当前位置:文档之家› 非对称光子自旋轨道相互作用

非对称光子自旋轨道相互作用

非对称光子自旋轨道相互作用
非对称光子自旋轨道相互作用

Bi2Se3自旋轨道耦合计算

Bi 2Se 3自旋轨道耦合性质的计算 一、模型和基本参数: 图(a )黑色t 1、t 2、t 3基矢围成Bi 2Se 3菱形原胞,用于计算块体,红色方框包含一个五元层,是构成薄膜的一个QL 。 计算能带的布里渊区高对称点:Г(0 0 0)-Z(π π π)-F(π π 0)-Г(0 0 0)-L(π 0 0), 根据正空间和倒空间坐标的转换关系, 得到正空间中高对称点的坐标:Г(0 0 0)-Z(0.5 0.5 0.5)-F(0.5 0.5 0)-Г(0 0 0)-L(0 0 -0.5) 空间群: 166号~ R-3M (MS ) ) 3(5 3m R D d (文献) 结构分为:六角晶胞和菱形原胞(Rhombohedral )两种形式 六角晶胞(hexagon):含三个五元层,15个原子 菱形原胞(Rhombohedral ):含5个原子 晶格参数t=9.841, α=24.275 原子坐标: 弛豫值 实验值 Bi(2c) (0.400,0.400,0.400) Bi(2c) (0.398, 0.398, 0.398) Se(1a) (0,0,0) Se(1a) (0,0,0) Se(2c) (0.210, 0.210, 0.210) Se(2c) (0.216, 0.216, 0.216) 赝势:PAW_GGA_PBE E cut =340 eV 块体:Kpoints=11×11×11 薄膜:Kpoints=11×11×1 块体结构优化时,发现Ecut=580,KPOINTS=151515,得到的结构比较合理 计算薄膜真空层统一: 15 ?

ISMER取-5(或取0,对应SIGMA=0.05) 二、计算过程描述: 1)范德瓦尔斯作用力的影响。 手册中一共有5种方法: Correlation functionals:LUSE VDW = .TRUE. the PBE correlation correction AGGAC = 0.0000 Exchange交换functionals vdW-DF vdW-DF2 方法一方法二方法三方法四方法五revPBE optPBE optB88 optB86b rPW86 GGA = RE LUSE_VDW = .TRUE. AGGAC = 0.0000 GGA = OR LUSE_VDW = .TRUE. AGGAC = 0.0000 GGA = BO PARAM1 = 0.1833333333 PARAM2 = 0.2200000000 LUSE_VDW = .TRUE. AGGAC = 0.0000 GGA = MK PARAM1 = 0.1234 PARAM2 = 1.0000 LUSE_VDW = .TRUE. AGGAC = 0.0000 GGA = ML Zab_vdW = -1.8867 LUSE_VDW = .TRUE. AGGAC = 0.0000 经测试,发现方法二optimized Perdew-Burke-Ernzerhof-vdW (optPBE-vdW)是最合适的。并通过比较发现,范德瓦尔斯作用力对块体和单个QL厚度的薄膜的影响很小,对多个QL 厚度的薄膜结构影响比较大,所以优化时需要考虑QL之间的vdW相互作用,而范德瓦尔斯作用力对电子态的影响也比较小,所以,计算静态和能带的时候,可以不考虑。 此外,以往文献中的计算,有的直接采用实验给出的结构参数建模,不再弛豫,计算静态和能带,得到的结果也比较合理。 所以,我们对薄膜采用不优化结构和用optPBE方法优化结构,两种方式。 2)算SOC。 计算材料的自旋轨道耦合性质,一般在优化好的结构基础上,在静态和能带计算是加入特定参数来实现。一般,分两种方式: 第一种是从静态开始,就进行非线性的计算,能带也进行非线性自旋轨道耦合计算。 第二种,则是,在静态时进行非线性计算(按照一般的静态计算进行),产生CHGCAR、WA VECAR,进行能带非线性自旋轨道计算时,读入这两个参数。 V ASP手册推荐使用第二种。 我们通过多次比较发现,使用第一种方法,可以得到更为合理的结果。 3)关于d电子的考虑。 我们分别考虑了Bi原子的两种电子组态: 第一种,含有15个价电子,包含d电子,电子组态5d106s26p3; 第二种,含有5个价电子,不含d电子,电子组态是6s26p3。 通过比较计算结果,发现并没有明显的区别,所有我们选用第二种。

VASP 自旋轨道耦合计算

VASP 自旋轨道耦合计算 已有4532 次阅读2011-9-13 20:37|个人分类:VASP|系统分类:科研笔记 将VASP 的makefile 文件中的 CPP 选项中的 -DNGXhalf, -DNGZhalf, -DwNGXhalf, -DwNGZhalf 这4个选项去掉重新编译VASP才能计算自旋轨道耦合效应。 以下是从VASP在线说明书整理出来的非线性磁矩和自旋轨道耦合的计算说明。 非线性磁矩计算: 1)计算非磁性基态产生WAVECAR和CHGCAR文件。 2)然后INCAR中加上 ISPIN=2 ICHARG=1 或 11 !读取WAVECAR和CHGCAR文件 LNONCOLLINEAR=.TRUE. MAGMOM= 注意:①对于非线性磁矩计算,要在x, y 和 z方向分别加上磁矩,如 MAGMOM = 1 0 0 0 1 0 !表示第一个原子在x方向,第二个原子的y方向有磁矩 ②在任何时候,指定MAGMOM值的前提是ICHARG=2(没有WAVECAR和CHGCAR文件)或者ICHARG=1 或11(有WAVECAR和CHGCAR文件),但是前一步的计算是非磁性的(ISPIN=1)。 磁各向异性能(自旋轨道耦合)计算:

