当前位置:文档之家› 高效活性腐植酸中微量元素高级土壤改良剂

高效活性腐植酸中微量元素高级土壤改良剂

高效活性腐植酸中微量元素高级土壤改良剂
高效活性腐植酸中微量元素高级土壤改良剂

高效活性腐植酸中微量元素高级土壤改良剂

高效活性腐植酸中微量元素高级土壤改良剂是美国施普乐SUPERO集团旗下北京施普乐和潍坊施普乐生物科技有限公司联合研制成功的一种新的环保型的有机肥料新品种。

经过多年在多点多种作物上的使用效果表明,高活性腐植酸中微量元素有机土壤改良剂含有大量腐植酸螯合态的钙、镁、硫、硅、硼、锌、铁、铜、锰、钼等元素,是中微量元素的典型肥料,能够促进生长,保花、保果,大大增强叶绿素的含量,增加光合作用,使用后植物叶色浓绿、茎壮、根系发达,生长旺盛,并能大大渐少黄叶病、小叶病、簇叶病的发生,提高作物产量,改善果实品质。适合各种农作物和瓜果蔬菜。不仅在增产增效,提高产品品质和作物抗逆性方面效果显著,更重要的是由于该肥料具有天然、绿色、无污染的特殊功效,受到广大农户特别是有机农产品生产者的一致认可,被有机农产品生产者誉为绿色环保肥料,是补充作物各种中微量元素的首选肥料。本品最好与大量元素肥渗混配合施用,是BB肥配肥的优质原料。也可直接单独施用。

一、作用机理:

(一).中量元素的作用

1.钙对作物的作用:钙是作物生长所必需的养分,他对农作物的主要作用是:

①和果胶酸结合,这是植物细胞膜生成和强化不可缺少的;②测进根系的生长;

③碳水化合物代谢所必需;④有消除其他离子毒害的作用,如消除氢离子,铵离子,铝离子,镁离子,钾离子等的毒害,这种作用叫做离子拮抗作用;⑤在作物体内用中和有机酸的作用。

2.镁对作用的作用:①镁是叶绿素的核心结构组成部分。叶绿素的分子约含4%的镁;②镁能促进植物质的形成,在酶的作用下能促使蕃茄中抗坏血酸的含量增加,同增加蕃茄产量;③参与碳水化合物的合成,施了镁后可使甜菜等作物糖分含量增加;④是蛋白质合成的原料,所以对蛋白质机体亦起到有益的作用,增加氨基酸含量,增加其营养价值;⑤增加作物的抗病能力;⑥会刺激豆科作物根上所生根瘤菌的作用,从而固定空气中的氮。

3.硅对作物的作用:①硅从根系上吸收后,聚集于植物体内,叶面水蒸发时,沉积于叶底和茎的表明细胞膜内,细胞膜硅化。增强了植物体,使其不易受病菌的侵入,提高抗病菌的能力;②在水稻生产上,硅是氮、磷、钾以外的所需的第四大元素。对水稻增强了茎杆机械组织建成,增强了抗倒伏能力;③对水稻可增加抗稻热病的能力;④对大麦、胡瓜等,增加抗霉病菌的能力;⑤对水稻、甘蔗、竹等发育有益,尤其水稻施用硅后有多方面的作用;⑥已证实硅素在蕃茄、黄瓜等双子叶作物的生理功能上起着重要作用;⑦对甘蔗、草莓等作物能增加产量和含糖量,还可以改善产品品质。

4.硫对作物的作用:硫是作物生长所必需的养分,他对作物的作用是:①它是氨基酸、蛋白质和原生质等结构的组成成分,但大多数形成蛋白质的氨基酸不含硫,他仅存在于两种氨基酸-胱氨酸的组成中;②他参与植物细胞内所进行的氧化还原过程和生长调节的生理作用;③在植物体内形成具有特殊机能的谷胱甘肽、维生素B、维生素H、异硫氰酸等,缺硫,这些物质将不能形成;④他间接参与碳水化合物的代谢,叶绿素的生产,缺硫会阻碍植物的正常生长和发育。

5.有机物对土壤和作物的作用:

⑴、提供作物生长所需的养分

①养分全面。不仅含有作物生长必需的的营养元素,还含有其他有益于作物生长的元素,可全面促进作物生长。②养分释放均匀长久,有机肥料所含的养分多以有机态形式存在,可缓慢释放。长久供应作物养分。③养分含量低,在使用时应配合化肥,以满足作物茂盛生长期对养分的大量需求。

⑵、改良土壤结构,增强土壤肥力

①提高土壤有机质含量,更新土壤腐殖质组成,增肥土壤。②改善土壤物理性状,施入土壤的有机肥料能使土壤形成新的团粒结构,降低土壤的容量,改善土壤通气状况,减少裁插阻力,使耕性变好。③增加土壤保肥、保水能力,具有良好的保水性,又有良好的排水性,并能缓和土壤干湿之差,使作物根部土壤环境不至于水分过多或过少。

⑶、提高土壤的生物活性,刺激作物生长

施用土壤改良剂,有利于土壤中微生物活动,促进作物生长发育。它不但产生氮、磷、钾、无机养分,还能产生谷酰氨酸、脯氨酸等多种氨基酸,多种维生素。还有细胞分裂素、植物生长素、赤霉素等植物激素。少量的维生素和植物激素,就可给作物的生长发育带来巨大的影响。有机质在土地中分解产生二氧化碳,可作为作物光合作用的原料,有利于作物提高产量。

(二)微量元素的作用

1、铁元素的作用:参与叶绿素和核糖核酸的合成,是某些蛋白的重要组成成分,是很多酶的组成成分,对氧化还原过程,呼吸作用等起催化作用。

2、硼元素的作用:促进细胞分裂、伸长,促进生殖生长,有利于开花与结实,与蛋白质、木质素的合成成分,对参与碳水化合物的转化、运输、调节水分呼吸和养分平衡,以及体内的氧化过程,增强作物抗寒、抗旱能力,有助于根系发育,增强抗病能力。

3、锰元素的作用:与许多酶的活动有关,参与氮的转化、碳水化合物运转等,影响叶绿素的形成,参与光合作用的放氧过程,能加速萌发和成熟。

4、钼元素的作用:是固定酶的成分,与豆科作物根瘤固氮有关,参与氮、磷和碳水化合物的转化和代谢,促进光合作用,植物吸收氮素后转化成蛋白质需要钼参与,在作物呼吸代谢中有一定的作用。

5、锌元素的作用:是许多酶的组成成分,对蛋白质合成、碳水化合物的转化等均有重要作用,可促进光合作用中二氧化碳的固定,有利于作物对氮磷钾的利用。

6、铜元素的作用:是作物体内许多酶的组成成分,与叶绿素的蛋白质合成有关,它还可增强叶绿素和其他色素的稳定性,参与作物体内氧化还原过程,增强呼吸作用,放出能量,参与碳水化合物及氮代谢。

(三)缺素症状

1、缺钙对作物生长的影响:酶的活动受到抑制,硝态氮不能还原成氮;根系停止生长,根毛不能形成,根的表层细胞被钾盐、镁盐破坏而现粘化以致磷脂等外流;新叶边缘不整,叶部失绿;易引发蕃茄脐腐病,大白菜烧心等病状。

2、缺镁对作物生长的影响:植物出现叶子特殊的失绿症,老叶子的叶脉间失去绿色,而呈现各种颜色,在叶脉附近仍显绿色。植株发育迟缓,作物变劣,水稻缺镁,干粒重降低;在强酸性土地(在PH值4.5-5.5)有效镁较少时,在发芽期以前,施硝酸铵会促使作物枯死,而同时施用镁可阻止这种现象的发生。

