当前位置:文档之家› 手机校准的四项目

手机校准的四项目

手机校准的四项目
手机校准的四项目

手机校准基本原理

1 手机校准的原因

一台手机,有大大小小几百个元器件,这些元器件即使是同一批次也会存在差异。手机大批量生产,也不可能做到每台手机的性能完全一模一样。所以我们需要一套校准方法,对这些由于硬件的不一致性所带来的偏差进行微调,从而使得手机能符合GSM通讯规范。

2我们对手机校准的主要内容有四项:

1,AFC(自动频率控制) 校准

2,RX Pathloss(接收路径损耗) 校准

3,APC(自动功率控制)校准

4,ADC (电池电量与显示电量)校准

2.1AFC自动频率控制(automatic frequency control)校准

这个校准是使输出信号频率与给定频率保持确定关系的自动控制方法。手机的频率控制主要是由锁相环完成,在锁相环锁定以后RF VCO的输出频率:Fvco=26M/N ,即RFVCO 的频率稳定度和频率精度由26MHz晶体振荡器的频率精度决定,所以校准射频频率合成器的频率精度就等于是校准26MHz晶体振荡器的频率精度。GSM规范要求手机的发射和接收信道频率精确度要在0.1ppm之内,手机通过接收基站的频率校准信道的信息,然后通过AFC 去控制射频的VCTCXO可以将射频的频率误差控制在0.1ppm之内。可是每个TCXO之间存在着硬件偏差,所以需要校准。

这个锁相环电路广泛应用于接收机中作自动频率微调电路。它主要有三个部件组成:频率比较器、低通滤波器和可控频率器件。它们的主要关系如下:

对应到手机的电路分布如下:

在天线接收是来之基站的高频信号,经过正交解调器对其高频信号调制解调后,把信号频率降到中频并对信号进行放大。这个正交解调器是受一个模拟信号进行控制,这个模拟信号通过A/D转换器转化成数字信号,这个数字信号就是DAC,它就是相当于锁相环负反馈电路的反馈信号。所以通过校准DAC的值就可以控制频率的微调。

AFC(自动频率控制)校准的方法,就是通过寻找合适的ADC值,对信号从天线经过解调到中频放大到TRx的过程中的频率差值进行细微的校准。可以类比于:A》基站

B》接收机

银行-》天线到中频放大到TRx的通路

银行扣手续费-》天线到中频放大到TRx的通路的频率差

a通过银行转账给b,但不知道银行是如何扣除手续费。所以第一次a提前告诉b要转100元。b在转账后查收到98元。第二次a在告诉b要转200元,之后b第二次查收到196元。这样就可以通过两次的转账找出银行扣款的方式。每次扣2元。当下次a要转账100元到b时,就可以通过转账误差值2元/次,提前将102元转到b账户上,使得b可以准确接收到100元。

这样的道理同样适用于手机信号从天线到手机收发器RTx的路径中频率差值的控制。

1 由CMU200选定一个信道,设定一个发射功率,如(65信道,-85dBm)发送到手机上。

2 手机由天线接收后,设定中频部分的放大增益如(-35dB)即放大倍数为一个定值。设定解调器的DAC1控制信号值。信号到达TRx后,通过I/Q通道将频率信息转送到CPU,再由CPU将接收的频率于CMU200设定的频率进行计算得到频率差值△f1

3 保持CMU200的频率信号不变,中频放大增益不变。改变解调器的DAC2控制信号值。同样在TRx接收后,由CPU算出频率差值△f2

4 方便理解,可以设定第一次的频率差值△f1是频率滞后,第二次的频率差值△f2是频率超前。这样就可以推断在第一次与第二次频率之间有一个频率点是刚刚为0点误差值。即DAC1与DAC2之间有一个对应的DACx值。通过寻找并设定这个DACx控制频率信号差值稳定在0点误差。

5 在DAC与△f在小范围中,可以理解为线性关系。所以,这个直线的斜率可以表达为

Slope=(△f1-△f2)/(DAC2- DAC1)

直线y=slope (x) + b

将△f1 与DAC1代到直线中得到b=△f1-slope(DAC1)

