当前位置:文档之家› 2013高中数学精讲精练(新人教A版)第08章 直线和圆的方程

2013高中数学精讲精练(新人教A版)第08章 直线和圆的方程

2013高中数学精讲精练(新人教A版)第08章  直线和圆的方程
2013高中数学精讲精练(新人教A版)第08章  直线和圆的方程

2013高中数学精讲精练 第八章 直线和圆的方程

【知识图解】

【方法点拨】

1.掌握直线的倾斜角,斜率以及直线方程的各种形式,能正确地判断两直线位置关系,并能熟练地利用距离公式解决有关问题.注意直线方程各种形式应用的条件.了解二元一次不等式表示的平面区域,能解决一些简单的线性规划问题.

2.掌握关于点对称及关于直线对称的问题讨论方法,并能够熟练运用对称性来解决问题. 3.熟练运用待定系数法求圆的方程.

4.处理解析几何问题时,主要表现在两个方面:(1)根据图形的性质,建立与之等价的代数结构;(2)根据方程的代数特征洞察并揭示图形的性质.

5.要重视坐标法,学会如何借助于坐标系,用代数方法研究几何问题,体会这种方法所体现的数形结合思想.

6.要善于综合运用初中几何有关直线和圆的知识解决本章问题;还要注意综合运用三角函数、平面向量等与本章内容关系比较密切的知识.

中点坐标 两点间距离

位置关系

点与圆的位置关系 直线与圆的位置关系 圆与圆的位置关系

方程形式

标准方程 一般方程 点到直线的距离

线

直线斜率与倾斜角

两条直线位置关系

平行

相交

垂直

方程形式

点斜式

斜截式 两点式 截距式 一般式

点与直线位置关系

直线与圆的方程

空间直角坐标系

第1课 直线的方程

【考点导读】

理解直线倾斜角、斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的几种形式,能根据条件,求出直线的方程.

高考中主要考查直线的斜率、截距、直线相对坐标系位置确定和求在不同条件下的直线方程,属中、低档题,多以填空题和选择题出现,每年必考. 【基础练习】

1. 直线x cos α+3y +2=0的倾斜角范围是50,

,66πππ????

?????????

2. 过点)3,2(P ,且在两坐标轴上的截距互为相反数的直线方程是

10320-+=-=或x y x y

3.直线l 经过点(3,-1),且与两坐标轴围成一个等腰直角三角形,则直线l 的方程为

42=-=-+或y x y x

4.无论k 取任何实数,直线()()()14232140k x k y k +--+-=必经过一定点P ,则P 的坐标为(2,2) 【范例导析】

例1.已知两点A (-1,2)、B (m ,3)

(1)求直线AB 的斜率k ; (2)求直线AB 的方程; (3)已知实数m 3

1,313??∈-

--????

,求直线AB 的倾斜角α的取值范围. 分析:运用两点连线的子斜率公式解决,要注意斜率不存在的情况.

解:(1)当m =-1时,直线AB 的斜率不存在. 当m ≠-1时,1

1

k m =

+, (2)当m =-1时,AB :x =-1, 当m ≠1时,AB :()1

211

y x m -=

++. (3)①当m =-1时,2

π

α=;

②当m ≠-1时, ∵(

1

3,3,13k m ???=

∈-∞-?+∞????+??

∴2,,6223ππππα????∈?? ?

?????

故综合①、②得,直线AB 的倾斜角2,63ππα??∈?

??

? 点拨:本题容易忽视对分母等于0和斜率不存在情况的讨论.

例2.直线l 过点P(2,1),且分别交x 轴、y 轴的正半轴于点A 、B 、O 为坐标原点. (1)当△AOB 的面积最小时,求直线l 的方程; (2)当|PA|2|PB|取最小值时,求直线l 的方程.

分析: 引进合适的变量,建立相应的目标函数,通过寻找函数最值的取得条件来求l 的方程. 解 (1)设直线l 的方程为y -1=k (x -2),则点A(2-1k ,0),B(0,1-2k ),且2-1

k

>0, 1-2k >0,即k <0.

△AOB 的面积S=

12(1-2k )(2-1k )=12[(-4k )+1k -+4]≥4,当-4k =1k -,即k =1

2

-时, △AOB 的面积有最小值4,则所求直线方程是x +2y -4=0. (2)解法一:由题设,可令直线方程l 为y -1=k (x -2). 分别令y =0和x =0,得A(2-

1

k

,0),B(0,1-2k ), ∴|PA|2|PB|=2

2

22

11(44)(1)84()4k k k k

++

=++≥,当且仅当k 2=1,即k =±1时, |PA|2|PB|取得最小值4.又k <0, ∴k =-1,这是直线l 的方程是x +y -3=0. 解法二:如下图,设∠BAO=θ,由题意得θ∈(0,2π),且|PA|2|PB|=

||||4

4sin cos sin 2PE PF θθθ

?=≥ 当且仅当θ=4

π

时, |PA|2|PB|取得最小值4,此时直线l 的斜率为-1, 直线l 的方程是x +y -3=0.

点评 ①求直线方程的基本方法包括利用条件直接求直线的基本量和利用待定系数法求直线的基本量.②在研究最值问题时,可以从几何图形开始,找到取最值时的情形,也可以从代数角度出发,构建目标函数,利用函数的单调性或基本不等式等知识来求最值. 例3.直线l 被两条直线l 1:4x +y +3=0和l 2:3x -5y -5=0截得的线段中点为P (-1,2).

y x

O

P E F B A 例2图

求直线l 的方程.

分析 本题关键是如何使用好中点坐标,对问题进行适当转化.

解:解法一 设直线l 交l 1于A (a ,b ),则点(-2-a ,4-b )必在l 2,所以有

4303(2)5(4)50a b a b ++=??-----=?,解得2

5

a b =-??

=? 直线l 过A(-2,5),P(-1,2),它的方程是3x +y +1=0.

解法二 由已知可设直线l 与l 1的交点为A (-1+m ,2+n ),则直线l 与l 2的交点为B (-1-m ,2-n ),且l 的斜率k =

n

m ,∵A,B 两点分别l 1和l 2上,∴4(1)(2)303(1)5(2)50

m n m n -++++=??-----=?,消去常数项得-3m =n ,所以k =-3, 从而直线l 的方程为3x +y +1=0.

解法三 设l 1、l 2与l 的交点分别为A,B ,则l 1关于点P (-1,2)对称的直线m 过点B ,利用对称关系可求得m 的方程为4x +y +1=0,因为直线l 过点B ,故直线l 的方程可设为3x -5y -5+λ(4x +y +1)=0.由于直线l 点P (-1,2),所以可求得λ=-18,从而l 的方程为3x -5y -5-18(4x +y +1)=0,即3x +y +1=0.

点评 本题主要复习有关线段中点的几种解法,本题也可以先设直线方程,然后求交点,再根据中点坐标求出直线l 的斜率,但这种解法思路清晰,计算量大,解法一和解法二灵活运用中点坐标公式,使计算简化,对解法二还可以用来求已知中点坐标的圆锥曲线的弦所在直线方程,解法三是利用直线系方程求解,对学生的思维层次要求较高。

【反馈练习】

1.已知下列四个命题①经过定点P 0(x 0,y 0)的直线都可以用方程y-y 0=k(x-x 0)表示;②经过任意两个不同点P 1(x 1,y 1)、P 2(x 2,y 2)的直线都可以用方程(y-y 1)(x 2-x 1)=(x-x 1)(y 2-y 1)表示;③不经过原点的直线都可以用方程

a x +b

y

=1表示;④经过定点A(0,b)的直线都可以用方程y =kx+b 表示,其中正确的是①③④

2.设直线l 的方程为()()232603x k y k k +--+=≠,当直线l 的斜率为-1时,k 值为__5__,当直线l 在x 轴、y 轴上截距之和等于0时,k 值为1或3

3.设直线 a x+b y+c =0的倾斜角为α,且sin α+cos α=0,则a ,b 满足的关系式为0=-b a

4.若直线l :y =kx 3-与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取

值范围是)2

,6(

π

π

5.若直线4x-3y-12=0被两坐标轴截得的线段长为

c 1,则c 的值为5

1 6.若直线(m 2

─1)x ─y ─2m +1=0不经过第一象限,则实数m 的取值范围是112?? ???