注意: LSORBIT=.TRUE. 会自动打开LNONCOLLINEAR= .TRUE.选项,且自旋轨道计算只适用于PAW赝势,不适于超软赝势。 自旋轨道耦合效应就意味着能量对磁矩的方向存在依赖,即存在磁各向异性能(MAE),所以要定义初始磁矩的方向。如下: LSORBIT = .TRUE. SAXIS = s_x s_y s_z (quantisation axis for spin) 默认值: SAXIS=(0+,0,1),即x方向有正的无限小的磁矩,Z方向有磁矩。 要使初始的磁矩方向平行于选定方向,有以下两种方法: MAGMOM = x y z ! local magnetic moment in x,y,z SAXIS = 0 0 1 ! quantisation axis parallel to z or MAGMOM = 0 0 total_magnetic_moment ! local magnetic moment parallel to SAXIS (注意每个原子分别指定) SAXIS = x y z !quantisation axis parallel to vector (x,y,z),如 0 0 1 两种方法原则上应该是等价的,但是实际上第二种方法更精确。第二种方法允许读取已存在的WAVECAR(来自线性或者非磁性计算)文件,并且继续另一个自旋方向的计算(改变SAXIS 值而MAGMOM保持不变)。当读取一个非线性磁矩计算的WAVECAR时,自旋方向会指定平行于SAXIS。 计算磁各向异性的推荐步骤是: 1)首先计算线性磁矩以产生WAVECAR 和CHGCAR文件(注意加入LMAXMIX)。 2)然后INCAR中加入: LSORBIT = .TRUE. ICHARG = 11 ! non selfconsistent run, read CHGCAR

自旋轨道耦合计算探索过程分析

自旋轨道耦合计算过程探索 1.经验总结 1)对于Bi2Se3家族材料,QL内是强的共价结合作用,QL之间是范德瓦尔斯作用力。所以,在优化结构的时候,需要考虑范德瓦尔斯相互作用。 一般,对于一种没有算过的新材料,可以尝试以上五种方法,哪一种最合理就用哪个。 Bi2Se3家族材料,经测试最合适的是optPBE-vdW方法。 3)测试发现,对于1QL和块体,范德瓦尔斯作用的影响不是很影响;对于多个QL厚度的薄膜,QL之间范德瓦尔斯作用的影响比较明显。 5)算soc加入LSORBIT=.TRUE.和LORBMOM=.TRUE., 比LSORBIT=.TRUE.和GGA_COMPAT = .FALSE.得到的结果更合理。 6)薄膜优化的时候,可以用ISIF=2。 7)计算静态的时候输出CHARG,能带的时候ISTART可以等于0,ICHARG等于11。 7)薄膜的结构需要中心对称,切得时候需要注意。 8)计算vdW,需要vasp5.2.12以上的版本,并且将vdw_kernel.bindat文件放到计算的文件夹中。9)vdW相互作用对结构的影响比较大,对后面的静态计算和能带计算电子态的影响比较小。10)取合适的K点,可以得到较为合理的结构,对后面电子态的计算影响也不是很大。 2. 结构优化 赝势:PAW_GGA_PBE E cut=340 eV Kpoints=10×10×10 ISMER取-5,计算能带时,取0,对应SIGMA=0.05 在MS中可以在build-Symmetry -中把Bi2Se3 rhombohedral representation(菱形表示)和hexagonal representation(六角表示)相互转换

自旋-轨道耦合调制下磁纳米结构中电子自旋极化效应

目录 摘要.......................................................................................................................................I Abstract...............................................................................................................................II 第1章 绪论.. (1) 1.1自旋电子学 (1) 1.2 磁纳米结构 (5) 1.3 磁纳米结构中电子自旋极化效应 (8) 1.4 硕士学位论文的研究工作 (11) 第2章 研究方法和理论 (13) 2.1 改进的转移矩阵法 (13) 2.2Landauer-Büttiker超微结构电导理论 (16) 2.3 本章小结 (18) 第3章 自旋-轨道耦合调制下磁垒纳米结构中电子自旋极化效应 (19) 3.1 引言 (19) 3.2 模型和公式 (20) 3.3 结果和讨论 (23) 3.4 本章小结 (30) 第4章 自旋-轨道耦合调制下复合磁电垒纳米结构中电子自旋极化效应 (31) 4.1 引言 (31) 4.2 模型和公式 (32) 4.3 结果和讨论 (36) 4.4 本章小结 (42) 第5章 结论与展望 (44) 参考文献 (46) 个人简历、申请学位期间的研究成果及发表的学术论文 (52) 致谢 (53) III 万方数据