3、缺硫对作物生长的影响:一般很易在作物生长初期和吸收营养成长期显示出来,许多作物缺少氮素有相似症状;很易从叶子上面显示出来,老叶子的黄化现象比新叶子明显;叶绿素生成减少;豆科作物的根瘤菌生成减少,由于根瘤菌减少的影响,防害了豆种作物吸收营养的能力,影响豆科作物的产量。

4、缺硅对作物生长的影响:缺硅时作物容易受到病菌的侵害,并降低了作物的抗病害能力,减弱了作物抗倒伏能力,并导致作物发育不良,降低作物含糖量,大大影响了作物品质。

5、缺铁对作物生长的影响:植株矮小,叶绿素合成受阻,植株下部叶片让保持绿色,而上部开始出现失绿,严重时叶片变成灰白色,果实小。

6、缺硼对作物生长的影响:植株新生组织生长不良,苗和芽尖等枯死,根枯萎,根系短,叶片厚,有时卷曲变脆,不能正常发育。

7、缺锰对作物生长的影响:嫩叶叶脉间退绿并有坏死斑点,新叶柄附近呈一片灰白色。逐渐变黄直至橘黄色,根系和茎生长不良,木质化严重,开花少。

8、缺钼对作物生长的影响:作物下部叶片叶脉间失绿,边缘坏死,都可作物根瘤发育不良,作物籽实不饱满。

9、缺锌对作物生长的影响:叶脉间失绿,生长受阻,新叶呈灰绿色或黄白色斑点,植株矮小,枝条尖端形成小叶,枝条间缩短并簇生,严重时枝条死亡,果实小变形,核果浆果的果肉有紫斑。

10、缺铜对作物生长的影响:叶片失绿干枯,变成淡绿色,分多但不抽穗,影响幼叶和种子的生长,叶子瘦小。黄化、尖端死亡,许多蔬菜作物缺铜变现为叶片萎蔫,并在卷曲前出现蓝绿色,植物不能开花,禾本科作物对铜敏感,缺铜的危害最大。

二、高活性腐植酸中微量元素土壤改良剂具有以下三大特点:

1、高活性腐植酸中微量元素土壤改良剂是以天然的有机物料为原料生产的,其中的有机质100%来自于纯天然的有机物料,不存在任何重金属和其他的有害物质超标,因此成为广大有机农产品生产者的首选肥料。

2、绿色高效高活性腐植酸中微量元素土壤改良剂经特殊处理过的腐植酸具有脲酶抑制、硝化菌抑制作用和氨稳定性能。首先,根据研究,高效硅钙镁活性有机肥中经特殊处理过的腐植酸对土壤中的脲酶和硝化细菌具有抑制作用,其效果可维持在100天左右。腐植酸在作物生长的前期可以很好的抑制脲酶的水解,而在作物生长的中后期,随着腐植酸的消耗,又可以逐渐减弱其对脲酶的抑制作用,以适应作物生长旺盛时期对氮素的大量需求。同时,腐植酸具有极大的吸附能力,可以吸附土壤中多余的铵根离子生成较稳定的腐植酸盐,为作物的吸收提供了氮源。这样,不仅不会因氮肥的过快分解而造成氮素的挥发和淋溶损失,也不会因氮肥的过量供应而造成硝酸盐和亚硝酸盐的积累。同时,肥料中的硅酸根离子和腐植酸可与土壤中的铅、汞等重金属离子发生反应,生成新的作物难以吸收的化合物沉淀下来,由此降低了作物的重金属污染,使生产出的产品更符合绿色、有机产品标准。

3、环保硝态氮是可供作物快速吸收利用的氮,但是易于移动,可被淋溶而进入地下水,污染水源。硝态氮在嫌气条件下,经反硝化作用被还原成氧化氮和氮气,造成大气污染。高活性腐植酸中微量元素有机肥中的腐植酸可通过对硝化菌和反硝化菌活性的抑制作用,大大降低了亚硝酸盐、次硝酸、氮气和一氧化氮的产生,减少了有害气体对水源和大气层的污染,有利于环境保护。

三、有效成分

有机质≥45%腐植酸≥20%

钙(CaO)≥5%硅(SiO2)≥2%

镁(MgO)≥2%微量元素≥3.0 %

氮N+磷P2O5+钾K2O≥5%

四、作用效果

1、肥料中被活化的硅、钙等矿质元素可使作物的表皮细胞壁加厚,角质层增加,增强作物茎杆的韧性,使有害病菌难以侵入作物机体,从而提高作物的抗病、虫和抗倒伏能力。

2、为作物的生长提供大量的硅、钙、硼、锰、锌等中、微量元素,减少作物

因缺素而引起腐烂病、大白菜干烧心、花叶病、裂果等各种病害,减少农药用量,降低成本和污染。

3、镁、钼、钙等元素可增强作物的光合作用、加快营养物质的积累,提高作物的产量和品质。不仅可使作物增产,而且会使饭更香、果更甜、菜更鲜、花更艳。

4、肥料中的中、微量元素与活性物质均处于螯合状态,既不易被土壤吸附,也不易随水流失,还可促进作物根系对氮、磷、钾等元素的均衡吸收,提高肥料的利用率。

5、肥料中大量的腐植酸通过对土壤中脲酶和硝化菌的抑制作用,使养分缓慢释放,真正实现了作物养分的纵向平衡供应,不仅可以提高肥料利用率,而且不会造成硝酸盐、亚硝酸盐的积累,有利于生产绿色有机产品。

6、提高作物的耐储运性能,延长水果、蔬菜、花卉等农产品的保鲜期。

五、使用方法

1、施用方法

(1)沙地果园在距离果树主干1米外的滴水线下,均匀挖数个深度为30-40厘米的锥形穴。将高活性腐植酸中微量元素有机肥混合后填入,追肥、浇水均在穴内。

(2)幼龄果园在树冠外围沿滴水线挖一条20--25厘米宽,深度为30--45厘米的环状沟,然后将高活性腐植酸中微量元素有机肥施入沟内覆土。此法适用于幼龄果树园。

(3)成年果园在距树干1米远的地方,挖6--8条放射状20--30厘米宽、30--45厘米深的沟,长度达树冠外缘,将高活性腐植酸中微量元素有机肥倒入沟中覆土。此法适用于成龄果树园。

(4)蔬菜或密植型果园将高活性腐植酸中微量元素有机肥均匀撒施全园,然后翻耕入土,深度可根据作物不同以15--25厘米为宜。此法适用于蔬菜或密植型果园。

2、施用量蔬菜一般每亩施用40-60公斤,果树每株每次施用3-4公斤。其他作物可参考产品的附加值,每亩施用50-80公斤。蔬菜一般做基肥施用,也可配合追肥在作物生长前期施用。果树一般做冬肥施用,荔枝、龙眼可在5-6月份施用。一般不适宜在中后期追施。