7.已知两直线a 1x +b 1y +1=0和a 2x +b 2y +1=0的交点为P (2,3),求过两点Q 1(a 1,b 1)、Q 2

(a 2,b 2)(a 1≠a 2)的直线方程

分析:利用点斜式或直线与方程的概念进行解答

解:∵P (2,3)在已知直线上,∴ 2a 1+3b 1+1=0,2a 2+3b 2+1=0 ∴2(a 1-a 2)+3(b 1-b 2)=0,即

2121a a b b --=-32∴所求直线方程为y -b 1=-3

2

(x -a 1)

∴2x +3y -(2a 1+3b 1)=0,即2x +3y +1=0

点拨:1.由已知求斜率; 2.运用了整体代入的思想,方法巧妙.

8.一条直线经过点P (3,2),并且分别满足下列条件,求直线方程: (1)倾斜角是直线x -4y +3=0的倾斜角的2倍;

(2)与x 、y 轴的正半轴交于A 、B 两点,且△AOB 的面积最小(O 为坐标原点) 解:(1)设所求直线倾斜角为θ,已知直线的倾斜角为α,则θ=2α,且tan α=4

1

,tan θ=tan2α=

15

8, 从而方程为8x -15y +6=0 (2)设直线方程为

a x

+b y =1,a >0,b >0, 代入P (3,2),得

a

3+b 2

=1≥2ab 6,得ab ≥24,

从而S △AOB =

2

1

ab ≥12, 此时a 3=b 2,∴k =-a

b =-32

点拨:此题(2)也可以转化成关于a 或b 的一元函数后再求其最小值

第2课 两条直线的位置关系

【考点导读】

1.掌握两条直线平行与垂直的条件,能根据直线方程判定两条直线的位置关系,会求两条相交直线的交点,掌握点到直线的距离公式及两平行线间距离公式.

2.高考数学卷重点考察两直线平行与垂直的判定和点到直线的距离公式的运用,有时考察单一知识点,有时也和函数三角不等式等结合,题目难度中等偏易. 【基础练习】

1.已知过点A(-2,m )和B(m ,4)的直线与直线2x +y -1=0平行,则m 的值为-8

2.过点(-1,3)且垂直于直线x -2y +3=0的直线方程为2x +y -1=0

3.若三条直线2380,x y ++=10x y --=和1

02

x ky k +++

=相交于一点,则k 的值等于1

2-

.

【范例导析】

例1.已知两条直线1l :x +m 2y +6=0, 2l :(m -2)x +3my +2m =0,当m 为何值时, 1l 与2l (1) 相交;(2)平行;(3)重合? 分析:利用垂直、平行的充要条件解决.

解:当m=0时,1l :x +6=0,2l :x =0,∴1l ∥2l , 当m=2时,1l :x +4y +6=0,2l :3y +2=0 ∴1l 与2l 相交;

当m ≠0且m ≠2时,由m

m m 3212=-得m =-1或m =3,由m m 26

21=-得m =3 故(1)当m ≠-1且m ≠3且m ≠0时1l 与2l 相交。 (2)m =-1或m =0时1l ∥2l , (3)当m =3时1l 与2l 重合。

点拨:判断两条直线平行或垂直时,不要忘了考虑两条直线斜率是否存在.

例2.已知直线l 经过点P (3,1),且被两平行直线1l :x +y +1=0和2l :x +y +6=0截得的线段之长为5。求直线l 的方程。

分析:可以求出直线l 与两平行线的交点坐标,运用两点距离公式求出直线斜率

解法一::若直线l 的斜率不存在,则直线l 的方程为x =3,此时与1l 、2l 的交点分别是A 1(3,-4)和

B 1(3,-9),截得的线段AB 的长|AB|=|-4+9|=5,符合题意。若直线l 的斜率存在,则设l 的方程为y =k (x -3)+1, 解方程组()10

31

x y y k x ++=???

=-+??得A (,123+-k k -114+-k k ) 解方程组 ()60

31x y y k x ++=???=-+??

得B (173+-k k ,-119+-k k )

由|AB|=5得

2

32371

1k k k k --??- ?++??+2

419111k k k k --??

-+ ?++??=25, 解之,得k =0,即所求的直线方程为y =1。

综上可知,所求l 的方程为x =3或y =1。

解法二.设直线l 与1l 、2l 分别相交于A (x 1,y 1)、B (x 2,y 2),则x 1+y 1+1=0, x 2+y 2+6=0。两式相减,得(x 1-x 2)+(y 1-y 2)=5 ① 又(x 1-x 2)2+(y 1-y 2)2=25 ② 联立① ②,可得121250x x y y -=??

-=?或12120

5

x x y y -=??-=?

由上可知,直线l 的倾斜角为0°或90°,又由直线l 过点P (3,1),故所求l 的方程为x =3或y =1。

点拨:用待定系数法求直线方程时,要注意对斜率不存在的情况的讨论.

【反馈练习】

1.已知直线l 在x 轴上的截距为1,且垂直于直线x y 2

1

=

,则l 的方程是22+-=x y 2.若直线3)1(=-+y a ax 与5)32()1(=++-y a x a 互相垂直,则 =a -3或1

3.若直线l 1:ax +2y +6=0与直线l 2:x +(a -1)y +(a 2-1)=0平行,则a 的值是___-1___.

4.已知2

0πθ≤

≤,且点)cos ,1(θ到直线1cos sin =+θθy x 的距离等于

41

,则θ等于6

π 5. 经过直线0732=-+y x 与01157=++y x 的交点,且平行于直线032=-+y x 的直线方程是3x+6y-2=0

6.线1l 过点)0,5(A ,2l 过点)1,0(B ,1l ∥2l ,且1l 与2l 之间的距离等于5,求1l 与2l 的方程。 解:1l 与2l 的方程分别为:12x-5y-60=0,12x-5y+5=0或x=5,x=0

7.已知!ABC 的三边方程分别为AB:43100x y -+=,BC:20y -=,CA:3450x y --=. 求:(1)AB 边上的高所在直线的方程;(2)∠BAC 的内角平分线所在直线的方程. 解:(1)AB 边上的高斜率为34-

且过点C ,解方程组203450

y x y -=??--=?得点C (13

3,2)所以AB 边上的高方程为34210x y +-=.

(2)设P (),x y 为∠BAC 的内角平分线上任意一点,则

()

()

2

2

2

2

43103454334x y x y -+--=

+-+-解得

7750x y -+=或150x y ++=,由图形知7750x y -+=即为所求.

