当前位置:文档之家› 2013届高三人教B版理科数学一轮复习课时作业(51)直线与圆锥曲线的位置关系)

2013届高三人教B版理科数学一轮复习课时作业(51)直线与圆锥曲线的位置关系)

课时作业(五十一) [第51讲 直线与圆锥曲线的位置关系]

[时间:45分钟 分值:100分]

基础热身

1.[2011·哈尔滨二模] 已知椭圆C :x 24+y 2

b

=1,直线l :y =mx +1,若对任意的m ∈R ,

直线l 与椭圆C 恒有公共点,则实数b 的取值范围是( )

A .[1,4)

B .[1,+∞)

C .[1,4)∪(4,+∞)

D .(4,+∞)

2.直线l 过点(2,0)且与双曲线x 2-y 2=2仅有一个公共点,这样的直线有( ) A .1条 B .2条 C .3条 D .4条

3.直线x -y +3=0与曲线y 29-x |x |

4

=1的交点个数是( )

A .4

B .3

C .2

D .1 4.[2011·西铁一中二模] 若直线y =kx +2与双曲线x 2-y 2=6的右支交于不同的两点,则k 的取值范围是( )

A.????-153,-1

B.?

???0,

153 C.????-153,0 D.????-153

153 能力提升

5.设O 是坐标原点,F 是抛物线y 2=2px (p >0)的焦点,A 是抛物线上的一点,F A →

与x

轴正向的夹角为60°,则|OA →

|为( )

A.21p 4

B.21p 2

C.136p

D.1336

p 6.过抛物线y 2=4x 的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线( )

A .有且仅有一条

B .有且仅有两条

C .有无穷多条

D .不存在

7.[2011·舟山七校联考] 椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率e =2

3

,A ,B 是椭圆上关于x 、

y 轴均不对称的两点,线段AB 的垂直平分线与x 轴交于点P (1,0).设AB 的中点为C (x 0,y 0),则x 0的值为( )

A.95

B.94

C.49

D.59

8.已知直线y =k (x +2)(k >0)与抛物线C :y 2=8x 相交于A 、B 两点,F 为C 的焦点,若|F A |=2|FB |,则k =( )

A.13

B.23

C.23

D.223 9.[2011·全国卷] 已知抛物线C :y 2=4x 的焦点为F ,直线y =2x -4与C 交于A ,B 两点.则cos ∠AFB =( )

A.45

B.35

C .-35

D .-45

10.若直线l :tx -y +6=0与曲线C :x 2-y 2=2有两个不同交点,则实数t 的取值范围是________.

11.过点(0,2)的双曲线x 2-y 2=2的切线方程是________.

12.设已知抛物线C 的顶点在坐标原点,焦点为F (1,0),直线l 与抛物线C 相交于A ,B 两点.若AB 的中点为(2,2),则直线l 的方程为________.

13.已知双曲线x 29-y 2

16=1,过其右焦点F 的直线交双曲线于P ,Q 两点,PQ 的垂直平

分线交x 轴于点M ,则|MF |

|PQ |

=________.

14.(10分)已知抛物线y 2=2px (p >0)的对称轴上的定点M (m,0)(m >0),过点M 作直线AB 与抛物线相交于A ,B 两点.

(1)试证明A ,B 两点的纵坐标之积为定值;

(2)若点N 是定直线l :x =-m 上的任一点,证明:直线AN ,MN ,BN 的斜率成等差数列.

15.(13分)[2011·江西卷] P (x 0,y 0)(x 0≠±a )是双曲线E :x 2a 2-y 2

b

2=1(a >0,b >0)上一点,

M ,N 分别是双曲线E 的左、右顶点,直线PM ,PN 的斜率之积为1

5

.

(1)求双曲线的离心率;

(2)过双曲线E 的右焦点且斜率为1的直线交双曲线于A ,B 两点,O 为坐标原点,C 为

双曲线上一点,满足OC →=λOA →+OB →

,求λ的值.

难点突破

16.(12分)[2011·银川一中月考] 已知曲线C 上任意一点M 到点F (0,1)的距离比它到直线l :y =-2的距离小1.

(1)求曲线C 的方程;

(2)过点P (2,2)的直线m 与曲线C 交于A 、B 两点,设AP →=λPB →

,当△AOB 的面积为42时(O 为坐标原点),求λ的值.

课时作业(五十一)

【基础热身】

1.C [解析] 直线恒过定点(0,1),只要该点在椭圆内部或椭圆上即可,故只要b ≥1且b ≠4.

2.C [解析] 点(2,0)恰是双曲线的一个顶点,过该点仅有一条直线与双曲线相切,而过该点与双曲线的渐近线平行的两条直线也与双曲线仅有一个公共点,故这样的直线有3条.

3.B [解析] 当x ≥0时,方程是y 29-x 24=1,当x <0时,方程是y 29+x 2

4

=1,作图即知.

4.A [解析] 联立方程?????

y =kx +2,

x 2-y 2=6,

消去y 后得 (1-k 2)x 2-4kx -10=0,设交点坐标

为(x 1,y 1),(x 2,y 2),则1-k 2≠0,Δ=(-4k )2+40(1-k 2)>0,x 1+x 2=4k

1-k 2>0,x 1x 2=-101-k 2

>0,解不等式组得-15

3

【能力提升】

5.B [解析] 过A 作AD ⊥x 轴于D ,令|FD |=m ,则|F A |=2m ,p +m =2m ,m =p ,

∴OA =????p 2+p 2+(3p )2=212

p . 6.B [解析] 方法1:该抛物线的通径长为4,而这样的弦AB 的长为x A +x B +p =7,故这样的直线有且仅有两条.

方法二:①当该直线的斜率不存在时,它们的横坐标之和等于2,不合题意. ②当该直线的斜率存在时,设该直线方程为y =k (x -1),代入抛物线方程得

k 2x 2-(2k 2+4)x +k 2

=0,由x 1+x 2=2k 2+4k 2=5?k 2=43?k =±233

.故这样的直线有且仅有

两条.