光与物质相互作用的全量子理论

2.3光与物质相互作用的全量子理论 在本节,我们将以量子化辐射场与两能级原子的相互作用为例来阐述光与物质相互作用的全量子理论。 2.3.1原子系统与光波场的总哈密顿 在半经典理论中,单电子原子与辐射场的相互作用哈密顿为: e H H H F A ?-+= (2.47) 其中A H 和F H 分别代表无相互作用时的原子和辐射场的能量,代表电子的位置矢量,代表辐射场的振幅。当辐射场也被量子化后,我们有: ii i i i i A E i E H σ∑∑== (2.48a) ∑+=+ k k k k F a a H )2/1(ν (2.48b) ∑∑ ==j i ij ij j i j j i e e ,,σμ (2.48c) ∑++=k k k k k a a E )(ε (2.48d) 其中+k a 和k a 分别代表光子的产生和湮灭算符,j i ij =σ代表原子跃迁算符, j e ij =μ代表电偶极矩阵元,2/10)2/(V E k k εν =。于是,我们得到全量子理论中的哈密顿: ∑∑∑∑+++++=j i k k k ij ij k i ii i k k k k a a g E a a H ,)(σσν (2.49) 其中 /)(k k ij ij k E g εμ?-=。在此,我们已从第一项中略去了零点能。 对于一个两能级原子,考虑到ba ab μμ=,我们可令ba k ab k k g g g ==,于是方程(2.49)可进一步简化为: ∑∑+ ++++++=k k k ba ab k bb b aa a k k k k a a g E E a a H ))(()(σσσσν (2.50)

VASP自旋轨道耦合计算错误汇总

VASP自旋轨道耦合计算错误汇总 静态计算时,报错: VERY BAD NEWS!Internal内部error in subroutine子程序IBZKPT: Reciprocal倒数的lattice and k-lattice belong to different class of lattices.Often results are still useful (48) INCAR参数设置: 对策:根据所用集群,修改INCAR中NPAR。将NPAR=4变成NPAR=1,已解决! 错误:sub space matrix类错误 报错:静态和能带计算中出现警告:WARNING:Sub-Space-Matrix is not hermitian共轭in DAV 结构优化出现错误: WARNING:Sub-Space-Matrix is not hermitian in DAV4-4.681828688433112E-002 对策:通过将默认AMIX=0.4,修改成AMIX=0.2(或0.3),问题得以解决。 以下是类似的错误: WARNING:Sub-Space-Matrix is not hermitian in rmm-3.00000000000000 RMM:22-0.167633596124E+02-0.57393E+00-0.44312E-0113260.221E+00BRMIX: very serious problems the old and the new charge density differ old charge density:28.00003new28.060930.111E+00 错误: WARNING:Sub-Space-Matrix is not hermitian in rmm-42.5000000000000 ERROR FEXCP:supplied Exchange-correletion table is too small,maximal index:4794 错误:结构优化Bi2Te3时,log文件: WARNING in EDDIAG:sub space matrix is not hermitian1-0.199E+01 RMM:2000.179366581305E+01-0.10588E-01-0.14220E+007180.261E-01 BRMIX:very serious problems the old and the new charge density differ old charge density:56.00230new124.70394 66F=0.17936658E+01E0=0.18295246E+01d E=0.557217E-02 curvature:0.00expect dE=0.000E+00dE for cont linesearch0.000E+00 ZBRENT:fatal error in bracketing please rerun with smaller EDIFF,or copy CONTCAR to POSCAR and continue 但是,将CONTCAR拷贝成POSCAR,接着算静态没有报错,这样算出来的结果有问题吗? 对策1:用这个CONTCAR拷贝成POSCAR重新做一次结构优化,看是否达到优化精度! 对策2:用这个CONTCAR拷贝成POSCAR,并且修改EDIFF(目前参数EDIFF=1E-6),默认为10-4 错误: WARNING:Sub-Space-Matrix is not hermitian in DAV1-7.626640664998020E-003 网上参考解决方案: 对策1:减小POTIM:IBRION=0,标准分子动力学模拟。通过POTIM控制步长。 POTIM:当IBRION=1,2或3时,是力的一个缩放常数(相当于确定原子每步移动的大小),默认值为0.5。 对策2:改IBRION=1,采用准牛顿算法来优化原子的位置。 原IBRION=2,采用共轭梯度算法来优化原子的位置 对策3:修改ISMEAR 对策4:换成CG弛豫(共轭梯度算法)IBRION=2(决定结构优化过程中,原子如何移动或弛豫) IBRION=2离子是否运动,1不运动但做NSW外循环。0动力学模拟,1准牛顿法离子弛豫 2CG法离子弛豫,3采用衰减二阶运动方程离子弛豫, INCARrelax中设置IBRION=2,未解决! 对策5:用的CG算符,出现的错误是CG算符不能算,在INCAR中加上IALG=Fast(电子优化采用blocked Davidson 方法[IALGO=38:IALG=Normal]和RMM-DIIS算法[IALGO=48:IALG=Very_Fast]混合)试一试

第2章电离辐射与物质的相互作用.