3、高活性腐植酸中微量元素土壤改良剂与大量元素肥渗混配合施用,或BB肥配肥加入本品30%其他肥料70%

(完整word版)土壤养分丰缺临界指标.doc

土壤养分含量丰缺临界指标 一、土壤酸碱度的评价 级别极酸酸性中性碱性极碱 PH <4.5 4.5~6.5 6.5 ~ 7.5 7.5~8.5 >8.5 二、常规方法测定的有机质和全氮的评价指标(% ) 分级缺乏中等丰富 有机质<1.5 1.5 ~2.5 >2.5 全氮< 0.06 0.06 ~0.10 >0.10 注: 1%=10g/kg 三、常规测定方法的土壤大中量元素有效含量丰缺指标(mg/kg) 分级 元素 极缺缺中丰富偏高碱解氮(N)<50 50~100 100~150 150~200 >200 速效磷(P)<5.0 5~10 10~20 20~40 >40 速效钾(K)<50 50~100 100~150 150~250 >250 交换钙(Ga)<100 100~250 250~1000 1000~2000 >2000 交换镁(Mg)<25 25~50 50~100 100~200 >200 有效硫(S)<10 10~16 16~30 30~50 >50

四、常规测定方法的土壤微量元素有效含量丰缺指标(mg/kg) 分级 微量元素很低缺中高很高 铁( Fe)<2.5 2.5~4.5 4.5~10.0 10.0~20.0 >20.0 锰( Mn )<5.0 5.0~10.0 10.0~20.0 20.0~30.0 >30.0 铜( Cu)<0.1 0.1~0.2 0.2~1.0 1.0~2.0 >2.0 锌( Zn)<0.5 0.5~1.0 1.0~2.0 2.0~4.0 >4.0 硼( B)<0.25 0.25~0.5 0.5~1.0 1.0~2.0 >2.0 钼( Mo )<0.10 0.10~0.15 0.15~0.20 0.20~0.30 >0.30 五、菜园土壤有效大中量元素丰缺状况分级(mg/kg) 元素 碱解氮(N)速效磷(P)速效钾(K)交换钙(Ga)交换镁(Mg)有效硫(S)极缺缺适宜偏高 <100 100~ 200 200~ 300 > 300 <30 30~ 60 60 ~90 >90 <80 80 160 160 240 > 240 ~ ~ <240 24~480 480~ 720 > 720 <60 60~ 120 120~ 180 >180 <15 15~ 30 30~ 40 > 40

土壤实验测定方法

土壤实验测定方法

测土配方施肥测试项目 1、有机质 2、速效磷 3、速效钾 4、碱解氮 5、缓效钾 6、全氮 7、电导和pH 8、植物氮磷钾 9、植物微量元素的测定(Fe、Mn、Cu、Zn、Ca、Mg) 10、土壤中的微量元素(Fe、Mn、Cu、Zn) 11、水中铵态氮的测定(靛酚蓝比色法) 12、土壤有效S的测定 13、硝态氮的测定

一、有机质的测定(重铬酸钾外加热法) 试剂: 1、0.2mol/L的FeSO4溶液:56.0gFeSO4(化学纯)溶于1L水,再加5ml浓硫酸。 2、重铬酸钾-浓硫酸混合液:称39.23g(通常可直接称40g),加1L水溶解,在加1L浓硫酸。(为防止结晶,经验是400ml水溶解重铬酸钾,用600ml水稀释浓硫酸,在混合)。 3、邻啡啰啉指示剂:1.485g邻啡啰啉+0.695g FeSO4溶于100ml水里,储存在棕色瓶中。 4、Ag2SO4:防止氧化物(Cl-)的干扰,约加0.1g左右。(石灰土壤一般不用) 5、重铬酸钾标准液的配制:39.2245g重铬酸钾(分析纯)加400ml水,加热溶解,定容

1L。 设备: 消煮炉、消煮管、万分之一天平、2L大烧杯、大储存瓶、瓶口分液器(10ml)、酸式滴定管、三角瓶、洗瓶 实验步骤: 1、称0.1000-0.5000g(0.25mm)土样至消煮管,加入10ml重铬酸钾-浓硫酸混合液,摇匀。 2、放入消煮炉(190℃)沸5min。 3、完全转移至三角瓶中,加入指示剂,用硫酸亚铁滴定。(橙黄→蓝绿→转红) 注意:滴至快终点时用洗瓶洗壁,减少误差。 每批样3空白。 每天对FeSO4标定一次。(标定方法 2:0.2000g重铬酸钾溶于50—70ml 水+5ml浓硫酸+邻啡啰啉指示剂) 计算公式:方法1:C FeSO4=(标准重铬酸钾质量/M重铬酸钾)*6*5/消耗 FeSO4体积 5表示每次吸重铬酸钾标准液5ml

土壤微量元素的丰缺指标及参数

土壤微量元素的丰缺指标及参数 1、硼①含量全量5-100PPm②速效在内地0.05-1PPm 新疆0.19-66PPm 平均2.95PPm ③分级标准全国少于0.4PPm为缺0.4-0.8边缘值>0.8 丰 新疆:<0.5PPm 极缺, 0.5-1PPm 微缺, 1-4PPm 边缘值, >4PPm 丰富 2、锰①200-500PPm; ②速效在内地10-20PPm; 新疆0.604-57.8PPm 平均7.13PPm ③分级标准: <7PPm缺7-9PPm边缘值>9PPm丰富 3、铜①全量3-100PPm, ②速效内地0.1-10PPm, 新疆0.224-11.9PPm 平均1.87PPm ③分级标准内地<2.5PPm缺2.5-4.5边缘值, >4.5PPm 丰富; 新疆<0.2PPm缺0.2-1边缘值>1丰富 4、铁①全量3%; ②速效在内地0.1-30PPm, 新疆0.29-125.2PPm 平均17.9PPm; ③分级标准: 缺<2.5PPm 2.5—4.5PPm边缘值, > 4.5PPm丰富; 新疆<5缺, PPm 5--10边缘值, >10丰富 5、锌①全量80-100PPm; ②速效内地1-2.7PPm 新疆0.109-10.6PPm 平均0.796PPm ③分级标准: 内地<0.5PPm缺0.5-1.0边缘值>1.0PPm丰富 新疆<0.5PPm缺, 0.5-1.0边缘值,>2.0丰富 6、钼①全量0.1-10PPm(草炭土高达200PPm), ②速效国内

0.1-0.2PPm, 新疆0.01-0.1PPm <0.1PPm缺, 0.1-0.15边缘值,>0.15丰富 (五)养分含量范围 有机质% 0.7-2 1%左右 全N: 0.02-0.07 全P: 0.05-0.1 全K: 1-2.2 速N: 40-90PPm 速P: 3-5~30PPm 速K: 140-200PPm P>15高、5-15中、<5低折P2O5=2.29×P K80-200PPm200PPm不缺<200PPm 缺折K2O=1.205×K

