当前位置:文档之家› 汽车散热器的设计与开发-part1

汽车散热器的设计与开发-part1

汽车散热器的设计与开发-part1
汽车散热器的设计与开发-part1

开场白

散热器(Radiator)是不是不死的行业?—电动车的威

胁?

散热器(Radiator)的功能: 热交换

能量不生不灭—能量守恒

引擎车—发热体(引擎、齿轮箱)—发热量大

电动车--发热体(变压器、电池、齿轮箱)—发热量小

凡发热体一定要散热否则工作体效率低—因此热交换器是不死的行业,但设计

会改变。

未来的发展方向

提高换热效率—有限

尺寸、重量限制?

新材料?

成本?

能量转换—有机会

热交换—冷却水-空气热电效应—冷却水-空气-电池

—冷却水-电池

—新设计-电池

其它:热光、热储存

汽车散热器的设计与开发

A1 Kargilis,P.E. 1996年8月

现代汽车已达到臻于完善的地步,在这里您可以肯定地说,改善它一定仅仅是在某一细节方面,而不是在改变它基本的结构。

From, “The Modern Gasoline Automobile” , July, 1921

目录

页数

目标陈述 3

前言 3

历史4

汽车冷却系统的设计 5

预测 6

实际设计 6

汽车引擎的冷却系统的预测过程 9

复习 11 基本热传导方程 13

引擎排热 16

引擎排热一般注意事项 19

设计和引擎汽车冷却系统的发展“路线图” 20

空气和冷却水温度 24

散热器的迎风面积 26

散热器选择 27

散热器效能 32

对数平均温差 33

总热传导系数 34

内部热传导系数 35

外部热传导系数 36

空气侧压降 36

冷却水泵性能 37

总结 38

习题 42

习题解答

中英文对照 44

英制公制互换表 44

其它参考数据 45

图目录

图说明页面

1.引擎冷却原理。

2.引擎能量平衡的8个。

3.引擎满载对冷却水的散热量。

4.冷却水泵和冷却系统阻力曲线

5.引擎马力和力矩曲线

6. 自动变速器拒绝对冷却水热

7. 散热器热传导和空气冷却侧阻力

8. 散热器修正

9. 散热器冷却限制

目标任务陈述

汽车散热器的设计与开发

“设计、开发和实施世界级冷却系统,以确保最佳的质量、最低的成本、级别最高的顾客满意度”。

前言

引擎冷却方面的领域,在汽车本身的专业知识上,往往划分为不同的类别。一个跨学科的理解不仅在引擎冷却系统本身,而且对所有冷却系统的设计和功能会产生影响的汽车其它部分也要理解,如此才能真正达到“世界级” 的特殊性能、高质量和成本低。这种理念同样适用于OEM和供货商。

无论是OEM或供货商,工程师的职责,包括:

●设计理念。

●组件和系统的开发。

●耐久性。

●成本与时间。

●保修估计和减灾。

●原型零件调度和采购。

●工厂兼容性。

●启动协调。

●客户满意度。

●服务支持。

●持续产品改进。

●法律/政府咨询支持。

●材料与组件和系统设计规范。

●原始设备制造商OEM/供货商联络。

●制造过程批准。

●原型车建立停止。

*本短期课程的目的是介绍和讨论,必须在统一的设计和一个汽车引擎冷却系统的发展,以帮助解决发展符合上述职责的基本概念。它首先利用冷却系统的基本原理估计冷却系统的大小来发展引擎的冷却系统,描述了各部件和最后的测试以作为车辆的一个组件。

数字系统的应用可节省很多设计和开发时间,计算机分析模型的准确,减少零件和系统成本,以满足客户所需冷却系统。

历史

古希腊的科学作家斯提西比乌斯、阿基米得和阿里斯托芬和之后大约在公元前一世纪的罗马人维特鲁威和弗朗提努,曾研究并试验水的储存、输送、净化、冷却和加热性能。罗马的技术,包括焊接管接头与具有搭接接头和折迭管,至今仍被沿用于散热器管使用。压力、水头、流阻,热虹吸管,喷嘴,泵浦,热传递等的原理在当时已被开发了。早期的单缸汽油引擎使用一个开放式铸铁箱,内部装满了水来冷却汽缸壁。

第一次密闭式冷引擎采用了热虹吸系统,该系统的原理是利用冷热水之间密度,通过散热器来循环换热器的水。1896年由亨利福特所建的第一辆汽车也是所用热虹吸原理。热传导装置是扁平状的容器被安装在驾驶员的座椅的下方位置。

汽车冷却系统的设计

汽车冷却系统的设计工作可分成两个部分:

1.预测

早期阶段的设计在建立一个冷却系统“基础(房地产)”模型和基本散热器、风扇和风扇罩结构。在确立这个冷却系统时,必须非常小心,既使以后发生问题时也仅是小范围的修正。

2.实车测试。

早期的规则和原型是在风洞和热室中测试来选择冷却系统部件及了解汽车系统阻力特性和冷却水的流量。藉由精细冷却系统的调整来完成所有原型车辆的引擎和配件结构。最后进行实车测试而评估且确认系统的设计。

预测

预测或分析过程中,四个基本模型的组成要素分别为车辆,传动系统,散热器和风扇。

车辆

该车型包括车辆系统阻力,从怠速到时速90MPH冲击空气、空调冷凝器散热、牵引力和轮胎的直径。如果是自动换档车且配备中继散热器,则中继散热器的排热也应包括进去。

传动系统

该驱动器模型包括引擎马力和扭矩、引擎排热给冷却水和机油、冷却水流量、自动变速箱排热给传动油、变速箱换档数、齿轮比和轴比。如果是涡轮增压引擎,马力的提升情况,也应包括在内。

散热器

该散热器模型包括散热和空气流量、空气侧压降、冷却水侧压降、散热和冷却水流量和迎风面积。

风扇

风扇模型包括风扇转速、静压、空气流量、风扇马力、扭矩和风扇效率。如果风扇是由粘性传动驱动,该驱动器滑溜性也应考虑进去。

实车测试

基于预测模型计算选定好散热器与风扇之后,开始广泛性冷却系统的开发,并使用下列三种基本的工具:

1、引擎Buck

2、风洞和热室

3.西南等级

引擎Buck

引擎Buck用于表征泵、确定垂直(管线)结构、优化出风罩(FOOS, Fan out of shroud)尺寸和图标引擎的压力与冷却水温度的关系图。

风洞和热室

这些都是用于测量前端的空气流量和车辆系统阻力、确定车辆的性能曲线、当超过某一范围的车辆荷载(加挂钩)时,在油门全开或减速情况下,评估系统冷却换热器、选择冷凝器和散热器风扇密封。