第二章电离辐射与物质的相互作用 个人觉得第二章是整个内容中理论性最强的一部分,要掌握这些内容得多看几遍书才行, 要是感到不好理解的话,只能死记了! 而且整个第二章内容已经很精简了,短短的二十页内容,几乎处处都是考点, 好好多看几遍书才行! 第一节带电粒子与物质的相互作用 一、带电粒子与物质相互作用的主要方式: 1、与核外电子发生非弹性碰撞; 2、与原子核发上非弹性碰撞; 3、与原子核发上弹性碰撞; 4、与原子核发生核反应 掌握以上各种作用方式的作用过程以及每种作用的关系式、由关系式得出的结论。 掌握概念 电离辐射,直接致电离辐射,间接致电离辐射; 线性碰撞阻止本领,质量碰撞阻止本领; (线性碰撞阻止本领linear collision stopping power)入射带电粒子在靶物质中穿行单位长度路程时电离损失的平均能量(J*m-1) 质量碰撞阻止本领(mass collision stopping power)线性碰撞阻止本领除以靶物质的密度 线性辐射阻止本领,质量辐射阻止本领; 单位路程长度和单位质量厚度的辐射能量损失。 总质量阻止本领,质量角散射本领; 带电粒子在密度为p的介质中穿过路程dl时,一切形式的能量损失dE除以pdl而得的商。 质量角散射本领指均方散射角除以吸收块密度p和厚度l之积所得的商,与原子序数的平方成正比,与入射电子的动量平方近似成反比。 射程,路经,半值深度,实际射程; 沿入射方向从入射位置至完全停止位置所经过的距离称为射程。粒子从入射位置至完全停止位置沿运动轨迹所经过的距离称为路径长度; 比电离; 带电粒子穿过靶物质时使物质原子电离产生电子-离子对,单位路程上产生的电子-离子对数目称为比电离,它与带电粒子在靶物质中的碰撞阻止本领成正比。 传能线密度。(linear energy transfer, LET) 描述辐射品质的物理量,定义为dE除以dl而得的商。 第二节X(r)射线与物质的相互作用 1、X(r)射线与物质相互作用的特点:(区别与带电粒子与物质的相互作用) 1)不能直接引起物质原子电离或激发,而是首先把能量传递给带电粒子; 2)与物质的一次相互作用可以损失其能量的全部或很大一部分,而带电粒子则是通过许多次相互作用逐渐损失其能量; 3)光子束入射到物体时,其强度随穿透物质厚度近似呈指数衰减,而带电粒子有确定的射程,在射程之外观察不到带电粒子。 2、光子与物质的相互作用过程: 1)主要过程:光电效应、康普顿效应、电子对效应; 2)次要过程:相干散射、光核反应等。

ADF教程:如何计算自旋轨道耦合矩阵元SOCME

ADF教程:如何计算自旋-轨道耦合矩阵元SOCMEs 前言: 自旋-轨道耦合对于磷光很重要,因为如果二者耦合如果严格为0,那么单重态和三重态之间的跃迁就会成为禁阻跃迁,就不会有磷光发生。 有时候我们需要关心某个特定几何结构下(例如S0态与T1态势能面交叉点处),S0态与T1态之间自旋轨道耦合。用算符来表示即: ,也就是自旋-轨道耦合算符,左边乘以S0态、右边乘以T1态,然后在全空间积分得到的一个实数(包括实部和虚部)。这个实数有时候我们把它称作矩阵元,这是因为可能有很多个态,比如S0、T1、S1、S2、S3、T2、T3……,这些所有态之间,都可以有这样一个积分得到的实数。如果把这些态,按序号排列好,分别叫做State n (N=1,2,3……N),那么就可以对应为一个N*N的矩阵,i行j列,即为。 这个矩阵有一个特点,也就是i行j列与j行i列是共轭关系:二者实部相同,虚部反号,因此二者的模相等。我们可能更关心这个实数的模,即实数的实部与虚部的平方和。因此我们通过计算,然后找到该矩阵元的实部和虚部,之后求取平方和即可。 步骤: 此处以CH4举例(C1群分子输出结果更简单) 第一步,优化分子结构; 第二步,进行自旋-轨道耦合矩阵元的计算。这一步计算的物理意义:首先以Scalar相对论(无自旋轨道耦合的相对论方法)将较低的单重激发态和三重激发态计算出来,然后将自旋-轨道耦合视为微扰,得到自旋-轨道耦合矩阵元,然后也得到考虑微扰之后的各个激发态的激发能(此时,三重态可能会发生劈裂,即三个态能量不等——这就是由自旋-轨道耦合引起的)。 因此,计算参数设置如下:

电离辐射与物质的相互作用

第二章 电离辐射与物质的相互作用 原子的核外电子因与外界相互作用获得足够的能量,挣脱原子核对它的束缚,造成原子的电离。由带电粒子通过碰撞直接引起的物质的原子或分子的电离称为直接电离;由不带电粒子通过它们与物质的相互作用产生带电粒子引起的原子的电离,称为间接电离。由带电粒子、不带电粒子、或两者混合组成的辐射称为电离辐射。电离辐射与物质的相互作用是辐射剂量学的基础。本章讨论带电粒子、X (γ)射线与物质的相互作用过程,定量分析它们在物质中的转移、吸收规律。 第一节 带电粒子与物质的相互作用 一、带电粒子与物质相互作用的主要方式 相互作用的主要方式:(1)与原子核外电子发生非弹性碰撞;(2)与原子核发生弹性碰撞;(3)与原子核发生非弹性碰撞;(4)与原子核发生核反应。 (一)带电粒子与核外电子的非弹性碰撞 当带电粒子从靶物质的原子近旁经过时,入射粒子与轨道电子之间的库仑力使轨道电子受到吸引或排斥,从而获得一部分能量。如果轨道电子获得足够的能量,就会引起原子电离,原子成为正离子,轨道电子成为自由电子。如果轨道电子获得的能量不足以电离,则可以引起原子激发,使电子从低能级跃迁到高能级。处于激发态的原子很不稳定,跃迁到高能级的电子会自发跃迁到低能级而使原子回到基态,同时放出特征X 射线或俄歇电子。如果电离出来的电子具有足够的动能,能进一步引起物质电离,则称它们为次级电子或δ电子,由次级电子引起的电离称为次级电离。 碰撞损失或电离损失:带电粒子因与核外电子的非弹性碰撞,导致物质原子电离和激发而损失的能量。描述电离(碰撞)损失的两个物理量:线性碰撞阻止本领(linear collision stopping power )(用符号S col 或()col dE dl 表示)和质量碰撞阻止本领(mass collision stopping power )(用符号()col S ρ或1()col dE dl ρ表示)。线性阻止本领是指入射带电粒子在靶物质中穿行单位长度路程时电离损失的能量,其SI 单位是,还常用到这一单位。质量阻止本领是线性碰撞阻止本领除以靶物质的密度,其SI 单位为,还常用到这一单位。 对于重带电粒子: (1)电离损失近似与重带电粒子的能量成反比,这是因为带电粒子速度越慢,与轨道电子相

