当前位置:文档之家› 电力线载波通信系统

电力线载波通信系统

电力线载波通信系统
电力线载波通信系统

摘要

电力线载波通信是以输电线路为载波信号的传输媒介的电力系统通信。由于输电线路具备十分牢固的支撑结构,并架设3条以上的导体(一般有三相良导体及一或两根架空地线),所以输电线输送工频电流的同时,用之传送载波信号,既经济又十分可靠。这种综合利用早已成为世界上所有电力部门优先采用的特有通信手段。这次的课程设计通过电力线在波芯片设计一个电力线载波通信系统。

电力线载波通信具有广阔的应用前景但由于电力线的噪声和干扰对信道的污染很大,严重影响了低压电线载波通信的质量。本文就电力线载波通信的优点缺点及发展现状进行了讨论,并分析了电力信道的噪声分类,特性及对我们信号的影响。以及我们对噪声的滤波耦合等。并且详细的介绍了电力线载波通信的具体实现形式方法和步骤最终形成一个系统达到我们的要求。

课程设计选用青岛东软的SSC1641的电力线载波芯片该芯片具有调制解条,a/d,d/a通信的功能,该芯片直接对信号数字信号处理,极大地提高了通信的可靠性。文中包括了他的外围电路,信号放大,耦合,滤波等最终实现功能。

实现了接收电力线的含有噪声的信号,然后对这个信号滤波模数转换等处理后通过串行通信的方式发送到过单片机,单片机经过数据处理后通过LCD1602显示出来,并且也通过串行通信发送到PC机显示出来。PC机或开关电路输入信号经过SSC1641处理后通过电力线发送。这样一个系统阶完成了接收与发送信号,形成了一个通信系统。

关键字:电力线载波通信系统SSC1641 调制解调

1、绪论

1.1设计任务及要求

电力线载波通信系统设计基本要求:下图一个电力线载波通信模块的结构组成,请看懂,并查阅资料了解电力线载波通信的原理和电力线载波芯片的技术资料。根据系统结构,完成载波芯片外的其他器件选型、配套硬件电路设计(包括原理图、PCB图)、软件设计和仿真调试。系统至少具备以下特性:

1)开关量输入和输出各5路; 2)系统24V供电;

3)具有通信状态指示功能; 4)有232、485或USB有线通信接口;

5)断电继续工作能力; 6)其他自己发挥的功能。

1.2 设计思路

此次课程设计要求基于SSC1641芯片设计一个电力线载波通信系统,能实现双向数据的收发功能,具有有线通信模块,使系统能跟PC 的其他设备进行数据传输,具有现实模块,现实系统收发的数据,还具有五路数字信号输入和五路数字信号输出,并具有一定的断点继续工作能力。基于以上功能,我们选用AT89C51作为处理器,选用LCD1602作显示屏,有线通信模块选用RS232,开关量入采用简单的开关电路控制信号的输入,开关量出采用继电器电路,并使用LM78xx 作为变压系统将课题提供的24v 点转为系统需要的电压,调制解调模块用课题要求的SSC1641芯片,并设计信号耦合于滤波电路对电力线上的信号耦合出来并进行滤波以滤除低频干扰信号,设计了输出放大滤波电路对调制后的模拟信号进行放大,还有过零检测电路,为信号过零点提供依据,作为相位判别。对于单片机一对串行口需要接到两个外接对象的问题时,我们采用74LS153设计了一个硬件电路作为选择器,解决了这个问题。整个系统基本达到了课题设计的要求,实现了所要求的各种功能。

2、系统组成和工作原理

2.1 系统组成和各部分作用

制解调器 模块

耦合电路

电力线 接线 端子

继电器6及其驱动转换电路

继电器10及其驱动转换电路

: : : : {

{开关量入 开关量出

处理器 模块

相关处理电路

相关处理电路

电源模块

显示模块

有线通信模块

~220V

其他模块

1、处理器AT89C51模块:合理配送输入输出数据,并通过软件配合实现将输入输出信号在LCD显示屏上显示出来。

2、LCD显示屏:对输入输出处理器的数据进行显示。

3、RS232有线通信模块:实现PC等外设对处理器输入信号。

4、信号输入相关处理电路模块:实现五路数字信号的输入。

5、继电器及其驱动转换电路模块:实现五路输出的数字信号来控制其他外接电路的功能。

6、串行通信对象选择电路:此电路实现处理器一个串行口同时连接到RS232与SCC1641上,保证数据传输的通畅。

7、SSC1641模块:对电力线上的模拟信号进行解调并传输到处理器模块,对处理器发送来的数字信号进行调制并输送到电力线上去。

8、输入信号滤波电路:对电力线上的模拟信号进行滤波,滤除低频干扰信号。

9、信号输出放大滤波电路:对调制后的模拟信号进行放大滤波,以便在电力线上传输。

10、过零检测电路:这部分电路的功能是把工频交流电的过零点时刻以脉冲的方式告知载波芯片,从而为分时通信以及相位判别提供依据。

11、降压电路:课题提供的是24v电压,而系统需要的是5v和12v电压,所以需要进行降压处理。

12、储电电路:此模块实现系统断电继续工作能力。

2.2系统工作原理

本电力线载波通信系统由单片机、显示模块、输入输出电路、过零检测电路、载波耦合电路、信号输出放大电路、信号输入滤波电路、电力线载波通信芯片SSC1641等组成,具体电路实现详见硬件设计部分。

发送信号工作原理:

信号输入电路输入信号,每路光耦的输入端发光二级管的正极接+5V 电压,只要负极为低电平,就会使二极管导通,从而实现输入输出的光电耦合。光耦输出端的发射极接地,集电极通过 4.7KΩ的电阻接+5V 电压,同时通过模块电路接到单片机的P0.3~P0.7端。LCD 通过P2口接收数据并显示,同时使P0.1输出高电平,P0.2口拉低,控制数据选择器74LS153,让串行数据输出端TXD与SSC1641数据接收端RXD1连通,处理器将信号发送给SSC1641进行调制。,由第7管脚输出到信号放大滤波电路,对输入的信号进行放大,并经过简单的滤波之后,配合过零检测电路检测到工频交流电过零点时刻,将信号耦合电路耦合到电力线上,满足电力传输的要求,从而实现信号发送。

信号接收工作原理:

信号耦合电路从电力线上耦合得到输入信号,输入滤波电路对信号进行滤波从而提高载波信号接收性能,滤波后的信号从第4管脚SSCIN输入后,经过低噪声放大器进行放大,放大后的信号经5管脚输出,进入C59、C53和C52构成的滤波器滤波后,由第6管脚输入,在经过两级可编程增益放大器放大后,进入模数转换器转换成

数字信号。令P0.0口输出低电平,SSC1641串行数据输出端TXD1与单片机数据接收端RXD 连通,将信号发送给单片机,通过软件控制将信号经P2口发送给LCD1602显示,同时由P1口输出信号控制继电器模块输出开关量。

RS232模块通过控制与上位机通信。p0.0=0时,处理器接收RS232接口发送的数据当p0.1=0,p0.2=1时,处理器将信号发送给RS232接口。

电源模块为整个系统提供匹配电源,备用电源模块可以在外部供电与电池供电之间自动切换,实现断电继续工作能力。

3、系统硬件设计

3.1 处理器模块

电路图如下所示:

1.AT89C51主要特性:

·8031 CPU与MCS-51 兼容· 全静态工作:0Hz-24KHz · 4K字节可编程FLASH存储器(寿命:1000写/擦循环)

· 三级程序存储器保密锁定· 128*8位内部RAM

· 32条可编程I/O线· 两个16位定时器/计数器·6个中断源· 可编程串行通道

· 低功耗的闲置和掉电模式

· 片内振荡器和时钟电路

2.管脚说明:

VCC:供电电压。GND:接地。

P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。当P1口的管脚第一次写1时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。

P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在FLASH编程和校验时,P1口作为第八位地址接收。

P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。并因此作为输入时,P2口的管脚被外部拉低,将输出电流。这是由于内部上拉的缘故。P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。P2口在FLASH编程和校验时接收高八位地址信号和控制信号。