西南等级

“热旅游”在美国西南部沙漠和山区公路等级的操作,在实际驾驶牵引车和挂车且包括行驶拉斯韦加斯或凤凰城的交通条件下,确认引擎冷却系统的设计

汽车引擎的冷却系统的预测过程如下图:

汽车引擎的冷却系统的预测过程

通常一个汽车的设计通常都经过6个阶段即初步定义、初步设计、初原型(手工)、原型(制程)、试产和量化。在过去这些最多需要5年时间去完成,但在今天由于技术和高效率的提升,时间已被压缩至3年或更少。这意味着早期的设计过程中所作出的决定必须相当正确,否则会因为最后修改而耗资巨大成本且可能会延迟汽车的上市。其中,最重要的阶段是第二阶段「初步设计」。

冷却工程师在初步设计阶段中会碰上以下组别:

1.预规划工程师--设计及交出初步设计给工程委员会。

2.引擎组--比冷却泵、引擎冷却电路和引擎马力和扭矩。

3.造型或设计工作组—起草前端项目。

4.传动系统组--选择轴比、传动齿轮和换档数。

5.引擎电子组--比操作特性。

6.气候控制组--提供冷凝器散热和空气侧阻力的数据。

7.空气动力学组--提供迎风面、在引擎盖和循环气流图。

8.道路试验组--提供车辆负载系数信息和降低成本分析。

与工程委员会沟通并提供必要的初步预测数据而开始引擎冷却设计过程。数据库会提供汽车迎风面阻力、引擎排热、风扇和散热器信息,此外往年的数据也应提供,利用所建立的数学模型可在任何标准的计算机上执行,预测和比较实际换热器性能。当然,计算机的预测的准确性取决于所建立的数学模型如何表现冷却系统。该计算机的任何预测的有效性可以根据实际风洞和车辆实测的引擎冷却数据进行比对验证。

在使用应用计算机模型之前,冷却设计工程师必须了解引擎冷却系统的过程。除了散热器和风扇之外,这也适用于整个冷却系统包括传动和引擎油冷却器、中间冷却器、管道等其它零组件。

引擎冷却系统所需的基本数据如下:

1.引擎马力和扭矩曲线。

2.满载时,引擎排热给冷却水的数据。

3.散热器冷却水的限制。

4.冷却水泵和冷却系统阻力曲线。

5.自动换文件散热到冷却水的数据。

6.散热器热传导和空气侧阻力。

7.散热器热传导及冷却水侧阻力。

8.风扇性能。

9.风扇粘性驱动滑溜。

10.汽车风扇和系统的阻力。

11.流经散热器的冲压空气。

我们现在的目标是要利用这些信息,以适应一个散热器和风扇,以满足引擎冷却在初步设计上的限制。

基本热传导方程

如图1所示,引擎冷却水从引擎和汽缸头中拾起热量。冷却水因为它流经散热器并将热量转移到空气中。

这种热传导方式的模式可分为强制和自然对流、散热器和热传导。第一种模式是散热器的强迫对流换热,在稳流的条件下,冷却水经流散热器而与空气换热。

热传导速率公式的表示为:

T c m Q p ?=?

(1)

Q 是热流量, BTU/hr m 是质流, lbs/hr

c p 是流体比热, BTU/(lb F) ΔT 是流体温度差,F 。

由于空气中的热量是由冷却水赋予的,所以它流经过散热器的热量,等于转移到空气中的热量:

Q 冷却水= Q 空气 (2)

Q 热传导率也是散热器本身的函数,并可表示为:

Q =U o A o (LMTD) (3)

U o :总热传导系数, BTU/(hrsqft F) A o :散热器的外表面积,sqft

LMTD :冷却水和空气之间的对数平均温差

总热传导系数是“内部” 热传导系数和“外部” 热对流系数的函数,因此

R A h A h U i

i o

o o ++=11 (4)

h o :外部热传导系数 A i :散热器内表面积 h i :内部热传导系数 R :热对流热阻

(完整版)汽车散热器生产工艺及汽车散热器报价方法

培训提纲 培训内容提纲 1、行业简介,公司简介,公司的基础架构。人员简介,生产设备等简介。 2、目录书的阅读方法 3、公司产品的构成。(水箱,主边板,水室,机冷,芯体,暧风) 4、生产流程,操作规程 5、安全生产。设备操作,消防安全。 6、品质检验标准 目的与要求: 一、 1、让参训人员了解公司的历程及构架,水箱的甚础知识。 2、让参训人员熟习水箱的结构和品质。 3、懂得生产流程及操作规程,懂得一台产品的制造过程。 二、重点: 1、水箱工作原理,构成知识; 2、制造流程及制造过程中可能出现的品质问题及解决方法; 3、报价方法(成本计算方法)(对象:销售人员)。 三、方法:采用理论讲解、样品展示、分解说明等方式。 四、内容: 1. 水箱工作原理

汽车水箱又称散热器,是汽车冷却系统中主要机件。其功用是散发热 量,冷却水在水套中吸收热量,流到散热气后将热量散去,再回到水 套内而循环不断。 汽车水箱主要是由散热器芯体、水管、散热空气叶片、上水室及下水 室等组合而成,上水室在散热器上,由芯体将上水室与散热器下面之 水室相连通,热水由上而下流到下水箱时变为温水,散热空气叶片则 构成孔道,由风扇的抽吸及车子前进行驶时的相对风速,使大量的冷 空气经空气孔道,将流经水管中冷却水的热量吸收,再发散于大气中 冷却系统的功用是将引擎中多余而无用的热量,从引擎中散发出去, 使引擎在各种速率或行驶状况下均能保持在正常温度下运作。 2. 水箱构成 水箱 (芯体,水室,附件,包装) 材质 泡沫 珍珠泡沫 A b .扁管 带复合&不带复合层 ? c .网带 不带复合&带复合层 a.上下水室 PA66 5.机冷 全铝、全铜、铜铝 c .胶条 三元乙丙 扌外侧板 铁、铝 .b ?挂耳 铁、铝 /A.芯体 J .水室 C .附件 a .主板,边板 4343/3003/7072

汽车散热器的毕业设计论文

汽车散热器的毕业设计论文 目录 1、前言、 2、散热器的结构及对材料的要求、 3、铝散热器片材料的特点、 4、散热器的结构和种类样图、 5、用铝散热器取代铜散热器能够满足整车及发动机的性能要 求、 6、铝散热器使用寿命高于铜散热器、 7、铝散热器必须使用厂家规定的防冻防锈液、 8、铝散热器必须在生产厂家进行专业维修、 9、层叠式汽车散热器、 10、散热器的计算和选用原则散热 11、使用与保养、 12、汽车散热器的发展趋势、 13、结语、