7.B [解析] 设A (x 1,y 1),B (x 2,y 2).由于点A ,B 在椭圆x 2a 2+y 2b 2=1(a >b >0)上,所以x 21

a

2

+y 21b 2=1,x 22a 2+y 2

2

b 2=1,两式相减得(x 1+x 2)(x 1-x 2)a 2+(y 1+y 2)(y 1-y 2)b 2

=0.设直线AB 的斜率为k ,则得k =-b 2x 0a 2y 0,从而线段AB 的垂直平分线的斜率为a 2y 0

b 2x 0,线段AB 的垂直平分线的方程为

y -y 0=a 2y 0b 2x 0(x -x 0).由于线段AB 的垂直平分线与x 轴交于点P (1,0),所以0-y 0=a 2y 0

b 2x 0

(1-

x 0),解得x 0=a

2a 2-b 2

.

a 2a 2-

b 2=a 2

c 2=???

?1e 2.所以x 0

=9

4. 8.D [解析] 设A (x 1,y 1),B (x 2,y 2),直线y =k (x +2)与抛物线y 2=8x 联立,消掉y 得k 2x 2+(4k 2-8)x +4k 2=0.

根据韦达定理x 1x 2=4,(1).

根据焦点半径公式,有|F A |=x 1+2,|FB |=x 2+2,由|F A |=2|FB |,得x 1=2x 2+2,(2),

由(1)(2)解得x 2=1(负值舍去),故点B 的坐标为(1,22),将其代入y =k (x +2)(k >0)得k =22

3

.

9.D [解析] 法一:联立直线与抛物线的方程,消去y 得x 2-5x +4=0,∴x =1或4,

得A (1,-2),B (4,4),则|AF |=2,|BF |=5,|AB |=35,由余弦定理得cos ∠AFB =-4

5

,故

选D.

法二:联立方程?

????

y =2x -4,

y 2=4x ,解得x =1或x =4,所以交点坐标分别为A (1,-2),B (4,4),

又F (1,0),∴FB →=(3,4),F A →

=(0,-2),所以cos ∠AFB =F A →·FB →

|F A →||FB →|

=-85×2

=-45.

10.(-2,-1)∪(-1,1)∪(1,2) [解析] 直线与曲线方程联立,消掉y 得(1-t 2)x 2-26tx -8=0,直线与双曲线交于不同两点的充要条件是1-t 2≠0且Δ=(26t )2-4(1-t 2)×(-8)>0,解得t 2<4且t 2≠1.

11.y =±3x +2 [解析] 设切线方程为y =kx +2,代入双曲线方程得(1-k 2)x 2-4kx -6=0,由Δ=16k 2+24(1-k 2)=0,解得k =±3,故所求的切线方程为y =±3x +2.

12.y =x [解析] 由已知抛物线方程为y 2=4x .直线l 的斜率不存在时,根据抛物线的对称性,点(2,2)不可能是AB 的中点,故直线l 的斜率存在,设直线方程斜率为k ,则直线l

的方程是y -2=k (x -2)且k ≠0,与抛物线方程y 2=4x 联立消去x ,则y 2-4????

y -2k +2=0,

即y 2-4k y +8k -8=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4k ,又y 1+y 22=2,即2

k

=2,解得k =

1,故所求的直线方程是y -2=x -2,即y =x .

13.5

6

[解析] 右焦点F 的坐标是(5,0),设直线PQ 的方程是x =my +5,代入双曲线方程得(16m 2-9)y 2+160my +162=0.设P (x 1,y 1),Q (x 2,y 2),

则y 1+y 2=-160m 16m 2-9,y 1y 2=162

16m 2-9

则|PQ |=1+m 2????-160m 16m 2-92-4·16216m 2-9=96(1+m 2)|16m 2-9|

. 设PQ 的中点N (x 0,y 0),

则y 0=-80m 16m 2-9,x 0=-80m 216m 2

-9+5=-45

16m 2-9

. 设M (t,0),则y 0x 0-t =-m ,即t =y 0m +x 0=-125

16m 2-9

故|MF |=|t -5|=????-12516m 2-9-5=80(1+m 2)|16m 2-9|.

所以|MF ||PQ |=8096=56

.

14.[解答] (1)证明:设A (x 1,y 1),B (x 2,y 2),则有y 1y 2=-2pm ,下证之:

设直线AB 的方程为:x =ty +m ,与y 2

=2px 联立得?

????

y 2=2px ,x =ty +m ,消去x ,得y 2-2pty -2pm =0,

由韦达定理得y 1y 2=-2pm .

(2)证明:设点N (-m ,n ),则直线AN 的斜率为k AN =y 1-n x 1+m ,直线BN 的斜率为k BN =y 2-n

x 2+m

∴k AN +k BN =y 1-n y 212p +m +y 2-n y 222p

+m =2p (y 1-n )y 21+2pm +2p (y 2-n )

y 22+2pm

=2p ? ???

?y 1-n y 21-y 1y 2+y 2-n y 22-y 1y 2 =2p ·y 2(y 1-n )-y 1(y 2-n )y 1y 2(y 1-y 2)

=2p ·n (y 1-y 2)y 1y 2(y 1-y 2)=2p ·n y 1y 2=2p ·n -2pm

=-n m

又∵直线MN 的斜率为k MN =n -0-m -m

=-n

2m ,

∴k AN +k BN =2k MN ,

即直线AN ,MN ,BN 15.[解答] (1)点P (x 0,y 0)(x 0≠±a )在双曲线x a 2-y b 2=1上,有x 20a 2-y 20

b

2=1,

由题意又有y 0x 0-a ·y 0x 0+a =15

,可得a 2=5b 2,c 2=a 2+b 2=6b 2,则e =c a =30

5.

(2)联立?????

x 2-5y 2=5b 2

y =x -c

得4x 2-10cx +35b 2=0,

设A (x 1,y 1),B (x 2,y 2),

则?

??

x 1+x 2=5c

2

x 1x 2=35b 2

4

.