P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL 门电流。当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。

P3口也可作为AT89C51的一些特殊功能口,如下表所示:

口管脚备选功能

P3.0 RXD(串行输入口)

P3.1 TXD(串行输出口)

P3.2 /INT0(外部中断0)

P3.3 /INT1(外部中断1)

P3.4 T0(记时器0外部输入)

P3.5 T1(记时器1外部输入)

P3.6 /WR(外部数据存储器写选通)

P3.7 /RD(外部数据存储器读选通)

P3口同时为闪烁编程和编程校验接收一些控制信号。

3.2显示器模块

电路图如下所示:

LCD1602液晶显示屏基本参数:

1602字符型LCD通常有14条引脚线或16条引脚线的LCD,多出来的2条线是背光电源线

第1脚:VSS为地电源

第2脚:VDD接5V正电源

第3脚:V0为液晶显示器对比度调整端,接正电源时对比度最弱,接地电源时对比度最高,对比度过高时会产生“鬼影”,使用时可以通过一个10K的电位器调整对比度(建议接地,弄不好有的模块会不显示)

第4脚:RS为寄存器选择,高电平时选择数据寄存器、低电平时选择指令寄存器。

第5脚:RW为读写信号线,高电平时进行读操作,低电平时进行写操作。

第6脚:E端为使能端,当E端由高电平跳变成低电平时,液晶模块执行命令第7~14脚:D0~D7为8位双向数据线。

第15~16脚:空脚(有的用来接背光)

3.3继电器电路

电路图如下所示:

其基本功能是通过处理器输入的数字信号来控制继电器的开关选择来控制其他电路,是一种以弱电控制强电的电路

基本单元电路图如下图所示

主要技术参数

型号: HK4100F-DC5V-SH

1.触点参数:

触点形式:1C(SPDT)

触点负载: 3A 220V AC/30V DC

阻抗:≤100mΩ

额定电流: 3A

电气寿命:≥10万次

机械寿命:≥1000万次

2.线圈参数:

阻值(士10%): 120Ω

线圈功耗:0.2W

额定电压:DC 5V

吸合电压:DC 3.75V

释放电压:DC 0.5V

工作温度:-25℃~+70℃

绝缘电阻:≥100MΩ

线圈与触点间耐压:4000VAC/1分钟触点与触点间耐压:750VAC/1分钟

3.4开关输入电路

电路图如下所示:

光耦器件及工作原理:

单片机的输入输出口线是最容易引入干扰的地方;在严重干扰的情况下,需要将所有的口线光电隔离。由此会引出光耦这一元件。光耦是用来隔离输入输出的,主要是隔离输入的信号。光电耦合器(简称光耦)是以光为媒介把输入端信号耦合到输出端,来传输电信号的器件,通常把发光器(红外线发光二极管 LED)与受光器(光敏半导体管)封装在同一管壳内,将它们的光路耦合在一起,当输入端加电信号时发光器发出光线,受光器接受光线之后就产生光电流,从输出端输出,从而实现了“电—光—电”转换。输入和输出之间不共地,因此广泛地应用于需要信号隔离的电路中。由于它具有体积小、寿命长、无触点,工作稳定,输入端与输出端完全实现了电气隔离,信号单向传输,输出信号对输入端无影响,抗干扰能力强,传输信号的效率高等优点,在电路上获得了广泛的应用。路光耦的输入端发光二级管的正极接+5V 电压,只要负极为低电平,就会使二极管导通,从而实现输入输出的光电耦合。光耦输出端的发射极接地,集电极通过 4.7KΩ的电阻接+5V 电压,同时通过模块电路接到单片机的输入端。实验仪 I/O 输入模块采用的电路原理图如图 4.13.2 所示,其中 J8为 4 路光耦的输入端, J4 为第一路光耦输出控制端,正常工作时需要将其 1、 2 脚短接,J7 为第二路光耦输出控制端,正常工作时需要将其短接。

3.5 RS232有线通信接口模块

电路图如下所示:

下图为MAX232引脚图和接线图,带有转串口的电路。

RS232C是一种电压型总线标准,可用于设计计算机接口与终端或外设之间的连接,以不同的极性的电压表示逻辑值。-3至-25表示逻辑“1”,+3至+25 表示逻辑“0”,其电平与TTL和CMOS电平是不同的,所以在通信时必须进行转换。

MAXIM公司的MAX232接收/发送器是MAXIM公司特别为满足EIA/TEA2232的标准而设计的,它们具有功耗低、工作电源为单电源、外接电容仅为0.1uF或1uF的电容,其价格低,可在一般需要串行通信的系统中使用。MAX232引脚C1+与C1-、C2+与C2-、V+与VCC、V-与GND之间的4个0.1uF的电容不可缺少,一般选用陶瓷介质的电容。

MAX232可以用作单片机和单片机之间、单片机和PC机串口之间的符合RS232串行接口电路。只要将待进行串行传输的设备的发送和接收端相应的接上,编程即可。

单片机有一个全双工的串行通讯口,所以单片机和电脑之间可以方便地进行串口通讯。

1 :DCD :载波检测。主要用于Modem通知计算机其处于在线状态,即Modem 检测到拨号音,处于在线状态。

2 :RXD:此引脚用于接收外部设备送来的数据;在你使用Modem时,你会发现RXD指示灯在闪烁,说明RXD引脚上有数据进入。

3 :TXD:此引脚将计算机的数据发送给外部设备;在你使用Modem时,你会发现TXD指示灯在闪烁,说明计算机正在通过TXD引脚发送数据。

4 :DTR:数据终端就绪;当此引脚高电平时,通知Modem可以进行数据传输,计算机已经准备好。

5 :GND:信号地;此位不做过多解释。

6 :DSR:数据设备就绪;此引脚高电平时,通知计算机Modem已经准备好,可以进行数据通讯了。

7 :RTS:请求发送;此脚由计算机来控制,用以通知Modem马上传送数据至计算机;否则,Modem将收到的数据暂时放入缓冲区中。

8 :CTS: 清除发送;此脚由Modem控制,用以通知计算机将欲传的数据送至Modem。

9 :RI : Modem通知计算机有呼叫进来,是否接听呼叫由计算机决定

MAX232原理

MAX232芯片是专门为电脑的RS-232标准串口设计的接口电路,使用+5v单电源供电。

内部结构基本可分三个部分:

第一部分是电荷泵电路。由1、2、3、4、5、6脚和4只电容构成。功能是产生+12v和-12v两个电源,提供给RS-232串口电平的需要。

第二部分是数据转换通道。由7、8、9、10、11、12、13、14脚构成两个数据通道。其中13脚(R1IN)、12脚(R1OUT)、11脚(T1IN)、14脚(T1OUT)为第一数据通道。8脚(R2IN)、9脚(R2OUT)、10脚(T2IN)、7脚(T2OUT)为第二数据通道。

TTL/CMOS数据从T1IN、T2IN输入转换成RS-232数据从T1OUT、T2OUT送到电脑DP9插头;DP9插头的RS-232数据从R1IN、R2IN输入转换成TTL/CMOS 数据后从R1OUT、R2OUT输出。

第三部分是供电。15脚DNG、16脚VCC(+5v)。

为了实现PC机与单片机之间的串行通信,我们首先要清楚了解整个系统所采用的原理图。原理图就象一根红线贯穿于整个系统设计,通过此图我们就能很清楚的看到系统所涉及的内容,然后鉴于此,我们将在以后的章节中依次对所牵涉的内容作详细的论述。下面对原理图作一点说明:从MAX232芯片中的两路发送接收中任选一路作为接口,要注意其发送与接收引脚对应,否则可能对器件或计算机串口造成永久性损坏。如选他T1IN接单片机的发送端TXD,则PC机、的RS—232的接收端RD一定要对应接T1OUT引脚。同时,R1OUT接单片机的接受端RXD引脚,则PC机的RS—232的发送端TD 一定要对应接R1IN引脚。

3.6发送接收选择设置模块

电路图如下所示:

下图为四选一数据选择器:

所谓双4选1数据选择器就是在一块集成芯片上有两个4选1数据选择器。引脚图排列如图1,功能如表1。

1G、2G为两个独立的使能端;B、A为公用的地址输入端;1C0~1C3和2C0~2C3分别为两个4选1数据选择器的数据输入端;Y1、Y2为两个输出端。

①当使能端1G(2G)=1时,多路开关被禁止,无输出,Y=0。新艺图库

②当使能端1G(2G)=0时,多路开关正常工作,根据地址码B、A的状态,将相应的数据C0~C3送到输出端Y。

如:B A=00 则选择CO数据到输出端,即Y=C0。838电子

B A=01 则选择C1数据到输出端,即Y=C1,其余类推。

数据选择器的用途很多,例如多通道传输,数码比较,并行码变串行码,以及实现逻辑函数等。

当p0.0=0时,处理器接收RS232接口发送的数据

当p0.0=1时,处理器接收SSC1641解调的数据

当p0.1=0,p0.2=1时,处理器将信号发送给RS232接口

当p0.1=1,p0.2=0时,处理器将信号发送给SSC641进行调制

3.7电源模块

电路图如下所示:

三端稳压集成电路lm7805 7815,三端IC是指这种稳压用的集成电路,只有三

条引脚输出,分别是输入端、接地端和输出端。TO- 220 的标准封装,用lm78/lm79系列三端稳压IC来组成稳压电源所需的外围元件极少,电路内部还有过流、过热及调整管的保护电路,使用起来可靠、方便,而且价格便宜。该系列集成稳压IC型号中的lm78或lm79后面的数字代表该三端集成稳压电路的输出电压,如lm7806表示输出电压为正6V,lm7909表示输出电压为负9V。

用lm78/lm79系列三端稳压IC来组成稳压电源所需的外围元件极少,电路内部还有过流、过热及调整管的保护电路,使用起来可靠、方便,而且价格便宜。该系列集成稳压IC型号中的lm78或lm79后面的数字代表该三端集成稳压电路的输出电压,如lm7806表示输出电压为正6V,lm7909表示输出电压为负9V。因为三端固定集成稳压电路的使用方便,电子制作中经常采用。

最大输出电流1.5A,LM78XX系列输出电压分别为

5V;6V;8V;9V;10V;12V;15V;18V;24V。

3.8备用电源电路设计

电路图如下所示:

我们采用电压检测器及功率MO S F E T设计了一种备用电源自动切换电路在主电源电压降到设定阈值电压以下或断电时,备用电源能自动切换采用M0SFE作开关切换开关速度快 ( n s 级 ) 。若整个电子设备、仪器耗电不大,而备用电( U P S ) ,该电路较简单,适合自制。备用电源切换电路备用电源自动切换电路如图 1 所示。它由C MO S 输出结构的电压检测器 ( I C 1 )小功率开关三极管 ( V T1 ) 、P 沟道功率 MO S F E T ( V T 2 ) 、N 沟道功率 MO S FET( V T 3 )及备用电源 ( 电池组) 等元器件组成。 S 一 2 开关与主电源开关联动,在工作状态时, S - 2 开关接通。主电源电压 V c = 5 V ,低阈值电压设为4 .5 V。备用电源由4 节镍氢电池组成,其额定电压4 .8 V 。该电路工作原理如下:

3.9 调制解调模块电路图如下所示:

SSC1641载波通信芯片概述

SSC1641是专门为电力线介质作为通信信道而设计的电力线载波通信芯片。该芯片具有帧中继转发策略、信号强度指示、相位检测、自动速率/功率调整、自适应报文分帧、完善的网络数据通信协议集等功能,并且具有通信可靠性高、低成本、低功耗、外围器件少等特点。

SSC1641是实现基于电力线通信网络的电子终端设备之间可靠的数据交换的核心芯片。其中,数据链路层通信协议遵循高级数据链路控制通信协议,应用层通信协议完全兼容于DL/T645-1997规范和DL/T645-2007规范,并在保证DL/T645协议完整性的前提下,扩充了DL/T645对网络数据通信的支持。 SSC1641芯片的应用主要集中在自动读表领域,为电力行业或其它公共事业部门提供了一种最佳的AMR的解决方案。

电路图如下所示:

信号耦合及接收滤波电路原理说明信号耦合变压器 T1 和 C11 组高通滤波电路,用于隔离高电压的工频交流电,F1 是12V 的 TVS 管,用于消除来自电力线上的高频高强度干扰,从而保护内部电路。

R11、L1、C12、C13、C15、C16、L2、L7、C68、C69 和 R10 共同组成无源带通

滤波器,能够有效消除来自电力线上的带外干扰,D11 和 D12 是一种倒置并联

结构,利用二极管的正向导通电压特新来钳位这两个二极管所在出的电压,防止在输入到载波芯片的电压过高而损坏载波芯片。C17 是耦合电容,起隔直通交的作用。

3.11信号放大电路模块

电路图如下所示:

信号放大输出电路原理说明

该电路实现的功能是把从 SSC1641 输出的模拟信号进行放大,并经过简单的滤波之后,由信号耦合电路耦合到电力线上,满足电力线传输的要求。D21 和 D22 是保护二极管,起到电压钳位的作用,抑制电力线上的干扰信号对内部电路的冲击;Q1、Q2、Q3、Q4、R20 和 R21 共同组成单位增益倒置达林顿输出级,其中 Q1、Q3 和R20 组成 P 型复合管,Q2、Q4 和 R21 组成 N 型复合管,由于 Q1 和 Q2 上的电流很大,所以要求有很好的散热性能,在这里采用 TO‐126 插件封装。Q5 和 Q6 及其周围的电阻电容共同组成电压放大级,其中 R26 和 R27 组成分压电路,修改这两个电阻的阻值可调整静态工作点,R24 给 Q6 提供偏置电流,R22 给 Q5 提供偏置电流,R23 和 R25 提供负反馈回路,调整这两个电阻的比值可以改变该放大电路的增益;C21起高频补偿作用,防止高频振荡。Q7、Q8、R29、R30、R31 和 R32 组成功率放大级的使能控制,当使能端为低电平时,放

电力线载波通信系统解读

摘要 电力线载波通信是以输电线路为载波信号的传输媒介的电力系统通信。由于输电线路具备十分牢固的支撑结构,并架设3条以上的导体(一般有三相良导体及一或两根架空地线),所以输电线输送工频电流的同时,用之传送载波信号,既经济又十分可靠。这种综合利用早已成为世界上所有电力部门优先采用的特有通信手段。这次的课程设计通过电力线在波芯片设计一个电力线载波通信系统。 电力线载波通信具有广阔的应用前景但由于电力线的噪声和干扰对信道的污染很大,严重影响了低压电线载波通信的质量。本文就电力线载波通信的优点缺点及发展现状进行了讨论,并分析了电力信道的噪声分类,特性及对我们信号的影响。以及我们对噪声的滤波耦合等。并且详细的介绍了电力线载波通信的具体实现形式方法和步骤最终形成一个系统达到我们的要求。 课程设计选用青岛东软的SSC1641的电力线载波芯片该芯片具有调制解条,a/d,d/a通信的功能,该芯片直接对信号数字信号处理,极大地提高了通信的可靠性。文中包括了他的外围电路,信号放大,耦合,滤波等最终实现功能。 实现了接收电力线的含有噪声的信号,然后对这个信号滤波模数转换等处理后通过串行通信的方式发送到过单片机,单片机经过数据处理后通过LCD1602显示出来,并且也通过串行通信发送到PC机显示出来。PC机或开关电路输入信号经过SSC1641处理后通过电力线发送。这样一个系统阶完成了接收与发送信号,形成了一个通信系统。 关键字:电力线载波通信系统SSC1641 调制解调 1、绪论 1.1设计任务及要求 电力线载波通信系统设计基本要求:下图一个电力线载波通信模块的结构组成,请看懂,并查阅资料了解电力线载波通信的原理和电力线载波芯片的技术资料。根据系统结构,完成载波芯片外的其他器件选型、配套硬件电路设计(包括原理图、PCB图)、软件设计和仿真调试。系统至少具备以下特性: 1)开关量输入和输出各5路; 2)系统24V供电; 3)具有通信状态指示功能; 4)有232、485或USB有线通信接口; 5)断电继续工作能力; 6)其他自己发挥的功能。