1.前言 散热器是汽车水冷发动机冷却系统中不可缺少的重要部件,其作用是将发动机的水套内冷却液所携带的多余热量经过二次热交换,在外界强制气流的作用下从高温零件所吸收的热量散发到空气中的热交换装置。因此,冷却系统中散热器性能的好坏直接影响汽车发动机的散热效果及其动力性、经济性和可靠性,乃至正常工作和安全行驶的问题。 随着汽车发动机转速和功率的不断提高,热负荷也愈来愈大,对冷却系统的要求也越来越高,人们对包括散热器在内的冷却系统的研究愈加重视,新技术、新材料不断涌现。汽车铝散热器产品的优势体现在轻量化、可靠性高、价格低以及生产环保,整车厂采用铝水箱替代原有铜水箱是汽车散热器技术发展的必然趋势。目前,汽车散热器正朝着轻型、高效、经济的方向发展,国内乘用车产品90%以上采用的是铝散热器,在商用车上的使用近年也陆续采用并有扩大的趋势。 2. 散热器的结构及对材料的要求 汽车水冷发动机散热器由冷却用的散热器芯部、进水室和出水室三部分组成。冷却液在散热器芯内流动,空气从散热器芯外高速流过,冷却液和空气通过散热器芯部进行热量交换。 目前,汽车散热器的结构形式可分为直流型和横流型两大类。

散热器设计的基本计算(最新整理)

散热器设计的基本计算 一、概念 1、热路:由热源出发,向外传播热量的路径。在每个路径上,必定经过一些不同的介质, 热路中任何两点之间的温度差,都等于器件的功率乘以这两点之间的热阻,就像电路中的欧姆定律,与电路等效关系如下。 热路电路 热耗P (W)电流V ab I (A) 温差△T=T1-T2 (℃)电压V ab=V a-V b(V) 热阻R th=△T/P (℃/ W)电阻R=V ab/I (Ω) 热阻串联R th=R th1+R th2+…电阻串联R=R1+R2+… 热阻并联1/R th=1/R th1+1/R th2+…电阻并联1/R=1/R1+1/R2+… 2、热阻:在热路中,各种介质及接触状态,对热量的传递表现出的不同阻碍作用—— 在热路中产生温度差,形成对热路中两点间指标性的评价。 符号——Rth 单位——℃/W。 ?稳态热传递的热阻计算: R th= (T1-T2)/P T1——热源温度(无其他热源)(℃) T2——导热系统端点温度(℃) ?热路中材料热阻的计算: R th=L/(K·S) L——材料厚度(m) S——传热接触面积(m2) 3、导热率:是指当温度垂直向下梯度为1℃/m时,单位时间内通过单位水平截面积所 传递的热量。 符号——K or λ单位——W/m-K,

铝合金10702261900平面 铝合金1050209硅胶垫佳日丰泰 5.0铝合金6063201矽胶套帽佳日丰泰 1.0铝合金6061160相变基膜佳日丰泰 1.4铝合金7075 130矽硅膜鑫鑫顺源0.9铁80导热膏KDS-2 0.84不锈钢17 空气 0.04 二、热设计的目标 1、确保任何元器件不超过其最大工作结温(T jmax ) ?推荐:器件选型时应达到如下标准 民用等级:T jmax ≤150℃ 工业等级:T jmax ≤135℃军品等级:T jmax ≤125℃ 航天等级:T jmax ≤105℃ ?以电路设计提供的,来自于器件手册的参数为设计目标2、温升限值 器件、内部环境、外壳: △T ≤60℃ 器件每升高2℃,可靠性下降10%;器件温升为50℃时,寿命只有温升25℃的1/6,电解电容温升超过10℃,寿命下降1/2。三、计算 1、TO220封装+散热器 1)结温计算?热路分析 热传递通道:管芯j →功率外壳c →散热器 s →环境空气a

纯电动汽车设计方案

新能源汽车概念课程设计 课题:电动汽车设计 姓名:赵炜渝 班级:机制125 学号:1120110130 时间:2015.6

一、汽车底盘布置形式 采用电动机前置前驱形式,变速驱动桥将变速器、主减速器和差速器安装在同一个外壳(常称为变速器壳)之内。这样可以有效地简化结构,减小体积,提高传动效率。而且取消了传动轴,可使汽车自重减轻。 电池组安装在前后两排座椅下。 二、驱动电机的选择 电动汽车电机是将电源电能转换为机械能,通过传动装置或直接驱动车轮的汽车驱动装置,该电机与其他电机相比具有体积小、重量轻、效率高且高效区范围广、调速性能好等特点。 电动汽车用电动机在需要满足汽车行走的功能同时,还应满足行车时的舒适性、耐环境性、一次充电的续行里程等性能,该电机要求比普通工业用电动机更为严格的技术规范,还希望有如下功能: 体积小,重量轻。 减小有限的车载空间,特别是总质量的减小,在整个运行范围内高效率。 一次充电续行里程长,特别是行走方式频繁改变时,低负载运行时,也有较高的效率。 低速大转矩特性及宽范围内的恒功率特性。 综合上述原因考虑我们初步选定永磁无刷直流电机作为驱动电机。 无刷直流电机优点是: ①电机外特性好,非常符合电动车辆的负载特性,尤其是电机具有可贵的低速 大转矩特性,能够提供大的起动转矩,满足车辆的加速要求。 ②速度范围宽,电机可以在低中高大速度范围内运行,而有刷电机由于受机械

换向的影响,电机只能在中低速下运行。 ③电机效率高,尤其是在轻载车况下,电机仍能保持较高的效率,这对珍贵的 电池能量是很重要的。 ④过载能力强,这种电机比Y系列电动机可提高过载能力2倍以上,满足车辆 的突起堵转需要。 ⑤再生制动效果好,因电机转子具有很高的永久磁场,在汽车下坡或制动时电 机可完全进入发电机状态,给电池充电,同时起到电制动作用,减轻机械刹 车负担。 ⑥电机体积小、重量轻、比功率大、可有效地减轻重量、节省空间。 ⑦电机无机械换向器,采用全封闭式结构,防止尘土进入电机内部,可靠性高。 ⑧电机控制系统比异步电机简单。缺点是电机本身比交流电机复杂,控制器比 有刷直流电机复杂。 永磁无刷直流电机的技术数据:

汽车水散热器的概述及理论设计计算

汽车水散热器的概述 及理论设计计算 一、散热器概述 1汽车散热器的定义: 汽车散热器是水冷式发动机冷却系统的关键部件。通过强制水循环对发动机进行冷却,是保证发动机在正常的温度范围内连续工作的换热装置。 1、散热器在汽车中的重要地位 1汽车总成 产值比重按不同的车型能够占汽车总成的1~2.5% 2发动机总成 产值比重按不同的车型能够占发动机的15%左右 3、散热器结构的发展 1管片式开窗结构 2铜质管带式平片结构 3铜质管带式开窗结构 4铝质汽车散热器 5铜塑水箱或铝塑水箱 4、散热器的结构 1基本结构 2带补偿水壶结构 3带膨胀水箱结构 三、汽车的整体结构 温度过高及过低的坏处