浅谈土壤改良剂

浅谈土壤改良剂 摘要:近年来,我国的土壤退化日益严重,作为农业人口大国,修复改良土壤显得尤为 重要。土壤改良剂的研究发展对于土壤退化有着重要的意义,本文概述了土壤改良剂的 研究状况、存在的问题和未来的展望。 关键字:土壤退化;土壤改良剂;微生物 随着经济社会的不断发展,我国的土壤资源严重不足,而且由于某些不合理的利用,比如大量不合理的施用肥料、农药的过量喷洒、超负荷放牧等等,造成了土壤的严重退化。主要表现为土壤紧实与硬化、侵蚀、盐碱化、酸化、元素失衡、化学污染、有机质流失和动植物区系的退化等[1]。据统计,因水土流失、盐渍化、沼泽化、土壤肥力衰减和土壤污染及酸化等造成的土壤退化总面积约4.6亿hm2,占全国土地总面积的40%,是全球土壤总面积的1/4。土壤退化的结果是土壤生产力降低,作物品质下降,甚至有毒元素富集[2’3]。如何保持土壤质量、改善酸碱土壤、解除土壤毒性、减少土传病害传播,成为人们关注的焦点。 应用土壤改良剂是修复退化土壤的重要措施之一。土壤改良剂能有效地改善土壤理化性状和土壤养分状况,并对土壤微生物产生积极影响,从而提高退化土壤的生产力[4],因此,土壤改良剂的研究与发展对于土壤退化有着极其重要的作用。 1.土壤改良剂的作用机制 土壤是陆生植物生长的载体,植物生长所需的大部分营养元素是从土壤中获得的,土壤特性决定了植物能否健康的生长。土壤特性包括土壤结构、土壤含水量、土壤温度、土壤酶的活性、土壤微生物数量、土壤通气状况、土壤溶液浓度、土壤氢离子浓度。土壤改良剂的类型不同,对土壤的作用机制也有所不同,但都是通过有效改善土壤物理结构,降低土壤容重,增加土壤含水量,改变土壤化学性质[5],加强土壤微生物活动,提高酶的活性,增加土壤微量元素含量,调节土壤水、肥、气、热状况中的某些部分或全部,最终达到提高土壤肥力的目的。 2.土壤改良剂的分类 土壤改良剂按原料来源可分为天然改良剂、人工合成改良剂、天然一合成共聚物改良剂和生物改良剂。

土壤中微量元素的测定方法

土壤中微量元素的测定 1.1概述 微量元素是指土壤中含量很低的化学元素,除了土壤中某些微量元素的全含量稍高外,这些元素的含量范围一般为十万分之几到百万分之几,有的甚至少于百万分之一。土壤中微量元素的研究涉及到化学、农业化学、植物生理、环境保护等很多领域。作物必需的微量元素有硼、锰、铜、锌、铁、钼等。此外,还有一些特定的对某些作物所必需的微量元素,如钴、钒是豆科植物所必需的微量元素。随着高浓度化肥的施用和有机肥投入的减少,作物发生微量元素缺乏的情况愈来愈普遍。有时候微量元素的缺乏会成为作物产量的限制因素,严重时甚至颗粒无收。 土壤中微量元素对作物生长影响的缺乏、适量和致毒量间的范围较窄。因此,土壤中微量元素的供应不仅有供应不足的问题,也有供应过多造成毒害的问题。明确土壤中微量元素的含量、分布、形态和转化的规律,有助于正确判断土壤中微量元素的供给情况。土壤中微量元素的含量主要是由成土母质和土壤类型决定,变幅可达一百倍甚至超过一千倍(见下表),而常量元素的含量在各类土壤中的变幅则很少超过5倍。 影响土壤中微量元素有效性的土壤条件包括土壤酸碱度、氧化还原电位、土

壤通透性和水分状况等,其中以土壤的酸碱度影响最大。土壤中的铁、锌、锰、硼的可给性随土壤pH的升高而降低,而钼的有效性则呈相反的趋势。所以,石灰性土壤中常出现铁、锌、锰、硼的缺乏现象。而酸性土壤易出现钼的缺乏,酸性土壤使用石灰有时会引起硼锰等的“诱发性缺乏”现象。 土壤中微量元素以多种形态存在。一般可以区分为四种化学形态:存在于土壤溶液中的“水溶态”;吸附在土壤固体表面的“交换态”;与土壤有机质相结合的“螯合态”;存在于次生和原生矿物的“矿物态”。前三种形态易对植物有效,尤其以交换态和螯合态最为重要。因此,无论是从植物营养或土壤环境的角度,合理地选择提取剂或提取方法以区分微量元素的不同形态是微量元素分析的重要环节。本章将介绍国内外微量元素全量和有效成分的提取和测定。由于不同提取剂或提取方法的测定结果,特别是有效态含量相差非常大,因此,土壤中微量元素的有效态含量一定要注明提取测定方法或者提取剂。 土壤样品分解或提取溶液中微量元素的测定则主要是分析化学的内容。现代仪器分析方法使土壤和植物微量元素能够进行大量快速、准确的自动化分析。很多繁琐冗长的比色分析方法多被仪器分析方法替代,从而省略了许多分离和浓缩萃取等繁琐手续。目前除了个别元素用比色分析外,大部分都采用原子吸收分光光度法(AAS)、极谱分析、X光荧光分析、中子活化分析等。特别是电感耦合等离子体发射光谱技术(Inductively coupled plasm-atomic emission spectrometry,简称ICP-AES或ICP)的应用,不仅进一步提高了自动化程度,而且扩大了元素的测定范围,一些在农业上有重要意义的非金属元素和原子吸收分光光度法较难测定的元素如硼、磷等均可以应用ICP进行分析,只是这种仪器目前在国内应用还不够广泛。 微量元素分析尤其要防止可能产生的样本污染。在一般的实验室中,锌是很容易受到污染的元素。医用胶布、橡皮塞、铅印报纸、铁皮烘箱、水浴锅等都是常见的污染源。微量元素分析一般尽量使用塑料器皿,用不锈钢器具进行样品的采集和制备(磨细、过筛),用洁净的塑料(瓶)袋盛装或标签标记样品。烘箱、消化橱及其它一些常用简单设备,甚至实验室应尽可能专用,特别值得注意的是微量元素分析应该与肥料分析分开。避免用普通玻璃器皿进行高温加热的样预处理或试剂制备。实验用的试剂一般应达到分析纯,并用去离子水或重蒸馏水配制试剂和稀释样品。

土壤改良剂的研究利用现状

土壤改良剂的研究利用现状 摘要:全世界拥有耕地7.3 亿hm2,但每年平均有近500 万hm2的土地因退化而不能生产粮食。到2050 年,世界近6 亿hm2 的土地沙化,约有200万hm2灌溉土地盐渍化。因此,如何保持土壤质量、改善酸碱土壤、解除土壤毒性、减少土传病害传播,成为人们关注的焦点。应用土壤改良剂可在一定程度上缓解农业生产危机,它可以促进土壤团粒的形成、改良土壤结构、提高肥力、保护耕层土壤、改善土壤保水保肥性、提高粮食产量[1-2]。在国内外大量相关研究的基础上,本文对土壤改良剂研究现状、主要种类、功能作用、使用技术、存在问题及应用前景等进行了综述,以期为相关产品的研发与利用提供参考。 一、土壤改良剂的研究概况 土壤改良剂的研究始于19 世纪末,距今已有100 多年的历史。根据土壤改良剂的来源、制法和性质,其研究历史可以划分为两个时期,即天然土壤改良剂研究时期和人工合成土壤改良剂研究时期。 天然土壤改良剂的研究时期从19 世纪末到20 世纪40 年代,约50 余年的历史。这个时期主要是利用天然有机质为原料,从中提取天然聚合物,如纤维素、半纤维素、木质素、多糖类、腐殖酸类等物质作为土壤改良剂,或者利用微生物合成产物等有机胶结物作为土壤改良剂。研究较多的是藻朊酸盐,它是从藻类中抽取的多糖羧酸类化合物,藻朊酸钠用量0.1%便有显著的改土效果。早在20 世纪初,西方国家就开展了利用天然高分子如纤维素、半纤维素、木质素、腐殖酸、多糖、瓜儿豆提取液、淀粉共聚物改良土壤的研究。它们具有原料充足、制备简单、施用方便、效果良好和经济可行等优点,但由于天然土壤改良剂易被土壤微生物分解,施用周期短,且用量较大,施用后释放的大量阳离子对土壤有毒害作用,因此并没有受到人们的重视,难以在生产上广泛应用。 从20 世纪50 年代开始,随着人工合成化工技术的发展,土壤改良剂的研究工作就从天然土壤改良剂过渡到人工合成土壤改良剂研究时期。克里利姆土壤改良剂是初期人工合成的改良剂,主要成分是聚丙烯酸钠盐,具有高效、抗微生物分解、无毒等优点。美国首先开发了商品名为Krilium的合成类高分子土壤改良剂,之后人们对大量的人工合成材料包括水解聚丙烯腈(HPAN)、聚乙烯醇(PVA)、聚丙烯酰胺(PAM)、沥青乳剂(ASP)及多种共聚物有了更充分的认识,并发现其中比较理想的是聚丙烯酰胺。人工改良剂的优点在于不易被土壤微生物分解,作用持久,且对土壤微生物和土壤动物无害,改良后的土壤更有益于作物的生长。在现代人工制剂中,人们往往根据土壤特性及主要限制因子,应用植物秸秆、氟石、磷石灰、膨胀土、蛭石、石膏等,并加入植物生长所需要的营养元素,研制出具有特定功效的改良剂,如酸性土壤改良剂、碱性土壤改良剂和营养型土壤改良剂,以达到改土和促进植物生长的双重作用。 随着土壤改良剂在农业和生态环境中的广泛应用,国内外土壤改良剂的新产品也越来越多。世界各国为了保护农田和扩大耕地面积,提高农作物产量,研制和开发了种种土壤保湿剂、松土剂、固沙剂、增肥剂、消毒剂和降酸碱剂。目前,土壤改良剂主要应用于美国、前苏联、利比亚、科威特、比利时等石油产品丰富