电力线载波通信---有线通信

抄表系统及其方法 本发明公开了一种抄表系统包括电力线宽带载波通信单元、无线通信单元、时钟单元、控制单元以及存储单元;所述电力线宽带载波通信单元用于收发通过电力线载波方式传送的抄表信号;所述无线通信单元用于收发通过无线通信方式传送的抄表信号;控制单元用于信道状况的侦测,根据侦测结果控制抄表系统在电力线宽带载波通信以及无线通信之间的信道自动切换,切换信道后进行自动组网,并将从电力线宽带载波通信单元以及无线通信单元接收到的抄表信号进行格式转换生成电表数据。本抄表系统利用宽带载波通信可靠性高、数据传输率高、数据容量大、双向传输等特点,将无线通信方式以及电力线通信方式相互结合,使抄表布线等现场施工工作变得简便灵活。 电力线载波Power Line Carrier - PLC通信是利用高压电力线在电力载波领域通常指 35kV及以上电压等级中压电力线指10kV电压等级或低压配电线380/220V用户线作为信息传输媒介进行语音或数据传输的一种特殊通信方式 PLC = Power Line Carrier,电力线载波 电力线载波(PLC)是电力系统特有的通信方式,电力线载波通讯是指利用现有电力线,通过载波方式将模拟或数字信号进行高速传输的技术。最大特点是不需要重新架设网络,只要有电线,就能进行数据传递。 近年来电力线载波技术突破了仅限于单片机应用的限制,已经进入了数字化时代,并且随着电力线载波技术的不断发展和社会的需要中/低压电力载波通信的技术开发及应用亦出现了方兴未艾的局面。电力线载波通信这座被国外传媒喻为未被挖掘的金山正逐渐成为一门电力通信领域乃至关系到千家万户的热门专业。 但是电力线载波通讯因为有以下缺点,导致PLC主要应用--“电力上网”未能大规模应用: 1、配电变压器对电力载波信号有阻隔作用,所以电力载波信号只能在一个配电变压器区域范围内传送; 2、三相电力线间有很大信号损失(10 dB -30dB)。通讯距离很近时,不同相间可能会收到信号。一般电力载波信号只能在单相电力线上传输; 3、不同信号藕合方式对电力载波信号损失不同,藕合方式有线-地藕合和线-中线藕合。线-地藕合方式与线-中线藕合方式相比,电力载波信号少损失十几dB,但线-地藕合方式不是所有地区电力系统都适用; 4、电力线存在本身因有的脉冲干扰。目前使用的交流电有50HZ和 60HZ,则周期为20ms和16.7ms,在每一交流周期中,出现两次峰值,两次峰值会带来两次脉冲干扰,即电力线上有固定的100HZ或120HZ脉冲干扰,

通信领域中电力线载波通信的应用及其原理

通信领域中电力线载波通信的应用及其原理 Power Line Carrier 电力线载波Power Line Carrier - PLC通信是利用高压电力线在电力载波领域通常指35kV及以上电压等级中压电力线指10kV电压等级或低压配电线380/220V用户线作为信息传输媒介进行语音或数据传输的一种特殊通信方式。 近年来高压电力线载波技术突破了仅限于单片机应用的限制,已经进入了数字化时代,并且随着电力线载波技术的不断发展和社会的需要中/低压电力载波通信的技术开发及应用亦出现了方兴未艾的局面。电力线载波通信这座被国外传媒喻为未被挖掘的金山正逐渐成为一门电力通信领域乃至关系到千家万户的热门专业。在这种形势下,本文旨在通过对电力线载波通信技术的发展及所涉及的一些技术问题的讨论,阐明电力线载波通信的发展历程特点及技术关键。 电力通信网是为了保证电力系统的安全稳定运行而应运而生的,它同电力系统的安全稳定控制系统,调度自动化系统,被人们合称为电力系统安全稳定运行的三大支柱。目前,它更是电网调度自动化网络运营市场化和管理现代化的基础,是确保电网安全稳定经济运行的重要手段,是电力系统的重要基础设施。由于电力通信网对通信的可靠性保护控制信息传送的快速性和准确性具有及严格的要求,并且电力部门拥有发展通信的特殊资源优势,因此世界上大多数国家的电力公司都以自建为主的方式建立了电力系统专用通信网[1]。长期以来,电力线载波通信网一直是电力通信网的基础网络。目前,在长达670000km的35kV以上电压等级的输电线路上,多数已开通电力线载波通道[1]。形成了庞大的电力线载波通信网,该网络主要用于地市级或以下供电部门构成面向终端变电站及大用户的调度通信远动及综合自动化通道使用。 近年来,随着光纤通信的发展,电力线载波通信已从主导的电力通信方式改变为辅助通信方式,但是由于我国电力通信发展水平的不平衡,由于电力通信规程要求主要变电站必须具有两条

电力线载波通信---有线通信

电力线载波通信---有线通信

电力线载波通信---有线通信

抄表系统及其方法 本发明公开了一种抄表系统包括电力线宽带载 波通信单元、无线通信单元、时钟单元、控制单元以及存储单元;所述电力线宽带载波通信单元用于收发通过电力线载波方式传送的抄表信号;所述无线通信单元用于收发通过无线通信方式 传送的抄表信号;控制单元用于信道状况的侦测,根据侦测结果控制抄表系统在电力线宽带载波通信以及无线通信之间的信道自动切换,切换信道后进行自动组网,并将从电力线宽带载波通信单元以及无线通信单元接收到的抄表信号进 行格式转换生成电表数据。本抄表系统利用宽带载波通信可靠性高、数据传输率高、数据容量大、双向传输等特点,将无线通信方式以及电力线通信方式相互结合,使抄表布线等现场施工工作变得简便灵活。 电力线载波Power Line Carrier - PLC通信是利用高压电力线在电力载波领域通常指35kV及

以上电压等级中压电力线指10kV电压等级或低压配电线380/220V用户线作为信息传输媒介进行语音或数据传输的一种特殊通信方式 PLC = Power Line Carrier,电力线载波 电力线载波(PLC)是电力系统特有的通信方式,电力线载波通讯是指利用现有电力线,通过载波方式将模拟或数字信号进行高速传输的技术。最大特点是不需要重新架设网络,只要有电线,就能进行数据传递。 近年来电力线载波技术突破了仅限于单片机应用的限制,已经进入了数字化时代,并且随着电力线载波技术的不断发展和社会的需要中/低压电力载波通信的技术开发及应用亦出现了方兴未艾的局面。电力线载波通信这座被国外传媒喻为未被挖掘的金山正逐渐成为一门电力通信领域乃至关系到千家万户的热门专业。 但是电力线载波通讯因为有以下缺点,导致PLC主要应用--“电力上网”未能大规模应用: 1、配电变压器对电力载波信号有阻隔作用,所以电力载波信号只能在一个配电变压器区域范围内传送; 2、三相电力线间有很大信号损失(10 dB -30dB)。通讯距离很近时,不同相间可能会收到信号。一般电力载波信号只能在单相电力线上传输; 3、不同信号藕合方式对电力载波信号损失不同,藕合方式有线-地藕合和线-中线藕合。线-地藕合方式与线-中线藕合方式相比,电力载波信号少损失十几dB,但线-地藕合方式不是所有地区电力系统都适用; 4、电力线存在本身因有的脉冲干扰。目前使用的交流电有50HZ和 60HZ,则周期为20ms和16.7ms,在每一交流周期中,出现两次峰值,两次峰值会带来两次脉冲干扰,即电力线上有固定的100HZ或120HZ脉冲干扰,干扰时间约2ms,因定干扰必须加以处理。有一种利用波形过0点的短时间内进行数据传输的方法,但由于过0点时间短,实际应用与交流波形同步不好控制,现代通讯数据帧又比较长,所以难以应用; 5、电力线对载波信号造成高削减。当电力线上负荷很重时,线路阻抗可达1欧姆以下,造成对载波信号的高削减。实际应用中,当电力线空载时,点对点载波信号可传输到几公里。但当电力线上负荷很重时,只能传输几十米。