温度过高 3温度过高时大多数零件都受热膨胀,温度越高,膨胀越大 4零件在高温下会降低强度,不能很好地工作 5温度过高时,其润滑油粘度降低,会加剧零件的磨损 6气缸内的温度过高时,进入气缸内的新鲜空气很快膨胀,就减少了进气量,降低功率。 7在汽油机中,气缸内温度过高时,容易产生爆炸现象 温度过低 2燃料不能完全燃烧,使燃料消耗增加 3使润滑油粘度增高,零件的摩擦阻力加大,消耗较多的功率,因而减少了输出功率 4废气中的水蒸气与硫化物生成一种叫亚硫酸的液滴腐蚀零件 5传走的热能增加,转变为机械功的热能减少,造成过多的散热损失. 汽车分类最新标准 以前的分类是我国1988年6月发布的有关标准GB/T3730.1-1988。 2目前新标准已将汽车的分类作了修改: 3一是废除了“轿车”的提法 4二是不再将”越野车”单独分类 5三是将汽车分为乘用车和商用车两大类 乘用车(不超过9座): 1分为普通乘用车、活顶乘用车、高级乘用车、小型乘用车、敞篷车、仓背乘用车、旅行车、多用途乘用车、短头乘用车、越野乘用车、专用乘用车。 商用车: 2分为客车、货车和半挂牵引车 3客车细分为小型客车、城市客车、长途客车、铰接客车、无轨客车、越野客车、专用客车。 4货车细分为普通货车、多用途货车、全挂牵引车、越野货车、专

纯电动汽车设计方案

目录 一、汽车产品定位 (3) 二、汽车底盘布置形式 (4) 三、驱动电机的选择 (5) 四、蓄电池的选择 (8) 五、技术参数 (10) 六、成本分析 (11) 七、后记 (12)

一、汽车产品定位 二、汽车底盘布置形式 采用电动机前置前驱形式,变速驱动桥将变速器、主减速器和差速器安装在同一个外壳(常称为变速器壳)之内。这样可以有效地简化结构,减小体积,提高传动效率。而且取消了传动轴,可使汽车自重减轻。 电池组安装在前后两排座椅下。 三、驱动电机的选择 电动汽车电机是将电源电能转换为机械能,通过传动装置或直接驱动车轮的汽车驱动装置,该电机与其他电机相比具有体积小、重量轻、效率高且高效区范围广、调速性能好等特点。 电动汽车用电动机在需要满足汽车行走的功能同时,还应满足行车时的舒适性、耐环境性、一次充电的续行里程等性能,该电机要求比普通工业用电动机更为严格的技术规范,还希望有如下功能: 体积小,重量轻。 减小有限的车载空间,特别是总质量的减小,在整个运行范围内高效率。 一次充电续行里程长,特别是行走方式频繁改变时,低负载运行时,也有较高的效率。 低速大转矩特性及宽范围内的恒功率特性。 综合上述原因考虑我们初步选定永磁无刷直流电机作为驱动电机。

无刷直流电机优点是: ①电机外特性好,非常符合电动车辆的负载特性,尤其是电机具有可贵的低速 大转矩特性,能够提供大的起动转矩,满足车辆的加速要求。 ②速度范围宽,电机可以在低中高大速度范围内运行,而有刷电机由于受机械 换向的影响,电机只能在中低速下运行。 ③电机效率高,尤其是在轻载车况下,电机仍能保持较高的效率,这对珍贵的 电池能量是很重要的。 ④过载能力强,这种电机比Y系列电动机可提高过载能力2倍以上,满足车辆 的突起堵转需要。 ⑤再生制动效果好,因电机转子具有很高的永久磁场,在汽车下坡或制动时电 机可完全进入发电机状态,给电池充电,同时起到电制动作用,减轻机械刹 车负担。 ⑥电机体积小、重量轻、比功率大、可有效地减轻重量、节省空间。 ⑦电机无机械换向器,采用全封闭式结构,防止尘土进入电机内部,可靠性高。 ⑧电机控制系统比异步电机简单。缺点是电机本身比交流电机复杂,控制器比 有刷直流电机复杂。 永磁无刷直流电机的技术数据:

汽车冷却系统设计要求

汽车冷却系统设计要求

汽车冷却系统设计 ——叶海见 汽车冷却系统设计 (2) 一、概述 (3) 二、要求 (3) 三、结构 (3) 四、设计要点 (6) (一)散热器 (6) (二)散热器悬置 (6) (三)风扇 (6) (四)副水箱 (8) (五)连接水管 (8) (六)发动机水套 (8) 五、设计程序 (8) 六、匹配 (8) 七、设计验证 (9) 八、设计优化 (9)

一、概述 二、汽车对冷却系统的要求 (一)汽车对冷却系统有如下几点要求 1、保证发动机在任何工况下工作在最佳温度范围; 2、保证启动后发动机能在短时间内达到最佳温度范围; 3、保证散热器散热效率高,可靠性好,寿命长; 4、体积小,重量轻,成本低; 5、水泵,风扇消耗功率小,噪声低; 6、拆装、维修方便。 (二)冷却系统问题对汽车的影响 1、冷却不足时,会导致内燃机过热,充气系数下降,燃烧不正常(爆燃、早燃等),机油变质和烧损,零部件摩擦和磨损加剧(如活塞、活塞环和缸套咬伤,缸盖发生热疲劳裂纹等),引起内燃机的动力性、经济性、可靠性全面恶化。 2、冷却过剩时(40~50℃),汽油机混合气形成不良,机油被燃油稀释;柴油机工作粗暴,散热损失增加,零部件磨损加剧(比正常工作温度工作时大好几倍),也会使内燃机工作变坏。 三、冷却系统布置选型 (一)冷却系统结构 1、分类: 液体蒸 发 简单蒸发冷 却 以加注冷却液来补偿冷却介 质蒸发损失的蒸发冷却。

冷却冷 却 带辅助水箱 的蒸发冷却 用辅助水箱补充冷却介质的 蒸发冷却。 带冷凝器的 蒸发冷却 蒸发的冷却介质在冷凝器中 凝结后,通。过冷却回路流 回到发动机加水箱的蒸发冷 却。 循 环 冷 却 对流冷却 利用热虹吸作用使冷却液自 然循环的冷却方式。 强 制 冷 却 开式强 制冷却 冷却介质不进行再循环的强 制。冷却方式。 单循环 强制冷 却 冷却介质在冷却水箱、冷却 塔、管式冷却器、散热器等 中进行冷却的强制冷却方 式。 双循环 强制冷 却 利用副回路(外循环)中的 冷却液在热交换器中对发动 机冷却介质进行再冷却的强 制冷却方式。 空气冷却自然空气冷却 利用自然空气循环的冷却方 式。 强制空气冷却 利用风扇迫使空气循环的冷 却方式。 2、常用结构:

散热器的选型与计算..