土壤微量元素的测定

科学研究和生产实践证明微量元素为有机体正常生命活动所必需,在有机体的生活中起着重要作用。土壤和植物中的微量元素都很低,并且这些微量元素在植物体中的缺乏量、适量及致毒量范围很窄,因此微量元素的分析测定工作较常量元素要求更加严格。 1 土壤有效硼的测定(姜黄素比色法) 方法原理土样经沸水浸提5分钟,浸出液中的硼用姜黄素比色法测定。姜黄素是由姜中提取的黄色色素,以酮型和稀醇型存在,姜黄素不溶于水,但能溶于甲醇、酒精、丙酮和冰醋酸中而呈黄色,在酸性介质中与B结合成玫瑰红色的络合物,即玫瑰花青苷。它是两个姜黄素分子和一个B原子络合而成,检出B的灵敏度是所有比色测定硼的试剂中最高的(摩尔吸收系数ε550 =1.80×105)最大吸收峰在550nm处。在比色测定B时应严格控制显色条件,以保证玫瑰花青苷的形成。玫瑰花青苷溶液在0.0014—0.06mg/LB的浓度范围内符合Beer定律。溶于酒精后,在室温下1—2小时内稳定。 主要仪器石英(或其他无硼玻璃);三角瓶(250或300ml)和容量瓶(100ml,1000ml);回流装置;离心机;瓷蒸发皿(Φ7.5cm);恒温水浴;分光光度计;电子天平(1/100)。 试剂 (1)95%酒精(二级); (2)无水酒精(二级); (3)姜黄素—草酸溶液:称取0.04g姜黄素和5g草酸,溶于无水酒精(二级)中,加入4.2ml6mol/LHCl,移入100ml石英容量瓶中,用酒精定容。贮存在阴凉的地方。姜黄素容易分解,最好当天配制。如放在冰箱中,有效期可延长至3—4天。

(4)B标准系列溶液:称取0.5716gH3BO3(一级)溶于水,在石英容量瓶中定容成1升。此为100mg/LB标准溶液,再稀释10倍成为10mg/LB标准贮备溶液。吸取10mg/LB溶液1.0,2.0,3.0,4.0,5.0ml,用水定容至50ml,成为0.2,0.4,0.6,0.8,1.0mg/LB的标准系列溶液,贮存在塑料试剂瓶中。 (5)1mol/LCaCl2溶液:称取7.4gCaCl2·2H2O(二级)溶于100ml水中。 操作步骤 1 待测液制备:称取风干土壤(通过1mm尼龙筛)10.00g于250ml 或300ml的石英三角瓶(或塑料瓶)中,加20.0ml无硼水。连接回流冷凝器后煮沸5分钟整,立即停火,但继续使冷却水流动。稍冷后取下石英三角瓶。放置片刻使之冷却。倒入离心管中,加2滴1mol/LCaCl2溶液以加速澄清(但不要多加),离心分离出清液(或过滤到塑料杯中)。 2 测定:吸取1.00ml清液,放入瓷蒸发皿中,加入4ml姜黄素溶液。在55±3℃的水浴上蒸发至干,并且继续在水浴上烘干15分钟除去残存的水分。在蒸发与烘干过程中显出红色,加20.0ml95%酒精溶解,用干滤纸过滤到1cm光径比色槽中,在550nm波长处比色,用酒精调节比色计的零点。假若吸收值过大,说明B浓度过高,应加95%酒精稀释或改用580或600nm的波长比色。 3 工作曲线的绘制:分别吸取0.2,0.4,0.6,0.8,1.0mg/LB标准系列溶液各1ml放入瓷蒸发皿中,加4ml姜黄素溶液,按上述步骤显色和比色。以B标准系列的浓度mg/L对应吸收值绘制工作曲线。 结果计算:有效B,mg/L=C×液土比 式中C----由工作曲线查得B的mg/L数; 液土比---浸提时,浸提剂毫升数/土壤克数。

土壤微量元素检测仪详细介绍

土壤微量元素检测仪详细介绍: 土壤养分是植物获取养分的主要来源之一,在植物养分吸收总量中占有很高的比例。土壤养分丰缺会给作物生长带来一定的影响。以玉米为例,对玉米生长影响较为明显地就是氮元素。如果缺氮,玉米植株将表现出细弱、叶色发黄、底部叶片逐渐向上变化干枯,雄穗发育迟缓或雌穗不能发育,严重影响玉米产胡。但当氮元素过于充足时,同样会有负面影响,会出现植株徒长、根冠比小等症状。因此,要想保障玉米健康生长,对土壤中氮元素地监测是非常重要的,可采用土壤微量元素检测仪定期检测。 土壤微量元素检测仪特点: 功能全:测试项目国内外齐全(各类药剂均可选购)。 配套齐全:该土壤微量元素检测仪集药、器、仪为一体,携带方便,相当于一个小型实验室。适于农业服务部门或农资经销商、肥料厂商测土施肥和鉴别肥料真假。 操作简便、速度快捷,成品药剂开瓶即用,无须配置。 土壤微量元素检测仪特点: ★《机箱/药剂一体式铝合金机箱》设计,便于携带、坚固耐用,配套成品药剂。★微电脑控制,数字化线路、程序化设计,液晶显示,交直流两用,可野外流动测试,降低操作者的失误和劳动强度。 ★分辨率:0.001,触摸式按键,内置热敏打印机,可打印测试结果。 ★可检测土壤及化肥、有机肥(含叶面肥、水溶肥、喷施肥等)、植株中的有效钾、全氮、全磷、全钾、有机质、酸碱度,钙、镁、硫、铁、锰、硼、锌、铜、氯、硅等各种中微量元素以及铅、铬、镉、汞、砷等各种重金属含量。 ★土壤微量元素检测仪采用高亮LED灯光源、双拨轮滤光式处理技术,保证光源波长稳定,硅半导体作为信号接收系统,寿命长达10万小时级别。土壤微量元素检测仪光源稳定,重现性好,准确度高。 ★土壤微量元素检测仪比色槽部分采用单通道设计,无机械位移及磨损,光路测试定位准确,保证测定结果精度。 ★配套专家施肥系统数据,可对百余种全国农业、果树、经济作物的目标产量科学计算推荐施肥量。 ★采用自主发明分析方法,保证检测结果达到国标要求。 土壤微量元素检测仪技术指标: 1.电源:交流220±22V 直流12V+5V(可用车载电源也可选择仪器内置锂电池) 2.功率:≤5W 3.量程及分辨率:0.001-9999 4.重复性误差:≤0.05%(0.0005,重铬酸钾溶液) 5.仪器稳定性:一个小时内漂移小于0.3%(0.003,透光度测量)。仪器开机预热5分钟后,三十分钟内显示数字无漂移(透光度测量);一个小时内数字漂移不超过0.3%(透光度测量)、0.001(吸光度测量);两个小时内数字漂移不超过0.5%(0.005,透光度测量)。 6.线性误差:≤0.2%(0.002,硫酸铜检测) 7.灵敏度:红光≥4.5 ×10-5 蓝光≥3.17×10-3 绿光≥2.35×10-3 橙光≥2.13×10-3 8.波长范围:红光:680±2nm; 蓝光:420±2nm;绿光:510±2nm;橙光:590