自旋-轨道耦合

自旋-轨道作用[编辑] 在量子力学里,一个粒子因为自旋与轨道运动而产生的作用,称为自旋-轨道作用(英语:Spin–orbit interaction),自旋-轨道效应或自旋-轨道耦合。最著名的例子是电子能级的位移。电子移动经过原子核的电场时,会产生电磁作用.电子的自旋与这电磁作用的耦合,形成了自旋-轨道作用。谱线分裂实验明显地侦测到电子能级的位移,证实了自旋-轨道作用理论的正确性。另外一个类似的例子是原子核壳层模型(shell model)能级的位移。 半导体或其它新颖材料常常会涉及电子的自旋-轨道效应。自旋电子学专门研究与应用这方面的问题。 目录 [隐藏] 1 电子的自旋-轨道作用 1.1 磁场 1.2 磁矩 1.3 哈密顿量微扰项目 1.4 能级位移 2 参阅 3 参考文献 4 外部链接 电子的自旋-轨道作用[编辑] 在这篇文章里,会以相当简单与公式化的方式,详细地讲解一个束缚于原子内的电子的自旋-轨道作用理论。这会用到电磁学、非相对论性量子力学、一阶微扰理论。这自旋-轨道作用理论给出的答案,虽然与实验结果并不完全相同,但也相当的符合。更严峻的导引应该从狄拉克方程开始,也会求得相同的答案。若想得到更准确的答案,则必须用量子电动力学来计算微小的修正。这两种方法都在本条目范围之外。 磁场[编辑] 虽然在原子核的静止参考系 (rest frame) ,并没有磁场;在电子的静止参考系,有磁场存在。暂时忽略电子的静止参考系不是惯性参考系,则根据狭义相对论[1],磁场是 ;(1) 其中,是电子的速度,是电子运动经过的电场,是光速。 以质子的位置为原点,则从质子产生的电场是 ; 其中,是质子数量(原子序数),是单位电荷量,是真空电容率,是径向单位矢量,是径向距离,径向矢量是电子的位置。 电子的动量是 ; 其中,是电子的质量。 所以,作用于电子的磁场是 ;(2)

Bi2Se3自旋轨道耦合计算

Bi2Se3自旋轨道耦合计算

Bi2Se3自旋轨道耦合性质的计算 一、模型和基本参数: 图(a)黑色t1、t2、t3基矢围成Bi2Se3菱形原胞,用于计算块体,红色方框包含一个五元层,是构成薄膜的一个QL。 计算能带的布里渊区高对称点:Г(0 0 0)-Z(π π π)-F(π π 0)-Г(0 0 0)-L(π 0 0), 根据正空间和倒空间坐标的转换关系, 得到正空间中高对称点的坐标:Г(0 0 0)-Z(0.5 0.5 0.5)-F(0.5 0.5 0)-Г(0 0 0)-L(0 0 -0.5) 空间群:166号~ R-3M(MS))3(5 3 m R D d (文献)

结构分为:六角晶胞和菱形原胞(Rhombohedral)两种形式 六角晶胞(hexagon):含三个五元层,15个原子菱形原胞(Rhombohedral):含5个原子 晶格参数t=9.841, α=24.275 原子坐标: 弛豫值实验值 Bi(2c) (0.400,0.400,0.400) Bi(2c) (0.398, 0.398, 0.398) Se(1a) (0,0,0) Se(1a) (0,0,0) Se(2c) (0.210, 0.210, 0.210) Se(2c) (0.216, 0.216, 0.216) 赝势:PAW_GGA_PBE E cut=340 eV 块体:Kpoints=11×11×11 薄膜:Kpoints=11×11×1 块体结构优化时,发现Ecut=580,KPOINTS=151515,得到的结构比较合理 计算薄膜真空层统一:15 ?