设OC →=(x 3,y 3),OC →=λOA →+OB →

,即?????

x 3=λx 1+x 2,y 3=λy 1+y 2,

又C 为双曲线上一点,即x 23-5y 23=5b 2

, 有(λx 1+x 2)2-5(λy 1+y 2)2=5b 2,

化简得:λ2(x 21-5y 21)+(x 22-5y 22)+2λ(x 1x 2-5y 1y 2)=5b 2

. 又A (x 1,y 1),B (x 2,y 2)在双曲线上,

所以x 21-5y 21=5b 2,x 22-5y 22=5b 2

.②

由①式又有x 1x 2-5y 1y 2=x 1x 2-5(x 1-c )(x 2-c )=-4x 1x 2+5c (x 1+x 2)-5c 2=10b 2, 得:λ2+4λ=0,解得λ=0或λ=-4. 【难点突破】

16.[解答] (1)∵点M 到点F (0,1)的距离比它到直线l :y =-2的距离小1,

∴点M 在直线l 的上方,点M 到F (0,1)的距离与它到直线l ′∶y =-1的距离相等, ∴点M 的轨迹C 是以F 为焦点,l ′为准线的抛物线, ∴曲线C 的方程为x 2=4y .

(2)当直线m 的斜率不存在时,它与曲线C 只有一个交点,不合题意, 设直线m 的方程为y -2=k (x -2),即y =kx +(2-2k ), 代入x 2=4y 得x 2-4kx +8(k -1)=0(*),

Δ=16(k 2-2k +2)>0对k ∈R 恒成立,所以直线m 与曲线C 恒有两个不同的交点. 设交点A ,B 的坐标分别为A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=4k ,x 1x 2=8(k -1). ∴|AB |=(x 2-x 1)2+(y 2-y 1)2 =(1+k 2)[(x 2+x 1)2-4x 1x 2] =4(1+k 2)(k 2-2k +2),

点O 到直线m 的距离d =|2-2k |

1+k 2

∴S △ABO =1

2

|AB |d =4|k -1|k 2-2k +2=4(k -1)4+(k -1)2,

∵S △ABO =42,∴4(k -1)4+(k -1)2=42, ∴(k -1)4+(k -1)2-2=0,

∴(k -1)2=1或(k -1)2=-2(舍去),

∴k =0或k =2.

当k =0时,方程(*)的解为x =±2 2. 若x 1=22,x 2=-22,

则λ=2-22

-22-2

=3-22;

若x 1=-22,x 2=22,

则λ=2+2222-2

=3+2 2.

当k =2时,方程(*)的解为4±2 2. 若x 1=4+22,x 2=4-22,

则λ=-2-222-22

=3+22;

若x 1=4-22,x 2=4+22,

则λ=-2+222+22

=3-2 2.

所以λ=3+22或3-2 2.

2020高考数学圆锥曲线试题(含答案)

2020高考虽然延期,但是每天练习一定要跟上,加油! 圆锥曲线 一. 选择题: 1.(福建卷11)又曲线22 221x y a b ==(a >0,b >0)的两个焦点为F 1、 F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为B A.(1,3) B.(]1,3 C.(3,+∞) D.[)3,+∞ 2.(海南卷11)已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2, -1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( A ) A. (4 1 ,-1) B. (4 1,1) C. (1,2) D. (1,-2) 3.(湖北卷10)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点 的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④ 1 1 c a <2 2 c a . 其中正确式子的序号是B

A. ①③ B. ②③ C. ①④ D. ②④ 4.(湖南卷8)若双曲线22221x y a b -=(a >0,b >0)上横坐标为32 a 的点 到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是( B ) A.(1,2) B.(2,+∞) C.(1,5) D. (5,+∞) 5.(江西卷7)已知1F 、2F 是椭圆的两个焦点,满足120MF MF ?=u u u u r u u u u r 的点M 总在椭圆内部,则椭圆离心率的取值范围是C A .(0,1) B .1 (0,]2 C .(0, 2 D .,1)2 6.(辽宁卷10)已知点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( A ) A B .3 C D .92 7.(全国二9)设1a >,则双曲线22 22 1(1)x y a a - =+的离心率e 的取值范围是( B ) A . B . C .(25), D .(2 8.(山东卷(10)设椭圆C 1的离心率为 13 5 ,焦点在X 轴上且长轴长为 A B C D -

2018年高考真题汇编——理科数学(解析版)10:圆锥曲线

2018高考真题分类汇编:圆锥曲线 一、选择题 1.【2018高考真题浙江理8】如图,F 1,F 2分别是双曲线C :2 2 221x y a b -=(a,b >0)的左、 右焦点,B 是虚轴的端点,直线F 1B 与C 的两条渐近线分别交于P ,Q 两点,线段PQ 的垂直平 分线与x 轴交与点M ,若|MF 2|=|F 1F 2|,则C 的离心率是 A. 23 B 6 2 D. 3【答案】B 【解析】由题意知直线B F 1的方程为:b x c b y +=,联立方程组??????? =-+=0,b y a x b x c b y 得点 Q ),(a c bc a c ac --,联立方程组??????? =++=0 ,b y a x b x c b y 得点P ),(a c bc a c ac ++-,所以PQ 的中点坐标为),(222b c b c a ,所以PQ 的垂直平分线方程为:)(222b c a x b c b c y --=-,令0=y ,得)1(22b a c x +=,所以c b a c 3)1(22=+,所以2222222a c b a -==,即2223 c a =,所以26=e 。 故选B 2.【2018高考真题新课标理8】等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线 x y 162=的准线交于,A B 两点,43AB =;则C 的实轴长为( )

()A 2 ()B 22 ()C 4 ()D 8 【答案】C 【解析】设等轴双曲线方程为)0(2 2 >=-m m y x ,抛物线的准线为4-=x ,由34=AB ,则32=A y ,把坐标)32,4(-代入双曲线方程得412162 2 =-=-=y x m ,所以双曲线方 程为42 2 =-y x ,即14 42 2=-y x ,所以2,42==a a ,所以实轴长42=a ,选C. 3.【2018高考真题新课标理4】设12F F 是椭圆22 22:1(0)x y E a b a b +=>>的左、右焦点,P 为 直线32a x =上一点,12PF F ?是底角为30o 的等腰三角形,则E 的离心率为( ) ()A 12 ()B 23 ()C 34 ()D 45 【答案】C 【解析】因为12PF F ?是底角为30o 的等腰三角形,则有 P F F F 212=,,因为 2130=∠F PF ,所以 0260=∠D PF ,0230=∠DPF ,所以21222121F F PF D F == ,即c c c a =?=-22 1 23,所以c a 223=,即43=a c ,所以椭圆的离心率为4 3=e ,选C. 4.【2018高考真题四川理8】已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。若点M 到该抛物线焦点的距离为3,则||OM =( ) A 、22 B 、23 C 、4 D 、5 【答案】B 【解析】设抛物线方程为2 2y px =,则点(2,2)M p ±Q 焦点,02p ?? ??? ,点M 到该抛物线焦点的距离为3,∴ 2 2492p P ? ?-+= ?? ?, 解得2p =,所以44223OM =+?=.