土壤改良剂研究现状及展望

土壤改良剂研究现状及展望 杨旅涵,程科,廖容,朱泊承(成都理工大学地球科学学院成都610051) 民以食为天,土地质量的好坏从古至今都是关系民生的大问题。一方面几十年来工业不断地发展,大量有害废气,矿产开采,化肥农药的滥用,这些工业产物直接(或者间接通过大气,水体等介质)污染着土壤,给土壤质量造成巨大的破坏。土壤的污染主要分为无机污染与有机污染。无机污染物主要有酸、碱、重金属,盐类等。有机污染物主要包括有机农药、酚类、氰化物以及由城市污水、污泥及厩肥带来的有害微生物等。而另一方面持续地大面积单一经济作物的种植,使土壤中有益元素大幅度降低,造成的土壤相应元素的缺乏。所以通过食物链增加有益元素和降低有害元素更多进入人体至关重要。 总所周知,土壤是在地球陆地表面上由矿物质、有机质、水、空气和生物组成的。它是陆地上具有肥力,疏松,并能生长植物的表层。 针对于土壤的污染,土壤肥力和结构改善而言,有以下几种改良思路以及改良剂研发开展进行中。①对于矿物肥料(即富钾长石或其他矿物)。如马鸿文老师团队最近20年来的研究一直致力于钾长石制取矿物肥料,前期研究主要采用纯碱烧结法,后期则采用水热碱法。研究了以钾长石粉体为原料采用水热碱法制备农用矿物基硝酸钾技术。而刘建明等中科院团队在多项国家发明专利的基础上不断地中小规模生产试验,总结出来的制取硅钾钙微孔新型化肥技术也得到越来越多人重视。相比传统化肥只能补充N,K,P等元素,该项技术不仅可以改善土壤中各种有益元素如Se,Fe等还可以改良土壤结构。②对于土壤中的有机质而言,我们以往发现有机质并没有被植物生长所吸收,而是另有作用。尤其是有机质中的腐殖质等大分子胶体物质。物理上降低土壤密度,同时适当升温加快植物生长,而化学上具有较强的吸附性能和较高的阳离子代换能力,因此,使土壤具有较强的缓冲性能。当土壤质量受到破坏被污染时,pH值,有害物质在缓冲区内受到一定控制。同时还有益于有益元素地涵养。③粘土矿物在土壤修复中研究也越来越多。粘土矿物是组成粘土岩和土壤的主要矿物。它们由含铝、镁等为主的含水硅酸盐矿物组成。粘土矿物的比表面积大、孔隙多以及极性强等特征,因此具有较强的吸附性、脱水、复水性能、膨胀、收缩性能,可塑性能和离子交换性能等功能。在土壤修复中扮演越来越重要的角色。 鉴于有机质,粘土矿物,以及矿物钾肥相关研究不断加深,各自在土壤改良中都有着不可忽视的作用。接下来我们应该把几种物质联合起来,协同治理修复土壤。那么接下来研究应该着重于选择或者改性合适的粘土材料,这样可以选择性吸收钝化不同土壤污染物质;同时施用一定量的矿物钾肥,使土壤缺乏的元素得到补充;最后还要辅以大分子有机质胶体。所以能否找到这几种物质最合适的配比或者在不同修复改良土壤阶段用不同材料与技术方法。这些任务任重而道远。 参考文献 [1]马鸿文,杨静,苏双青,刘梅堂,郑红,王英滨,戚洪彬,张盼.富钾岩石制取钾盐研究20年:回顾与展望[J].地学前缘,2014,(05):236-254. [2].我国耕地质量堪忧中科院创制新型矿物肥料 紧急应对[J].高科技与产业 化,2007,(03):108-109. [3]汤艳杰,贾建业,谢先德.粘土矿物的环境意义[J].地学前缘,2002,(02):337-344. [4]宋春雨,张兴义,刘晓冰,高崇升.土壤有机质对土壤肥力与作物生产力的影响[J].农业系统科学

土壤改良剂名称及广告语

土壤改良剂名称及广告语 广告语,土壤改良剂名称及广告语 1、名称:绿三岩广告语:用了绿三岩,荒山成沃土。 2、名称:润沃广告语:润物无声,肥沃良田。 3、名称:科沃广告语:知识改变命运,科技成就沃土。 4、名称:智壤广告语:荒沙变绿洲,智壤是专家。 5、名称:绿帝广告语:用绿帝,沙漠变绿地。 6、名称:托梁广告语:土壤改良用托梁,庄稼高产粮。 7、名称:润土广告语:要想拥有好土地,还得先要有润土。 8、名称:沙荒宝广告语:用了沙荒宝,土壤改良真有效。 9、名称:土医生广告语:土医生,改良土壤,丰收有望。 10、名称:能达广吿语:沙漠变绿洲,能达效最优。 11、名称:优沃广吿语:优化沃土,丰收明天。 12、名称:江南岸广告语:贫土变良田,沙漠成绿洲。 13、名称:本沃广告语:土地重焕生机,改良本沃开始。 14、名称:科沃广告语:科技改良土壤,科沃在你身旁。 15、名称:活力素广吿语:刷新贫脊,激活沙漠;修复生态,天地人和。 16、名称:安沙绿广告语:安邦治沙,绿色品质。 17、名称:新土地广告语:用一次“新土地”土壤改良剂,还一亩好良田。 18、名称:丰田剂广告语:用了丰田剂,沙地变肥地,请认准三岩丰田剂。 19、名称:绿源广告语:还原野一片绿色,还大地一片丰收。 20、名称:沃壤广告语:绿了土壤,暖了我心。 21、名称:金土地广告语:金土地改良剂,让希望在从这里萌芽。 22、名称:碧丰禾广告语:点沙成金,坡碧禾丰。 23、名称:绿复来广告语:还我绿色,造福未来。 24、名称:优沙广告语:良田种庄稼,好土靠优沙。 25、名称:三岩广吿语:土壤改良用三岩,誓让沙漠变良田。 26、名称:土改剂广告语:有了土改剂,沃土复活力。

