当前位置:文档之家› 第七章平面图形的几何性质

第七章平面图形的几何性质

材料力学习题册答案-附录+平面图形几何性质

附录 截面图形的几何性质 一、是非判断题 ⒈ 图形对某一轴的静矩为零,则该轴必定通过图形的形心。( √ ) ⒉ 图形在任一点只有一对主惯性轴。( × ) ⒊ 有一定面积的图形对任一轴的轴惯性矩必不为零。( √ ) ⒋ 图形对过某一点的主轴的惯性矩为图形对过该点所有轴的惯性矩中的极值。( √ ) 二、填空题 ⒈ 组合图形对某一轴的静矩等于 各组成图形对同一轴静矩 的代数和。 ⒉ 图形对任意一对正交轴的惯性矩之和,恒等于图形对 两轴交点的极惯性矩 。 ⒊ 如果一对正交轴中有一根是图形的对称轴,则这一对轴为图形 主惯性轴 。 ⒋ 过图形的形心且 图形对其惯性积等于零 的一对轴为图形的形心主惯性轴。 三、选择题 ⒈ 图形对于其对称轴的( A ) A 静矩为零,惯性矩不为零; B 静矩和惯性矩均为零 C 静矩不为零,惯性矩为零; D 静矩和惯性矩均不为零 ⒉ 直径为d 的圆形对其形心主轴的惯性半径i =( C )。 A d/2 B d/3 C d/4 D d/8 ⒊ 图示截面图形中阴影部分对形心主轴z 的惯性矩Z I =( C )。 A 123234dD D -π B 6323 4dD D -π C 126434dD D -π D 6643 4dD D -π z

四、计算题 1、求图示平面图形中阴影部分对z 轴的静矩。 232.0)2.06.0(4.0bh h h h b S Z =+??= () 8842422222bh h H B h h b h H h h H B S Z +-=??+??? ??-+?-?= 2、求图示平面图形对z 、y 轴的惯性矩。 4523231023.251040121040251040123010mm I I I II I Z ?=??+?+??+?=+= 由于图形对称,4 51023.2mm I I Z Y ?=== 3、试求图示平面图形的形心主惯性轴的位置,并求形心主惯性矩。 mm y C 7.56100 20201401010020902010=?+???+??= 4723231021.17.46200.1012201003.33201401214020m m I I I II I Z ?=??+?+??+?=+=46331076.112 100201220140mm I Y ?=?+?= z z z

小学奥数:几何图形大全汇编

学习-----好资料 几何图形综合 1.如图,四边形ABCD 是直角梯形.其中AD=12(厘米),AB=8(厘米),BC=15(厘米),且△ADE ,四边形DEBF ,△CDF 的面积相等. 阴影△DEF 的面积是多少平方厘米? 2.如图,长方形ABCD 的面积是96 平方厘米,E 是AD 边上靠近 D 点的三等分点,F 是CD 边上靠近C 点的四等分点.阴影部分的面积是多少平方厘米? 3.如图,把一个正方形的两边分别增加3和5厘米,米(阴影部分).原正方形的面积为多少平方厘米? 4.如图,把一个正方形的相邻两边分别减少2厘米和446平方厘米(阴影部分).原正方形的面积为多少平方厘米? 5.如图,在△ABC 中,AD 的长度是AB 的四分之三,AE 的长度是 AC 的三分之二.请问:△ADE 的面积是△ABC 面积的几分之几? 6.如图,在△ABC 中,BC=3CD ,AC=3AE ,那么△ABC 的面积 是△CDE 的多少倍? 7.如图,某公园的外轮廓是四边形ABCD ,被对角线AC 、BD 分成四个部分.△AOB 的面积是3平方千米,△BOC 的面积是2平方千米,△COD 的面积是1平方千米,如果公园由大小为6.9平方千米的陆地和一块人工湖组成,那么人工 湖的面积是多少平方千米? E D F B C A D E A B C E A D

学习-----好资料 8.如图,在梯形ABCD 中,AD 长9厘米,BC 长15厘米, BD 长12厘米,那么OD 长多少厘米? 9.如图,有8个半径为1厘米的小圆,用它们圆周的一部分 连成一个花瓣图形,图中的黑点是这些圆的圆心.如果圆周率 π取3.14,那么花瓣图形的周长和面积分别是多少? 10.图中甲区域比乙区域的面积大57 其中直角三角形竖直的直角边的长度是多少?(π取3.14) 11.如图,在3×3的方格表中,分别以A 、E 为圆心,3、2为半径,画出圆心角都是90o的两段圆弧.图中阴影部分的面积是多少? (π取 3.14) .(π取 13.下图是一个直角边长为3厘米、4 厘米的直角三角形.将该三角形一任意一条边所在直线为轴进行旋转,求所得立体图形的表面积和体积. 14.如图,已知正方形ABCD 的边长为4厘米,求阴影部分的面积. A D O B C ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