所以当y=0就是对应的0点频率误差值,x对应的就是我们要找的DACx值

直线0=slope(DACx)+ △f1-slope(DAC1)

得到DACx=△f1/ Slope+DAC1

操作方面,还没有得到锻炼,很多具体的步骤还没了解。

2.2RX Pathloss(接收路径损耗)校准

信号从天线到TRx过程中经过前端无源器件(如天线开关)、低噪放大器(LNA,用于选择有效信号放大并抑制噪声)、滤波器等器件,造成一定的损耗。从天线接收到的基站信号是有大小的,一般是在-60dBm~-110dBm。每个信道对应着不同的频率带,信号在经过这些LNA,滤波器等器件之后的损耗也是有差异的(频率响应)。正如GSM900的频率段带宽25MHz,将这些频率分为124个信道,同理GSM1800的各个信道中信号的衰减也是有差异的。所以要对信号在这些不同的信道(频率段)传输过程中进行一些补偿,使得TRx能正确反映天线端接收的信号强度,也就是接收路径损耗校准。

接收路径的信号可以用一个公式:RSSI=P_ant+G_lna+G_dgain+G_again+X

RSSI:received singnal strength indication 接收信号强度指示

P_ant:天线端接收信号

G_lna:G_dgain:G_again:为中频增益,

X:线路损耗

公式中RSSI可以在收发器接收端得到;天线于CMU200由RF cable直接相连,所以P_ant端的信号强度就是CMU200发射的信号强度;手机主板中频增益可以通过PC上的软件进行设定;这样就通过这个公式可以算出通路中是损耗值X。

具体操作步骤如下:

1, 由CMU200设定信道,发送一定功率的信号到手机上。如设定-85dBm 。

2, 手机端设定中频增益为一个定值如(-35dB ),可以设定测量的帧的数目如N 个,每个帧有M 个包络。

3, 在CPU 计算这些帧的功率,与CMU200事先设定的功率相对比,从而算出两个功率差△Li (dBm )

4, 改变不同的信道,从而得到各个信道接收路径的损耗值

5, 改变不同的频段,可以检测到GSM 、DCS 的各个信道的损耗值。

操作步骤

2.3APC (自动功率控制)

由于根据手机与基站的距离而不同,收发器中接收的RSSI 强度也不同,而需要根据RSSI 的强度,自动改变的发射功率,从而尽量使信号达到基站的强度一致。将不同强度的RSSI 划分成不同的等级,对应着不同的功率等级。它们之间的对应关系是通过一组数字信号DAC 值实现的。CPU 再根据不同的功率等级改变电压,现实控制激励放大电路、预放、功放电路的放大量,从而实现不同的功率发射信号。这个过程的控制都是基于DAC 信号进行的。所以,要对DAC 值对应的电压值进行校准,以确保手机发射功率能根据RSSI 的强弱而改变。

如GSM900体系中的对应关系:

将校准后的每个功率等级的PA APC DAC 值,存到手机NVRAM 里面,使得手机能通过GSM 通讯标准。

很多参考资料都是类似“APC 校准原理较为复杂,这里不便细述”一句话带过,所以我对APC 校准的理解也不深。

2.4ADC (电池电量与显示电量)校准

这个ADC 的校准主要是为了让电池检测显示的电压与电池的实际电压保持一致。我们认为,表征电源输出电压的DAC_V 值与电池检测通道显示的DAC_Output 存在线性关系。

校准的步骤可以如下:

1,命令可编程电源输出电压为DAC_V1,对应实际的模拟电压V1

dBm )

2,用电池检测通道对电压进行检测,得到数据为DAC_Output_1

3,改变电源输出电压为DAC_V2,对应的实际模拟电压为V2

4,用电池检测通道对电压进行检测,得到数据为DAC_Output_2

电源输出的DAC值与电池测试的DAC_Output有线性关系

他们的斜率可以表示:

Slope=(DAC_Output_2-DAC_Output_1)/(DAC_V2-DAC_V1)