第3课 圆的方程

【考点导读】

1.掌握圆的标准方程与一般方程,能根据问题的条件选择适当的形式求圆的方程;理解圆的标准方程与一般方程之间的关系,会进行互化。

2.本节内容主要考查利用待定系数法求圆的方程,利用三角换元或数形结合求最值问题,题型难度以容易题和中档题为主. 【基础练习】

1.已知点A(3,-2),B(-5,4),以线段AB 为直径的圆的方程为(x + 1)2 + (y -1)2 = 25

2.过点A (1,-1)、B (-1,1)且圆心在直线x +y -2=0上的圆的方程是(x -1)2+(y -1)2=4

3.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线0443=++y x 与圆C 相切,则圆C 的方程为0422=-+x y x

4.圆22420x y x y c +-++=与y 轴交于A 、B 两点,圆心为P ,若∠APB=120°,则实数c 值为_-11__

5.如果方程220x y Dx Ey F ++++=()2240D E F +->所表示的曲线关于直线y x

=对称,那么必有__D=E__ 【范例导析】

【例1】 设方程2224

2(3)2(14)1690x y m x m y m +-++-++=,若该方程表示一个圆,求m 的取值范围及这时圆心的轨迹方程。 分析:配成圆的标准方程再求解

解:配方得:[]2

2

2

2

(3)(14)167x m y m m m ??-++--=+-?? 该方程表示圆,则有

21670m m +->,得1

(,1)7m ∈-,此时圆心的轨迹方程为2

341x m y m =+??=-?,消去m ,得24(3)1y x =--,由1(,1)7m ∈-

得x =m +320,47??

∈ ???

∴所求的轨迹方程是2

4(3)1

y x =--,20,47x ??∈ ???

注意:方程表示圆的充要条件,求轨迹方程时,一定要讨论变量的取值范围,如题中

20,47x ??∈ ???

变式1:方程2

2

4(1)40ax ay a x y +--+=表示圆,求实数a 的取值范围,并求出其中半径最小的圆的方程。

解:原方程可化为2

2222(1)24(22)()a a a x y a a a --+??

-++=???? 2220,a a -+>∴ 当a 0≠时,原方程表示圆。

又()2

222222

2222(44)4(22)

22a a a a a a r a a a -+-+-+=

==+≥ 当min 2,2a r ==,所以半径最小的圆方程为()()2

2

112x y -++=

例2 求半径为4,与圆042422=---+y x y x 相切,且和直线0=y 相切的圆的方程. 分析:根据问题的特征,宜用圆的标准方程求解.

解:则题意,设所求圆的方程为圆222)()(r b y a x C =-+-:.

圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆042422=---+y x y x 的圆心A 的坐标为)1,2(,半径为3. 若两圆相切,则734=+=CA 或134=-=CA .

(1)当)4,(1a C 时,2227)14()2(=-+-a ,或2221)14()2(=-+-a (无解),故可得

1022±=a .

∴所求圆方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x . (2)当)4,(2-a C 时,2

2

2

7)14()2(=--+-a ,或2

2

2

1)14()2(=--+-a (无解),故

622±=a .

∴所求圆的方程为2224)4()622(=++--y x ,或2224)4()622(=+++-y x .

【反馈练习】

1.关于x,y 的方程Ax 2+Bxy+Cy 2+Dx+Ey+F=0表示一个圆的充要条件是B=0且A=C ≠0,D 2+E 2-4AF >0

2.过点P(-8,-1),Q(5,12),R(17,4)三点的圆的圆心坐标是(5,-1)

3.若两直线y=x+2k 与y=2x+k+1的交点P 在圆x 2+y 2=4的内部,则k 的范围是1

15

k -

<< 4.已知圆心为点(2,-3),一条直径的两个端点恰好落在两个坐标轴上,则这个圆的方程是

22460x y x y +-+=

5.直线y=3x+1与曲线x 2+y 2=4相交于A 、B 两点,则AB 的中点坐标是31,1010??

- ??

? 6.方程2

11(1)x y -=--表示的曲线是_两个半圆

7.圆2)4()3(22=++-y x 关于直线0=+y x 的对称圆的方程是22(4)(3)2x y -++=

8.如果实数x 、y 满足等式()2

2

23x y -+=,那么

y

x

的最大值是3 9.已知点)1,1(-A 和圆4)7()5(:22=-+-y x C ,求一束光线从点A 经x 轴反射到圆周C 的最短路程为___8___

10.求经过点A(5,2),B(3,2),圆心在直线2x─y─3=0上的圆的方程; 解:设圆心P(x 0,y 0),则有???-+-=-+-=--2

02

02

02

000)

2()3()2()5(0

32y x y x y x ,

解得 x 0=4, y 0=5, ∴半径r=10,

∴所求圆的方程为(x─4)2+(y─5)2=10

11. 一圆与y 轴相切,圆心在直线x -3y =0上,且直线y =x 截圆所得弦长为27,求此圆的方程

解:因圆与y 轴相切,且圆心在直线x -3y =0上,

故设圆方程为222

(3)()9x b y b b -+-=

又因为直线y =x 截圆得弦长为27, 则有2

|3|(

)2

b b -+2(7)=9b 2, 解得b =±1故所求圆方程为

22(3)(1)9x y -+-=或22(3)(1)9x y +++=

点拨:(1)确定圆方程首先明确是标准方程还是一般方程;(2)待定系数法;(3)尽量利用几何关系求a 、b 、r 或D 、E 、F .

第4课 直线与圆的位置关系

【考点导读】

能利用代数方法和几何方法判定直线与圆的位置关系;熟练运用圆的有关性质解决直线与圆、圆与圆的综合问题,运用空间直角坐标系刻画点的位置,了解空间中两点间的距离公式及其简单应用. 【基础练习】

1.若直线4x -3y -2=0与圆x 2+y 2-2ax +4y +a 2-12=0总有两个不同交点,则a 的取值范围是-6<a

<4

2.直线x -y +4=0被圆x 2+y 2+4x -4y +6=0截得的弦长等于22

3.过点P(2,1)且与圆x 2+y 2-2x +2y +1=0相切的直线的方程为 x =2或3x -4y -2=0 . 【范例导析】 例1.已知圆C :(x -1)2+(y -2)2=25,直线l :(2m +1)x +(m +1)y -7m -4=0(m ∈R ). (1)证明:不论m 取什么实数,直线l 与圆恒交于两点; (2)求直线被圆C 截得的弦长最小时l 的方程.

分析:直线过定点,而该定点在圆内,此题便可解得. (1)证明:l 的方程(x +y -4)+m (2x +y -7)=0. 由27040x y x y +-=??

+-=?得3

1x y =??=?

即l 恒过定点A (3,1).

∵圆心C (1,2),|AC |=5<5(半径), ∴点A 在圆C 内,从而直线l 恒与圆C 相交于两点.

(2)解:弦长最小时,l ⊥AC ,由k AC =-

2

1

, ∴l 的方程为2x -y -5=0. 点拨:直线与圆相交截得弦长的最小值时,可以从垂径定理角度考虑,充分利用圆的几何性质.

例2.已知圆O : 122=+y x ,圆C : 1)4()2(22=-+-y x ,由两圆外一点),(b a P 引两圆切线PA 、PB ,切点分别为A 、B ,满足|PA|=|PB|.求实数a 、b 间满足的等量关系.

解:连结PO 、PC ,∵|PA|=|PB|,|OA|=|CB|=1 ∴|PO|2

=|PC|2

,从而2

222)4()2(-+-=+b a b a 化简得实数a 、b 间满足的等量关系为: 052=-+b a .

例3.已知圆C 与两坐标轴都相切,圆心C 到直线y x =-的距离等于2. 求圆C 的方程.

解:设圆C 半径为r ,由已知得:22

a b r a a b ?

?=??

=??

+?=?? ∴11a b r ==??=?,或11a b r ==-??=?

∴圆C 方程为2

2

2

2

(1)(1)1,(1)(1)1x y x y -+-=+=或++.