专题平面几何之圆的性质问题

备考2020中考数学高频考点剖析 平面几何之圆的性质问题 (1)垂径典例相关问题; (2)圆心角相关问题; (3)圆周角相关问题. 考点剖析 例1(2018·湖北荆州·3分)如图,平面直角坐标系中,⊙P经过三点A(8,0),O(0,0),B (0,6),点D是⊙P上的一动点.当点D到弦OB的距离最大时,tan∠BOD的值是() A.2 B.3 C.4 D.5 【解答】解:连接AB,过点P作PE⊥BO,并延长EP交⊙P于点D,此时点D到弦OB的距离最大,∵A(8,0),B(0,6), ∴AO=8,BO=6, ∵∠BOA=90°, ∴AB==10,则⊙P的半径为5, ∵PE⊥BO, ∴BE=EO=3, ∴PE==4, ∴ED=9, ∴tan∠BOD==3. 故选:B. 例2(2018?乐山?3分)《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最

高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆形木材的直径是多少?” 如图所示,请根据所学知识计算:圆形木材的直径AC是() A.13寸B.20寸C.26寸D.28寸 解:设⊙O的半径为r. 在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解得r=13,∴⊙O的直径为26寸.故选C. 例3(2018·四川自贡·4分)如图,若△ABC内接于半径为R的⊙O,且∠A=60°,连接OB、OC,则边BC的长为() A. B. C. D. 【分析】延长BO交圆于D,连接CD,则∠BCD=90°,∠D=∠A=60°;又BD=2R,根据锐角三角函数的定义得BC=R. 【解答】解:延长BO交⊙O于D,连接CD, 则∠BCD=90°,∠D=∠A=60°, ∴∠CBD=30°, ∵BD=2R, ∴DC=R, ∴BC=R, 故选:D.

初中几何图形的定义性质判定

初中几何图形的定义性 质判定 GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-

等腰三角形定义 1 有两条边相等的三角形是等腰三角形,相等的两个边称为这个三角形的腰 性质 2 等腰三角形的两个底角相等(简称“等边对等角”) 3 等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合(简称“三线合一”) 4 等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴 判定 5 如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称“等角对等边”) 等边三角形 定义 1 三边都相等的三角形是等边三角形。 性质 2 等边三角形是特殊的等腰三角形,具有等腰三角形的一切性质 3 等边三角形的每个内角都等于60o 4 等边三角形是锐角三角形 5 等边三角形是轴对称图形,它有3条对称轴 判定

6 有一个角是60o的等腰三角形是等边三角形 7 有两个角是60o的三角形是等边三角形 直角三角形 定义 1 有一个角为90°的三角形,叫做直角三角形(Rt三角形)。 性质 2 在直角三角形中,两个锐角互余。 3 直角三角形斜边上的中线等于斜边的一半 4 直角三角形两直角边的平方和等于斜边的平方。(勾股定理) 5 在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半 6 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。 判定 7 斜边和一条直角边对应相等的两个直角三角形全等(简写为“HL”) 平行四边形 定义 1 在同一平面内,两组对边分别平行的四边形叫做平行四边形 性质 2 平行四边形是中心对称图形,对角线的交点是它的对称中心 3 平行四边形的对边相等、对角相等、对角线互相平分 判定 4 一组对边平行且相等的四边形是平行四边形 5 两条对角线互相平分的四边形是平行四边形

圆的基本概念与性质

圆的有关概念和性质 一 本讲学习目标 1、理解圆的概念及性质,能利用圆的概念和性质解决有关问题。 2、理解圆周角和圆心角的关系;能运用几何知识解决与圆周角有关的问题。 3、了解垂径定理的条件和结论,能用垂径定理解决有关问题。 二 重点难点考点分析 1、运用性质解决有关问题 2、圆周角的转换和计算问题 3、垂径定理在生活中的运用及其计算 三 知识框架 圆的定义 确定一个圆 不在同一直线上的三点点与圆的位置关系 圆的性质 圆周角定理及其推论 垂径定理及其推论距关系定理及其推论圆心角、弦、弧、弦心对称性 四 概念解析 1、 圆的定义,有两种方式: 错误!未找到引用源。在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,一个端点A 随之旋转说形成的图形叫做圆。固定端点O 叫做圆心,以O 为圆心的圆记作O ,线段OA 叫做半径; 错误!未找到引用源。圆是到定点的距离等于定长的点的集合。注意:圆心确定圆的位置,半径决定圆的大小。 2、 与圆有关的概念: 错误!未找到引用源。弦:连接圆上任意两点的线段叫做弦;如图1所示 线段AB ,BC ,AC 都是弦; 错误!未找到引用源。直径:经过圆心的弦叫做直径;如AC 是O 的直径,直径是圆中最长的弦; 错误!未找到引用源。弧:圆上任意两点之间的部分叫做圆弧,简 称弧,如曲线BC,BAC 都是O 中的弧,分别记作BC 和BAC ; 错误!未找到引用源。半圆:圆中任意一条直径的两个端点分圆成