ISMER取-5(或取0,对应SIGMA=0.05)二、计算过程描述: 1)范德瓦尔斯作用力的影响。 手册中一共有5种方法: Correlation functionals:LUSE VDW = .TRUE. the PBE correlation correction AGGAC = 0.0000 Exchange交换functionals vdW-DF vdW-DF2 方法一方法二方法三方法四方法五revPBE optPBE optB88 optB86b rPW86 GGA = RE LUSE_VDW = .TRUE. AGGAC = 0.0000 GGA = OR LUSE_VDW = .TRUE. AGGAC = 0.0000 GGA = BO PARAM1 = 0.1833333333 PARAM2 = 0.2200000000 LUSE_VDW = .TRUE. AGGAC = 0.0000 GGA = MK PARAM1 = 0.1234 PARAM2 = 1.0000 LUSE_VDW = .TRUE. AGGAC = 0.0000 GGA = ML Zab_vdW = -1.8867 LUSE_VDW = .TRUE. AGGAC = 0.0000 经测试,发现方法二optimized Perdew-Burke-Ernzerhof-vdW (optPBE-vdW)是最合适的。 并通过比较发现,范德瓦尔斯作用力对块体和单个QL厚度的薄膜的影响很小,对多个QL厚度的薄膜结构影响比较大,所以优化时需要考虑QL之间的vdW相互作用,而范德瓦尔斯作用力对电子态的影响也比较小,所以,计算静态和能带的时候,可以不考虑。 此外,以往文献中的计算,有的直接采用实

激光与物质相互作用复习大纲

1、从激光束的特性分析,为什么激光束可以用来进行激光与物质的相互作用? 答:(1)方向性好:发散角小、聚焦光斑小,聚焦能量密度高。 (2)单色性好: 为精密度仪器测量和激励某些化学反应等科学实验提供了极为有利的手段。 (3)亮度极高:能量密度高。 (4)相关性好:获得高的相关光强,从激光器发出的光就可以步调一致地向同一方向传播,可以用透镜把它们会聚到一点上,把能量高度集中起来。 总之,激光能量不仅在空间上高度集中,同时在时间上也可高度集中,因而可以在一瞬间产生出巨大的光热,可广泛应用于材料加工、医疗、激光武器等领域。 2、透镜对高斯光束聚焦时,为获得良好聚焦可采用的方法? 答:用短焦距透镜; 使高斯光束远离透镜焦点,从而满足l>>f、l>>F; 取l=0,并使f>>F。 3、什么是焦深,焦深的计算及影响因素? 答:光轴上其点的光强降低至激光焦点处的光强一半时,该点至焦点的距离称为光束的聚焦深度。光束的聚焦深度与入射激光波长和透镜焦距的平方成正比,与w12成反比,因此要获得较大的聚焦深度,就要选长聚焦透镜,例如在深孔激光加工以及厚板的激光切割和焊接中,要减少锥度,均需要较大的聚焦深度。 4、对于金属材料影响材料吸收率的因素有哪些? 答:波长、温度、材料表面状态 波长越短,金属对激光的吸收率就越高 温度越高,金属对激光的吸收率就越高 材料表面越粗糙,反射率越低,吸收率越大。 5、简述激光模式对激光加工的影响,并举出2个它们的应用领域? 答:基模光束的优点是发散角小,能量集中,缺点是功率不大,且能量分布不均。 应用:激光切割、打孔、焊接等。 高阶模的优点是输出功率大,能量分布较为均匀,缺点是发散厉害。应用:激光淬火(相变硬化)、金属表面处理等。 6、试叙述激光相变硬化的主要机制。 答:当采用激光扫描零件表面,其激光能量被零件表面吸收后迅速达到极高的温度,此时工件部仍处于冷态,随着激光束离开零件表面,由于热传导作用,表面能量迅速向部传递,使表层以极高的冷却速度冷却,故可进行自身淬火,实现工件表面相变硬化。 7、激光淬火区横截面为什么是月牙形?在此月牙形区相变硬化有什么特点? 特点:A,B部位硬化,C部位硬化不够 原因:A,B部位接近材料部,热传导速率大,可以高于临界冷却速度的速度冷却,因此

光与原子相互作用

§9-2 光与原子相互作用 人们对于光的种种性质的了解,都是通过观察光与物质相互作用而获得的,光与物质的相互作用,可以归结为光与原子的相互作用,这种相互作用,有三种主要过程:吸收、自发辐射和受激辐射。 一、吸收 如果有一个原子,开始时处于基态1E ,若没有任何外来光子接近它,则它将保持不变 E 2E 1E 2E 1E 1 E 2 (a)(b)(c) (图9-4) [图9-4(a )],如果有一个能量为21hv 的光子接近这个原子,则它就有可能吸收这个光子,从而提高它的能量状态[图9-4(b )],本来处于基态1E 的原子,在吸收21hv 以后,就激发到激发态2E [图9-4(c )],整个图9-4表示原子对光的吸收过程,在吸收过程中,不是任何能量的光子都能被一个原子所吸收,只有当光子的能量正好等于原子的能级间隔2E —1E 时,这样的光子才能被吸收。 设处于基态1E 的原子密度为1n ,光的辐射能量密度为()u v ,则单位体积单位时间内吸收光子而跃迁到激发态2E 去的原子数12n 应该与1n 和()u v 成正比,因而有12n ∝1()n u v 即 12121()n B n u v = (9-6) 其中12B 为比例系数,称为受激吸收爱因斯坦系数,121()B n u v 称为吸收速率,用12ω表示,于是(9-6)式可写成 12112B n ω= 二、自发辐射 从经典力学的观点来讲,一个物体如果势能很高,它将是不稳定的,与此相类似,处于激发态的原子也是不稳定的,它们在激发态停留的时间一般都非常短,大约在8 10s -的数量级,所以我们常常说,激发态的寿命约为810s -,在不受外界的影响时,它们会自发地返回到基态去,从而放出光子,这种自发地从激发态返回较低能态而放出光子的过程,显然,如果处于激发态2E 的原子密度为2n ,则自发辐射光子数为