低压电力线载波通信

PL2102--功能特征 PL2000A/B 是专为电力线通讯网络设计的半双工异步调制解调器,是PL2000 的升级产品。它仅由单一的 +5V 电源供电,以及一个外部的接口电路与电力线耦合。PL2000A/B 除具备原有系统基本的通讯控制功能外,还内置了四种常用的功能电路:32 Bytes SRAM,电压监测,看门狗定时器及复位电路,它们通过标准的 I2C接口与外部的微处理器相联。PL2000B内建高灵敏度放大器及四象限模拟乘法器,进一步提高了集成度(无需外部模拟混频器)。 PL2000A/B 是特别针对中国电力网恶劣的信道环境所研制开发的低压电力线载波通信芯片,低信噪比数据传输性能比 PL2000 有了大幅度的提高,同时将数据传输速率提升一倍。由于采用了直接序列扩频、数字信号处理、直接数字频率合成等新技术,以及大规模数字 /模拟混合 0.5um CMOS 工艺制作,所以在抗干扰、抗衰落性能以及国内外同类产品性能价格比等方面有着更加出众的表现。

■0.35um CMOS 数摸混合集成电路 ■直序扩频半双工异步调制解调器 ■二相相移键控,120KHz载频,带宽15KHz,传输速率500 bps ■接收灵敏度:100μVRMS ■15位伪码长度,可编程同步捕获门限 ■I2C串行通信接口 ■32Bytes SRAM (电池维护) ■可编程实时钟(秒/分/时/日/月/星期/年) (电池维护),支持数字频率校正 ■上电复位/电压监测电路及看门狗定时器 ■单+5V供电,I/O 口带 2500V ESD 保护 ■工业级温度标准: -40oC ~ +85oC ■SOP20 / SOP24 / SOP28 封装 典型应用图: 基于PL2101的单片机低压电力线载波通信接口扩展 发布:2011-09-05 | 作者: | 来源: menglongfei | 查看:328次 | 用户关注: 本文介绍了低压电力线通信接口芯片PL2101与MSP430F149的接口。早期的低压电力线载波通信芯片的接口电路相对复杂、抗干扰能力差,且多为国外产品,性价比低,因此,单片机系统较少采用低压电力线载波通信。随着通信技术的发展,新型低压电力线载波通信接口芯片解决了以上缺点,使得单片机系统采用低压电

ATC 系统中采用电力线载波通信技术的研究.docx

ATc 系统中采用电力线载波通信技术 的研究 摘要介绍了正交频分复用(ofdm) 的基本原理, 并结合城市轨道交通a tc 系统的特点,提出了利用基于ofdm 的电力线载波通信技术在接触网上实现信息传输的思路。 关键词列车自动控制,电力线载波通信系统,正交频分复用 在城市轨道交通列车自动控制(a tc) 系统中, 通常利用轨道电路传输信息。 由于钢轨不是理想的信息传输通道,信息容量、传输速率受到了限制。本文提出了利用正 交频分复用(ofdm) 的电力线载波通信技术在接触网上实现信息传输的思路。1 ofdm 的 基本原理 ofdm 是一种多载波调制技术(mcm) ,可以在强干扰环境下高速传输 数据。传统的数字通信系统将符号序列调制在一个载波上进行串行传输, 每个符号的频谱 占用信道的全部可用带宽。ofdm 则并行传输数据,采用频率上等间隔的n 个子载波构成, 它们分别调制一路独立的数据信息,调制之后n 个子载波的信号相加同时发送。因此每个 符号的频谱只占用信道全部带宽的一部分。在ofdm 中,通过选择载波间隔,使这些子载波 在整个符号周期上保持频谱的正交特性,各子载波上的信号在频谱上互相重叠;接收端利用 载波之间的正交特性,可以无失真地将接收到的信号还原成发送信息,从而提高系统的频谱 利用率。图1 表示了ofdm 的基本原理[2 ] 。假设一个周期内传送的符号序 列为(d0 , d1 , ?, dn-1),每一个符号di 是经过基带调制后的复信号, di = ai+j bi , 串行符号序列的间隔为δt= 1/ fs,其中fs 是系统的符号传输速率。串并转换之后,它们 分别调制n 个子载波(f0 , f1 , ?fn-1),这n 个子载波频分复用整个信道带宽,相邻子载 波之间的频率间隔为1/ t , 符号周期t从δt增加到nδt。合成的传输信~号可以用 其低通复包络d (t) 表示。 图1 正交频分复用ofdm 的基本原理因此,ofdm 系统的调制和解调过 程等效于离散付氏逆变换(idf t) 和离散付氏变换(df t) 处理,实际上系统通常采用dsp 技术和fft 快速算法来实现。由于ofdm 系统的符号周期延长了n 倍,增强了其消除码间串扰的能力。在数字基带调制部分,可以根据子信道特性采用不同的调制方式(如bpsk,qpsk ,qam , tcm 等) 。如果某个频段信号衰减严重,发送端还可以关闭该频段 的子载波, 实现信道自适应均衡。通过采用信道编码技术, ofdm 还可以进行前向纠错(fcc) 。由于dsp 和大规模集成电路技术的推动, ofdm 调制技术已经得到广泛应用,在数字音频广播(dab) 和数字视频广播(dvb -t) 领域中被欧洲地面广播标准采纳。采用ofdm 技术在电力线上高速传输数据也有产品问世,如homeplug 组织成员中的 intellon 公司产品powerpacket , 传输速率可以达到14 mbit/s , 频带4. 3~20. 9 mhz ,84 个子载波,支持dqpsk ,dbpsk ,robo 调制。2 在a tc 系统中采用ofdm 技 术城市轨道交通对列车速度控制提出很高的要求,要达到安全性、可靠性、适 用性和经济性的目标,还要考虑到迅速、准确和价格合理等因素。这需要列车、沿线、车

电力线载波通信的特点

电力线载波通信的特点 一、高压载波路由合理,通道建设投资相对较低 高压电力线路的路由走向沿着终端站到枢纽站,再到调度所,正是电力调度通信所要求的合理路由,并且载波通道建设只需结合加工设备的投入而无须考虑线路投资,因此当之无愧成为电力通信的基本通信方式,尤其在边远地区更是这样。电力线载波通道往往先于变电站完成建设,对于新建电站的通信开通十分有利。为此,只要妥善解决电力线载波信道的容量问题,载波通信的优势就会显现出来。在中压配电网载波和低压用户电网载波中,节省线路建设费用,无须考虑破坏家庭已装修环境,也仍然是载波通信的优势。 二、传输频带受限,传输容量相对较小 在高压电网中,一般考虑到工频谐波及无线电发射干扰电力线载波的通信频带限制于40~500kHz之内,按照单方向占用4kHz带宽计算,理想情况下一条线路可安排115条高频载波通道。但由于电力线路各相之间及变电站之间的跨越衰减有限(13~43dB),不可能理想地按照频谱紧邻的方式安排载波通道,因此,真正组成电力线载波通信网所实现的载波通道是有限的,在当今通信业务已大大开拓的情况下,载波通道的信道容量已成为其进一步应用的“瓶颈”问题。尽管我们在载波频谱的分配上研究了随机插空法、分小区法、分组分段法、频率阻塞法及地图色法和计算机频率分配软件,并且规定不同电压等级的电力线路之间不得搭建高频桥路,使载波频率尽量得以重复使用,但还是不能满足需要。近来随着光纤通信的发展和全数字电力线载波机的出现,稍微缓解了载波频谱的紧张程度。 在10kV中压配电网和低压用户配电网中,除了新上的载波信号之外,不存在其它高频信号,并且一般为多址传输,因此通道容量问题并不突出。 三、可靠性要求高 有两个原因要求电力线载波机具有较高的可靠性,一是在电力系统中传输重要调度信息的需要;另一是电压隔离的人身安全需要。为此,电力线载波机在出厂前必须进行高温老化处理,最终检验必须包含安全性检验项目。为此,国家质检总局从八十年代开始即对电力线载波机(类)产品实行了强制性生产许可证管理[4]。随着时代的进步,目前管理的范围已包括各种电压等级的载波机、继电保护收发信机、载波数据传输装置(如配网自动化和抄表系统的载波部分)和电线上网调制解调器。目前大多数高压及中压电力线载波机生产企业已按照生产许可证的要求建立了较为完善的质量体系。 四、线路噪声大 电力线路作为通信媒介带来的噪声干扰远比电信线路大得多(见图1),在高压电力线路上,游离放电电晕、绝缘子污闪放电、开关操作等产生的噪声比较大,尤其是突发噪声具有较高的电平(见图1)。根据国外资料描述,电力线的噪声特性可分为四种类型: 1、具有平滑功率谱的背景噪声,这种类型噪声的功率谱密度是频率的减函数,如电晕噪声。这种噪声特性可以用带干扰的时变线性滤波模型来描述。 2、脉冲噪声,由开关操作引起,这种噪声与电站操作活动的关系较大。 3、电网频率同步的噪声,主要由整流设备产生。 4、与电网频率无关的窄带干扰,主要由其它电力设备的电磁辐射引起。 一般电晕噪声电平大致为:220kV -25dB;110kV -35dB(带宽为5kHz),在工业区、沿海地区、高海拔地区、新线路、升压线路和绝缘设备存在微小放电的线路上噪声电平还将增