两条弧,每条弧都叫做半圆,如AC 是半圆; 错误!未找到引用源。劣弧和优弧:像BC 这样小于半圆周的圆弧叫做劣弧,像BAC 这样大于 半圆周的圆弧叫做优弧; 错误!未找到引用源。同心圆:圆心相同,半径不等的圆叫做同心圆; 错误!未找到引用源。弓形:由弦及其说对的弧所组成的图形叫做弓形; 错误!未找到引用源。等圆和等弧:能够重合的两个圆叫做等圆,在同圆或等圆中,能够重合的弧叫做等弧; 错误!未找到引用源。圆心角:定点在圆心的角叫做圆心角如图1中的∠AOB,∠BOC 是圆心角,圆心角的度数:圆心角的读书等于它所对弧的度数;∠ 错误!未找到引用源。 圆周角:定点在圆上,两边都和圆相交的角叫做圆周角;如图1中的∠BAC,∠ACB 都是圆周角。 3、 圆的有关性质 ①圆的对称性 圆是轴对称图形,经过圆心的直线都是它的对称轴,有无数条。圆是中心对称图形,圆心是对称中心,优势旋转对称图形,即旋转任意角度和自身重合。 错误!未找到引用源。垂径定理 A. 垂直于弦的直径平分这条弦,且评分弦所对的两条弧; B. 平分弦(不是直径)的直径垂直于弦,并且评分弦所对的两条弧。如图2 所示。 注意 (1)直径CD ,(2)CD ⊥AB,(3)AM=MB,(4)BD AC =BC ,(5)AD =BD .若 上述5个条件中有2个成立,则另外3个业成立。因此,垂径定理也称五二三定理,即推二知三。(以(1),(3)作条件时,应限制AB 不能为直径)。 错误!未找到引用源。弧,弦,圆心角之间的关系 A. 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等; B. 同圆或等圆中,两个圆心角,两条弧,两条弦中有一组量相等,他们所对应的其余各组量也相等; 错误!未找到引用源。圆周角定理及推论 A.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半; B.圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90的圆周角所对的弦是直径。 五 例题讲解 例1. 如图所示,C 是⊙O 上一点,O 是圆心,若80AOB =∠,求B A ∠+∠ 的值. 例1题图 A B C O

任务七平面图形的几何性质

任务七 平面图形的几何性质 一、填空题 1. 图示B H ?的矩形中挖掉一个b h ?的矩形,则此平面图形的 z W =( 23 66z BH bh W H = - )。 2. 对图示矩形,若已知x I 、y I 、b 、h ,则 11x y I I +=( 1122()/12y z y z I I I I bh b h +=+=+ )。 3. 任意平面图形至少有( 1 )对形心主惯性轴,等边三角形有( 无穷多 )对形心主惯性轴。 4.在边长为2a 的正方形的中心部挖去一个边长为a 的 正方形,则该图形对y 轴的惯性矩为( 45 4 a )。 5.图形对所有平行轴的惯性矩中,图形对形心轴的惯性矩为( 最小 )。 6.对直径为d 的圆形截面,它的惯性半径为( i=d/4 )。 二、选择题 1.在下列关于平面图形的结论中,( D )是错误的。 A.图形的对称轴必定通过形心; B.图形两个对称轴的交点必为形心; C.图形对对称轴的静矩为零; D.使静矩为零的轴为对称轴。 2.在平面图形的几何性质中,( D )的值可正、可负、也可为零。 A.静矩和惯性矩 B.极惯性矩和惯性矩 C.惯性矩和惯性积 D.静矩和惯性积。 3.设矩形对其一对称轴z 的惯性矩为I ,则当其长宽比保持不变。而面积增加1倍时,该矩形对z 的惯性矩将变为( D )。 A. 2I B. 4I C. 8I D. 16I 4.若截面图形有对称轴,则该图形对其对称轴的( A )。 A.静矩为零,惯性矩不为零 B.静矩不为零,惯性矩为零 C.静矩和惯性矩均为零 D.静矩和惯性矩均不为零 5.若截面有一个对称轴,则下列说法中( D )是错误的。 A. 截面对对称轴的静矩为零; B. 对称轴两侧的两部分截面,对对称轴的惯性矩相等; C. 截面对包含对称轴的正交坐标系的惯性积一定为零; D. 截面对包含对称轴的正交坐标系的惯性积不一定为零。 6.任意图形,若对某一对正交坐标轴的惯性积为零,则这一对坐标轴一定是该图形的( B )。 B b h H C z a 2 a y z

平面几何基础知识教程(圆)解剖

平面几何基础知识教程(圆) 一、几个重要定义 外心:三角形三边中垂线恰好交于一点,此点称为外心 内心:三角形三内角平分线恰好交于一点,此点称为内心 垂心:三角形三边上的高所在直线恰好交于一点,此点称为垂心 凸四边形:四边形的所有对角线都在四边形ABCD内部的四边形称为凸四边形折四边形:有一双对边相交的四边形叫做折四边形(如下图) (折四边形) 二、圆内重要定理: 1.四点共圆 定义:若四边形ABCD的四点同时共于一圆上,则称A,B,C,D四点共圆基本性质:若凸四边形ABCD是圆内接四边形,则其对角互补 证明:略 判定方法: 1.定义法:若存在一点O使OA=OB=OC=OD,则A,B,C,D四点共圆2.定理1:若凸四边形ABCD的对角互补,则此凸四边形ABCD有一外接圆证明:略 特别地,当凸四边形ABCD中有一双对角都是90度时,此四边形有一外接圆3.视角定理:若折四边形ABCD中,∠=∠ ADB ACB,则A,B,C,D四点共圆

证明:如上图,连CD,AB,设AC与BD交于点P 因为∠=∠ ADB ACB,所以 180 = ∠=∠ ∠=∠ ∠+∠=∠+∠+∠= ∠+∠+∠= ΔCPB∽ΔDPA 所以有 再注意到 因此Δ∽Δ 因此 由此 (ΔABD的内角和) 因此A,B,C,D四点共圆 PC PB PD PA CPD BPA CPD BPA PCD PBA BCD BAD BCA PCD BAD BDA PBA BAD 特别地,当∠=∠ ADB ACB=90时,四边形ABCD有一外接圆 2.圆幂定理: 圆幂定理是圆的相交弦定理、切割线定理、割线定理、切线长定理的统一形式。相交弦定理:P是圆内任一点,过P作圆的两弦AB,CD,则PA PB PC PD ?=? 证明:

初中几何主要图形的性质和识别

初中几何主要图形的性质和识别 主要图形的性质和识别 一、平行线 (一)、性质: (1)如果二直线平行,那么同位角相等;(2)如果二直线平行,那么错角相等;(3)如果二直线平行,那么同旁角互补;(4)平行线间的距离处处相等。 (二)、识别: (1)定义:在同一平面不相交的两条直线叫做平行线。 (2)判定定理(或公理) ①如果同位角相等,那么二直线平行; ②如果错角相等,那么二直线平行;

③如果同旁角互补,那么二直线平行; ④同垂直于一条直线的两条直线互相平行; ⑤同平行于一条直线的两条直线互相平行。★练习 (一)反复比较,精心挑选:(在下列各题的四个备选答案中,只有一个是正确的)。1.在同一平面,两条直线可能的位置关系是() A. 平行 B. 相交 C. 相交或平行 D. 垂直 2.下列说确的是() A. 若两个角是对顶角,则这两个角相等. B. 若两个角相等,则这两个角是对顶角. C. 若两个角不是对顶角,则这两个角不相等. D. 以上判断都不对. 3.下列语句正确的是()

A. 两条直线被第三条直线所截,同旁角互补. B. 互为邻补角的两个角的平分线互相垂直. C. 相等的角是平行线的错角. D.从直线外一点作这条直线的垂直线段叫点到直线的距离。 4.点到直线的距离是() A. 点到直线上一点的连线 B. 点到直线的垂线. C. 点到直线的垂线段 D. 点到直线的垂线段的长度 5.判定两角相等,不对的是() A. 对顶角相等 B. 两直线平行,同位角相等. C. ∵∠1=∠2,∠2=∠3,∴∠1=∠3 D. 两条直线被第三条直线所截,错角相等 6.两个角的两边分别平行,其中一个角是60°,则另一个角是()

材料力学截面的几何性质答案

~ 15-1(I-8) 试求图示三角形截面对通过顶点A并平行于底边BC的轴的惯性矩。 解:已知三角形截面对以BC边为轴的惯性矩是,利用平行轴定理,可求得截面对形心轴的惯性矩 所以 再次应用平行轴定理,得 返回 ) 15-2(I-9) 试求图示的半圆形截面对于轴的惯性矩,其中轴与半圆形的底边平行,相距1 m。

解:知半圆形截面对其底边的惯性矩是,用 平行轴定理得截面对形心轴的惯性矩 再用平行轴定理,得截面对轴的惯性矩 / 返回 15-3(I-10) 试求图示组合截面对于形心轴的惯性矩。 解:由于三圆直径相等,并两两相切。它们的圆心构成一个边长为的等边三角形。该等边三角形的形心就是组合截面的形心,因此下面两个圆的圆心,到形心轴的距离是 上面一个圆的圆心到轴的距离是。 利用平行轴定理,得组合截面对轴的惯性矩如下: {

返回 15-4(I-11) 试求图示各组合截面对其对称轴的惯性矩。 解:(a)22a号工字钢对其对称轴的惯性矩是。 利用平行轴定理得组合截面对轴的惯性矩 (b)等边角钢的截面积是,其形心距外边缘的距离是 mm,求得组合截面对轴的惯性矩如下: : 返回 15-5(I-12) 试求习题I-3a图所示截面对其水平形心轴的惯性矩。关于形心位置,可利用该题的结果。 解:形心轴位置及几何尺寸如图 所示。惯性矩计算如下:

返回 15-6(I-14) 在直径的圆截面中,开了一个的矩形孔,如图所 示,试求截面对其水平形心轴和竖直形心轴的惯性矩 和。 解:先求形心主轴的位置 ! 即 返回 15-7(I-16) 图示由两个20a号槽钢组成的组合截面,若欲使截面对两对称轴的惯性矩和相等,则两槽钢的间距应为多少 ( 解:20a号槽钢截面对其自身的形心轴、的惯性矩是,;横截面积为;槽钢背到其形心轴的距离是。

圆的性质和定理

【圆的平面几何性质和定理】 [圆的基本性质与定理] 1定理不在同一直线上的三点确定一个圆。(圆的确定) 2圆的对称性质:圆是轴对称图形,其对称轴是任意一条过圆心的直线。圆也是中心对称图形,其对称中心是圆心。 3垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧 推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧 ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 推论2 圆的两条平行弦所夹的弧相等113、圆是以圆心为对称中心的中心对称图形 [有关圆周角和圆心角的性质和定理] 1定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等 推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等 2圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半 3圆心角定理圆心角的度数等于他所对的弧的度数 推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等 推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径 推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 [园内接四边形的性质与定理] 1定理圆的内接四边形的对角互补 2定理并且任何一个外角都等于它的内对角 3圆内接四边形判定定理如果一个四边形对角互补,那么这个四边形的四个顶点共圆推论如果一个四边形的一个外角等于它的内角的对角,那么这个四边形的四个顶点共圆 [有关切线的性质和定理] 1切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线 2切线的性质定理圆的切线垂直于经过切点的半径 推论1 经过圆心且垂直于切线的直线必经过切点 推论2 经过切点且垂直于切线的直线必经过圆心 [与圆有关的比例线段] 1相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等