例4.如图,在平面直角坐标系x O y 中,平行于x 轴且过点A(33,2)的入射光线l 1被直线l :y =3

3x 反射.反射光线l 2交y 轴于B 点,圆C 过点A 且与l 1, l 2都相切.

例2

(1)求l 2所在直线的方程和圆C 的方程;

(2)设P ,Q 分别是直线l 和圆C 上的动点,求PB+PQ 的最小值及此时点P 的坐标.

解:(1)直线1:2,l y =设1232l l D D 交于点,则(,)

. l 的倾斜角为30

,260l ∴ 的倾斜角为,2 3.k ∴=∴反射光线2l 所在的直线方程为

23(23)y x -=-. 即340x y --=.

已知圆C 与1l A 切于点,设C (a,b),

圆心C 在过点D 且与l 垂直的直线上,

38b a ∴=-+ ,又圆心C 在过点A 且与1l 垂直的直线上,33a ∴=,381b a ∴=-+=-,圆C 的半径r=3, 故所求圆C 的方程为22(33)(1)9x y -++=.

(2)设点()0,4B -关于l 的对称点00(,)B x y ',则00

00

43232

43y x y x ?-=??

??+?=-??,得(23,2)B '-,固

定点Q 可发现,当B P Q '、、共线时,PB PQ +最小,

故PB PQ +的最小值为32213B C '-=-.此时由133

212333

33y x y x ?+-=?

+?--??

=??

,得31(,)22P .

【反馈练习】

1.圆x 2+y 2-4x=0在点P(1,3)处的切线方程为320x y -+=

x

y

O A

B

l 2

l 1 l 例4

2.已知直线l 过点),(02-,当直线l 与圆x y x 222=+有两个交点时,其斜率k 的取值范围

224-(,)4

3.设m>0,则直线2(x+y)+1+m=0与圆x 2+y 2=m 的位置关系为相切或相离

解析:圆心到直线的距离为d=

2

1m

+,圆半径为m . ∵d-r=21m +-m =21(m-2m +1)=2

1(m -1)2≥0,∴直线与圆的位置关系是相切或相离.

4.圆(x-3)2

+(y-3)2

=9上到直线3x+4y-11=0的距离等于1的点有个数为3 5.点P 从(1,0)出发,沿单位圆12

2

=+y x 逆时针方向运动

3

弧长到达Q 点,则Q 的坐标为

)2

3,21(- 6.若圆04

1

2

2

=-

++mx y x 与直线1-=y 相切,且其圆心在y 轴的左侧,则m 的值为34

7.设P 为圆122=+y x 上的动点,则点P 到直线01043=--y x 的距离的最小值为 1 .

8.已知平面区域0

0240x y x y ≥??

≥??+-≤?

恰好被面积最小的圆222:()()C x a y b r -+-=及其内

部所覆盖.

(1)试求圆C 的方程.

(2)若斜率为1的直线l 与圆C 交于不同两点,.A B 满足CA CB ⊥,求直线l 的方程. 解:(1)由题意知此平面区域表示的是以(0,0),(4,0),(0,2)O P Q 构成的三角形及其内部,且△OPQ 是直角三角形, 所以覆盖它的且面积最小的圆是其外接圆,故圆心是(2,1),半径是

5,所以圆C 的方程是22(2)(1)5x y -+-=.

(2)设直线l 的方程是:y x b =+.

因为CA CB ⊥ ,

所以圆心C 到直线l 的距离是102

, 即

22

|21|102

11b -+=

+ 解得:15b =-±.所以直线l 的方程是:15y x =-±.

人教版高中数学必修1-5知识点归纳及公式大全

必修1数学知识点 第一章、集合与函数概念 § 1、把研究的对象统称为元素,把一些元素组成的总体叫做集合。集合三要素:确定性、互异性、 无序性。 2、只要构成两个集合的元素是一样的,就称这两个集合相等。 3、常见集合:正整数集合:*N 或+N ,整数集合:Z ,有理数集合:Q ,实数集合:R . 4§ 1A 2、如果集合B A ?,但存在元素B x ∈,且A x ?,则称集合A 是集合B 的真子集.记作:A B. 3、把不含任何元素的集合叫做空集.记作:?.并规定:空集合是任何集合的子集. 4§ 1B A . 2B A . 3§ 1x ,在 的一个函数,2§ 1§ 1、注意函数单调性证明的一般格式: 解:设[]b a x x ,,21∈且21x x <,则:()()21x f x f -=… § 1、一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-,那么就称函数()x f 为 偶函数.偶函数图象关于y 轴对称. 2、一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f -=-,那么就称函数()x f 为

奇函数.奇函数图象关于原点对称. 第二章、基本初等函数(Ⅰ) § 1、一般地,如果a x n =,那么x 叫做a 的n 次方根。其中+∈>N n n ,1. 2、当n 为奇数时,a a n n =; 当n 为偶数时,a a n n =. 3、我们规定: ⑴m n a = ⑵4⑴a a s r ⑵⑶§ 1§ 1、a x 2、a a log 3、log a 4、当a ⑴N M MN a a a log log log +=; ⑵N M N M a a a log log log -=?? ? ??; ⑶M n M a n a log log =. 5、换底公式:a b b c c a log log log = ()0,1,0,1,0>≠>≠>b c c a a .

高中数学知识点精讲精析 不等关系

13.1 不等关系 (一)不等关系与不等式 1. 用数学符号“≠”、“>”、“<”、“≥”、“≤”连接两个数或代数式,以表示它们之间的不等关系,含有这些不等号的式子叫做不等式。 2. 数轴上的任意两点中,右边点对应的实数比左边点对应的实数大。 3. 对于任意两个实数a 和b ,在三种关系中有且只有一种关系成立。 4. 这组关系告诉我们比较两个实数的大小,可以通过判断它们的差 的符号来确定。 5. 若a 、b ∈R +,则 这组关系告诉我们比较两个正实数的大小,可以通 过判断它们的商与“1”的大小关系来确定。 (二)不等式的性质 不等式的性质是证明不等式和解不等式的基础,证明这些性质必须是严格的,不能盲目地乱用。保证每一步推理都有理论根据,否则可能导致推理错误。 1. 等式两边同乘以同一个数仍为等式,但不等式两边同乘以同一个数a (或代数式),结果有三种: (1)当a >0时,得同向不等式。 (2)当a =0时,得等式。 (3)当 a <0时,得异向不等式。 a b,a b,a b =><

2. 不等式性质,有同向不等式相加,得同向不等式,并无相减。若 或.这个结论常用,不妨记为:“大数减小数大于 小数减大数。” 3. 不等式性质,有均为正数的同向不等式相乘,得同向不等式,并无相除。若 ,这个结论也常用。不妨记为:“大正数除以小正 数大于小正数除以大正数。” 4. 不等式性质有 .不能忽略a 、b 均为正数 这个条件,即由 是不一定成立的。 5. 由 成立。但不一定成立。反过来也不一定成立。事实上。 (三)均值不等式 1. 对于任意实数a ,b 都有 ,当且仅当a = b 时等号成立。 2. 对于任意正实数a ,b ,当且仅当a = b 时等号成立。 3. 对于任意正实数a, b 都有 ,当且仅当a = b 时等号成立。 4. 的几何解释:如图,AB 是⊙O 的直径,C 是AB 上任意一点,DE 是过C 点垂直于AB 的弦。若AC =a, BC =b 则AB =a + b ,⊙O 的半径 , Rt △ACD ∽Rt △BCD ,,。 a b,c d a c b d >>?->- c b d a ->-a a b 0,c d 0d >>>>? >b c d c b a > 或n n a b 0a b (n N,n 1)>>?>∈>n n a b a b (n N,n 1)>?>∈>11a b 0a b >>? <11a b a b >?<11a b a b 11 a b ab 0a b >>? < 且22a b 2ab +≥a b 2+2 a b ab 2+??≤ ? ??a b 2+a b r 2+= 2 CD AC CB ab =?=CD =