直线:y=Slope(x)+b

这些电子技术方面的东东都可以在这个电子技术导航网站找到的啦!------------------------ 电子世家网址导航:https://www.doczj.com/doc/609892338.html,。

hdet 是用来做功率检测用的。wcdma的输出功率要求得非常精确。这就使得功率控制需要一个闭环回路。

wcdma一般用hdet电路来检测输出的功率是多少。然后根据这个调整,以便达到需要的目标功率

TX PDM是用来做功率输出线性华,或者数字预失真用的。和他配合的还有一个是linear mater table.这两个

一个存储wcdma功率输出的寄存器的数直,一个列表用来存储这些数值对应的最终的输出功率。利用这两个表,pa就知道在发送一个功率的时候,应该是用那个数值了。

qrct是一个测试软件(qualcomm平台的),用来设置手机进入非信令模式,然后调整各个参

数,然后观测手机

的输出,以便得到一个合适的直,来设置nv item.

--------------------------------------------------------------------------------

本文来自:我爱研发网(https://www.doczj.com/doc/609892338.html,) - R&D大本营

详细出处:https://www.doczj.com/doc/609892338.html,/bbs/Archive_Thread.asp?SID=112360&TID=2

TX信号首先通过接收到的RSSI以及TX_GAIN_ADJ,

通过功率检波HDET电路的limiting表,分成两路,一路进行高/低增益判断,通过映射,产生PA_R1/PA_P0两个逻辑电平,对PA进行高/低增益选择,

另一路产生一个TX_GAIN_CTL值,这个值,通过TX校准,进行线性补偿,然后产生一个脉冲密度调制信号(PDM),称为TX_AGC_ADJ, 通过RC滤波,连接到RFT发射芯片的Vcontrol 引脚,

这个引脚连接到芯片内部的发射可变增益放大器,从而实现了发射功率的精确控制

--------------------------------------------------------------------------------

本文来自:我爱研发网(https://www.doczj.com/doc/609892338.html,) - R&D大本营

详细出处:https://www.doczj.com/doc/609892338.html,/bbs/Archive_Thread.asp?SID=112360&TID=2

手机校准的详细分析-1

1.手机校准测试的项目内容有哪些? 手机校准主要是针对RF参数的校准,比如AFC、AGC、APC,另外,还有电池ADC 的校准、温度校准,要看不同平台的要求,校准的项目也不同,但是大体相同。 AFC校准是为了保证手机的时钟频率能正确的与网络同步。 AGC校准手机从天线端接收到的信号强度大约在–110dBm至–10dBm之间(这可能会稍微超出GSM05.05定义的范围),但BBC(BaseBand Converter)输入信号的可接受动态范围没有这么大,AGC校准是为了保证输入到手机BBC的信号强度在BBC的可操作范围内。 APC校准影响功率的一般有两个参数,一个是Power Ramp(时间包络) 它表现了一个时隙的打开和关闭是否合理,另一个是PA Offset。前者会对输出频谱和TimeMask(时隙)产生影响,因此,在研发阶段就要调好Power Ramp; 而后者,在Power Ramp固定的情况下,直接影响输出功率的大小。APC校准就是调整PA Offset,保证手机的发射功率在各频段,各功率等级都能满足GSM05.05规范。 ADC的校准在我们的Windows Mobile设备上,锂离子电池的电量都是以“电量计”的形式显示的。从电量计中,我们可以准确的读出设备中的电池还有多少剩余电量,精确到以1%为单位。Windows Mobile设备长久以来一直以这种方式显示电池的电量信息。 很多人可能都遇到过在设备出现低电量报警之后软启动,电量计又显示还剩20-30%电量的问题,或者是系统提示已经充满电,但是电池电量计只显示到90%,而不是100%。这时,我们就需要动手对电池的电量进行重新校准了。也就是电池电量的显示与实际不符合。 2.校准的原理\算法是怎样的? 校准的简单原理就是:由于器件不一致、温度变化、器件老化等因素的影响,即使是基于同样的平台同样的设计,也会表现出不同的电性能。为了消除这种影响,每个手机在出厂之前都要对这些参数进行测量计算得到一些参数误差数据,并把这些误差数据存储到一定的存储介质(一般为EEPROM)里,在手机正常使用过程中,CPU会读取这些数据并利用一定的算法对需要补偿的参数进行补偿。在生产测试过程中,对需要补偿校正的数据测量计算并存入EEPROM里的过程,称之为校准。 3.选择哪些信道\功率级校准? 校准的算法:每个平台都不一样,各有各的算法,但是大体的方法都是和仪器进行交互,利用仪器测量的一些数值调整DAC或ADC的参数,把这些参数存成表存储到EEPROM里。具体到某个指标的算法,要根据平台提供上的建议,另外,编程序的时候还有些技巧和算法使得程序高效快速。 4.除这些RF部分之外还有哪些关于电性能方面的校准测试? 至于APC或AGC测试那些信道和功率等级。通常情况下不需要每个等级和信道都校准,那样太慢了,因为无论APC还是AGC,他们和功率的关系是基本线性的,或分段线性的,是可以预测的,一般会选择几个功率等级点,然后进行内插。当然,也不会每个信道都校准,一般校准中间信道的APC或AGC,然后只对最大功率进行信道间补偿,非中间信道的其他功率等级可以按照中间信道的线性关系进行预测。