初中几何图形的定义、性质、判定精编版

等腰三角形 定义 1 有两条边相等的三角形是等腰三角形,相等的两个边称为这个三角形的腰 性质 2 等腰三角形的两个底角相等(简称“等边对等角”) 3 等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合(简称“三线合一”) 4 等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴 判定 5 如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称“等角对等边”) 等边三角形 定义 1 三边都相等的三角形是等边三角形。 性质 2 等边三角形是特殊的等腰三角形,具有等腰三角形的一切性质 3 等边三角形的每个内角都等于60o 4 等边三角形是锐角三角形 5 等边三角形是轴对称图形,它有3条对称轴 判定 6 有一个角是60o的等腰三角形是等边三角形 7 有两个角是60o的三角形是等边三角形 直角三角形 定义 1 有一个角为90°的三角形,叫做直角三角形(Rt三角形)。 性质 2 在直角三角形中,两个锐角互余。 3 直角三角形斜边上的中线等于斜边的一半 4 直角三角形两直角边的平方和等于斜边的平方。(勾股定理) 5 在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半 6 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。 判定 7 斜边和一条直角边对应相等的两个直角三角形全等(简写为“HL”)

平行四边形 定义 1 在同一平面内,两组对边分别平行的四边形叫做平行四边形 性质 2 平行四边形是中心对称图形,对角线的交点是它的对称中心 3 平行四边形的对边相等、对角相等、对角线互相平分 判定 4 一组对边平行且相等的四边形是平行四边形 5 两条对角线互相平分的四边形是平行四边形 6 两组对边分别相等的四边形是平行四边形 7 两组对角分别相等的四边形是平行四边形 8 一组对边平行,一组对角相等的四边形是平行四边形 矩形 定义 1 有一个角是直角的平行四边形叫做矩形,通常叫长方形 性质 2 矩形是特殊的平行四边形,它具有平行四边形的一切性质 3 矩形既是抽对称图形也是中心对称图形,对称中心是对角线中点 4 矩形的对角线相等,四个角都是直角 判定 5 对角线相等的平行四边形是矩形 6 有一个角是直角的平行四边形是矩形 7 有3个角是直角的四边形是矩形 菱形 定义 1 一组邻边相等的平行四边形叫做菱形 性质 2 菱形是特殊的平行四边形,它具有平行四边形的一切性质 3 菱形既是抽对称图形也是中心对称图形,对称中心是对角线中点 4 菱形的四条边相等 5 菱形的对角线互相垂直并且每一条对角线平分一组对角 6 S菱形=?×对角线的积 判定

平面图形的几何性质

附录A 平面图形的几何性质 附录A 平面图形的几何性质 §A-1 引言 不同受力形式下杆件的应力和变形,不仅取决于外力的大小以及杆件的尺寸,而且与杆件截面的几何性质有关。当研究杆件的应力、变形,以及研究失效问题时,都要涉及到与截面形状和尺寸有关的几何量。这些几何量包括:形心、静矩、惯性矩、惯性半径、极惯性短、惯性积、主轴等,统称为“平面图形的几何性质”。 研究上述这些几何性质时,完全不考虑研究对象的物理和力学因素,作为纯几何问题加以处理。

§A-2 静矩、形心及相互关系 任意平面几何图形如图A-1所示。在其上取面积微元dA, 该微元在Oxy坐标系中的坐标为x、y。定义下列积分: (A-1) 分别称为图形对于x轴和y轴的截面一次矩或静矩,其单 位为。 如果将dA视为垂直于图形平面的力,则ydA和zdA分别 为dA对于z轴和y轴的力矩; 和 则分别为dA对 z轴和y轴之矩。图A-1图形的静矩与形心图形几何形状的中心称为形心,若将面积视为垂直于图形平面的力,则形心即为合力的作用点。 设 、 为形心坐标,则根据合力之矩定理 (A-2) 或 (A-3) 这就是图形形心坐标与静矩之间的关系。 根据上述定义可以看出: 1.静矩与坐标轴有关,同一平面图形对于不同的坐标轴有不同的静矩。对某些坐标轴静矩为正;对另外某些坐标轴为负;对于通过形心的坐标轴,图形对其静矩等于零。 2.如果已经计算出静矩,就可以确定形心的位置;反之,如果已知形心位置,则可计算图形的静矩。 实际计算中,对于简单的、规则的图形,其形心位置可以直接判断。例如矩形、正方形、圆形、正三角形等的形心位置是显而易见的。对于组合图形,则先将其分解为若干个简单图形(可以直接确定形心位置的图形);然后由式(A-2)分别计算它们对于给定坐标轴的静矩,并求其代数和;再利用式(A-3),即可得组合图形的形心坐标。即 : (A-4)

椭圆的几何性质知识点归纳及典型例题及练习(付答案)