高中数学精讲精练(新人教A版)第03章三角函数B

2013高中数学精讲精练 第三章 三角函数B 第5课 三角函数的图像和性质(一) 【考点导读】 1.能画出正弦函数,余弦函数,正切函数的图像,借助图像理解正弦函数,余弦函数在[0,2]π,正切函数在(,)22 ππ - 上的性质; 2.了解函数sin()y A x ω?=+的实际意义,能画出sin()y A x ω?=+的图像; 3.了解函数的周期性,体会三角函数是描述周期变化现象的重要函数模型. 【基础练习】 1. 已知简谐运动()2sin( )()3 2 f x x π π ??=+< 的图象经过点(0,1),则该简谐运动的最小正周期 T =_________;初相?=__________. 2. 三角方程2sin( 2 π -x )=1的解集为_______________________. 3. 函数),2 ,0)(sin(R x x A y ∈π ω?+ω=的部分图象如图所示,则函数表达式为 ______________________. 4. 要得到函数sin y x =的图象,只需将函数cos y x π?? =- ?3?? 的图象向右平移__________个单位. 【范例解析】 例1.已知函数()2sin (sin cos )f x x x x =+. (Ⅰ)用五点法画出函数在区间,22ππ??-???? 上的图象,长度为一个周期; (Ⅱ)说明()2sin (sin cos )f x x x x =+的图像可由sin y x =的图像经过怎样变换而得到. 例2.已知正弦函数sin()y A x ω?=+(0,0)A ω>>的图像如右图所示. (1)求此函数的解析式1()f x ; (2)求与1()f x 图像关于直线8x =对称的曲线的解析式2()f x ; (3)作出函数12()()y f x f x =+的图像的简图. 第3题

高中数学排列组合典型例题精讲

概念形成 1、元素:我们把问题中被取的对象叫做元素 2、排列:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定的顺.... 序.排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.... 。 说明:(1)排列的定义包括两个方面:①取出元素,②按一定的顺序排列(与位置有关) (2)两个排列相同的条件:①元素完全相同,②元素的排列顺序也相同 合作探究二 排列数的定义及公式 3、排列数:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出 m 元素的排列数,用符号m n A 表示 议一议:“排列”和“排列数”有什么区别和联系? 4、排列数公式推导 探究:从n 个不同元素中取出2个元素的排列数2n A 是多少?3n A 呢?m A n 呢? )1()2)(1(+-?--=m n n n n A m n (,,m n N m n *∈≤) 说明:公式特征:(1)第一个因数是n ,后面每一个因数比它前面一个少1,最后一个 因数是1n m -+,共有m 个因数; (2),,m n N m n *∈≤ 即学即练: 1.计算 (1)410A ; (2)25A ;(3)3355A A ÷ 2.已知101095m A =???,那么m = 3.,k N +∈且40,k ≤则(50)(51)(52)(79)k k k k ----用排列数符号表示为( ) A .5079k k A -- B .2979k A - C .3079k A - D .3050k A - 例1. 计算从c b a ,,这三个元素中,取出3个元素的排列数,并写出所有的排列。 5 、全排列:n 个不同元素全部取出的一个排列,叫做n 个不同元素的全排列。 此时在排列数公式中, m = n 全排列数:(1)(2)21!n n A n n n n =--?=(叫做n 的阶乘). 即学即练:口答(用阶乘表示):(1)334A (2)44A (3))!1(-?n n 排列数公式的另一种形式: )! (!m n n A m n -= 另外,我们规定 0! =1 .

高中数学必修五,等差数列题型精讲精练

第七章 数列 第一节 等差数列 题型73、等差数列基本运算 ? 知识点摘要: ? 定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做 等差数列.这个常数叫做等差数列的公差,符号表示为a n +1-a n =d (n ∈N *,d 为常数). ? 等差数列的通项公式:a n =a 1+(n -1)d ;通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *). ? 等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b 2,其中A 叫做a ,b 的等差中项. ? 等差中项的推论:在等差数列中,若m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *). 若m +n =2p ,则2a p =a m +a n (m ,n ,p ∈N *). ? 前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n ) 2. ? 等差数列的通项公式及前n 项和公式与函数的关系 1. 集合当d ≠0时,a n 是关于n 的一次函数;当d >0时,数列为递增数列;当d <0时,数列为递减数列. 2. 公差不为0时,S n =An 2+Bn (A ,B 为常数).S n 是关于n 的二次函数,且常数项为0. ? 典型例题精讲精练: 1. (2018·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=( )B A .-12 B .-10 C .10 D .12 2. 已知等差数列{a n }的前n 项和为S n ,若a 2=4,S 4=22,a n =28,则n =( )D A .3 B .7 C .9 D .10 3. (2019·开封高三定位考试)已知等差数列{a n }的前n 项和为S n ,且a 1+a 5=10,S 4=16,则数列{a n }的公差为( )B A .1 B .2 C .3 D .4 4. 已知等差数列{a n }的前n 项和为S n ,且a 3·a 5=12,a 2=0.若a 1>0,则S 20=( )D A .420 B .340 C .-420 D .-340 5. 在等差数列{a n }中,已知a 5+a 10=12,则3a 7+a 9=( )C A .12 B .18 C .24 D .30

高考数学常用公式及结论200条(一)【天利】

高考数学常用公式及结论200条(一) 湖北省黄石二中 杨志明 1. 元素与集合的关系 U x A x C A ∈??,U x C A x A ∈??. 2.德摩根公式 ();()U U U U U U C A B C A C B C A B C A C B == . 3.包含关系 A B A A B B =?= U U A B C B C A ???? U A C B ?=Φ U C A B R ?= 4.容斥原理 ()()card A B cardA cardB card A B =+- ()()card A B C cardA cardB cardC card A B =++- ()()()()card A B card B C card C A card A B C ---+ . 5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n –2个. 6.二次函数的解析式的三种形式 (1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式 ()N f x M <- ? 11()f x N M N > --. 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(210时,若[]q p a b x ,2∈- =,则{}m i n m a x m a x ()(),()(),()2b f x f f x f p f q a =-=; []q p a b x ,2?- =,{}max max ()(),()f x f p f q =,{}min min ()(), ()f x f p f q =. (2)当a<0时,若[]q p a b x ,2∈- =,则{}m i n () m i n ( ),() f x f p f q = ,若

高中数学-二项式定理精讲精练

高中数学-二项式定理精讲精练 1.二项式定理 (1)二项式定理 011()C C C C ()n n n k n k k n n n n n n a b a a b a b b n --*+=+++++∈L L N ,这个公式叫做二项式定理,等号右边的多项式叫做()n a b +的二项展开式,共有____________项,其中各项的系数_____________叫做二项式系数. 说明:二项式定理中的,a b 既可以取任意实数,也可以取任意的代数式,还可以是别的.在二项式定理中,如果设1,a b x ==,则得到公式: 0122(1)C C C C C n k k n n n n n n n x x x x x +=++++++L L . (2)二项展开式的通项 二项展开式中的C k n k k n a b -叫做二项展开式的通项,用1k T +表示,即通项为展开式的第 __________项:1C k n k k k n T a b -+=. 2.“杨辉三角”与二项式系数的性质 (1)杨辉三角 当n 依次取1,2,3,…时,()n a b +展开式的二项式系数可以表示成如下形式: 该表称为“杨辉三角”,它蕴含着许多规律:例如:在同一行中,每行两端都是1,与这两个1等距离的项的系数相等;在相邻的两行中,除1以外的其余各数都等于它“肩上”两个数字之_______. (2)二项式系数的性质