高三文科数学圆锥曲线综合复习讲义

高三文科数学圆锥曲线综合复习讲义 一、基础知识【理解去记】 1.椭圆的定义,第一定义:平面上到两个定点的距离之和等于定长(大于两个定点之间的距离)的点的轨迹,即|PF 1|+|PF 2|=2a (2a>|F 1F 2|=2c). 第二定义:平面上到一个定点的距离与到一条定直线的距离之比为同一个常数e(0b>0), F 1(-c, 0), F 2(c, 0)是它的两焦点。若P(x, y)是椭圆上的任意一 点,则|PF 1|=a+ex, |PF 2|=a-ex. 5.补充知识点: 几个常用结论: 1)过椭圆上一点P(x 0, y 0)的切线方程为: 12020=+b y y a x x ; 2)斜率为k 的切线方程为222b k a kx y +±=;3)过焦点F 2(c, 0)倾斜角为θ的弦的长为 θ 2222 cos 2c a ab l -=。 6.双曲线的定义,第一定义: 满足||PF 1|-|PF 2||=2a(2a<2c=|F 1F 2|, a>0)的点P 的轨迹; 第二定义:到定点的距离与到定直线距离之比为常数e(>1)的点的轨迹。 7.双曲线的方程:中心在原点,焦点在x 轴上的双曲线方程为

高考数学圆锥曲线专题复习

圆锥曲线 一、知识结构 1.方程的曲线 在平面直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系: (1)曲线上的点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线. 点与曲线的关系若曲线C的方程是f(x,y)=0,则点P0(x0,y0)在曲线C上?f(x0,y 0)=0; 点P0(x0,y0)不在曲线C上?f(x0,y0)≠0 两条曲线的交点若曲线C1,C2的方程分别为f1(x,y)=0,f2(x,y)=0,则 f1(x0,y0)=0 点P0(x0,y0)是C1,C2的交点? f2(x0,y0) =0 方程组有n个不同的实数解,两条曲线就有n个不同的交点;方程组没有实数解,曲线就没有交点.

2.圆 圆的定义:点集:{M ||OM |=r },其中定点O 为圆心,定长r 为半径. 圆的方程: (1)标准方程 圆心在c(a,b),半径为r 的圆方程是 (x-a)2 +(y-b)2 =r 2 圆心在坐标原点,半径为r 的圆方程是 x 2 +y 2 =r 2 (2)一般方程 当D 2 +E 2 -4F >0时,一元二次方程 x 2 +y 2 +Dx+Ey+F=0 叫做圆的一般方程,圆心为(-2D ,-2 E ),半径是 2 4F -E D 22+.配方,将方程 x 2 +y 2 +Dx+Ey+F=0化为 (x+2D )2+(y+2 E )2=44 F -E D 22+ 当D 2 +E 2 -4F=0时,方程表示一个点 (-2D ,-2 E ); 当D 2 +E 2-4F <0时,方程不表示任何图形. 点与圆的位置关系 已知圆心C(a,b),半径为r,点M 的坐标为(x 0,y 0),则 |MC |<r ?点M 在圆C 内,|MC |=r ?点M 在圆C 上,|MC |>r ?点M 在圆C 内, 其中|MC |=2 02 0b)-(y a)-(x +. (3)直线和圆的位置关系 ①直线和圆有相交、相切、相离三种位置关系 直线与圆相交?有两个公共点 直线与圆相切?有一个公共点 直线与圆相离?没有公共点 ②直线和圆的位置关系的判定 (i)判别式法 (ii)利用圆心C(a,b)到直线Ax+By+C=0的距离d= 2 2 C Bb Aa B A +++与半径r 的大小关系来判 定.

历年高考数学圆锥曲线试题汇总

高考数学试题分类详解——圆锥曲线 一、选择题 1.设双曲线22 221x y a b -=(a >0,b >0)的渐近线与抛物线y=x 2 +1相切,则该双曲线的离心率等于( C ) (A (B )2 (C (D 2.已知椭圆2 2:12 x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B ,若3F A F B =,则||AF = (A). (B). 2 (D). 3 3.过双曲线22 221(0,0)x y a b a b -=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线 的交点分别为,B C .若1 2 AB BC =,则双曲线的离心率是 ( ) A B C D 4.已知椭圆22 221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF x ⊥轴, 直 线AB 交y 轴于点P .若2AP PB =,则椭圆的离心率是( ) A B .2 C .13 D .12 5.点P 在直线:1l y x =-上,若存在过P 的直线交抛物线2 y x =于,A B 两点,且 |||PA AB =,则称点P 为“ 点”,那么下列结论中正确的是 ( ) A .直线l 上的所有点都是“点” B .直线l 上仅有有限个点是“点” C .直线l 上的所有点都不是“ 点” D .直线l 上有无穷多个点(点不是所有的点)是“ 点” 6.设双曲线12222=-b y a x 的一条渐近线与抛物线y=x 2 +1 只有一个公共点,则双曲线的离心率为 ( ). A. 4 5 B. 5 C. 25 D.5 7.设斜率为2的直线l 过抛物线2 (0)y ax a =≠的焦点F,且和y 轴交于点A,若△OAF(O 为坐标原点)

高中理科数学解题方法篇(圆锥曲线)