散热器的选型与计算 以7805 为例说明问题. 设I=350mA,Vin=12V, 则耗散功率Pd=(12V-5V)*0.35A=2.45W 按照TO-220封装的热阻θ JA=54℃/W,温升是132℃, 设室温25℃,那么将会达到7805的热保护点150℃,7805 会断开输出. 正确的设计方法是: 首先确定最高的环境温度, 比如60℃, 查出7805 的最高结温TJMAX=125℃ , 那么允许的温升是65℃. 要求的热阻是65℃ /2.45W=26℃/W.再查7805 的热阻,TO-220 封装的热阻θ JA=54℃/W, 均高于要求值,都不能使用,所以都必须加散热片,资料里讲到加散热片的时候, 应该加上4℃/W 的壳到散热片的热阻. 计算散热片应该具有的热阻也很简单, 与电阻的并联一样, 即 54//x=26,x=50 ℃/W.其实这个值非常大, 只要是个散热片即可满足. 散热器的计算: 总热阻RQj-a=(Tjmax-Ta)/Pd Tjmax : 芯组最大结温150℃ Ta : 环境温度85℃ Pd : 芯组最大功耗 Pd=输入功率- 输出功率 ={24×0.75+(-24) ×(-0.25)}-9.8 ×0.25 ×2

=5.5 ℃ /W 总热阻由两部分构成,其一是管芯到环境的热阻RQj-a, 其中包括结壳热阻RQj-C 和管壳到环境的热阻RQC-a.其二是散热器热阻RQd-a,两者并联构成总热阻. 管芯到环境的热阻经查手册知RQj-C=1.0 RQC-a=36 那么散热器热阻RQd-a 应<6.4. 散热器热阻RQd-a=[(10/kd)1/2+650/A]C 其中k:导热率铝为2.08 d: 散热器厚度cm A: 散热器面积cm2 C: 修正因子取1 按现有散热器考虑,d=1.0 A=17.6×7+17.6 ×1×13 算得散热器热阻RQd-a=4.1℃ /W, 散热器选择及散热计算目前的电子产品主要采用贴片式封装器件,但大功率器件及一些功率模块仍然有不少用穿孔式封装,这主要是可方便地安装在散热器上,便于散热。进行大功率器件及功率模块的散热计算,其目的是在确定的散热条件下选择合适的散热器,以保证器件或模块安全、可靠地工作。 散热计算 任何器件在工作时都有一定的损耗,大部分的损耗变成热量。小功率器件损耗小,无需散热装置。而大功率器件损耗大,若不采取散热措施,则管芯的温度可达到或超过允许的结温,器件将受到损坏。因此必须加散热装置,最常用的就是将功率器件安装在散热器上,利

车用散热器散热面积的计算

车用散热器散热面积的计算 一、散热量的确定 1.用户已给散热量的按已给散热量计算. 2.对车用柴油机可按下式进行估算:Q=()P s式中P s表示发动机功率. 燃烧室为预燃室和涡流室的发动机取较大值P s 直接喷射式的发动机取较小值P s 增压的直喷柴油机可取P s 二、计算平均温度差Δt m 1.散热器的进水温度t s1 闭式冷却系可取t s1=95-100℃(节温器全开温度) 2.散热器出水温度t s2 t s2=t s1-Δt sΔt s是冷却水在散热器中的最大温降,对强制冷却 系可取Δt s=6-12℃ 3.进入散热器的空气温度t k1一般取t k1=40-45℃ 4.流出散热器的空气温度t k2 t k2= t k1+Δt kΔt k是空气流过散热器时的温升,可按下式计算: Δt k=Q/(3600×A Z×C P×V K×ρk) 式中A Z表示散热器芯部的正迎风面积; C P表示空气的定压比热容C P=kgf℃V K表示散热器前的空气流速,车用发动机可取V K=12-15m/s ρk表示空气密度,设定在一个大气压气温50℃下查表得ρk=1.09kg/m3

5.平均温差修正系数φ 汽车发动机的冷却形式,属于两种流体互不混合的交叉流式换热形式.与热力学的简单顺流与逆流的换热形式不同,所以要以修正系数φ对平均温度差结果进行计算修正.而φ值的大小取决于两个无量纲的参数P及R. P=(出气温度-进气温度)/(进水温度-进气温度) R=(进水温度-出水温度)/( 出气温度-进气温度) 查上表可得φ值 6.平均温差Δt m 根据传热学原理,平均温差Δt m可按下式计算: Δt m=φ{(Δt max-Δt min)/ ㏑(Δt max/Δt min)} Δt max= t s1- t k1Δt min= t s2- t k2

汽车散热器结构与生产工艺

汽车散热器结构与生厂工艺 散热器是水冷式内燃机冷却系统中不可缺少的一个组成部分。汽车发动机的冷却系统,一般是由水泵、散热器、节温器、冷却风扇、风扇电机、电机开关、护风罩等部分组成。发动机在工作时机内的温度很高,所以为保证其能够正常工作,必须对其进行冷却。散热器的作用是利用冷风(既可以是汽车行驶时迎面流动空气造成的冷风,也可以是冷却风扇提供的冷风)来冷却被发动机高温零件加热的发动机冷却液。 散热器是由冷却用的散热器芯子、储存冷却液的上水室和下水室组成的。由于散热器工作时会产生水蒸气,所以上水室还承当着气水分离的作用。散热器芯子是散热器的核心部分,起主要的散热作用。散热器芯子由散热管、散热带(或散热片)、上下主片和左右挡板组成。由于它具有足够的散热面积,因此能保证将必须的热量从发动机散发到周围的大气中去。而且散热器芯子是用极薄的导热性能好的金属及其合金造成的,能使散热器芯子以最小的质量和尺寸达到最高的散热效果。 管片式散热器芯部是由许多细的冷却管和散热片构成,冷却管大多采用扁圆形截面,以减小空气阻力,增加传热面积。散热器芯部应具有足够的通流面积,让冷却液通过,同时也应具备足够的空气通流面积,让足量的空气通过以带走冷却液传给散热器的热量。同时还必须具有足够的散热面积,来完成冷却液、空气和散热片之间的热量交换。管带式散热器是由波纹状散热带和冷却管相间排列经焊接而成。与管片式散热器相比,管带式散热器在同样的条件下,散热面积可以增加12%左右,另外散热带上开有扰动气流的类似百叶窗的孔,以破坏流动空气在散热带表面上的附着层,提高散热能力。 按照散热器中冷却液流动的方向可以将散热器分为纵流式和横流式。纵流式散热器在汽车发动机上使用极为广泛。由于纵流式散热器的散热芯子垂直分布,芯子上下分别布置了上水室和下水室,因而高度尺寸比较大,在发动机罩盖较低的轿车上布置比较困难。所以有些轿车上采用散热器芯子水平布置,用左右两侧的水室代替传统的上下水室结构,冷却液左右流动就是所谓的横流式散热器。这种散热器宽度尺寸较大,芯子正面有效面积增加10%,从而加大风扇尺寸,得到更多迎风面积,使气流更为流畅。 汽车散热器的材料主要有两种:铝质和铜制,前者用于一般乘用车,后者用于大型商用车;汽车散热器材料与制造技术发展很快。铝散热器以其在材料轻量化上的明显优势,在轿车与轻型车领域逐步取代铜散热器的同时,铜散热器制造技术和工艺有了长足的发展,铜硬钎焊散热器在客车、工程机械、重型卡车等发动机散热器方面优势明显。