①对称性.与首末两端“等距离”的两个二项式系数_________.事实上,这一性质可直接 由公式C C m n m n n -=得到. ②增减性与最大值.当12n k +< 时,二项式系数是逐渐增大的;当1 2 n k +>时,二项式系数是逐渐减小的,因此二项式系数在中间取得最大值.当n 是偶数时,中间的一项的二项式系数_________最大;当n 是奇数时,中间的两项的二项式系数_________相等且最大. ③各二项式系数的和.已知0122(1)C C C C C n k k n n n n n n n x x x x x +=++++++L L .令1x =, 则0122C C C C n n n n n n =++++L .也就是说,()n a b +的展开式的各个二项式系数的和为 _________. K 知识参考答案: 1.(1)n +1C ({0,1,2,,})k n k n ∈L (2)1k + 2.(1)和(2)①相等②2C n n 1122C ,C n n n n -+③2n K —重点 二项式定理及二项展开式的通项公式 K —难点 用二项式定理解决与二项展开式有关的简单问题 K —易错 容易混淆项与项的系数,项的系数与项的二项式系数 一、二项展开式中特定项(项的系数)的计算 求二项展开式的特定项问题,实质是考查通项的特点,一般需要建立方程求k ,再将k 的值代回通项求解,注意k 的取值范围(0,1,2,,k n =L ).一定要记准二项式的展开式,对于较复杂的二项式,有时先化简再展开更简捷. 【例1】已知在 的展开式中,第6项为常数项. (1)求含的项的系数; (2)求展开式中所有的有理项.

人教版高中数学选修2-1优秀全套教案

高中数学人教版选修2-1全套教案 第一章常用逻辑用语 日期: 1.1.1命题 (一)教学目标 1、知识与技能:理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若p,则q”的形式; 2、过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力; 3、情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。 (二)教学重点与难点 重点:命题的概念、命题的构成 难点:分清命题的条件、结论和判断命题的真假 教具准备:与教材内容相关的资料。 教学设想:通过学生的参与,激发学生学习数学的兴趣。 教学时间 (三)教学过程 学生探究过程: 1.复习回顾 初中已学过命题的知识,请同学们回顾:什么叫做命题? 2.思考、分析 下列语句的表述形式有什么特点?你能判断他们的真假吗? (1)若直线a∥b,则直线a与直线b没有公共点. (2)2+4=7. (3)垂直于同一条直线的两个平面平行. (4)若x2=1,则x=1. (5)两个全等三角形的面积相等. (6)3能被2整除. 3.讨论、判断 学生通过讨论,总结:所有句子的表述都是陈述句的形式,每句话都判断什么事情。其中(1)(3)(5)的判断为真,(2)(4)(6)的判断为假。 教师的引导分析:所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清。 4.抽象、归纳 定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.命题的定义的要点:能判断真假的陈述句. 在数学课中,只研究数学命题,请学生举几个数学命题的例子.教师再与学生共同从命题的定义,判断学生所举例子是否是命题,从“判断”的角度来加深对命题这一概念的理解.

人教版高中数学公式整理

人教版高中数学公式整理 1. ,. 2.. 3. 4.集合的子集个数共有个;真子集有个;非空子集有个;非空的真子集有 个. 5.二次函数的解析式的三种形式 (1)一般式; (2)顶点式;当已知抛物线的顶点坐标时,设为此式 (3)零点式;当已知抛物线与轴的交点坐标为时,设为此式 4切线式:。当已知抛物线与直线相切且切点的横坐标为时,设为此式 6.解连不等式常有以下转化形式 . 7.方程在内有且只有一个实根,等价于或。 8.闭区间上的二次函数的最值

二次函数在闭区间上的最值只能在处及区间的两端点处取得,具体如下: (1)当a>0时,若,则; ,,. (2)当a<0时,若,则, 若,则,. 9.一元二次方程=0的实根分布 1方程在区间内有根的充要条件为或; 2方程在区间内有根的充要条件为 或或; 3方程在区间内有根的充要条件为或 . 10.定区间上含参数的不等式恒成立(或有解)的条件依据

(1)在给定区间的子区间形如 ,,不同上含参数的不等式(为参 数)恒成立的充要条件是 。 (2)在给定区间 的子区间上含参数的不等式(为参数) 恒成立的充要条件是 。 (3) 在给定区间 的子区间上含参数的不等式(为参数) 的有解充要条件是 。 (4) 在给定区间 的子区间上含参数的不等式(为参数) 有解的充要条件是 。 对于参数及函数.若恒成立,则;若恒成立,则;若有解,则 ;若 有解,则 ;若 有解,则 . 若函数无最大值或最小值的情况,可以仿此推出相应结论 11.真值表 12.常见结论的否定形式

, 或且 ,成立 且或 13.四种命题的相互关系(右图): 14.充要条件记表示条件,表示结论 1充分条件:若,则是充分条件. 2必要条件:若,则是必要条件. 3充要条件:若,且,则是充要条件. 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 15.函数的单调性的等价关系 (1)设那么 上是增函数; 上是减函数. (2)设函数在某个区间内可导,如果,则为增函数;如果,则为减函数.

高中数学导数典型例题精讲(详细版)

导数经典例题精讲 导数知识点 导数是一种特殊的极限 几个常用极限:(1)1 lim 0n n →∞=,lim 0n n a →∞=(||1a <);(2)00lim x x x x →=,0011lim x x x x →= . 两个重要的极限 :(1)0sin lim 1x x x →=;(2)1lim 1x x e x →∞?? += ??? (e=2.718281845…). 函数极限的四则运算法则:若0 lim ()x x f x a →=,0 lim ()x x g x b →=,则 (1)()()0 lim x x f x g x a b →±=±????;(2)()()0 lim x x f x g x a b →?=?????;(3)()()()0 lim 0x x f x a b g x b →=≠. 数列极限的四则运算法则:若lim ,lim n n n n a a b b →∞→∞ ==,则(1)()lim n n n a b a b →∞±=±;(2)()lim n n n a b a b →∞?=?(3)()lim 0n n n a a b b b →∞ =≠(4)()lim lim lim n n n n n c a c a c a →∞→∞→∞?=?=?( c 是常数) )(x f 在0x 处的导数(或变化率或微商) 000000()()()lim lim x x x x f x x f x y f x y x x =?→?→+?-?''===??. .瞬时速度:00()() ()lim lim t t s s t t s t s t t t υ?→?→?+?-'===??. 瞬时加速度:00()() ()lim lim t t v v t t v t a v t t t ?→?→?+?-'===??. )(x f 在),(b a 的导数:()dy df f x y dx dx ''===00()() lim lim x x y f x x f x x x ?→?→?+?-==??. 函数)(x f y =在点0x 处的导数的几何意义 函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-. 几种常见函数的导数 (1) 0='C (C 为常数).(2) '1()()n n x nx n Q -=∈.(3) x x cos )(sin ='.x x sin )(cos -=' (4) x x 1 )(ln = ';e a x x a log 1)(log ='. (5) x x e e =')(; a a a x x ln )(='. 导数的运算法则 (1)' ' ' ()u v u v ±=±.(2)' ' ' ()uv u v uv =+.(3)'' '2 ()(0)u u v uv v v v -=≠. 复合函数的求导法则 设函数()u x ?=在点x 处有导数''()x u x ?=,函数)(u f y =在点x 处的对应点U处有导数 ''()u y f u =,则复合函数(())y f x ?=在点x 处有导数,且''' x u x y y u =?,或写作'''(())()()x f x f u x ??=. 【例题解析】 考点1 导数的概念 对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念. 例1. ()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 . [考查目的] 本题主要考查函数的导数和计算等基础知识和能力.