土壤中微量元素的测定

土壤中微量元素的测定 7.1概述 微量元素是指土壤中含量很低的化学元素,除了土壤中某些微量元素的全含量稍高外,这些元素的含量范围一般为十万分之几到百万分之几,有的甚至少于百万分之一。土壤中微量元素的研究涉及到化学、农业化学、植物生理、环境保护等很多领域。作物必需的微量元素有硼、锰、铜、锌、铁、钼等。此外,还有一些特定的对某些作物所必需的微量元素,如钴、钒是豆科植物所必需的微量元素。随着高浓度化肥的施用和有机肥投入的减少,作物发生微量元素缺乏的情况愈来愈普遍。有时候微量元素的缺乏会成为作物产量的限制因素,严重时甚至颗粒无收。 土壤中微量元素对作物生长影响的缺乏、适量和致毒量间的范围较窄。因此,土壤中微量元素的供应不仅有供应不足的问题,也有供应过多造成毒害的问题。明确土壤中微量元素的含量、分布、形态和转化的规律,有助于正确判断土壤中微量元素的供给情况。土壤中微量元素的含量主要是由成土母质和土壤类型决定,变幅可达一百倍甚至超过一千倍(见下表),而常量元素的含量在各类土壤中的变幅则很少超过5倍。 表7-1 我国土壤微量元素的含量 *刘铮,中国土壤的合理利用和培肥 影响土壤中微量元素有效性的土壤条件包括土壤酸碱度、氧化还原电位、土壤通透性和水分状况等,其中以土壤的酸碱度影响最大。土壤中的铁、锌、锰、硼的可给性随土壤pH的升高而降低,而钼的有效性则呈相反的趋势。所以,石灰性土壤中常出现铁、锌、锰、硼的缺乏现象。而酸性土壤易出现钼的缺乏,酸性土壤使用石灰有时会引起硼锰等的“诱发性缺乏”现象。 土壤中微量元素以多种形态存在。一般可以区分为四种化学形态:存在于土壤溶液中的“水溶态”;吸附在土壤固体表面的“交换态”;与土壤有机质相结合的“螯合态”;存在于次生和原生矿物的“矿物态”。前三种形态易对植物有效,尤其以交换态和螯合态最为重要。因此,无论是从植物营养或土壤环境的角度,合理地选择提取剂或提取方法以区分微量元素的不同形态是微量元素分析的重要环节。本章将介绍国内外微量元素全量和有效成分的提取和测定。由于不同提取剂或提取方法的测定结果,特别是有效态含量相差非常大,因此,土壤中微量元素的有效态含量一定要注明提取测定方法或者提取剂。 土壤样品分解或提取溶液中微量元素的测定则主要是分析化学的内容。现代仪器分析方法使土壤和植物微量元素能够进行大量快速、准确的自动化分析。很多繁琐冗长的比色分析方法多被仪器分析方法替代,从而省略了许多分离和浓缩萃取等繁琐手续。目前除了个别元素用比色分析外,大部分都采用原子吸收分光

碱性土壤改良剂

ICS DB 内蒙古自治区地方标准 DB XX/ XXXXX—2015 碱性土壤改良剂 Alkaline Soil Improvers (征求意见稿) XXXX-XX-XX发布XXXX-XX-XX实施

前言 本标准由内蒙古质量技术监督局归口。 本标准由内蒙古质量技术监督局提出并组织实施。 本标准起草单位:内蒙古石油化工监督检验研究院、内蒙古阜丰生物科技有限公司本标准主要起草人:赵力英、房德秀、韩艳芬、陈笑 本标准由内蒙古石油化工监督检验研究院负责解释。

碱性土壤改良剂 1 范围 本标准规定了碱性土壤改良剂的技术要求、试验方法、检验规则、标识、包装、运输和贮存。 本产品适用于以味精发酵尾液为原料,在蛋白提取后,经浓缩而成的液体或经浓缩、喷浆、造粒制成的固体颗粒,用于非酸性土壤的碱性土壤改良剂。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB 191 包装储运图示标志 GB/T 8170 数值修约规则与极限数值的表示和判定 GB 8569 固体化学肥料包装 GB/T 6680 液体化工产品采样通则 NY/T 1108 液体肥料包装技术要求 GB/T 8576 复混肥料中游离水含量的测定真空烘箱法 GB 15063 复混肥料(复合肥料) GB 18382 肥料标识内容和要求 GB 18877 有机-无机复混肥料 NY 1110 水溶肥料汞、砷、镉、铅、铬的限量要求 NY/T 1117 水溶肥料钙、镁、硫、氯含量的测定 NY/T 1975 水溶肥料游离氨基酸含量的测定 NY/T 1977 水溶肥料总氮、有效磷、钾含量的测定 NY/T 1973 水溶肥料水不溶物含量和pH的测定 NY/T 1978 肥料汞、砷、镉、铅、铬含量的测定 NY 1979 肥料登记标签技术要求 HG/T 2843 化肥产品化学分析中常用标准滴定溶液、标准溶液、试剂溶液和指示剂溶液

中微量元素

1 钙钙为合成细胞壁间层中的果胶酸钙所必须的元素。钙参与染色体的结构组成并保持其稳定性。钙在细胞内与草酸形成草酸钙结晶,可避免草酸过多而产生的毒害。钙是ATP水解酶、琥珀酸脱氢酶、磷脂酶的活化剂。钙能增强与氮代谢有关的酶活性。钙离子与氢离子、铵离子、铝离子和钠离子有拮抗作用,可缓冲或减少这些离子过多时引起的毒害作用。钙是烟草灰分中仅次于钾的主要成分。但烟叶中含钙量过高,对烟叶品质有不良影响。缺钙时,细胞的分裂和根系生长受阻,影响烟株水分和养分的吸收。严重缺钙时引起生长点干枯。 一般认为,代换性钙<0.05~0.06mg/kg时,烟株可能缺钙。南方烟区淋溶作用强的强酸性、低盐基土壤容易发生缺钙。由于与钠离子有拮抗作用,土壤中盐分浓度过高时,会抑制烟株对钙的吸收。因此,在钙质土壤上也常发生缺钙。土壤中高浓度的镁、钾、钠、铵、氢等离子,都会抑制烟株对钙的吸收,所以在酸性土壤或铵态氮、钾肥施用过量,也可能诱发烟株缺钙。烟叶中的含钙量一般为1.5%~2.0%。 2、铁铁虽然不是叶绿体的组成成分,但铁素直接或间接参加叶绿体蛋白质的合成,是叶绿素合成的活化剂。叶片内含有的总铁量和叶绿素的含量有关,在叶绿素形成之前,叶片内必须有一定的铁。铁参加原叶绿素酸酯的合成,缺铁时原叶绿素酸酯不能形成,影响叶绿素合成,发生缺绿症。铁氧还原蛋白参与硫酸盐还原及氮素固定过程。铁又是过氧化氢酶及过氧化物酶的组成元素,铁的得失电子在呼吸过