AFC手机校准过程(收集资料)

由于GSM手机采用时分多址(TDMA)技术,以不同的时间段即时隙,来区分用户,故手机与系统保持时间同步就显得非常重要。若手机时钟与系统时钟不同步,则会导致手机不能与系统进行正常的通信。在GSM系统中,有一个公共的广播控制信道(BCCH),它包含频率校正信息与同步信息等。手机一开机,就会在逻辑电路的控制下扫描这个信道,从中获取同步与频率校正信息,如手机系统检测到手机的时钟与系统不同步,手机逻辑电路就会输出AFC信号。AFC信号改变13MHz电路中VCO两端的反偏压,从而使该VCO电路的输出频率发生变化,进而保证手机与系统同步。 CRYSTAL是一种晶体,(包括恒温晶振,温补晶振,压控晶振等等) 1、普通晶振(PXO):是一种没有采取温度补偿措施的晶体振荡器,在整个温度范围内,晶振的频率稳定度取决于其内部所用晶体的性能,频率稳定度在10-5量级,一般用于普通场所作为本振源或中间信号,是晶振中最廉价的产品。2、温补晶振(TCXO):是在晶振内部采取了对晶体频率温度特性进行补偿,以达到在宽温温度范围内满足稳定度要求的晶体振荡器。一般模拟式温补晶振采用热敏补偿网络。补偿后频率稳定度在10-7~10-6量级,由于其良好的开机特性、优越的性能价格比及功耗低、体积小、环境适应性较强等多方面优点,因而获行了广泛应用。3、压控晶振(VCXO):是一种可通过调整外加电压使晶振输出频率随之改变的晶体振荡器,主要用于锁相环路或频率微调。压控晶振的频率控制范围及线性度主要取决于电路所用变容二极管及晶体参数两者的组合4、恒温晶振(OCXO):采用精密控温,使电路元件及晶体工作在晶体的零温度系数点的温度上。中精度产品频率稳定度为10-7~10-8,高精度产品频率稳定度在10-9量级以上。主要用作频率源或标准信号。6139我们没用过。校准原理应该是一致的,只是工作方式可能不同。 校准AFC DAC值与TCVCXO输出频率(26MHz)之间的对应关系,使得测试接收信号的频率误差在允许范围之内。 校准步骤: 1.控制综测仪Agilent 8960或者R&S CMU200设定在BCCH(广播控制通道)中的某一个通道arfcn_C0_GSM