电力线载波通信

第一章绪论 ●架空明线实用传输频带最高频率可达300 kHz ●对称电缆可达600 kHz ●同轴电缆可达60MHz ●电力线高频通道可达500kHz ●频带平移:上边带话音三角形与调制器输入调制信号的话音三角形方向一致 频带倒置:下边带的话音三角形的方向与输入调制信号话音三角形的方向相反 载波通信的基本过程:一变二分三还原 变,就是用调制器把话音频带变换到高频频带; 分,就是频率分割,即在收信端用滤波器把各路信号从群信号中分割出来; 还原,就是利用解调器把高频频带还原成话音频带。 载波机中必须包括以下几种基本部件: ●(1)调制器(或解调器):实现频率变换。 ●(2)载波振荡器:产生载频信号。 ●(3)滤波器:完成选频与频率分割作用。 ●(4)放大器:提高信号电平。 两种现象: 解决收后重发添加差接系统: 差接系统能把用户方向的二线电路与载波机的收、发信支路的四线电路连接起来,同时能使收信支路与发信支路彼此隔离,切断“收后重发”通路。这是因为差接系统具有信号在邻端方向传输衰减小,对端衰减大的性能。 解决自发自收用以下两个方案: 1、双频带二线制双向通信 所谓双带二线制,指的是在一对通信线路的两个方向上,采用两个不同的线路传输频带,利用方向滤波器把收、发两个方向的线路传输频带分开,切断“自发自收”通路,从而实现双向通信。这种方法主要用在线路传输线对较少的载波通信系统中。如架空明线、电力线载波通信系统中都采用这种通信方式。 2、单边带四线制双向通信 所谓单边带四线制,指的是在线路上收、发信两个传输方向上采用相同的传输频带,而用两对导线(四根导线)来各自传输一个方向的信号,从而切断了“自发自收”通路。这种方法主要用于对称电缆和同轴电缆载波通信系统。 载波机特点与技术要求 ?发信功率较大 ?有较快调节速度和较大调节范围的自动电平调节系统 ?大多是单路机 ?能适应不同电压等级的电力线通信需要 ?具有自动交换系统,并提供优先权配置

电力线载波技术特点

电力线载波技术特点 电力线载波(PLC)是电力系统特有的通信方式,电力线载波通讯是指利用现有电力线,通过载波方式将模拟或数字信号进行高速传输的技术。最大特点是不需要重新架设网络,只要有电线,就能进行数据传递。 但是电力线载波通讯因为有以下缺点,导致PLC主要应用--“电力上网”未能大规模应用: 1、配电变压器对电力载波信号有阻隔作用,所以电力载波信号只能在一个配电变压器区域范围内传送; 2、三相电力线间有很大信号损失(10 dB -30dB)。通讯距离很近时,不同相间可能会收到信号。一般电力载波信号只能在单相电力线上传输; 3、不同信号藕合方式对电力载波信号损失不同,藕合方式有线-地藕合和线-中线藕合。线-地藕合方式与线-中线藕合方式相比,电力载波信号少损失十几dB,但线-地藕合方式不是所有地区电力系统都适用; 4、电力线存在本身因有的脉冲干扰。目前使用的交流电有50HZ和60HZ,则周期为20ms和16.7ms,在每一交流周期中,出现两次峰值,两次峰值会带来两次脉冲干扰,即电力线上有固定的100HZ或120HZ脉冲干扰,干扰时间约2ms,因定干扰必须加以处理。有一种利用波形过0点的短时间内进行数据

传输的方法,但由于过0点时间短,实际应用与交流波形同步不好控制,现代通讯数据帧又比较长,所以难以应用; 5、电力线对载波信号造成高削减。当电力线上负荷很重时,线路阻抗可达1欧姆以下,造成对载波信号的高削减。实际应用中,当电力线空载时,点对点载波信号可传输到几公里。但当电力线上负荷很重时,只能传输几十米。 虽然技术问题随着时间的发展,最终都能被解决被克服,但是从目前国内宽带网建设的情况来看,留给PLC的时间和空间并不宽裕。2000年以来各大运营商大规模推出ADSL、光纤、无线网络等多种宽带接入业务,留给电力线上网的生存空间,已经不断被其他接入方式压缩。现在,PLC除了在远程抄表上有所应用外,已没有了当初的豪言壮语。 随着家庭智能系统这个话题的兴起,也给PLC带来了一个新的舞台。在目前的家庭智能系统中,以PC机为核心的家庭智能系统是最受人热捧的。该系统的观念就是,随着电脑的普及,可以将所有家用电器需要处理的数据都交给电脑来完成。这样就需要在家电与PC间构建一个数据传送网络,现在大家都看好无线,但是在家庭这个环境中,“墙多”这一特征严重影响着无线传输的质量,特别是在别墅和跃层式住宅中这一缺陷更加明显。如果架设专用有线网络除了增加成本,那么家电的位置今后也无法随意挪动。 PLC的最大特点:不需要重新架设网络,只要有电线,就

电力线载波通信技术的发展与特点

电力线载波通信技术的发展及特点 摘要 本文介绍了电力线载波通信的发展及特点,文中主要就高压电力线载波通信、中压配电网电力线载波数据通信和低压用户配电网电力线载波通信,以及与其相关的关键技术问题进行了讨论。 0 引言 电力线载波(Power Line Carrier - PLC)通信是利用高压电力线(在电力载波领域通常指35kV及以上电压等级)、中压电力线(指10kV电压等级)或低压配电线(380/220V用户线)作为信息传输媒介进行语音或数据传输的一种特殊通信方式。近年来,高压电力线载波技术突破了仅限于单片机应用的限制,已经进入了数字化时代。并且,随着电力线载波技术的不断发展和社会的需要,中/低压电力载波通信的技术开发及应用亦出现了方兴未艾的局面,电力线载波通信这座被国外传媒喻为“未被挖掘的金山”正逐渐成为一门电力通信领域乃至关系到千家万户的热门专业。在这种形势下,本文旨在通过对电力线载波通信技术的发展及所涉及的一些技术问题的讨论,阐明电力线载波通信的发展历程、特点及技术关键。 2 电力线载波通信的特点

