医学中的一些实际问题的例子,旨在启发学生怎样正确理解和巩固加深所学的知识,并且强化应用数学解决实际问题的意识。使我国的医术在前有的基础上再创辉煌! “神舟”六号载人飞船成功升空,是我国航天事业科学求实精神的结晶,是坚定不移走自主创新之路的结果。载人航天是当今世界最复杂、最庞大、最具风险的工程,是技术密集度高、尖端科技聚集的高科技系统工程。而这些庞大的工程都离不开数学,复杂的数字计算、精确的时间等等这些都在数学范围内! 其次,数学建模是一种培养学生综合素质的有效手段,在教学实践中给学生树立建模的思想对学生的综合素质发展有很大的帮助,也有助于提高我们的学习积极性。把数学建模的思想方法融入数学分析课程教学是培养学生创新能力和实践能力的一条有效途径,是当前大学数学课程改革的一个重要方向. 我们大学生的思维处于由形式逻辑思维向辨证逻辑思维过渡的阶段,数学建模不仅要求学生在实验、观察和分析的基础上,对实际问题的主要方面做出合理的简化与假设,并且要求他们应用数学的语言和方法将实际问题形成一个明确的数学问题。因此,在高等数学中渗透建模思想,运用运动的、变化的、全面的、发展的观点去观察、分析和解决问题,不仅发展了我们大学生的一般思维能力,还发展了我们的辨证逻辑思维能

(整理)《微积分》考试大纲.

附件3 《微积分》考试大纲 第一部分:总要求 考生应按本大纲的要求,了解或理解“微积分”中函数、极限和连续、一元函数微分学、一元函数积分学、多元函数微积分学、无穷级数、常微分方程的基本概念与基本理论;学会、掌握或熟练掌握上述各部分的基本方法。应注意各部分知识的结构及知识的内在联系;应具有一定的抽象思维能力、逻辑推理能力、运算能力;有运用基本概念、基本理论和基本方法正确地推理证明,准确地计算;能综合运用所学知识分析并解决简单的实际问题。 第二部分:考试内容 一、函数、极限和连续 函数的概念,复合函数的概念;基本初等函数的性质与图形,极限的基本性质,极限的存在准则(单调有界数列必有极限以及夹逼定理),两个重要极限,函数极限与数列极限的关系,无穷小与无穷大概念,极限存在与无穷小的关系;函数在一点连续的概念,初等函数的连续性,闭区间上连续函数的性质(有界性、最值性与介值性)。 二、一元函数微分学 导数的概念及其几何、物理意义,导数的四则运算法则,基本初等函数的导数公式,复合函数的求导法,隐函数以及由参数方程所确定的函数的求导法,高阶导数的概念:罗尔(Rolle )定理,拉格朗日(Lagrange)定理,洛必达(L'Hospital)法则,五个基本的麦克劳林(Maclaurin)公式,函数单调性与曲线的凹凸性,函数极值的概念和求法,函数的最大值与最小值的求法。 三、一元函数积分学 原函数与不定积分的概念及其几何意义,不定积分的基本性质与运算法则。基本积分公式表,不定积分的换元法与分部积分法;定积分的概念及其几何意义,定积分的基本性质,变上限的积分及其求导,原函数存在定理,牛顿——莱布尼兹(Newton-Leibniz)公式,定积分的换元法与分部积分法;定积分的应用(计算平面图形面积、立体体积、变力沿直线所作的功等);广义积分(无穷区间广义积分)。

相关主题
文本预览
相关文档 最新文档