(一)椭圆的定义: 1、椭圆的定义:平面内与两个定点1F 、2F 的距离之和等于定长(大于12||F F )的点的轨迹叫做椭圆。这两个定点 1F 、2F 叫做椭圆的焦点,两焦点的距离12||F F 叫做椭圆的焦距。 对椭圆定义的几点说明: (1)“在平面内”是前提,否则得不到平面图形(去掉这个条件,我们将得到一个椭球面); (2)“两个定点”的设定不同于圆的定义中的“一个定点”,学习时注意区分; (3)作为到这两个定点的距离的和的“常数”,必须满足大于| F 1F 2|这个条件。若不然,当这个“常数”等于| F 1F 2|时,我们得到的是线段F 1F 2;当这个“常数”小于| F 1F 2|时,无轨迹。这两种特殊情况,同学们必须注意。 (4)下面我们对椭圆进行进一步观察,发现它本身具备对称性,有两条对称轴和一个对称中心,我们把它的两条对称轴与椭圆的交点记为A 1, A 2, B 1, B 2,于是我们易得| A 1A 2|的值就是那个“常数”,且|B 2F 2|+|B 2F 1|、|B 1F 2|+|B 1F 1|也等于那个“常数”。同学们想一想其中的道理。 (5)中心在原点、焦点分别在x 轴上,y 轴上的椭圆标准方程分别为: 22 22 2222x y y x 1(a b 0),1(a b 0),a b a b +=>>+=>> 相同点是:形状相同、大小相同;都有 a > b > 0 ,2 2 2 a c b =+。 不同点是:两种椭圆相对于坐标系的位置不同,它们的焦点坐标也不同(第一个椭圆的 焦点坐标为(-c ,0)和(c ,0),第二个椭圆的焦点坐标为(0,-c )和(0,c )。椭圆的 焦点在 x 轴上?标准方程中x 2项的分母较大;椭圆的焦点在 y 轴上?标准方程中y 2 项的分母较大。 (二)椭圆的几何性质: 椭圆的几何性质可分为两类:一类是与坐标系有关的性质,如顶点、焦点、中心坐标;一类是与坐标系无关的本身固有性质,如长、短轴长、焦距、离心率.对于第一类性质,只 要22 22x y 1(a b 0)a b +=>>的有关性质中横坐标x 和纵坐标y 互换,就可以得出2222 y x 1(a b 0)a b +=>>的有关性质。总结如下:

《材料力学》i截面的几何性质习题解

附录I 截面的几何性质 习题解 [习题I-1] 试求图示各截面的阴影线面积对x 轴的静积。 (a ) 解:)(24000)1020()2040(3 mm y A S c x =+??=?= (b ) 解:)(422502 65 )6520(3mm y A S c x =??=?= (c ) 解:)(280000)10150()20100(3 mm y A S c x =-??=?= (d ) 解:)(520000)20150()40100(3 mm y A S c x =-??=?= [习题I-2] 试积分方法求图示半圆形截面对x 轴的静矩,并确定其形心的坐标。 解:用两条半径线和两个同心圆截出一微分面积如图所示。 dx xd dA ?=)(θ;微分面积的纵坐标:θsin x y =;微分面积对x 轴的静矩为: θθθθθdxd x x dx xd y dx xd y dA dS x ?=??=??=?=sin sin )(2 半圆对x 轴的静矩为:

3 2)]0cos (cos [3]cos []3[sin 3300300 2 r r x d dx x S r r x =--?=-?=?=?? πθθθπ π 因为c x y A S ?=,所以c y r r ??=232132π π 34r y c = [习题I-3] 试确定图示各图形的形心位置。 (a ) 解: 习题I-3(a): 求门形截面的形心位置 矩形 L i B i Ai Y ci AiYci Yc 离顶边 上 400 2 8000 160 1280000 左 150 2 3000 7 5 225000 右 150 2 0 3000 7 5 225000 14000 1730000 Ai=Li*Bi Yc=∑AiYci/∑Ai (b) 解: 习题I-3(b): 求L 形截面的形心位置 矩形 L i B i Ai Y ci AiYc i Y c X ci AiX ci X c 下 1 60 10 160 5 8000 8 128 000

圆的平面几何性质与定理练习题(奥数辅导).doc

的平面几何性质与定理练习题(高一数学417) 1、如图,。。是△43C的边8C外的旁切圆,O、E、F分别为。0与BC、 CA. A3的切点.若。町与EF相交于K,求证:AK平分BC. 2、AABC的内切圆分别切BC、CA. AB于点D、E、F,过点F作BC的平行线分别交直线DA. DE 于点H、G.求证:FH=HG. 3、AD为。。的直径,P。为。。的切线,PC8为。。的割线,P0分别交AH、AC于点M、N求证:OM=ON. 4、如图,在△ ABC中,AB=AC f D是底边BC上一点,E是线段AD上一点且 ZBED=2ZCED=ZA.求证:BD=2CD. 5、凸四边形ABCD ZABC=60° , ZBAD= ZBCD=90° , AB=2, CD =1,对角线 AC、BD交于点。,如图.则sinZAOB=?(托勒密定理) 6、已知抛物线J=-X2+2X+8与X轴交于8、C两点,点。平分HC.若在*轴上侧的4点为抛物线上的动点,且NHAC为锐角,则AD的取值范围是—? 7、AD是RtAABC斜边BC上的高,ZB的平行线交AD于M,交AC于N.求证:AB2~AN2= BM ? BN. 8、如图,ABCD是。O的内接四边形,延长AB和DC相交于E,延长AD和 相交于和F0分别切。。于P、0求证:EP1+FQ2=EF\