2.1 高压载波路由合理,通道建设投资相对较低高压电力线路的路由走向沿着终端站到枢纽站,再到调度所,正是电力调度通信所要求的合理路由,并且载波通道建设只需结合加工设备的投入而无须考虑线路投资,因此当之无愧成为电力通信的基本通信方式,尤其在边远地区更是这样。电力线载波通道往往先于变电站完成建设,对于新建电站的通信开通十分有利。为此,只要妥善解决电力线载波信道的容量问题,载波通信的优势就会显现出来。在中压配电网载波和低压用户电网载波中,节省线路建设费用,无须考虑破坏家庭已装修环境,也仍然是载波通信的优势。 2.2 传输频带受限,传输容量相对较小 在高压电网中,一般考虑到工频谐波及无线电发射干扰电力线载波的通信频带限制于40~500kHz之内,按照单方向占用4kHz带宽计算,理想情况下一条线路可安排115条高频载波通道。但由于电力线路各相之间及变电站之间的跨越衰减有限(13~43dB),不可能理想地按照频谱紧邻的方式安排载波通道,因此,真正组成电力线载波通信网所实现的载波通道是有限的,在当今通信业务已大大开拓的情况下,载波通道的信道容量已成为其进一步应用的“瓶颈”问题。尽管我们在载波频谱的分配上研究了随机插空法、分小区法、分组分段法、频率阻塞法及地图色法和计算机频率分配软件,并且规定不同电压等级的电力线路之间不得搭建高频桥路,使载波频率尽量得以重复使用,但还是不能满足需要。近来随着光纤通信的发展和全数字电力线载波机的出现,稍微缓解了载波频谱的紧张程度。在10kV中压配电

浅析电力线载波通信的意义及发展状况

龙源期刊网 https://www.doczj.com/doc/6b9723059.html, 浅析电力线载波通信的意义及发展状况 作者:李青波黄肇 来源:《市场周刊·市场版》2017年第07期 摘要:随着我国电力事业的迅速发展,传统的用电抄收管理方式己经不能满足市场需求。本文在大量收集查阅国内外有关远程抄表系统资料、深入用户及用电管理部门广泛调研的基础上,提出了一种采用低压电力线载波通信技术的远程自动抄表系统。该系统具有三层网络结构,即上位机管理系统、集中器和载波电表。重点分析研究了集中器及其与各组成部分的通信。由于我国低压电力线上存在的高削减、高噪声、高变形,必须采用特殊的通信技术。 关键词:电力线载波;集中器;抄表系统 当今世界,作为输送能源的电力线是一个近乎天然、入户率绝对第一的物理网络。而电力线现在的功能仅仅是传送电能,如何利用网络资源潜力,在不影响传输电能的基础上实现窄带通信或宽带通信,使之成为继电信、电话、无线通信和卫星通信之后的又一通信网,是多年来国内外科技人员的又一目标。要使电力网成为一个新的通信网,技术手段只有载波通信。电力线载波通信就是以电力网作为信道,实现数据传递和信息交换。因为电源线路是每个家庭最为普通也是覆盖最为宽广的一种物理媒介,其覆盖面超过有线电视网络甚至电话线路,同时由于利用现有的电力网实现数字通信,可以大大减少通信网建设的费用,因而利用电源线路实现数据通信的技术有着可观的经济效益和应用前景。 电力线载波通信又分为35KV以上的高压载波通信、10KV配电网的载波通信和民用(400V以下)电力线载波通信。在技术上高压载波通信主要为业内业务通信,由于网络专一性,其简单的数据通信在国内外基本成熟,进入千家万户的民用电力网才是最大的通信物理网络。但在该网络上实现通信一直是全世界科技工作者的研究课题。由于低压电力线上实现通信又很多技术难点,如网络不规范、节点多、隔离多、随机干扰等。也可以说民用电力网对通信而言是一个不确定、无规则、网络特性呈拓扑特性的非标准通信网,是通信网络的一大挑战课题。本文研究的对象正是低压电力线通信。 一、低压电力线通信的特点 总的说来,低压电力线信道的特点主要包括下面几个方面的内容: (一)噪声和干扰大 低压电力线网络中,各式各样的家用电器和办公设备产生的噪声和干扰严重污染着电力线通信环境。己有的研究结果表明,噪声的大量存在是实现数据在低压电力线上优质传输的主要障碍之一。现在把各种噪声干扰主要来源归纳为4个方面:(1)可控硅器件和一些电源电路产生的60Hz的倍频谐波(注:美国电力线频率为60Hz);(2)平滑频谱噪声,其频谱平

宽带电力线载波通讯和智能电网浅谈

宽带电力线载波通讯和智能电网 电力线载波通讯――PLC,是一种通过电线进行数据传输的通信技术。换句话说,PLC是利用现有电网作为信号的传递介质,使电网在传输电力的同时可以进行数据通讯。这种方式能够有效监测和控制电网中的电力设备、仪表以及家用电器。同时,电力线载波技术即插即用,大大提高了生产、工作和生活效率,在很大程度上节约了布线施工成本,而且其稳定、可靠、丰富的资源系统也易于获取。上述种种特点及优势使其相比较其它通讯方式更胜一筹。 目前,电力线载波技术日渐主导电力系统和民用生活的通讯方式。根据载波 频率、载波速率、载波调制方式,行业内部分为两大阵营: 低速窄带阵营采用1~500kHz的频段载波,速率通常在1.5~10Kbps之间,简单的OFDM扩频调制方式; 高速宽带阵营采用1~30MHz的载波频率,速率通常在1~200Mbps之间, 基于成熟的DMT的调制方式。近年来,国内外开始普遍向宽带高速率PLC转移,

表1 宽带载波和窄带载波技术比对表 宽带电力线载波的优势 宽带电力线载波之所以优于窄带电力线载波技术,可从表1的比对中获得一瞥。 不同于传统的OFDM方式,基于OFDM的DMT技术使用自适应载码算法瞬时计算所有子通道中的信噪比,根据其结果动态地为各信道添加负载(从0-bit负载~3或10~bit负载),同时预测下一瞬间的信噪分布并自行学习电网干扰概算,有效规避干扰,优化载波质量,并从根本上降低了宽带载波芯片的功耗,从而做到<0.9W。 基于宽带电力线载波的智能电网(BPL-AMI) 宽带电力线载波技术诞生伊始,其目的是为了解决最后一公里的问题,并提供高速的互联网接入服务,近年来主要趋向电力设备通信。随着公用事业部门对于信息化改革要求的日益挺进,智能电网的概念也不禁悄然出现。智能电网的应用非常广泛,包括AMR(远程抄表)、负载控制、变压器监控、电能质量远程测量、安全监视、分时费率(TOU)、动态计费和其它各种增值服务等,例如电力线电话和互联网信息服务。 尽管其它各种网络通讯技术在智能电网的实现过程中百家争鸣,但宽带电力线载波技术无论在可行性、最优控制、成本、铺设等诸多因素中更拔头筹。其中最令人瞩目的、也是最重要的一个原因就是宽带电力线载波技术仅仅使用电网中现有的基础网络作为构架,无需另外花费安装和租用线路和设备、主站和主站、中心和局部的网络通讯。同时,宽带电力线载波通信可实现庞大数据稳定可靠的双方向实时传输,为电力公司、甚至物业部门有效规划和管理各种服务提供了便利条件。此外,宽带电力线载波提供足够的带宽,不仅提高了通讯性能,同时确保大范围、全面整合覆盖电网中的节点和设备,在数据流量和稳定性方面,具有窄带电力线窄波不可比拟的优势。 基于宽带电力线载波(BPL)的远程抄表系统 AMR(远程抄表)是智能电网系统中最基本的应用,宽带电力线载波电能表是其实现过程中最重要的环节。 远程抄表(AMR)是把电能表以及其它接入电能表中的仪表(水、煤气)使用量通过电力线传输到数据库服务器,并进行计费和使用量数据分析,也就是说用电(水、煤气)收费将无需依靠人工上门、估算等原始落后的方法来实现。同时供需双方能更好地进行互动,进而提高服务质量,拓展业务渠道。另一方面实时精准的用电数据确保供电部门得到一手的、丰富的信息资料。例如,按使用时