汽车冷却系统匹配设计说明

一、冷却系统说明 二、散热器总成参数设定及基本性能要求 三、膨胀箱总成参数设定及基本性能要求 四、冷却风扇总成参数设定及基本性能要求 五、橡胶水管参数设定及基本性能要求

一、冷却系统说明 内燃机运转时,与高温燃气相接触的零件受到强烈的加热,如不加以适当的冷却,会使内燃机过热,充气系数下降,燃烧不正常(爆燃、早燃等),机油变质和烧损,零件的摩擦和磨损加剧,引起内燃机的动力性、经济性、可靠性和耐久性全面恶化。但是,如果冷却过强,汽油机混合气形成不良,机油被燃烧稀释,柴油机工作粗爆,散热损失和摩擦损失增加,零件的磨损加剧,也会使内燃机工作变坏。因此,冷却系统的主要任务是保证内燃机在最适宜的温度状态下工作。 1.1 发动机的工况及对冷却系统的要求 一个良好的冷却系统,应满足下列各项要求: 1)散热能力能满足内燃机在各种工况下运转时的需要。当工况和环境条件变化时,仍能保证内燃机可靠地工作和维持最佳的冷却水温 度。 2)应在短时间内,排除系统的压力。 3)应考虑膨胀空间,一般其容积占总容积的4-6%; 4)具有较高的加水速率。初次加注量能达到系统容积的90%以上。 5)在发动机高速运转,系统压力盖打开时,水泵进口应为正压; 6)有一定的缺水工作能力,缺水量大于第一次未加满冷却液的容积;

7)设置水温报警装置; 8)密封好,不得漏水; 9)冷却系统消耗功率小。启动后,能在短时间内达到正常工作温度。 10)使用可靠,寿命长,制造成本低。 1.2 冷却系统的总体布置 冷却系统总布置主要考虑两方面:一是空气流通系统;二是冷却液循环系统。在设计中必须作到提高进风系数和冷却液循环中的散热能力。 提高通风系数:总的进风口有效面积和散热器正面积之比≥30%。对于空气流通不顺的结构,需要加导风装置使风能有效的吹到散热器的正面积上,提高散热器的利用率。 在整车空间布置允许的条件下,尽量增大散热器的迎风面积,减薄芯子厚度。这样可充分利用风扇的风量和车的迎面风,提高散热器的散热效率。一般货车芯厚不超过四排水管,轿车芯厚不超过二排水管。 在整车布置中散热系统中,还要考虑散热器和周边的间隙,散热器到保险杠外皮的最小距离100毫米,如果发动机的三元崔化在前端的话,还要考虑风扇到三元催化本体距离至少100毫米,到三元催化隔热罩距离至少80毫米。一般三元催化的隔热罩到本体大概有15毫米,隔热罩厚度为0.5-1毫米,一般材料为st12。 1.2.1散热器布置 货车散热器一般采用纵流水结构,因为货车的布置空间也较宽裕。而且纵流

车用散热器散热面积的计算

车用散热器散热面积的计算散热量的确定 1.用户已给散热量的按已给散热量计算. 2.对车用柴油机可按下式进行估算:Q=()P s 式中P s 表示发动机功率. 燃烧室为预燃室和涡流室的发动机取较大值P s 直接喷射式的发动机取较小值P s 增压的直喷柴油机可取P s 计算平均温度差厶t m 1. 散热器的进水温度t s1 闭式冷却系可取t si=95-100C (节温器全开温度) 2. 散热器出水温度t s2 t s2= t s1-A t s △ t s是冷却水在散热器中的最大温降,对强制冷却系可取△ t s=6-12C 3?进入散热器的空气温度t ki 一般取t ki=40-45C 4.流出散热器的空气温度t k2 t k2= t kl+A t k △ t k是空气流过散热器时的温升,可按下式计算:△t k=Q/(3600 x A z X C P X V K X P k) 式中A z表示散热器芯部的正迎风面积;C P表示空气的定压比热容C P二kgf C V K表示散热器前的空气流速,车用发动机可取 V K=12-15m/s p k表示空气密度,设定在一个大气压气温50C下查

表得P k=1.09kg/m3 △ t max= t s1- t k1 △ t min= t s2- t k2

5?平均温差修正系数? 汽车发动机的冷却形式,属于两种流体互不混合的交叉流式换热形式?与热力学的简单顺流与逆流的换热形式不同,所以要以修正系数? 对平均温度差结果进行计算修正?而?值的大小取决于两个无量纲的参数P及R. P二出气温度-进气温度)/(进水温度-进气温度) R=进水温度-出水温度)/(出气温度-进气温度) P 查上表可得?值 6.平均温差△ t m 根据传热学原理,平均温差△ t m可按下式计算: △t m= ? {(△t max- △t min)/ I n (△t max/ △t min)}