攻克圆锥曲线解答题的策略 摘要:为帮助高三学生学好圆锥曲线解答题,提高成绩,战胜高考,可从四个方面着手:知识储备、方法储备、思维训练、强化训练。 关键词:知识储备 方法储备 思维训练 强化训练 第一、知识储备: 1. 直线方程的形式 (1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。 (2)与直线相关的重要内容 ①倾斜角与斜率tan ,[0,)k ααπ=∈ ②点到直线的距离d = ③夹角公式:2121 tan 1k k k k α-= + (3)弦长公式 直线y kx b =+上两点1122(,),(,)A x y B x y 间的距离:12AB x =- =或12AB y =- (4)两条直线的位置关系 ①1212l l k k ⊥?=-1 ② 212121//b b k k l l ≠=?且 2、圆锥曲线方程及性质 (1)、椭圆的方程的形式有几种(三种形式) 标准方程:22 1(0,0)x y m n m n m n + =>>≠且 2a = 参数方程:cos ,sin x a y b θθ== (2)、双曲线的方程的形式有两种 标准方程:22 1(0)x y m n m n + =?< 距离式方程:2a = (3)、三种圆锥曲线的通径你记得吗

22 222b b p a a 椭圆:;双曲线:;抛物线: (4)、圆锥曲线的定义你记清楚了吗 如:已知21F F 、是椭圆13 42 2=+y x 的两个焦点,平面内一个动点M 满足221=-MF MF 则动点M 的轨迹是( ) A 、双曲线; B 、双曲线的一支; C 、两条射线; D 、一条射线 (5)、焦点三角形面积公式:122tan 2 F PF P b θ ?=在椭圆上时,S 122cot 2 F PF P b θ ?=在双曲线上时,S (其中222 1212121212||||4,cos ,||||cos |||| PF PF c F PF PF PF PF PF PF PF θθθ+-∠==?=?) (6)、记住焦半径公式:(1)00;x a ex a ey ±±椭圆焦点在轴上时为焦点在y 轴上时为,可简记为“左 加右减,上加下减”。 (2)0||x e x a ±双曲线焦点在轴上时为 (3)11||,||22 p p x x y + +抛物线焦点在轴上时为焦点在y 轴上时为 (6)、椭圆和双曲线的基本量三角形你清楚吗 第二、方法储备 1、点差法(中点弦问题) 设 () 11,y x A 、()22,y x B ,()b a M ,为椭圆13 42 2=+y x 的弦AB 中点则有 1342 12 1=+y x ,1342 22 2=+y x ;两式相减得( )()03 4 2 2 2 1 2 2 21=-+-y y x x ? ()() ()() 3 4 21212121y y y y x x x x +-- =+-?AB k =b a 43- 2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗经典套路是什么如果有两个参数 怎么办 设直线的方程,并且与曲线的方程联立,消去一个未知数,得到一个二次方程,使用判别式 0?≥,以及根与系数的关系,代入弦长公式,设曲线上的两点1122(,),(,)A x y B x y ,将这两点代入曲线方程得到○1○2两个式子,然后○1-○2,整体消元······,若有两个字母未知数,则要找到它们的联系,消去一个,比如直线过焦点,则可以利用三点A 、B 、F 共线解决之。若有向量的关系,则寻找坐标之间的关系,根与系数的关系结合消元处理。一旦设直线为y kx b =+,就意味着k 存在。

高中数学圆锥曲线知识点总结

高中数学知识点大全—圆锥曲线 一、考点(限考)概要: 1、椭圆: (1)轨迹定义: ①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。用集合表示为: ; ②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。其中定点叫焦点,定直线叫准线,常数e是离心率。 用集合表示为: ; (2)标准方程和性质:

注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。 (3)参数方程:(θ为参数); 3、双曲线: (1)轨迹定义: ①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。用集合表示为: ②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。其中定点叫焦点,定直线叫准线,常数e是离心率。 用集合表示为:

(2)标准方程和性质: 注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。

4、抛物线: (1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。用集合表示为 : (2)标准方程和性质: ①焦点坐标的符号与方程符号一致,与准线方程的符号相反; ②标准方程中一次项的字母与对称轴和准线方程的字母一

致; ③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像; 二、复习点睛: 1、平面解析几何的知识结构: 2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形。则椭圆的各性质(除切线外)均可在这个图中找到。

2019年高考试题汇编理科数学--圆锥曲线

(2019全国1)10.已知椭圆C 的焦点为)0,1(1-F ,)0,1(2F ,过2F 的直线与C 交于A ,B 两点.若||2||22B F AF =, ||||1BF AB =,则C 的方程为( ) A.1222=+y x B. 12322=+y x C.13422=+y x D.14 522=+y x 答案: B 解答: 由椭圆C 的焦点为)0,1(1-F ,)0,1(2F 可知1=c ,又Θ||2||22B F AF =,||||1BF AB =,可设m BF =||2,则 m AF 2||2=,m AB BF 3||||1==,根据椭圆的定义可知a m m BF BF 23||||21=+=+,得a m 2 1 = ,所以a BF 21||2=,a AF =||2,可知),0(b A -,根据相似可得)21,23(b B 代入椭圆的标准方程122 22=+b y a x ,得32=a , 22 22=-=c a b ,∴椭圆C 的方程为12 32 2=+ y x . (2019全国1)16.已知双曲线C:22 221(0,0)x y a b a b -=>>的左、右焦点分别为12,F F ,过1F 的直线与C 的 两条渐近线分别交于,A B 两点.若112,0F A AB F B F B =?=u u u r u u u r u u u r u u u r ,则C 的离心率为 . 答案: 2 解答: 由112,0F A AB F B F B =?=u u u r u u u r u u u r u u u r 知A 是1BF 的中点,12F B F B ⊥uuu r uuu r ,又O 是12,F F 的中点,所以OA 为中位线且1OA BF ⊥,所以1OB OF =,因此1FOA BOA ∠=∠,又根据两渐近线对称,12FOA F OB ∠=∠,所以260F OB ∠=?,221()1tan 602b e a =+=+?=.