单相智能电表之电力线载波通信

单相智能电表之电力线载波通信 1、研究设计背景 1.1综述 低压电力线载波PLC(Power Line Carrier)通信是以低压配电线(380 V/220 V电力线)作为信息传输媒介进行数据或语音等传输的一种特殊通信方式。电力线网络是目前覆盖范围最广的网络,有着巨大的潜在利用价值。国外对此研究已有近百年的历史,在理论和技术上有着绝对的优势。我国电力网比较独特,直接利用国外先进技术和产品并不能取得令人满意的效果。目前国内参与低压电力载波通信研究的公司、高校及研究机构日益增多,已经在通信信道的特性分析和建模、关键的调制技术的研究、通信芯片及相应产品的研制和应用、市场化运营及相关法规制定等方面取得了一定的成果。 1.2发展历程及现状 1.2.1 国外发展情况 电力线是最普及、覆盖范围最为广阔的一种物理介质,因此,电力线载波通信作为上一世纪20年代的产物,现在利用电力线高速数据通信技术仍然是国内外许多大公司的热点。 97年英国的Norweb通讯公司和加拿大Nortel(北电网络)利用丌发的数字电力线载波技术,实现了在低压配电网上进行的1Mbit/s的速率数据传输的远程通信,并进行了该技术市场推广。 随后,许多国家研究机构纷纷开展了高速电力线通信技术的研究和开发,产品的传输速率也从1Mbit/s发展到2、14、24Mbit/s甚至更高。 国际各大公司纷纷推出PLC调制解调芯片,其中主要有美国Intellon公司的14、54、85和200Mbit/s芯片,西班牙DS2公司45和200Mbit/s芯片等等。其中以美国Intellon公司的14 Mbit/s芯片应用最为普遍,大部分电力线载波系统都是基于该芯片开发的。 目前,电力线载波通信在欧洲发展比较快,欧盟为促进电力线载波技术发展,在2004年启动了OPERA(Open PLC European Research Alliance)的计划,致力于制定欧洲统一的PLC技术标准,推动大规模的商业化应用,并将PLC作为实现信息化欧洲的重要技术手段。 美国也不甘示弱,在它倡导下成立了“家庭插电联盟”,致力于标准研究,

电力载波通信的发展及特点(同名18626)

电力载波通信的发展及特点(同名18626)

摘要本文介绍了电力线载波通信的发展及特点,文中主要就高压电力线载波通信、中压配电网电力线载波数据通信和低压用户配电网电力线载波通信,以及与其相关的关键技术问题进行了讨论。 关键词电力线载波通信发展应用 0 引言 电力线载波(Power Line Carrier - PLC)通信是利用高压电力线(在电力载波领域通常指35kV及以上电压等级)、中压电力线(指10kV 电压等级)或低压配电线(380/220V用户线)作为信息传输媒介进行语音或数据传输的一种特殊通信方式。近年来,高压电力线载波技术突破了仅限于单片机应用的限制,已经进入了数字化时代。并且,随着电力线载波技术的不断发展和社会的需要,中/低压电力载波通信的技术开发及应用亦出现了方兴未艾的局面,电力线载波通信这座被国外传媒喻为“未被挖掘的金山”正逐渐成为一门电力通信领域乃至关系到千家万户的热门专业。在这种形势下,本文旨在通过对

电力线载波通信技术的发展及所涉及的一些技术问题的讨论,阐明电力线载波通信的发展历程、特点及技术关键。 1 电力线载波通信的发展及现状 1.1 我国电力线载波通信的现状 电力通信网是为了保证电力系统的安全稳定运行而应运而生的,它同电力系统的安全稳定控制系统、调度自动化系统被人们合称为电力系统安全稳定运行的三大支柱。目前,它更是电网调度自动化、网络运营市场化和管理现代化的基础;是确保电网安全、稳定、经济运行的重要手段;是电力系统的重要基础设施。由于电力通信网对通信的可靠性、保护控制信息传送的快速性和准确性具有及严格的要求,并且电力部门拥有发展通信的特殊资源优势,因此,世界上大多数国家的电力公司都以自建为主的方式建立了电力系统专用通信网[1]。长期以来,电力线载波通信网一直是电力通信网的基础网络,目前在长达670000km的35kV以上电压等级的输电线路上多数已开通电力线载波通道[1],形成了庞大的电

电力载波通信的发展及特点

电力载波通信的发展及特点

摘要本文介绍了电力线载波通信的发展及特点,文中主要就高压电力线载波通信、中压配电网电力线载波数据通信和低压用户配电网电力线载波通信,以及与其相关的关键技术问题进行了讨论。 关键词电力线载波通信发展应用 0 引言 电力线载波(Power Line Carrier - PLC)通信是利用高压电力线(在电力载波领域通常指35kV及以上电压等级)、中压电力线(指10kV 电压等级)或低压配电线(380/220V用户线)作为信息传输媒介进行语音或数据传输的一种特殊通信方式。近年来,高压电力线载波技术突破了仅限于单片机应用的限制,已经进入了数字化时代。并且,随着电力线载波技术的不断发展和社会的需要,中/低压电力载波通信的技术开发及应用亦出现了方兴未艾的局面,电力线载波通信这座被国外传媒喻为“未被挖掘的金山”正逐渐成为一门电力通信领域乃至关系到千家万户的热门专业。在这种形势下,本文旨在通过对

电力线载波通信技术的发展及所涉及的一些技术问题的讨论,阐明电力线载波通信的发展历程、特点及技术关键。 1 电力线载波通信的发展及现状 1.1 我国电力线载波通信的现状 电力通信网是为了保证电力系统的安全稳定运行而应运而生的,它同电力系统的安全稳定控制系统、调度自动化系统被人们合称为电力系统安全稳定运行的三大支柱。目前,它更是电网调度自动化、网络运营市场化和管理现代化的基础;是确保电网安全、稳定、经济运行的重要手段;是电力系统的重要基础设施。由于电力通信网对通信的可靠性、保护控制信息传送的快速性和准确性具有及严格的要求,并且电力部门拥有发展通信的特殊资源优势,因此,世界上大多数国家的电力公司都以自建为主的方式建立了电力系统专用通信网[1]。长期以来,电力线载波通信网一直是电力通信网的基础网络,目前在长达670000km的35kV以上电压等级的输电线路上多数已开通电力线载波通道[1],形成了庞大的电

电力载波通信原理_电力载波通信的优缺点

电力载波通信原理_电力载波通信的优缺点 电力线载波通信简介电力线载波通信(powerlinecarriercommunication)以输电线路为载波信号的传输媒介的电力系统通信。由于输电线路具备十分牢固的支撑结构,并架设3条以上的导体(一般有三相良导体及一或两根架空地线),所以输电线输送工频电流的同时,用之传送载波信号,既经济又十分可靠。这种综合利用早已成为世界上所有电力部门优先采用的特有通信手段。 载波通信方式(1)电力线载波通信。这种通信具有高度的可靠性和经济性,且于调度管理的分布基本一致。但这种方式受可用频谱的限制,并且抗干扰性能稍差。 (2)绝缘架空地线载波通信。这种通信设备简单、造价低,可扩展电力线载波通信频谱,送电线路检修接地期间可以不中断通信,受系统短路接地故障影响较小,易实现长距离通信。其缺点是易发生瞬时中断。 电力载波通信的优点只需要两端加上阻波器等少量设备即可实现通讯、远传等功能,投资小! 电力线载波通信的缺点1、配电变压器对电力载波信号有阻隔作用,所以电力载波信号只能在一个配电变压器区域范围内传送; 2、三相电力线间有很大信号损失(10dB-30dB)。通讯距离很近时,不同相间可能会收到信号。一般电力载波信号只能在单相电力线上传输; 3、不同信号藕合方式对电力载波信号损失不同,藕合方式有线-地藕合和线-中线藕合。线-地藕合方式与线-中线藕合方式相比,电力载波信号少损失十几dB,但线-地藕合方式不是所有地区电力系统都适用; 4、电力线存在本身因有的脉冲干扰。目前使用的交流电有50HZ和60HZ,则周期为20ms 和16.7ms,在每一交流周期中,出现两次峰值,两次峰值会带来两次脉冲干扰,即电力线上有固定的100HZ或120HZ脉冲干扰,干扰时间约2ms,因定干扰必须加以处理。有一种利用波形过0点的短时间内进行数据传输的方法,但由于过0点时间短,实际应用与交

相关主题
文本预览
相关文档 最新文档