纯电动汽车整车控制器的设计

纯电动汽车整车控制器的设计 摘要:随着社会的发展与科技的进步,各个城市的汽车使用户喷井式增加。传 统的内燃机汽车消耗石油,排出大量废气,使得城市的空气质量不断下降。纯电 动汽车由于不使用传统化石能源,对环境不造成污染,受到人们的青睐。随着科 技的进步,电动汽车的核心技术不断地革新与突破,逐渐完善的城市基础设施提 供了有利的帮助,电动汽车已经成为潜力股,逐步取代传统汽车变为可能。本文 从汽车结构出发,结合整车信息传输过程,设计了整车控制器的软硬件结构。 关键词:纯电动汽车;整车控制器;硬件设计;软件设计 纯电动汽车作为新能源汽车的一种,以其清洁无污染、驱动能源多样化、能 量效率高等优点成为现代汽车的发展趋势。整车控制器(vehicle control unit,VCU)作为纯电动汽车整车控制系统的中心枢纽,主要实现数据采集和处理、控 制信息传递、整车能量管理、上下电控制、车辆部件控制和错误诊断及处理、车 辆安全监控等功能。国外在纯电动汽车整车控制器的产品开发中,积极推行整车 控制系统架构的标准化和统一化,汽车零部件厂商提供硬件电路和底层驱动软件,整车厂只需要开发核心应用软件,有利的推动了整车行业的快速发展。虽然国内 各大汽车厂商基本掌握了整车控制器的设计方案,开发技术进步明显,但是对核 心电子元器件、开发环境的严重依赖,所以导致了整车控制器的国产化水平较低。本文以复合电源纯电动汽车作为研究对象,针对电动汽车应有的结构和特性,对 整车控制器的设计和开发展开研究。 一、整车控制系统分析与设计 (一)整车控制系统分析 复合电源纯电动汽车整车控制系统主要由整车控制器、能量管理系统、整车 通信网络以及车载信息显示系统等组成。首先纯电动汽车整车控制器通过采集启动、踏板等传感器信号以及与电机控制器、能量管理系统等进行实时的信息交互,获取整车的实时数据,然后整车控制器通过所有当前数据对驾驶员意图和车辆行 驶状态进行判断,从而进入不同的工况与运行模式,对电机控制系统或制动系统 发出操控命令,并接受各子控制器做出的反馈。 保障纯电动汽车安全可靠运行,并对各个子控制器进行控制管理的整车控制器,属于纯电动汽车整车控制系统的核心设备。整车控制器实时地接收传感器传 输的数据和驾驶操作指令,依照给定的控制策略做出工况与模式的判断,实现实 时监控车辆运行状态及参数或者控制车辆的上下电,以整车控制器为中心通信节 点的整车通信网络,实现了数据快速、可靠的传递。 (二)整车控制系统设计 复合电源的结构设计,选择了超级电容与DC/DC串联的结构,双向DC/DC跟 踪动力电池电压来调整超级电容电压,使两者电压相匹配。为了车辆驾驶运行安全,同时为了更好地使超级电容吸收纯电动汽车的再生制动能量,在复合电源系 统中动力电池与一组由IGBT组成双向可控开关,防止了纯电动汽车处于再生制动状态时,动力电池继续供电,降低再生制动能量的吸收效率。 整车CAN通信网络设计,由整车控制器(VCU)、电机控制器(motor control unit,MCU)、电池管理系统(battery management system,BMS)、双向DC/DC控制器以及汽车组合仪表等控制单元(Electronic Control Unit,ECU)组成 了复合电源纯电动汽车的整车通信网络。 二、整车控制器硬件设计及软件设计

汽车散热器钎焊工艺

汽车散热器钎焊工艺 为了顺应整个汽车制造工业的发展趋势,散热器作为汽车冷却系统中非常重要的部件之一,其工作效率也应当不断提升,并向着轻型化方向发展。钎焊在汽车散热器大规模批量生产中有良好的适用性,如何保障钎焊成品质量是业内人士高度重视的一项课题。文章即在概述汽车散热器构成的基础之上,对钎焊工艺进行研究,并以实验方式指导对钎焊工艺的合理优化,望能够更好的保障汽车散热器的散热性能符合要求,提高钎焊制造合格率。 标签:汽车;散热器;钎焊;工艺 Abstract:In order to comply with the development trend of the whole automobile manufacturing industry,as one of the most important parts of the automobile cooling system,the working efficiency of the radiator should be improved continuously,and develop toward the light type direction. Brazing has good applicability in mass production of automobile radiator. How to ensure the quality of brazing finished product is a highly valued topic in the industry. On the basis of summarizing the composition of automobile radiator,this paper studies the brazing technology,and guides the reasonable optimization of brazing process by experiment,so as to guarantee the heat dissipation performance of automobile radiator to meet the requirements and improve brazing qualified rate. Keywords:automobile;radiator;brazing;process 當前社会经济快速发展背景下,汽车制造产业的发展速度是非常迅猛的,对汽车制造质量以及产品性能的要求也更为严格与具体。汽车在行驶过程中的动力来源为发动机,现阶段正朝着大功率方向发展。而发动机动力性能提高的同时其产热量也会有一定程度上的改变。若热量无法及时传送外排,就会在一定程度上影响发动机性能。散热器作为汽车主体结构中最为关键的散热部分之一,可大量集中散发汽车发动机所产生热量。换言之,散热器性能会直接对汽车发动机散热效果产生影响,并间接影响车辆动力性能、可靠性以及经济性。 1 汽车散热器构成 在汽车发动机冷却系统中,散热器是非常重要的构成部件之一,发动机运行期间多余热量需要通过散热器散发。当前技术条件支持下,汽车发动机冷却系统中所使用散热器可以根据运行模式分为直流型散热器以及横流型散热器这两大类型。散热器进水管装设于上水室,出水管装设于下水室,自汽车发动机出水口流出高温热水通过散热器进水管流入上水室,并经散热器芯体冷却后进入下水室内,最终自出水管流出,并吸入水泵内外排。从这一角度上来看,在汽车发动机冷却系统当中,水室以及主片焊缝质量将直接对散热器进水室以及出水室墙体承受来自发动机冷却系统循环水的流量以及压力大小,并以此种方式对汽车发动机冷却系统的散热性能产生重要影响。

散热器简化设计计算方法

壁挂散热器价格简化设计计算方法 一. 金旗舰散热量Q的计算 1.基本计算公式: Q=S×W×K×4.1868÷3600 (Kw) 式中: ①.Q —散热器散热量(KW)=发动机水套发热量×(1.1~1.3) ②.S —散热器散热面积(㎡)=散热器冷却管的表面积+2×散热带 的表面积。 ③.W —散热器进出水、进出风的算术或对数平均液气温差(℃), 设计标准工况分为:60℃、55℃、45℃、35℃、25℃。它们分别对应散热器允许适用的不同环境大气压和自然温度工况条件。④.K —散热系数(Kcal/m.h.℃)。它对应关联为:散热器冷却管、散热带、钎焊材料选用的热传导性能质量的优劣;冷却管与散热带钎焊接合率的质量水平的优劣;产品内外表面焊接氧化质量水平的优劣;冷却管内水阻值(通水断面积与水流量的对应关联—水与金属的摩擦流体力学),散热带风阻值(散热带波数、波距、百叶窗开窗的翼宽、角度的对应关联—空气与金属的摩擦流体阻力学)质量水平的优劣。总体讲:K值是代表散热器综合质量水平的关键参数,它包容了散热器从经营管理理念、设计、工装设备、物料的选用、采购供应、制造管理控制全过程的综合质量水平。根据多年的经验以及