最新全国高考(理科)数学试题分类汇编:圆锥曲线

全国高考理科数学试题分类汇编9:圆锥曲线 一、选择题 1 (高考江西卷(理)) 过点引直线l 与曲线y A,B 两点,O 为坐标原 点,当?AOB 的面积取最大值时,直线l 的斜率等于 ( ) A .y E B B C CD =+ +3 B .3 C .3 ± D . B 2 (福建数学(理)试题)双曲线2 214 x y -=的顶点到其渐近线的距离等于 ( ) A . 25 B . 45 C D C 3 (广东省数学(理)卷)已知中心在原点的双曲线C 的右焦点为()3,0F ,离心率等于3 2, 在双曲线C 的方程是 ( ) A .2214x = B .221 45x y -= C .22 125x y -= D .22 12x =*B 4 (高考新课标1(理))已知双曲线C :22221x y a b -=(0,0a b >>) 则C 的 渐近线方程为 ( ) A .1 4y x =± B .13 y x =± C .12 y x =± D .y x =±*C 5 (高考湖北卷(理))已知04 π θ<<,则双曲线22 122: 1cos sin x y C θθ-=与22 2222 :1sin sin tan y x C θθθ -=的 ( ) A .实轴长相等 B .虚轴长相等 C .焦距相等 D .离心率相等*D 6 (高考四川卷(理))抛物线2 4y x =的焦点到双曲线2 2 13 y x -=的渐近线的距离是 ( )

A . 12 B C .1 D B 7 (浙江数学(理)试题)如图,21,F F 是椭圆14 :22 1=+y x C 与双曲线2C 的公共焦点,B A ,分别是1C ,2C 在第二、四象限的公共点.若四边形21BF AF 为矩形,则2C 的离心率是 ( ) A .2 B .3 C . 2 3 D . 2 6 *D 8 (天津数学(理)试题)已知双曲线22 221(0,0)x y a b a b -=>>的两条渐近线与抛物线 22(0)px p y =>的准线分别交于A , B 两点, O 为坐标原点. 若双曲线的离心率为2, △ AOB 则p = ( ) A .1 B . 3 2 C .2 D .3*C 9 (大纲版数学(理))椭圆22 :143 x y C +=的左、右顶点分别为12,A A ,点P 在C 上且直线2PA 的斜率的取值范围是[]2,1--,那么直线1PA 斜率的取值范围是 ( ) A .1324 ?????? , B .3384 ?????? , C .112?? ???? , D .314?? ???? ,*B 10(大纲版数学(理))已知抛物线2 :8C y x =与点()2,2M -,过C 的焦点且斜率为k 的直 线与C 交于,A B 两点,若0MA MB =,则k = ( ) A . 1 2 B . 2 C D .2*D 11(高考北京卷(理))若双曲线22 221x y a b -=,则其渐近线方程为 ( )

2018高三数学全国二模汇编(理科)专题07圆锥曲线

【2018高三数学各地优质二模试题分项精品】 一、单选题 1.【2018黑龙江大庆高三二模】已知分别是双曲线的左、右焦点,为双曲线右支上一点,若,,则双曲线的离心率为( ) A. B. C. D. 2 【答案】A 点睛:本题考查了双曲线的几何性质——离心率的求解,其中根据条件转化为圆锥曲线的离心率的方程是解答的 关键.求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程(不等式),解方程(不等式),即可得(的取值范围). 2.【2018广东惠州高三4月模拟】已知F是抛物线2x4y =的焦点,P为抛物线上的动点,且点A的坐标为 () 0,1-,则PF PA 的最小值是()

A. 14 B. 1 2 C. 22 D. 3 【答案】C 设切点() 2,P a a ,由214y x =的导数为1 2y x '=,则PA 的斜率为1222a a a ?== . ∴1a =,则()2,1P . ∴2PM =, 22PA =∴2 sin 2 PM PAM PA ∠== 故选C . 点睛:本题主要考查抛物线的定义和几何性质,与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到焦点的距离与点到准线的距离的转化, 这样可利用三角形相似,直角三角形中的锐角三角函数或是平行线段比例关系可求得距离弦长以及相关的最值等问题. 3.【2018河南郑州高三二模】如图,已知抛物线1C 的顶点在坐标原点,焦点在x 轴上,且过点()24,,圆 222:430C x y x +-+=,过圆心2C 的直线l 与抛物线和圆分别交于,,,P Q M N ,则4PN QM +的最小值为 ( )

高中数学圆锥曲线解题技巧总结

高中数学圆锥曲线解题 技巧总结 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

解圆锥曲线问题的常用方法大全 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有 020 20=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020 =-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】 例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)与到准线的距离和最小,则点 P 的坐标为______________ (2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 分析:(1)A 在抛物线外,如图,连PF ,则PF PH =现,当A 、P 、F 三点共线时,距离和最小。

圆锥曲线知识点梳理(文科)

高考数学圆锥曲线部分知识点梳理 一、圆: 1、定义:点集{M ||OM |=r },其中定点O 为圆心,定长r 为半径. 2、方程:(1)标准方程:圆心在c(a,b),半径为r 的圆方程是(x-a)2+(y-b)2=r 2 圆心在坐标原点,半径为r 的圆方程是x 2+y 2=r 2 (2)一般方程:①当D 2+E 2-4F >0时,一元二次方程x 2+y 2+Dx+Ey+F=0叫做圆的一般方程,圆心为)2 ,2(E D -- 半径是2 422F E D -+。配方,将方程x 2+y 2+Dx+Ey+F=0化为(x+ 2D )2+(y+2 E )2=4 4F -E D 2 2+ ②当D 2+E 2-4F=0时,方程表示一个点(- 2D ,-2 E ); ③当D 2+E 2-4F <0时,方程不表示任何图形. (3)点与圆的位置关系 已知圆心C(a,b),半径为r,点M 的坐标为(x 0,y 0),则|MC |<r ?点M 在圆C 内,|MC |=r ?点M 在圆C 上,|MC |>r ?点M 在圆C 内,其中|MC |= 2 020b)-(y a)-(x +。 (4)直线和圆的位置关系:①直线和圆有相交、相切、相离三种位置关系:直线与圆相交?有两个公共点;直线与圆相切?有一个公共点;直线与圆相离?没有公共点。 ②直线和圆的位置关系的判定:(i)判别式法;(ii)利用圆心C(a,b)到直线Ax+By+C=0的距离2 2 B A C Bb Aa d +++= 与半径r 的大小 关系来判定。 二、圆锥曲线的统一定义: 平面内的动点P(x,y)到一个定点F(c,0)的距离与到不通过这个定点的一条定直线l 的距离之 比是一个常数e(e >0),则动点的轨迹叫做圆锥曲线。其中定点F(c,0)称为焦点,定直线l 称为准线,正常数e 称为离心率。当0<e <1时,轨迹为椭圆;当e=1时,轨迹为抛物线;当e >1时,轨迹为双曲线。