手机校准测试

江东桑田路722弄12号东方电子有限公司三楼林莉 明天上午8:50 1.手机校准测试 我只知道要进行发射功率\AFC\AGC的校准,此外还必须进行校准的内容有哪些? 2.校准的原理\算法是怎样的? 3.选择哪些信道\功率级校准? 4.除这些RF部分之外还有哪些关于电性能方面的校准测试? 1。手机校准主要是针对RF参数的校准,比如你提到的AFC、APC、AGC,另外,还有电池ADC 的校准、温度校准,要看不同平台的要求,校准的项目也不同,但是大体相同。 2。校准的简单原理就是:由于器件不一致、温度变化、器件老化等因素的影响,即使是基于同样的平台同样的设计,也会表现出不同的电性能。为了消除这种影响,每个手机在出厂之前都要对这些参数进行测量计算得到一些参数误差数据,并把这些误差数据存储到一定的存储介质(一般为EEPROM)里,在手机正常使用过程中,CPU会读取这些数据并利用一定的算法对需要补偿的参数进行补偿。在生产测试过程中,对需要补偿校正的数据测量计算并存入EEPROM里的过程,称之为校准。 3。校准的算法:每个平台都不一样,各有各的算法,但是大体的方法都是和仪器进行交互,利用仪器测量的一些数值调整DAC或ADC的参数,把这些参数存成表存储到EEPROM里。具体到某个指标的算法,要根据平台提供上的建议,另外,编程序的时候还有些技巧和算法使得程序高效快速。 EMS---电子制造服务商 EMS:Electronics Manufacture Services ODM---电子设计制造商 ODM:Original Design Manufacturer CEM---电子合约制造商 OEM:Original Equipment Manufactures 手机测试时用到的一些名 AB Access Burst AFC Automatic Frequency Control AGC Automatic Gain Control AGCH Access Grant Channel ARFCN Absolute Radio Frequency Channel Number BCC Base station Color Code BCCH Broadcast Control Channel BCH Broadcast Channel

手机校准的四项目

手机校准基本原理 1 手机校准的原因 一台手机,有大大小小几百个元器件,这些元器件即使是同一批次也会存在差异。手机大批量生产,也不可能做到每台手机的性能完全一模一样。所以我们需要一套校准方法,对这些由于硬件的不一致性所带来的偏差进行微调,从而使得手机能符合GSM通讯规范。 2我们对手机校准的主要内容有四项: 1,AFC(自动频率控制) 校准 2,RX Pathloss(接收路径损耗) 校准 3,APC(自动功率控制)校准 4,ADC (电池电量与显示电量)校准 2.1AFC自动频率控制(automatic frequency control)校准 这个校准是使输出信号频率与给定频率保持确定关系的自动控制方法。手机的频率控制主要是由锁相环完成,在锁相环锁定以后RF VCO的输出频率:Fvco=26M/N ,即RFVCO 的频率稳定度和频率精度由26MHz晶体振荡器的频率精度决定,所以校准射频频率合成器的频率精度就等于是校准26MHz晶体振荡器的频率精度。GSM规范要求手机的发射和接收信道频率精确度要在0.1ppm之内,手机通过接收基站的频率校准信道的信息,然后通过AFC 去控制射频的VCTCXO可以将射频的频率误差控制在0.1ppm之内。可是每个TCXO之间存在着硬件偏差,所以需要校准。 这个锁相环电路广泛应用于接收机中作自动频率微调电路。它主要有三个部件组成:频率比较器、低通滤波器和可控频率器件。它们的主要关系如下: 对应到手机的电路分布如下: 在天线接收是来之基站的高频信号,经过正交解调器对其高频信号调制解调后,把信号频率降到中频并对信号进行放大。这个正交解调器是受一个模拟信号进行控制,这个模拟信号通过A/D转换器转化成数字信号,这个数字信号就是DAC,它就是相当于锁相环负反馈电路的反馈信号。所以通过校准DAC的值就可以控制频率的微调。