高中数学函数及其表示典型经典例题精讲精练

函数及其表示 考点一 求定义域的几种情况 ①若f(x)是整式,则函数的定义域是实数集R; ②若f(x)是分式,则函数的定义域是使分母不等于0的实数集; ③若f (x)是二次根式,则函数的定义域是使根号内的式子大于或等于0的实数集合; ④若f(x)是对数函数,真数应大于零。 ⑤.因为零的零次幂没有意义,所以底数和指数不能同时为零。 ⑥若f(x)是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合; ⑦若f(x )是由实际问题抽象出来的函数,则函数的定义域应符合实际问题 考点二 映射个数公式 C ard(A)=m ,card(B)=n, m,n ∈N * ,则从A 到B 的映射个数为 n m 。简单说成“前指后底”。 方法技巧清单 方法一 函数定义域的求法 2.(2009江西卷理)函数 2 34 y x x = --+的定义域为? ?? ( ) A.(4,1)-- B .(4,1)- C.(1,1)- D.(1,1]- 解析 由2 10 1 1141 340x x x x x x +>>-????-<??.故选C 5.求下列函数的定义域。①y= 22+?-x x .②y= () x x x -+12 .③y= x x -+-11 6.已知函数f(x)的定义域为(),51,求函数F (x)=f(3x-1)-f(3x+1)的定义域。 1. 下列各组函数中表示同一函数的是( )A.y=5 5 x 和 x y 2 = B .y =ln e x 和 e x y ln = C. ()()() ()3131+=-+-= x y x x x y 和 D. x x y y 0 1 = = 和 2.函数y=f(x)的图像与直线x =2的公共点个数为 A. 0个B. 1个 C. 0个或1个 D. 不能确定 3.已知函数y= 22 -x 定义域为{}2,1.0,1-,则其值域为 方法三 分段函数的考察 ⅰ 求分段函数的定义域和值域 2x+2 x []0,1-∈ 1求函数f(x)= x 2 1- x()2,0∈ 的定义域和值域 3 x [)+∞∈ ,2

高中数学知识点精讲极限和导数

第十二章 极限和导数 第十四章 极限与导数 一、基础知识 1.极限定义:(1)若数列{u n }满足,对任意给定的正数ε,总存在正数m ,当n>m 且n ∈N 时,恒有|u n -A|<ε成立(A 为常数),则称A 为数列u n 当n 趋向于无穷大时的极限,记为)(lim ),(lim x f x f x x -∞ →+∞ →, 另外)(lim 0 x f x x +→=A 表示x 大于x 0且趋向于x 0时f(x)极限为A ,称右极限。类似地)(lim 0 x f x x -→表示x 小 于x 0且趋向于x 0时f(x)的左极限。 2 极限的四则运算:如果0 lim x x →f(x)=a, 0 lim x x →g(x)=b ,那么0 lim x x →[f(x)±g(x)]=a ±b, lim x x →[f(x)?g(x)]=ab, 0 lim x x →).0()()(≠=b b a x g x f 3.连续:如果函数f(x)在x=x 0处有定义,且0 lim x x →f(x)存在,并且0 lim x x →f(x)=f(x 0),则称f(x)在x=x 0处连续。 4.最大值最小值定理:如果f(x)是闭区间[a,b]上的连续函数,那么f(x)在[a,b]上有最大值和最小值。 5.导数:若函数f(x)在x0附近有定义,当自变量x 在x 0处取得一个增量Δx 时(Δx 充分小),因

变量y 也随之取得增量Δy(Δy=f(x 0+Δx)-f(x 0)).若x y x ??→?0lim 存在,则称f(x)在x 0处可导,此极限 值称为f(x)在点x 0处的导数(或变化率),记作'f (x 0)或0'x x y =或 x dx dy ,即 00) ()(lim )('0 x x x f x f x f x x --=→。由定义知f(x)在点x 0连续是f(x)在x 0可导的必要条件。若f(x)在 区间I 上有定义,且在每一点可导,则称它在此敬意上可导。导数的几何意义是:f(x)在点x 0处导数'f (x 0)等于曲线y=f(x)在点P(x 0,f(x 0))处切线的斜率。 6.几个常用函数的导数:(1))'(c =0(c 为常数);(2)1 )'(-=a a ax x (a 为任意常数);(3) ;cos )'(sin x x =(4)x x sin )'(cos -=;(5)a a a x x ln )'(=;(6)x x e e =)'(;(7))'(log x a x x a log 1 = ;(8).1)'(ln x x = 7.导数的运算法则:若u(x),v(x)在x 处可导,且u(x)≠0,则 (1))(')(')]'()([x v x u x v x u ±=±;(2))(')()()(')]'()([x v x u x v x u x v x u +=;(3))(')]'([x u c x cu ?=(c 为常数);(4))()(']')(1[ 2x u x u x u -=;(5)) () ()(')(')(]')()([2 x u x v x u x v x u x u x u -=。 8.复合函数求导法:设函数y=f(u),u=?(x),已知?(x)在x 处可导,f(u)在对应的点u(u=?(x))处可导,则复合函数y=f[?(x)]在点x 处可导,且(f[?(x)])'=)(')](['x x f ??. 9.导数与函数的性质:(1)若f(x)在区间I 上可导,则f(x)在I 上连续;(2)若对一切x ∈(a,b)有0)('>x f ,则f(x)在(a,b)单调递增;(3)若对一切x ∈(a,b)有0)('x f ,则f(x)在x 0处取得极小值;(2)若0)(''0