9、如图8, △ABC 与Z\A' B f C的三边分别为0、b、c 与/、b,、" ,HZB=ZB Z , ZA + ZA = 180°.试证:aa f =bb' +cc,.(托勒密定理) 10.作一个辅助圆证明:AABC中,若AD平分NA,则—=— AC DC 11.已知凸五边形ABCDE中,ZBAE=3"C=CD=DE, ZBCD= ZCDE= 180°-2a.求证: ZBAC=ZCAD= ZDAE. 12.在左ABC中AB=BC, NA3C=20。,在AB边上取一点使BM=AC.求匕 AA/C的度数. 13.如图10, AC是OA BCD较长的对角线,过C作CFLAF, CELAE.求证: AB ? AE+AD ? AF=AC2. 14.如图11.已知。Oi和。。2相交于A、色直线CD过A交。Oi和。。2 于 C、Q,且AC=AD, EC、ED分别切两圆于C、D.求证:AC2=AB ? AE. 15.己知8是△ABC的外接圆之劣弧3C的中点?求证:AB - AC=AE2-BE2. 16.若正五边形ABCDE的边长为q对角线长为试证:---=1. a b 答案: 1、证明:如图10,过点K作的行平线分别交直线A3、AC于。、P 两点, 连OP、OQ、OE、OF.由OD1BC,可知OKA.PQ. 由OF_LAB,可知。、K、F、Q 四点共圆,有ZFOQ=ZFKQ. 由OEA-AC,可知0、K、P、E 四点共圆.有ZEOP= ZEKP. 图 11

平面解析几何(圆的方程)

平面解析几何——圆的方程 圆的定义与方程 定义平面内到定点的距离等于定长的点的轨迹叫做圆 方程标准(x-a)2+(y-b)2=r2(r>0) 圆心(a,b) 半径为r 一般x2+y2+Dx+Ey+F=0 充要条件:D2+E2-4F>0 圆心坐标:(- D 2,- E 2) 半径r= 1 2D 2+E2-4F 【知识拓展】 1.确定圆的方程的方法和步骤 确定圆的方程主要方法是待定系数法,大致步骤为 (1)根据题意,选择标准方程或一般方程; (2)根据条件列出关于a,b,r或D、E、F的方程组; (3)解出a、b、r或D、E、F代入标准方程或一般方程.2.点与圆的位置关系 点和圆的位置关系有三种. 圆的标准方程(x-a)2+(y-b)2=r2,点M(x0,y0) (1)点在圆上:(x0-a)2+(y0-b)2=r2; (2)点在圆外:(x0-a)2+(y0-b)2>r2; (3)点在圆内:(x0-a)2+(y0-b)20.(√) (4)方程x2+2ax+y2=0一定表示圆.(×) (5)若点M(x0,y0)在圆x2+y2+Dx+Ey+F=0外,则x20+y20+Dx0+Ey0+F>0.(√) 1.(教材改编)将圆x2+y2-2x-4y+1=0平分的直线是() A.x+y-1=0 B.x+y+3=0

巧用圆的平面几何性质处理解几问题

平面几何性质_巧用圆的平面几何性质处理解几问 题 “圆”是一个特殊的图形,它有许多重要的性质.在解析几何中,涉及直线和圆的有关问题时,若能抓住题设中图形特征和数量关系,充分利用平面几何中圆的有关性质,常常可以得到简捷而巧妙的解法.现举以下几例来说明.1.巧用“垂径定理”例1:已知A(3,0) 是圆x+y=25内的一个定点,以A为直角顶点作直角三角形ABC,且 点B、C在圆上,试求BC中点M的轨迹方程.分析:B、C都为圆上 的动点,若设出B、C的坐标,引进角参数,将导致繁复的运算.如 果注意到由“垂径定理”可知OM⊥BC(O为原点),再结合 ∠CAB=90°,|AM|=|BM|=|CM|=|BC|,即可迅速解题.解:设M(x,y),连接OC,OM,MA,则由“垂径定理”,∵M为BC的中点 ∴OM⊥BC∴|OM|+|MC|=|OC|∵在直角三角形ABC中, |AM|=|BM|=|CM|=|BC|∴|OM|+|AM|=|OC|即x+y+(x-3)+y=25(图1)∴M点的轨迹方程为x+y-3x-8=0.图12.巧用“切割线长定理”例2:已知直线y=mx(m∈R)与圆C:x+y-6x+5=0相交于两点P、Q,则?=.分析:将直线方程代入到圆方程(x-3)+y=4中,进行消元,利用 韦达定理解题,运算较繁.注意到向量与方向相同,用“切割线长定理”来解题,可得以下两种简解.解法一:过原点O作圆的切线,设 切点为M、N,则由“切割线长定理”知,|OP|?|OQ|=|OM|=|OC|- 4=5∵向量与方向相同,∴?=|OP|?|OQ|=5.解法二:圆C与x轴有两 个交点A(1,0)、B(5,0)∵向量与方向相同,∴由“切割线长 定理”知,?=|OP|?|OQ|=|OA|?|OB|=5.3.巧用“相交弦定理”例3:已知f(x)=(x+2002)(x-2003)图像与x轴交于两点A、B,与 y轴交于一点C,过A、B、C三点作一圆,则该圆与y轴的另一个交 点D的坐标为.分析:若写出圆的方程再求点D的坐标,将会导致繁 复的运算.注意到A、B两点的指标分别为(-2002,0)、(2003,0),而点C的坐标为(0,-2002?2003),根据“相交弦定理”可得:|OA|?|OB|=|OC|?|OD|,所以|OD|=1,从而D(0,1).例4:过 原点O且方向向量为(m,1)的直线L与圆C:(x-1)+y=4相交于