手机射频校准错误代码表

手机射频校准错误代码表(适用于展讯,MTK) Lacation update Fail = 101;位置更新错误 MT Call Fail = 102;手机呼叫失败 Call Drop = 103;掉线 Average Burst Power Fail = 104;平均突发功率超出模板 Peak Burst Power Fail = 105;峰值突发功率超出模板 PVT Match Fail = 106; PVT超出模板 Timing Error Fail = 107;时序偏差超出模板 Phase Error Peak Fail = 108;峰值相位误差超出模板 Phase Error RMS Fail = 109;均值相位误差超出模板 Frequency Error Fail = 110;频率误差超出范围 Spectrum due to Modulation Fail = 111;调制频谱超出模板 Spectrum due to Switching Fail = 112;开关频谱超出模板 Rx Quality Fail = 113;接收灵敏度超出范围 Rx Level Fail = 114;接收电平超出范围 BER Fail = 115;误码率超出范围 BLER Fail = 116;误块率超出范围 METAAPP_GET_A V AILABLE_HANDLE_FAIL = 201;Meta可用到的操作失败 METAAPP_OPEN_UART_FAIL = 202;Meta打开Uart口失败 METAAPP_CLOSE_UART_FAIL = 203;Meta关闭Uart口失败 METAAPP_BOOT_FAIL = 204;Meta连通串口失败 METAAPP_BOOT_STOP_FAIL = 205;Meta终止连通串口失败 METAAPP_INIT_FAIL = 206;Meta初始化失败 METAAPP_W AIT_FOR_TARGET_READY_FAIL = 207;Meta等待被测件准备失败 METAAPP_COMM_SET_BAUD_RA TE_FAIL = 208;Meta命令设置波特率失败 METAAPP_COMM_START_FAIL = 209;Meta命令开始失败 METAAPP_COMM_STOP_FAIL = 210;Meta命令终止失败 METAAPP_CONNECT_WITH_TARGET_FAIL = 211;Meta连接被测件失败 METAAPP_DISCONNECT_WITH_TARGET_FAIL = 212;Meta断开被测件失败 METAAPP_RF_SELECT_BAND_FAIL = 213;Meta选择射频频段失败 METAAPP_RF_SELECT_BAND_CNF_FAIL = 214 METAAPP_RF_AFC_MEASURE_FAIL = 215;Meta测量AFC失败 METAAPP_RF_AFC_MEASURE_CNF_FAIL = 216;Meta测量AFC配置失败 METAAPP_RF_AFC_SET_DAC_V ALUE_FAIL = 217;Meta设置数模转换电压失败 METAAPP_RF_AFC_SET_DAC_V ALUE_CNF_FAIL = 218;Meta设置数模转换电压配置失败METAAPP_RF_CRYSTALAFC_SET_CAPID_FAIL = 219;Meta控制晶体设置CAPID失败METAAPP_RF_PM_FAIL = 220;Meta控制电源管理失败 METAAPP_RF_NB_TX_FAIL = 221;Meta控制邻道发射失败 METAAPP_RF_NB_TX_CNF_FAIL = 222;Meta控制邻道发射配置失败 METAAPP_RF_SET_APC_LEVEL_DAC_FAIL = 223;Meta设置APC等级数模转换控制失败METAAPP_RF_SET_APC_LEVEL_DAC_CNF_FAIL = 224;Meta设置APC等级数模转换配置失败METAAPP_RF_STOP_FAIL = 225;Meta终止失败 METAAPP_RF_STOP_CNF_FAIL = 226;Meta终止配置失败 METAAPP_RF_BBTXAUTOCAL_FAIL = 227;Meta控制基带发射自动校准失败 METAAPP_RF_GETBBTXCFG2_FAIL = 228 METAAPP_RF_SETBBTXCFG2_FAIL = 229