人教A版数学必修一必修①精讲精练答案

第1练 §1.1.1 集合的含义与表示 【第1练】 1~5 BCCCD 6. a B ∈ 7. 0,1,3x ≠- 8. (1){|2}y y ≥;(2){|2}x x ≠± 9. {1,2,4,5,7} 提示:分31,2,4x -=±±±等情况. 10. ④ 提示:集合①与②是等价的,它们均表示除去了四条直线外的所有的点;集合③表示整个坐标平面;集合④不能表示点(1,1)、(2,-3),集合④能表示所指定的集合. 第2练 §1.1.2 集合间的基本关系 【第2练】 1~5 DDAAD 6. 7个 7. -1,0 8. 2a =. 提示:联合2352a a -+=及26102a a -+=求解. 9. 3m ≤(注意区间端点及B =φ) 10.解:依题意可知,“孤立元素x ”是没有与x 相邻的,非“孤立元素x ”是指在集合中有与x 相邻的元素.因此所求问题的集合可分成如下两类: (1)4个元素连续的,有3个:{0,1,2,3},{1,2,3,4},{2,3,4,5}; (2)4个元素分两组,每组两个连续的,也有3个:{0,1,3,4},{1,2,4,5},{0,1,4,5}. 第3练 §1.1.3 集合的基本运算(一) 【第3练】 1~5 CDACB 6. {6} 7. {(3,1)}- 8. A ={1,3,5,7},B ={2,3,4,6,8}. 提示:由Venn 图可知. 9. {|4}x x ≥, {|4}x x ≥. 10.解:(1){1,4}B =. 当4a =时,{4}A =,则{1,4}A B =,{4}A B =; 当1a =时,{1,4}A =,则{1,4}A B =,{1,4}A B =; 当1a ≠且4a ≠时,{4,}A a =,则{1,4,}A B a =,{4}A B =. (2)若A B ?,由上易知4a =或1a =. (3)当5a =时,{1,5}A =,{1,4,5}A B =,其真子集有7个. {4}A B =,则满足{4}{1,4,5}P 刎的集合P 有:{1,4},{4,5}. 第4练 §1.1.3 集合的基本运算(二) 【第4练】 1~5 BDBBA 6. 1a ≥ 7. 80 提示:结合文氏图,易知()()()()n A B n A n B n A B =+-,则65352080+-= 8. {2,1,4}A B =-- 9. 2a = 提示:由集合元素的特征列方程组而解. 10. (1)A ※B ={3,4,5,2,1},3+4+5+2+1=15.答案选A . (2)先将A *B 化简即得 A *B ={x |x ∈A ∪B ,且x ?A ∩B }=()A B A B e∪∩. ∴(A *B )*A ={x |x ∈(A *B )∪A ,且x ?(A *B )∩A }={x |x ∈A ∪B ,且x ?()A A B e∩}=B . (3)S =(1+2+3+…+100)-(6+12+18+…+96)=5050-816=4234 第5练 §1.2.1 函数的概念 【第5练】 1~5 CDBBC 6. 3+2, 57 7. -1 8. (1)(,1) (1,2]-∞;(2)定义域1{|}3x x ≠,值域2{|}3y y ≠-. 9. 211()22 f x x x =+ 10. 解:令x y =得22()()(0)f x g y g +=. 再令0x =,即得(0)0,1g =. 若(0)0g =,令1x y ==时,得(1)0f =不合题意,故(0)1g = ;(0)(11)(1)(1)(1)(1)g g g g f f =-=+,即21(1)1g =+,所以(1)0g =;那么(1)(01)(0)(1)(0g g g g f f -=-=+=,(2)[1(1)](1)(1)(1)(1)1g g g g f f =--=-+-=-.

人教版高中数学选修1-1知识点总结

高中数学选修1-1知识点总结 1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句.假命题:判断为假的语句. 2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论. 3、原命题:“若p ,则q ” 逆命题: “若q ,则p ” 否命题:“若p ?,则q ?” 逆否命题:“若q ?,则p ?” 4、四种命题的真假性之间的关系: (1)两个命题互为逆否命题,它们有相同的真假性; (2)两个命题为互逆命题或互否命题,它们的真假性没有关系. 5、若p q ?,则p 是q 的充分条件,q 是p 的必要条件. 若p q ?,则p 是q 的充要条件(充分必要条件). 利用集合间的包含关系: 例如:若B A ?,则A 是B 的充分条件或B 是A 的必要条件;若A=B ,则A 是B 的充要条件; 6、逻辑联结词:⑴且(and) :命题形式p q ∧;⑵或(or ):命题形式p q ∨; ⑶非(not ):命题形式p ?. 7、⑴全称量词——“所有的”、“任意一个”等,用“ 全称命题p :)(,x p M x ∈?; 全称命题p 的否定?p :)(,x p M x ?∈?。 ⑵存在量词——“存在一个”、“至少有一个”等,用“?”表示;

特称命题p :)(,x p M x ∈?; 特称命题p 的否定?p :)(,x p M x ?∈?; 第二章 圆锥曲线 1、平面内与两个定点1F ,2F 的距离之和等于常数(大于 12F F )的点的轨迹称为椭圆. 即:|)|2(,2||||2121F F a a MF MF >=+。 这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质:

高中数学人教版必修四常见公式及知识点系统总结(全)

必修四常考公式及高频考点 第一部分 三角函数与三角恒等变换 考点一 角的表示方法 1.终边相同角的表示方法: 所有与角α终边相同的角,连同角α在内可以构成一个集合:{β|β= k ·360 °+α,k ∈Z } 2.象限角的表示方法: 第一象限角的集合为{α| k ·360 °<α

高中数学必修一精讲精练

目录 第一节集合 (2) 第一课时:集合的含义与表示 (2) 第二课时:集合间的基本关系和集合的运算 (7) 第二节函数及其表示 (12) 第三课时:函数的概念 (12) 第四课时:函数的表示方法 (18) 第三节函数的基本性质 (24) 第五课时:函数的单调性 (24) 第六课时:函数的奇偶性 (27) 第四节基本初等函数 (30) 第七课时:指数与指数幂的运算 (30) 第八课时:指数函数及其性质 (35) 第九课时:对数与对数的运算 (41) 第十课时:对数函数及其性质 (45) 第十一课时:幂函数 (51) 第五节函数的应用 (54) 第十二课时:方程的根与函数的零点 (54)

第一节集合 第一课时:集合的含义与表示 一、课本知识梳理 1. 集合 1.1一般地,我们把________________统称为元素,把一些元素组成的___________叫做集合。 1.2集合相等:只要构成两个集合的元素是__________的,我们就称这两个集合是相等的。 1.3集合与元素的表示:通常用__________________表示集合。通常用__________________表示集合中的元素。 1.4集合中元素的特性:_____________、____________、_____________. 1.5元素与集合的关系:、。 1.6常用数集及表示符号 1.7集合的表示方法 1.8集合的分类 1.8.1集合按元素个数分为、、,我们所说的单元素集合、双元素集合也是根据集合中元素的个数分类的。 1.8.2集合按元素的属性分为数集、点集、序数对等。 二、课本知识理解 1.集合是现代数学中一个原始的、不定义的概念.集合语言是数学中最基础、最通用的数学语言,它精确 地表达了各类对象之间的关系,能更简洁、更准确的表达有关的数学内容. 2.集合中的元素可以是人、物品、数学对象等,其种类没有限制,但这些对象必须是确定的. 3.集合中的元素可以有相同的特征,也可以是不同类的,只要它们能够确定,并且集中在一起,就能构 成一个集合. 4.集合中的元素具有确定性、互异性、无序性三大特征,利用这三大特征,一方面可以判断一些对象能

人教版高中物理及数学公式大全

高中数学和物理常用公式及常用结论 1. 元素与集合的关系 U x A x C A ∈??,U x C A x A ∈??. 2.德摩根公式 ();()U U U U U U C A B C A C B C A B C A C B == . 3.包含关系 A B A A B B =?= U U A B C B C A ???? U A C B ?=Φ U C A B R ?= 4.容斥原理 ()()card A B cardA cardB card A B =+- ()()card A B C cardA cardB cardC card A B =++- ()()()()card A B card B C card C A card A B C ---+ . 5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n –2个. 6.二次函数的解析式的三种形式 (1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式 ()N f x M <- ? 11()f x N M N > --. 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(210时,若[]q p a b x ,2∈- =,则{}m in m ax m ax ()(),()(),()2b f x f f x f p f q a =- =; []q p a b x ,2?- =,{}max max ()(),()f x f p f q =,{}min min ()(), ()f x f p f q =. (2)当a<0时,若[]q p a b x ,2∈- =,则{} m i n () m i n ( ),()f x f p f q =,若[]q p a b x ,2?- =,则 {}m a x () m a x ( ),()f x f p f q = ,{}min )min (),()f x f p f q =. 10.一元二次方程的实根分布 依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 . 设q px x x f ++=2)(,则 (1)方程0)(=x f 在区间),(+∞m 内有根的充要条件为0)(=m f 或2402 p q p m ?-≥? ?->??;

相关主题
文本预览
相关文档 最新文档