ADF教程:如何计算自旋-轨道耦合矩阵元

如何计算自旋-轨道耦合矩阵 前言: 自旋-轨道耦合对于磷光很重要,因为如果二者耦合如果严格为0,那么单重态和三重态之间的跃迁就会成为禁阻跃迁,就不会有磷光发生。 有时候我们需要关心某个特定几何结构下(例如S0态与T1态势能面交叉点处),S0态与T1态之间自旋轨道耦合。用算符来表示即:,也就是自旋-轨道耦合算符,左边乘以S0态、右边乘以T1态,然后在全空间积分得到的一个实数(包括实部和虚部)。这个实数有时候我们把它称作矩阵元,这是因为可能有很多个态,比如S0、T1、S1、S2、S3、T2、T3……,这些所有态之间,都可以有这样一个积分得到的实数。如果把这些态,按序号排列好,分别叫做State n(N=1,2,3……N),那么就可以对应为一个N*N的矩阵,i行j列,即为。 这个矩阵有一个特点,也就是i行j列与j行i列是共轭关系:二者实部相同,虚部反号,因此二者的模相等。我们可能更关心这个实数的模,即实数的实部与虚部的平方和。因此我们通过计算,然后找到该矩阵元的实部和虚部,之后求取平方和即可。 步骤: 此处以CH 4举例(C1群分子输出结果更简单) 第一步,优化分子结构(详情请点击);

第二步,进行自旋-轨道耦合矩阵元的计算。这一步计算的物理意义:首先以Scalar相对论(无自旋轨道耦合的相对论方法)将较低的单重激发态和三重激发态计算出来,然后将自旋-轨道耦合视为微扰,得到自旋-轨道耦合矩阵元,然后也得到考虑微扰之后的各个激发态的激发能(此时,三重态可能会发生劈裂,即三个态能量不等——这就是由自旋-轨道耦合引起的)。 因此,计算参数设置如下:

第二章 电离辐射与物质的相互作用

第二章电离辐射与物质的相互作用(2) 第二节X(r)射线与物质的相互作用 1、X(r)射线与物质相互作用的特点: 1)不能直接引起物质原子电离或激发,而是首先把能量传递给带电粒子; 2)与物质的一次相互作用可以损失其能量的全部或很大一部分,而带电粒子则是通过许多次相互作用逐渐损失其能量; 3)光子束入射到物体时,其强度随穿透物质厚度近似呈指数衰减,而带电粒子有确定的射程,在射程之外观察不到带电粒子。 2、光子与物质的相互作用过程: 1)主要过程:光电效应、康普顿效应、电子对效应; 2)次要过程:相干散射、光核反应等。 一、光子与物质相互作用系数 1、基本概念:截面,线性衰减系数,质量衰减系数,线能量转移系数,质量能量转移系数,质量能量吸收系数,半价层,平均自由程,有效原子序数 2、线性衰减系数与截面之间的关系 3、窄束、宽束光子线穿过靶物质时其强度衰减规律 4、μ,HVL和l三者之间的关系 5、μ/ρ,μen/ρ,μtr/ρ三者之间的关系 二、光电效应 1、光子与物质原子的轨道电子发生相互作用,把全部能量传递给对方,X(r)光子消失,获得能量的电子挣脱原子束缚成为自由电子(光电子),原子的电子轨道出现一个空位而处于激发态,它将通过发射特征X线或俄歇电子的形式很快回到基态,这个过程成为光电效应。 2、由能量守恒定律知,发生光电效应时,入射光子能量和光电子的动能,满足关系式hv=Ee+ Bi, 式中Bi为原子第i层电子的结合能,与原子序数和壳层数有关。 3、K层和L层电子发生光电效应的概率最大,如果入射光子的能量大于K层电子结合能,则K层电子光电效应截面的80%以上。 4、(1)原子的光电效应总截面和光电线性衰减系数与原子序数Z的4—4.8次方成正比,光电质量衰减系数与Z的3—3.8次方成正比;

光子与物质的三种作用方式

γ射线与物质的相互作用: γ射线是一种强电磁波,它的波长比X射线短,一般波长 <0.001nm。 γ射线基本性质: 到某个激发态,处于激发态的原子核仍是不稳定的,并且会通过释放一系列能量使其跃迁到稳定的状态,而这些能量的释放是通过射线辐射来实现的,这种射线就是γ射线。 γ射线起源于原子核能量状态变化过程;X射线起源于原子核外电子能量状态变化过程;湮没辐射起源于正负电子的结合;轫致辐射起源于带电粒子的加速运动,这些辐射能量各不相同,但同属电磁辐射,也满足Ε=hν。 γ射线与物质的相互作用机制属于全或无相互作用,不同于α、β射线的多次小相互作用,γ射线穿透物质后强度减小但能量几乎不降低,α、β射线穿透物质后强度减小,能量也降低。 γ射线具有极强的穿透本领。人体受到γ射线照射时,γ射线可以进入到人体的内部,并与体内细胞发生电离作用,电离产生的离子能侵蚀复杂的有机分子,如蛋白质、核酸和酶,它们都是构成活细胞组织的主要成份,一旦它们遭到破坏,就会导致人体内的正常化学过程受到干扰,严重的可以使细胞死亡。 光电效应: γ光子与介质的原子相互作用时,整个光子被原子吸收,其所有能量传递给原子中的一个电子(多发生于内层电子)。该电子获得能