截面的几何性质

附录Ⅰ 截面的几何性质 §I ?1 截面的静矩和形心位置 如图I ?1所示平面图形代表一任意截面,以下两积分 ? ??? ?==??A z S A y S A y A z d d (I ?1) 分别定义为该截面对于z 轴和y 轴的静矩。 静矩可用来确定截面的形心位置。由静力学中确定物体重心的公式可得 ? ??? ??? == ??A A z z A A y y A C A C d d 利用公式(I ?1),上式可写成 ? ??? ? ? ?==== ??A S A A z z A S A A y y y A C z A C d d (I ?2) 或 ? ? ? ==C y C z Az S Ay S (I ?3) ? ??????== A S z A S y y C z C (I ?4) 如果一个平面图形是由若干个简单图形组成的组合图形,则由静矩的定义可知,整个图形对某一坐标轴的静矩应该等于各简单图形对同一坐标轴的静矩的代数和。即: ?? ??? ?? ==∑∑==n i ci i y n i ci i z z A S y A S 11 (I ?5) 式中A i 、y ci 和z ci 分别表示某一组成部分的面积和其形心坐标,n 为简单图形的个数。 将式(I ?5)代入式(I ?4),得到组合图形形心坐标的计算公式为 图I ?1

??? ? ?????????==∑∑∑∑====n i i n i ci i c n i i n i ci i c A z A z A y A y 111 1 (I ?6) 例题I ?1 图a 所示为对称T 型截面,求该截面的形心位置。 解:建立直角坐标系zOy ,其中y 为截面的对称轴。因图形相对于y 轴对称,其形心一定在该对称轴上,因此z C =0,只需计算y C 值。将截面分成Ⅰ、Ⅱ两个矩形,则 A Ⅰ=0.072m 2,A Ⅱ=0.08m 2 y Ⅰ=0.46m ,y Ⅱ=0.2m m 323.008.0072.02 .008.046.0072.0II I II II I I 1 1 =+?+?= ++= = ∑∑==A A y A y A A y A y n i i n i ci i c §I ?2 惯性矩、惯性积和极惯性矩 如图I ?2所示平面图形代表一任意截面,在图形平面内建立直角坐标系 zOy 。现在图形内取微面积d A ,d A 的形心在坐标系zOy 中的坐标为y 和z ,到坐标原点的距离为ρ。现定义y 2d A 和z 2d A 为微面积d A 对z 轴和y 轴的惯性矩,ρ2d A 为微面积d A 对坐标原点的极惯性矩,而以下三个积分 ? ??? ? ? ?===???A ρI A z I A y I A A y A z d d d 2 P 22 (I ?7) 分别定义为该截面对于z 轴和y 轴的惯性矩以及对坐标原点的极惯性矩。 由图(I ?2)可见,222z y +=ρ,所以有 ??+=+==A y z A I I A z y A ρI )d (d 222P (I ?8) 即任意截面对一点的极惯性矩,等于截面对以该点为原点的两任意正交坐标轴的惯性矩之和。 另外,微面积d A 与它到两轴距离的乘积zy d A 称为微面积d A 对y 、z 轴的惯性积,而积分 A zyd I A yz ?= (I ?9) 例题I ?1图 图I ?2

各类几何图形计算公式大全

多面体的体积和表面积 心乱方-边长 1高 尸-底面积 □-底面中线的交点 一个组合三角形的面积 jl -iS?Ξ角形的个数 O-锥底各对角线交直 务F 2 -两平行底面的面粧 Ji-底面间距离 闻-一个爼合梯形的面积 相-组合梯老数 7 = ∣^ + ?÷√η?) £ = M +斤4■爲 ^-Cn 厲-对角銭 S-表面耕 加-侧表面积 尺寸符号 心爲1?-边长 0」底面对角线的交点 体积附)底面积(F ) 表面积(小侧表面积(阳 S=6a 2 V = a??* A S = 2(∣z *? + a??+??ft) 51=2?(α + ?) 柱 和 空 心 圆 柱 ∧ 管 F-外半径 1内半径 f-柱壁厚度 P -平均半径 内 外侧面积 圆柱: y = rtS a *? * ft +2∕τfi a ?=-3d??? 空心言圆拄: y r = ∕ACΛa -r a )^3s?ft ^ = 2f rC Λ+r)Λ + 2√Λi -r a ) S=S +? +c)?Λ+2J 7 (Si = (a+if+c)*h

V y = ψ?(j?2 3 + √+?) 5*1 = KHR+r) I= y ∣(R-r)2+h 2 £ =址十疔 ( 0+/) y = -jιr? =2W44r? 3 y=^(4ft+rf) = 157f(??+^ £ 斜 线 直 圆 柱 ?-≡小高度 ?-盘大高度 T -底面半径 ^-^c?+?>rtf 1?α+J —) cc≤ α S l - πr(? +?) r-廐面半径 卜母线长 +?2 =鈕 球半径 d ?弓定底11直径 A-弓形高 一半径 d-直径 4 3 皿' — L.P V = Lf I f =——=0.5236 护 3 6 S=A f tr 2 = =

相关主题
文本预览
相关文档 最新文档