文科高考数学圆锥曲线试题汇编

2014年高考文科数学圆锥曲线试题汇编 一、选择题 1.(2014全国大纲卷)已知椭圆C :22 221(0)x y a b a b +=>>的左右焦点为F 1,F 2离心率为 3 ,过F 2的直线l 交C 与A 、B 两点,若△AF 1B 的周长为C 的方程为( ) A. 22132x y += B. 22 13x y += C. 221128x y += D. 221124 x y += 2.(2014全国新课标2)设F 为抛物线2 :+3C y x 的焦点,过F 且倾斜角为30?的直线交 C 于A ,B 两点,则 AB = (A ) 3 (B )6 (C )12 (D )3.(2014全国新课标1)已知双曲线)0(13 2 22>=- a y a x 的离心率为2,则=a A. 2 B. 26 C. 2 5 D. 1 4.(2013全国大纲卷)已知 ()()1221,0,1,0,F F C F x -是椭圆的两个焦点过且垂直于轴的直线交于A B 、两点,且3AB =,则C 的方程为 (A )22 12x y += (B )22132x y += (C )22143x y += (D )22154 x y += 5.(2013全国新课标1)已知双曲线22 22:1x y C a b -=(0,0)a b >>的离心率为2,则C 的渐近线方程为( ) (A )1 4 y x =± (B )13 y x =± (C )12 y x =± (D )y x =±

6.(2013全国新课标2)设椭圆C :22 22=1x y a b +(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为( ). A .6 B .13 C .1 2 D .3 7.(2012全国大纲卷)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方 程为 A . 2211612x y += B .221128x y += C .22184x y += D .22 1124 x y += 8.(2012全国新课标卷)设F 1、F 2是椭圆E :x 2a 2+y 2 b 2=1(a >b >0)的左、右焦点,P 为直线 x =3a 2上一点,△F 1PF 2是底角为30°的等腰三角形,则E 的离心率为( ) (A )12 (B )23 (C )34 (D )45 9.(2014广东卷)若实数k 满足05k <<,则曲线 221165x y k -=-与曲线22 1165 x k y --=的 A.实半轴长相等 B.虚半轴长相等 C.离心率相等 D.焦距相等 10.(2014重庆卷)设21F F ,分别为双曲线)0,0(122 22>>=-b a b y a x 的左、右焦点, 双曲 线上存在一点P 使得,3|)||(|2 2 21ab b PF PF -=+则该双曲线的离心率为( ) A.2 B.15 C.4 D.17 11.(2014浙江卷)已知圆02222=+-++a y x y x 截直线02=++y x 所得弦的长度为4,则实数a 的值为( ) A.2- B. 4- C. 6- D.8- 12.(2014天津卷)已知双曲线22 221x y a b -=()0,0a b >>的一条渐近线平行于直线l : 210y x =+,双曲线的一个焦点在直线l 上,则双曲线的方程为( )

2020年高考理科数学原创专题卷:《圆锥曲线与方程》

原创理科数学专题卷 专题 圆锥曲线与方程 考点40:椭圆及其性质(1-5题,13,14题) 考点41:双曲线及其性质(6-10题,15题) 考点42:抛物线及其性质(11,12题) 考点43:直线与圆锥曲线的位置关系(17-22题) 考点44:圆锥曲线的综合问题(16题,17-22题) 考试时间:120分钟 满分:150分 说明:请将选择题正确答案填写在答题卡上,主观题写在答题纸上 第I 卷(选择题) 一、选择题(本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。) 1.【来源】2017届湖南省长沙市高三上学期统一模拟考试 考点40 易 椭圆E 的焦点在x 轴上,中心在原点,其短轴上的两个顶点和两个焦点恰为边长是2的正方形的顶点,则椭圆E 的标准方程为( ) A. 2212x += B. 22 12x y += C. 22142x y += D. 22142y x += 2.【2017课标3,理10】 考点40 易 已知椭圆C :22 2 21x y a b +=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的 圆与直线20bx ay ab -+=相切,则C 的离心率为( ) A . B . C . D .13 3.【来源】重庆市第一中学2016-2017学年高二月考 考点40 中难 已知椭圆 2 21(0)1 x y m m +=>+的两个焦点是12,F F , E 是直线2y x =+与椭圆的一个公共点,当12EF EF +取得最小值时椭圆的离心率为( ) A. 2 3 4.【来源】湖南省湘潭市2017第三次高考模拟 考点40 难 如图, 12,A A 为椭圆22 195 x y +=长轴的左、右端点, O 为坐标原点, ,,S Q T 为椭圆上不同于12,A A 的三点,直线12,,,QA QA OS OT 围成一个平行四边形OPQR ,则

[高中数学]圆锥曲线专题-理科

圆锥曲线专题 【考纲要求】 一、直线 1.掌握直线的点方向式方程、点法向式方程、点斜式方程,认识坐标法在建立形与数的关 系中的作用; 2.会求直线的一般式方程,理解方程中字母系数表示斜率和截距的几何意义:懂得一元二 次方程的图像是直线; 3.会用直线方程判定两条直线间的平行或垂直关系(方向向量、法向量); 4.会求两条相交直线的交点坐标和夹角,掌握点到直线的距离公式. 二、圆锥曲线 1.理解曲线的方程与方程的曲线的意义,并能由此利用代数方法判定点是否在曲线上,以 及求曲线交点; 2.掌握圆、椭圆、双曲线、抛物线的定义,并理解上述曲线在直角坐标系中的标准方程的 推导过程; 3.理解椭圆、双曲线、抛物线的有关概念及简单的几何特性,掌握求这些曲线方程的基本 方法,并能根据曲线方程的关系解决简单的直线与上述曲线有两个交点情况下的有关问题; 4.能利用直线和圆、圆和圆的位置关系的几何判定,确定它们之间的位置关系,并能利用解 析法解决相应的几何问题. 【知识导图】【精解名题】 一、弦长问题 例1 如图,已知椭圆 2 21 2 x y +=及点B(0, -2),过点B引椭圆的割线(与椭圆相交的直线)BD 与椭圆交于C、D两点 (1)确定直线BD斜率的取值范围 (2)若割线BD过椭圆的左焦点 12 , F F是椭圆的右焦点,求 2 CDF ?的面积 y x B C D F1F2 O