量后就离开原子而被发射出来,称为光电子。光电子的能量等于入射γ光子的能量减去电子的结合能。光电子与普通电子一样,能继续与介质产生激发、电离等作用。由于电子壳层出现空位,外层电子补空位并发射特征X射线。 康普顿效应: 1923年美国物理学家康普顿(https://www.doczj.com/doc/639871785.html,pton)发现X光与电子散射时波长会发生移动,称为康普顿效应。γ光子与原子外层电子(可视为自由电子)发生弹性碰撞,γ光子只将部分能量传递给原子中外层电子,使该电子脱离核的束缚从原子中射出。光子本身改变运动方向。被发射出的电子称康普顿电子,能继续与介质发生相互相互作用。散射光子与入射光子的方向间夹角称为散射角,一般记为θ。反冲电子反冲方向与入射光子的方向间夹角称为反冲角,一般记为φ。当散射角θ=0°,散射光子的能量为最大值,这时反冲电子的能量为0,光子能量没有损失;当散射角θ=180°时,入射光子和电子对头碰撞,沿相反方向散射回来,而反冲电子沿入射光子方向飞出,这种情况称反散射,此时散射光子的能量最小。 电子对效应: 能量大于1.02MeV的γ光子从原子核旁经过时,在原子核的库仑场作用下,γ光子转变成一个电子和一个正电子。光子的能量一部分转变成正负电子的静止能量(1.02MeV),其余就作为它们的动能。被发射出的电子还能继续与介质产生激发、电离等作用;正电子在损失能量之后,将于物质中的负电子相结合而变成γ射线,即湮没

X射线与物质相互作用

第三节X射线与物质相互作用 我们前面讲过当X射线穿透物质时,与物质发生各种作用有吸收、散射、透射光电效应等 一、X射线的散射 X射线是一种电磁波,当它穿透物质时,物质的原子中的电子,可能使X射线光子偏离原射线方向,即发生散射。X射线的散射现象可分为相干散射和非相干散射。 1、相干散射及散射强度 当X射线通过物质时,在入射电场作用下,物质原子中的电子将被迫围绕其平衡位置振动,同时向四周辐射出与入射X射线波长相同的散 射X射线,称为经典散射。由于散射波与入射波的频率或波长相同,位 相差恒定,在同一方向上各散射波符合相干条件,又称为相干散射。 按动力学理论,一个质量为m的电子,在与入射线呈2θ角度方向上距离为R处的某点,对一束非偏振X射线的散射波强度为: I e =I 0) 2 2 cos 1 ( 2 4 2 2 4θ + C m R e 它表示一个电子散射X射线的强度,式中f e =e2/mC2称为电子散射因 子。 22 cos 12θ + 称为极化因子或偏振因子。它是由入射波非偏振化引起的 I e =I 0) 2 2 cos 1 ( 10 9.72 2 26θ + ?- R 从上式可见(书P5) 相干散射波之间产生相互干涉,就可获得衍射。可见相干散射是X 射线衍射技术的基础。 2、非相干散射 当入射X射线光子与原子中束缚较弱的电子或自由电子发生非弹性碰撞时,光子消耗一部分能量作为电子的动能,于是电子被撞出离子外(即反冲电子)同时发出波长变长,能量降低的非相干散射,或康普顿散射

这种散射分布在各方向上,波长变长,相位与入射线之间也没有固 定的关系,故不产生相互干涉,不能产生衍射,只会称为衍射谱的背底,给衍射分析工作带来干扰和不利的影响。 二、X 射线的透射 X 射线射线透过物质后强度的减弱是X 射线射线光子数的减少,而不是X 射线能量的减少。所以,透射X 射线能量和传播方向基本与入射线相同。 X 射线与物质相互作用,实质上是X 射线与原子的相互作用,其基本原理是原子中受束缚电子被X 射线电磁波的振荡电场加速,短波长的X 射线易穿过物质,长波长X 射线易被物质吸收。 三、X 射线的吸收 长波长X 射线被物质吸收时,能量向其他形式转变。X 射线能量除转变为热量之外,,还可以转变为电子电离,荧光产生,俄歇电子形成等光电效应。 1、光电效应 电离是指当入射光子能量大于物质中原子核对电子的束缚能时,电子将吸收光子的全部能量而脱离原子核的束缚,成为自由电子。被激出的电子称为光电子。这种因为入射线光子的能量被吸收而产生光电子的现象称为光电效应。 ① 荧光效应①② 指当高能X 射线光子激发出被照射物质原子的内层电子后,较外 层电子填其空穴而产生了次生特征X 射线(或称为二次特征辐射)的 现象。 因其本质上属于光致发光的荧光现象,即与短波射线激发物质产 生次生辐射的荧光现象本质相同,故也称为荧光效应或荧光辐射。 要产生荧光效应,显然入射X 射线光量子能量h ν必须等于或大于 将此原子某一壳层的电子激发出所需要的脱出功。因此产生某系激发 都有一个某系激发的最长波长,即激发限。该波长必须满足λi = ι ν24.1(nm ) 荧光效应与X 射线管产生特征X 射线的过程相似,不同之处在于:

相关主题
文本预览
相关文档 最新文档