手机校准的资料

浅谈无线设备的校准(一) 当前无线通讯是个潮流,GSM手机、cdma手机、wcdma手机、WLAN的研发、生产如火如荼,在这些无线设备的研发、生产中都有校准,其意义和目的何在? 大批量生产无线发射、接收设备时,通常情况下,为什么都需要校准? 在大批量生产无线发射、接收设备时,如GSM手机、cdma手机、wcdma手机、WL AN、bluetooth时,在通常情况下,为什么都需要对这些产品进行校准?这是由于生产这些无线发射、接收设备时,所用元器件的绝对精度通常不足以满足设备频率、功率电平和其它参数的性能目标。因此,顺理成章,降低系统性能偏差的方式之一就是使用更加昂贵的、精度更高的、一致性更好的元器件。但是,在现实情况下,每个无线设备生产厂商都刻意要给用户提供价廉物美的产品,因此在成本的压力下,设计人员通常不会选用昂贵的、精度更高的、一致性更好的元器件作设计,而是走到了相反的方向,这样校准就成为研发生产中不可或缺的一环,它会极大地减少无线发射、接收设备对元器件的要求,降低材料成本,最终降低整个无线发射、接收设备的成本。 无线发射、接收设备通常需要校准的指标 一、频率 目前通常的无线设备,不论是GSM手机、cdma手机、wcdma手机、WLAN、或者b luetooth,都是将发射机、接收机集成为一体,且用内部晶体振荡器,在压控振荡的控制下合成所需要的接收和发射各个信道上的中心频率。发射信道上的中心频率是否准确,直接关系到你生产出的无线设备所发射出去的信号,是否会被其它接收设备正确识别、解调出来。反之亦然,如果你生产出的无线设备接收信道的中心频率不准,它也是无法对接收到的、需要的信号作正确识别和解调。同时,如果你生产出的无线设备所发射出去的信号中心频率不准的话,在多用户系统中,还可能会极大的干扰别人。 不论是GSM、cdma,wcdma、还是WLAN、bluetooth,协议对信道(包括接收和发射)的中心频率都尽可能设计成线性,而频率合成的线性设计较易实现,但在批量生产时,所有生产出的产品,在所有信道上都能达到协议所要求的频率精度,这对硬件设计是个挑战。因此这些无线设备一般都设计一个数字压控振荡来保证发射和接收频率的精度,校准频率的全部物理含义就是精确的实测出数字压控振荡的斜率和节距,将此数学模型写入设备中。设备在正常工作时,按照此模型计算出控制数字压控振荡的数字控制量,来调谐发射、接收频率,使之达到其协议要求精度。 前文已提到信道(包括接收和发射)的中心频率是线性的,且线性设计容易实现,因此频率校准只需在一个信道上校准即可,至于是校准发射信道的频率,还是校准接收信道的频率,这与厂家的设计有关,但它们的校准方法略有不同。

手机校准的4个要点

1.手机校准测试的项目内容有哪些?我只知道要进行发射功率\AFC\AGC的校准,此外还必须进行校准的内容有哪些? 手机校准主要是针对RF参数的校准,比如你提到的AFC、APC、AGC,另外,还有电池ADC的校准、温度校准,要看不同平台的要求,校准的项目也不同,但是大体相同。 2.校准的原理\算法是怎样的? 校准的简单原理就是:由于器件不一致、温度变化、器件老化等因素的影响,即使是基于同样的平台同样的设计,也会表现出不同的电性能。为了消除这种影响,每个手机在出厂之前都要对这些参数进行测量计算得到一些参数误差数据,并把这些误差数据存储到一定的存储介质(一般为EEPROM)里,在手机正常使用过程中,CPU会读取这些数据并利用一定的算法对需要补偿的参数进行补偿。在生产测试过程中,对需要补偿校正的数据测量计算并存入EEPROM里的过程,称之为校准。 3.选择哪些信道\功率级校准? 校准的算法:每个平台都不一样,各有各的算法,但是大体的方法都是和仪器进行交互,利用仪器测量的一些数值调整DAC或ADC的参数,把这些参数存成表存储到EEPROM里。具体到某个指标的算法,要根据平台提供上的建议,另外,编程序的时候还有些技巧和算法使得程序高效快速。 4.除这些RF部分之外还有哪些关于电性能方面的校准测试? 至于APC或AGC测试那些信道和功率等级。通常情况下不需要每个等级和信道都校准,那样太慢了,因为无论APC还是AGC,他们和功率的关系是基本线性的,或分段线性的,是可以预测的,一般会选择几个功率等级点,然后进行内插。当然,也不会每个信道都校准,一般校准中间信道的APC或AGC,然后只对最大功率进行信道间补偿,非中间信道的其他功率等级可以按照中间信道的线性关系进行预测。

相关主题
文本预览
相关文档 最新文档