二、轨迹问题 例2 如图,已知平行四边形ABCO,O 是坐标原点,点A 在线段MN 上移动,x=4,y=t (33)t -≤≤上移动,点C 在双曲线 22 1169 x y -=上移动,求点B 的轨迹方程 三、对称问题 例3 已知直线l :22 2,: 1169 x y y kx C =++=,问椭圆上是否存在相异两点A 、B,关于直线l 对称,请说明理由 四、最值问题 例4 已知抛物线2 :2()C x y m =--,点A 、B 及P(2, 4)均在抛物线上,且直线PA 与PB 的倾斜角互补 (1)求证:直线AB 的斜率为定值 (2)当直线AB 在y 轴上的截距为正值时,求ABP ?面积的最大值 五、参数的取值范围 例 5 已知(,0),(1,),a x b y → → == ()a → +⊥()a → - (1)求点P (x, y )的轨迹C 的方程 (2)直线:(0,0)l y kx m k m =+≠≠与曲线C 交于A 、B 两点,且在以点D (0,-1)为圆心 的同一圆上,求m 的取值范围 六、探索性问题 例6 设x, y ∈R,,i j →→ 为直角坐标平面内x, y 轴正方向上的单位向量,若向量 (2)a x i y j → →→=++,且(2)b x i y j →→→=+-且8a b →→ += (1)求点M (x, y )的轨迹方程 (2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB → → → =+,是否存在这样的直线l,使得四边形OAPB 是矩形?若存在,求出直线l 的方程;若不存在,请说明理由

高中数学圆锥曲线题目(答案)

解圆锥曲线问题常用以下方法: 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02 020=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020=-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】 例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42) (2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,分析:(1)A 在抛物线外,如图,连PF ,则PF PH =P 、F 三点共线时,距离和最小。 (2)B 在抛物线内,如图,作QR ⊥l 交于R ,则当B 、Q 、R 最小。 解:(1)(2,2) 连PF ,当A 、P 、F 三点共线时,PF AP PH AP +=+最小,此时y=22(x-1),代入y 2=4x 得P(2,22),(注:另一交点为( 2,2 1 -)

高三数学文科圆锥曲线大题训练(含答案)

高三数学文科圆锥曲线大题训练(含详细解答) 1.已知椭圆2 2 :416C x y +=. (1)求椭圆C 的离心率; (2)设椭圆C 与y 轴下半轴的交点为B ,如果直线()10y kx k =+≠交椭圆C 于不同的两点,E F ,且,,B E F 构成以EF 为底边,B 为顶点的等腰三角形,判断直线EF 与圆 221 2 x y += 的位置关系. 1.解:(I)由题意,椭圆C 的标准方程为 22 1164 x y +=, 所以2 2 2 2 2 16,4,12从而a b c a b ===-=, 因此4,a c ==故椭圆C 的离心率2 c e a = =............4分 (II)由22 1, 416 y kx x y =+??+=?得()22148120k x kx ++-=, 由题意可知0?>. ..............5分 设点,E F 的坐标分别为()()1122,,,x y x y ,EF 的中点M 的坐标为(),M M x y , 则1224214M x x k x k +==-+,122 1 214M y y y k +==+......................7分 因为BEF ?是以EF 为底边,B 为顶点的等腰三角形, 所以BM EF ⊥, 因此BM 的斜率1 BM k k =-. ............... ...........................................8分 又点B 的坐标为()0,2-,所以2 221 2 2381440414M BM M y k k k k x k k ++++===- --+,..........10分 即()238104k k k k +-=-≠,亦即21 8 k =, 所以4k =±,....................12分 故EF 的方程为440y -+=. ............... ...........................................13分 又圆221 2x y += 的圆心()0,0O 到直线EF 的距离为32d ==>, 所以直线EF 与圆相离.....................14分 2.已知椭圆的中心在坐标原点O ,长轴长为 离心率e = F 的直线l 交

高考理科数学-圆锥曲线专题训练

高三圆锥曲线选填训练 一、选择题(本大题共10小题,每小题4分,共40分) 1.椭圆12222=+b y a x (a >b>0)离心率为23,则双曲线12222=-b y a x 的离心率为 ( ) A .45 B .25 C .32 D .45 2.椭圆13 122 2=+y x 的焦点为F 1和F 2,点P 在椭圆上,如果线段PF 1中点在y 轴上,那么|PF 1|是|PF 2| 的 ( ) A .7倍 B .5倍 C .4倍 D .3倍 3.过双曲线x 2 -22 y =1的右焦点F 作直线l 交双曲线于A , B 两点,若|AB |=4,则这样的直线l 有 ( ) A .1条 B .2条 C .3条 D .4条 4.如果双曲线 136 642 2=-y x 上的一点P 到双曲线的右焦点的距离是8,那么点P 到右准线的距离是 ( ) A .10 B .7 7 32 C .27 D .5 32 5.若抛物线y 2=2p x 上的一点A (6,y )到焦点F 的距离为10,则p 等于 ( ) A .4 B .8 C .16 D .32 6.如图,过抛物线)(022>=p px y 的焦点F 的直线l 交抛物线于点A .B ,交其准线于点C ,若 BF BC 2=,且3=AF ,则此抛物线的方程为 A .x y 23 2= B .x y 32= C .x y 2 9 2= D .x y 92= 7.曲线 19252 2 =+y x 与曲线)925(19252 2 ≠<=-+-k k k y k x 且 有相同的( A .长、短轴 B .焦距 C .离心率 D .准线 8.过椭圆22 2214x y a a += (a>0)的焦点F 作一直线交椭圆于P, Q 两点,若线段PF 与QF 的长分别为 p, q ,则11p q +等于( ) A .4a B .1 2a C .4a D .2a 9.椭圆13 22 =+y x 上的点到直线x -y+6=0的距离的最小值是 . 10.已知双曲线C 的渐近线方程是x y 32±=,且经过点M ()1,2 9 -,则双曲线C 的方程是 . 11.AB 是抛物线y =x 2的一条弦,若AB 的中点到x 轴的距离为1,则弦AB 的长度的最大值 为 .

相关主题
文本预览
相关文档 最新文档