数据收集,铜软钎焊散热器的K值为:65~95 Kcal/m2.h.℃;改良的簿型双波浪带铜软钎焊散热器的K值为:85~105 Kcal/m2.h.℃;铝硬钎焊带电子风扇系统的散热器的K值为:120~150 Kcal/m2.h.℃。充分认识了解掌握利用K值的内涵,可科学合理的控制降低散热器的设计和制造成本。准确的K值需作散热器风洞试验来获取。 ⑤.4.1868和3600 —均为热能系数单位与热功率单位系数换算值⑥.发动机水套散热量=发动机台架性能检测获取或根据发动机升功 率、气门结构×经验单位系数值来获取。 二、计算程序及方法 1. 散热面积S(㎡) S=冷却管表面积F1+2×散热带表面积F2 F1={ [2×(冷却管宽-冷却管两端园孤半径)]+2π冷却管两端园孤半径}×冷却管有效长度×冷却管根数×10 F2=散热带一个波峰的展开长度×一根散热带的波峰数×散热带的 宽度×散热带的根数×2×10 2. 算术平均液气温差W(℃) W=[(进水温度+出水温度)÷2]-[(进风温度+出风温度)÷2] 常用标准工况散热器W值取60℃,55℃,增强型取45℃,35℃。这要根据散热器在什么工况环境使用条件下来选取。 3. 散热系数K

汽车管带式散热器仿真设计方法的研究

第32卷第2期2011年4月 内 燃 机 工 程 Chinese Internal Combustion Eng ine Eng ineering Vo l .32No .2 April .2011   收稿日期:2009-08-24 基金项目:国家“八六三”高技术研究发展计划现代交通技术领域“汽车开发先进技术”重点项目(2006AA110104)作者简介:袁兆成(1954-),男,教授,博士,主要研究方向为内燃机现代设计理论与方法,E -mail :yuanzc @jlu .edu .cn 。 文章编号:1000-0925(2011)02-0085-04 320034 汽车管带式散热器仿真设计方法的研究 袁兆成1 ,朱 晴1 ,王 吉2 ,王宏志2 ,常 贺 3 (1.吉林大学汽车动态模拟国家重点实验室,长春130000;2.一汽集团技术中心,长春130000; 3.一汽轿车股份有限公司,长春130000) Study on Simulation Design Method of Corrugated Tube Radiator for Automobile YUAN Zhao -cheng 1 ,ZHU Qing 1 ,WANG Ji 2 ,WANG Hong -zhi 2 ,CHANG He 3 (1.State Key Laboratory of Automo bile Dy namic Simulatio n ,Jilin University ,Changchun 130000,China ;2.FAW Techno logy Center ,Changchun 130000,China ;3.FAW CA R Co .,Ltd .,Chang chun 130000,China ) A bstract :Using CFD technique ,the simulation design method of autom otive radiator with complex structure w as studied .The radiator w as partially simulated to calculate the heat exchange coefficient betw een co rrug ated band and cooling air ,and the effects of the radia to r louver opening angle on radiato r heat e xchange pe rfo rm ance w ere analy zed from three aspects of tem perature ,pressure and flow velo city .It is co n -cluded that the best effect is achieved at 23°o pening ang le .The heat transfer perform ance of w ho le radiator w as calculated by using po rous medium to imitate the heat transfer coefficient and flow resistance of the fin -louver heat dissipation band .The calculated results coincide w ith the m easured data .This sim ulation desig n method provides the possibility fo r radiator optimiza tion design . 摘要:利用CFD 手段对结构复杂的管带式散热器仿真设计方法进行了研究,采用散热器局部完全仿真计算分析得到管带与空气的热交换系数,并从温度、压力和速度三方面分析了散热片开窗角度对其换热性能的影响,得出开窗23°时换热效果最好,又利用多孔介质模拟开窗散热带,进行整体散热器的传热性能仿真模拟计算。研究结果表明:计算结果与试验结果比较吻合,为散热器产品的优化设计提供了可能。关键词:内燃机;汽车散热器;仿真设计;换热系数 Key words :IC engine ;automotive radiator ;simulation design ;heat transfer coefficient 中图分类号:T K 414.2 文献标识码:A 0 概述 散热器的换热是一个复杂的三维流动过程,由于受到试验条件和测试技术等多方面因素的限制, 目前对于试验测定流动速度、换热系数与压降分布的文献较少。散热带开窗角度对散热器换热性能有着十分重要的影响,通过工程实践和试验发现,开窗角度在20°~30°范围时,散热器的换热效果最为显著。但是,由于制造技术和测量仪器的制约,在20° ~30°范围内找到最合适的开窗角度较为困难。本 文利用CFD 仿真分析方法,研究了散热器在不同开窗角度下的散热特性,详细分析了开窗角度对流场和温度场的影响。由于散热器结构复杂,尤其开窗结构的散热带使散热器的模型更为复杂,以至于在任何计算机上都不可能建立完整的散热器三维模型,更不用说将其网格化进行三维模拟计算。因此,在计算机能力允许的条件下,研究局部散热器的流动与传热情况是散热器仿真模拟分析的必要途径。

带增程器的纯电动汽车动力系统设计

带增程器的纯电动汽车动力系统设计 时间:2010-10-28 13:24来源:同济大学 引入Range-Extender(增程器)概念,阐述纯电动汽车前期开发过程中动力系统参数的设计过程,旨在为纯电动汽车动力系统参数开发提供参考。 0 前言 众所周知,我国在传统内燃机汽车方面一直落后于发达国家,有很多关键技术依赖于发达国家的汽车企业,常常被别人牵着鼻子走,这也造成了我国汽车行业长期处在一种低水准、高成本的模式下运作,非常不利于我国汽车行业的正常发展。 目前全球汽车行业正处于转型阶段,由于石油资源的短缺和环境的日益恶化,使得人们不得不考虑从传统内燃机汽车向新能源电动汽车转型,这也给我国汽车行业带来了发展契机,大力发展新能源电动汽车,掌握其关键技术,就能让我国汽车企业在未来的全球竞争中占得先机,在汽车行业占据领先地位。 1 电动汽车及Range - Extender 简介 电动汽车具有高效、节能、低噪声、零排放等显著优点,在环保和节能方面具有不可比拟的优势。目前电动汽车技术的研发已成为各国政府和汽车行业的热点。电动汽车指全部或部分用电能驱动电动机作为动力系统的汽车。它包括燃料电池电动汽车(FCEV)、混合动力电动汽车(HEV)和纯电动汽车(BEV)3种类型。其中纯电动汽车(Battery Electric Vehicle)发展时间最长,曾被全球汽车企业广泛看好,从20世纪70 年代至今,可以说比其他类型电动汽车的发展时间都长,经验也丰富,开发成本也较低。 但由于目前蓄电池储能有限,纯电动汽车存在一次充电后续驶里程短的问题。考虑采用在纯电动汽车上加装一个增程器(Range-Extender)的方法来增加纯电动汽车的续驶里程。

相关主题
文本预览
相关文档 最新文档