程中有非常重要的作用。铁硫蛋白参与氧化还原反应。细胞色素(Cyt)及细胞色素氧化酶都含有铁,在细胞色素及细胞色素氧化酶的活性部位,依靠铁的价数变化,起着电子传递的作用。 铁在烟株体内不易移动,缺铁症从幼叶开始。缺铁时,先在新生组织出现缺乏症状,上部叶片先发黄后变白,铁过多时则发生叶片呈灰色或褐色,影响光合功能,烤后烟叶质量不佳。 铁的有效性受土壤PH和氧化还原电位的影响。当土壤pH升高时,可溶铁(Fe2+)的数量减少,pH越高,铁的溶解度就越小。铁离子有化合价的变化,在酸性条件下,Fe2+比较稳定,可以被烟株吸收利用;在碱性条件下,Fe2+很快被氧化成Fe3+,而不能被烟株所吸收。因此,烟草缺铁多发生在碱性及石灰性土壤上,在酸性土壤上则很少出现缺铁。施用磷肥和含铜肥料过多,容易诱发缺铁。 3、铜铜为多酚氧化酶、抗坏血酸氧化酶、漆酶、细胞色素氧化酶的组成成分,参加氧化还原过程,也是光和电子传递链中的电子传递体质蓝素的组成成分。铜能促进烟株根系发育以及蛋白质与烟碱的合成,促使烟叶成熟均匀,改善烟叶身份,提高上等烟比例,对烟叶质量和产量都有好的影响。铜在烟株体内不易再利用。烟叶铜含量通常在15~21mg/kg。贵州、云南、山东等省均有50%以上烟叶低于15mg/kg,其他各省也都有许多烟叶铜含量较低。 铜主要存在于烟株生长活跃部分。对幼叶及生长顶端影响较大。缺铜时烟株体内蛋白质合成受阻,烟株生长迟缓,植株矮小,顶部新

微量营养元素的种类及其在土壤中的丰缺指标

微量营养元素的种类及其在土壤中的丰缺指标 农业上所指的微量元素是作物在其生长和生命过程中所不可缺少的,并且这种元素在土壤中含量一般不超过千分之几,在植物体内的含量占植物体干重的万分之几甚至十万分之几的元素。植物生长所必需的微量营养元素主要包括铁(Fe)、锰(Mn )、硼(B)、锌(Zn)、钼(Mo),还有铜(Cu)和氯(Cl),由于铜和氯这两种元素在北方地区土壤中相当丰富,且有效含量都比较高,所以在这里就不作为主要元素加以介绍。 一、铁元素在土壤中的丰缺指标 铁(Fe )是植物必须的微量元素,植物体中铁的含量一般为百万分之50~250毫克/升,铁在植物体内移动性非常小,进入植物体内的铁常处于被固定状态。铁在土壤中常常以矿物态、有机态、可溶态和代换态等形态存在。植物从土壤中吸收的铁主要是还原态的铁,而大多数土壤中铁的原初形态主要是氧化态的铁,此种形态的铁不能被植物所直接吸收利用。因此植物在吸收利用铁元素之前,首先要将难溶性的三价铁变为可溶态,然后再将三价铁还原为二价的铁才能吸收并运送到根系内。植物对铁的吸收主要有两种方式,一种是靠植物根系所分泌的酸性物质或某些络合剂把土壤中的铁溶解吸收,另一种则是土壤中难溶的高价三价铁在根表面被还原为低价的二价铁后进人植物根部被植物吸收利用。铁被吸收进人植物根部后便被运往地上茎、叶各部供植物

生长发育所需。 我国大部分地区土壤中铁的含量都比较高,因土壤缺铁而导致植株缺铁的情况一般很少见,但由于土壤pH过高使得土壤中一些易溶性的低价铁变为难溶性的高价铁,从而间接地导致作物缺铁症状的情况比较多。因此,土壤pH值是决定铁元素对植物有效性吸收的主要原因,尤其是我国北方地区大部为石灰性土壤,碳酸钙含量较高,土壤中的铁大多以氢氧化铁、碳酸铁和氧化铁等形式存在。另外由于石灰性土壤pH值相对较高,大多在8左右。但是可供植物吸收利用,并且能有助于植物生长的有效铁所需的适宜土壤pH值为5.5~6.5之间,超过6.5时土壤中的铁就会被固定下来,很难再被植物所吸收利用。所以北方地区土壤中虽然铁含量不缺,但其大部分被土壤固定,作物很难吸收利用,所以作物常会出现缺铁症状。 二、锰元素在土壤中的丰缺指标 锰(Mn)是植物正常生长不可缺少的微量元素之一,在作物体内的生理作用主要是参与植物的光合作用,其重要性超过其他各种微量元素。锰在土壤中常以水溶态、矿物态、有机态和代换态几种形态存在。作物对锰的吸收主要以水溶态离子形式存在于作物体内。土壤中锰的有效性与土壤质地和土壤pH值有着很大的关系,尤其是土壤pH值很大程度上影响到锰对作物的可给性。一般来讲土壤中锰的可给性随土壤pH值的降低而升高,也就是说锰在酸性土壤中对作物的有效性高。在石灰性pH较高的土壤

土壤微量元素检测仪特点及其参数

土壤微量元素检测仪技术指标: 1.电源:交流220±22V 直流12V+5V(可用车载电源也可选择仪器内置锂电池) 2.功率:≤5W 3.量程及分辨率:0.001-9999 4.重复性误差:≤0.05%(0.0005,重铬酸钾溶液) 5.仪器稳定性:一个小时内漂移小于0.3%(0.003,透光度测量)。仪器开机预热5分钟后,三十分钟内显示数字无漂移(透光度测量);一个小时内数字漂移不超过0.3%(透光度测量)、0.001(吸光度测量);两个小时内数字漂移不超过0.5%(0.005,透光度测量)。 6.线性误差:≤0.2%(0.002,硫酸铜检测) 7.灵敏度:红光≥4.5 ×10-5 蓝光≥3.17×10-3 绿光≥2.35×10-3 橙光≥2.13×10-3 8.波长范围:红光:680±2nm; 蓝光:420±2nm;绿光:510±2nm;橙光:590±4nm 9.PH值(酸碱度):(1)测试范围:1~14 (2)精度:0.01 (3)误差:±0.1 10.含盐量(电导):(1)测试范围:0.01%~1.00% (2)相对误差:±5% 11.土壤水分技术参数水分单位:﹪(g/100g);含水率测试范围:0-100﹪;误差小于0.5% 12.数据打印:内置一键式热敏打印机 13.肥料中氮(N)、磷(P)、钾(K)等养分同时、快速、准确检测 14.测试速度:测一个土样(N、P、K)≤30分钟(含前处理时间,不需用户提供任何附件) 15.同时测8个土样≤1小时(含前处理时间) 土壤微量元素检测仪特点: ★《机箱/药剂一体式铝合金机箱》设计,便于携带、坚固耐用,配套成品药剂。★微电脑控制,数字化线路、程序化设计,液晶显示,交直流两用,可野外流动测试,降低操作者的失误和劳动强度。 ★分辨率:0.001,触摸式按键,内置热敏打印机,可打印测试结果。 ★土壤微量元素检测仪可检测土壤及化肥、有机肥(含叶面肥、水溶肥、喷施肥等)、植株中的有效钾、全氮、全磷、全钾、有机质、酸碱度,钙、镁、硫、铁、锰、硼、锌、铜、氯、硅等各种中微量元素以及铅、铬、镉、汞、砷等各种重金属含量。 ★采用高亮LED灯光源、双拨轮滤光式处理技术,保证光源波长稳定,硅半导体作为信号接收系统,寿命长达10万小时级别。光源稳定,重现性好,准确度高。 ★比色槽部分采用单通道设计,无机械位移及磨损,光路测试定位准确,保证测定结果精度。 ★配套专家施肥系统数据,可对百余种全国农业、果树、经济作物的目标产量科学计算推荐施肥量。 ★采用自主发明分析方法,保证检测结果达到国标要求。

相关主题
文本预览
相关文档 最新文档