当前位置:文档之家› 液压传动系统设计说明书

液压传动系统设计说明书

液压传动系统设计说明书
液压传动系统设计说明书

中国矿业大学

液压传动系统设计说明书

设计题目:动力滑台液压系统

学院名称:中国矿业大学

专业:机械设计制造及其自动化

班级:

姓名:学号:

指导老师:

2012年6月24日

任务书

学生姓名学号

设计题目动力滑台液压系统

1.液压系统用途(包括工作环境和工作条件)及主要参数:

要求设计的动力滑台液压系统实现的工作循环是:快进、工进?快退?停止。主要性能参数与性能要求如下:切削阻力FL=30468N;运动部件所受重力G=9800N;快进、快退速度1= 3=0.1m/s,工进速度? 2=0.88×10-3m/s;快进行程L1=100mm,工进行程L2=50mm;往复运动的加速时间Δt=0.2s;动力滑台采用平导轨,静摩擦系数μs=0.2,动摩擦系数μd=0.1。液压系统执行元件选为液压缸。

2.执行元件类型:液压油缸

3.液压系统名称:动力滑台液压系统

设计内容

1. 拟订液压系统原理图;

2. 选择系统所选用的液压元件及辅件;

3. 验算液压系统性能;

4. 编写上述1、2、3的计算说明书。

设计指导教师签字

教研室主任签字

年月日签发

目录

1 序言·················- 4 -

2 设计的技术要求和设计参数·······- 5 -

3 工况分析···············- 5 - 3.1 确定执行元件············- 5 - 3.2 分析系统工况············- 5 - 3.3 负载循环图和速度循环图的绘制····- 7 - 3.

4 确定系统主要参数··········- 8 -

3.4.1 初选液压缸工作压力·········· - 8 -

3.4.2 确定液压缸主要尺寸·········· - 8 -

3.4.3 计算最大流量需求···········- 10 -3.5 拟定液压系统原理图········· - 11 -

3.5.1 速度控制回路的选择··········- 11 -

3.5.2 换向和速度换接回路的选择·······- 12 -

3.5.3 油源的选择和能耗控制·········- 13 -

3.5.4 压力控制回路的选择··········- 14 -3.6 液压元件的选择··········· - 15 -

3.6.1 确定液压泵和电机规格·········- 16 -

3.6.2 阀类元件和辅助元件的选择·······- 17 -

3.6.3 油管的选择··············- 19 -

3.6.4 油箱的设计··············- 21 - 3.7 液压系统性能的验算········· - 22 -

3.7.1 回路压力损失验算···········- 22 -

3.7.2 油液温升验算·············- 23 -

1 序言

作为一种高效率的专用机床,组合机床在大批、大量机械加工生产中应用广泛。本次课程设计将以组合机床动力滑台液压系统设计为例,介绍该组合机床液压系统的设计方法和设计步骤,其中包括组合机床动力滑台液压系统的工况分析、主要参数确定、液压系统原理图的拟定、液压元件的选择以及系统性能验算等。

组合机床是以通用部件为基础,配以按工件特定外形和加工工艺设计的专用部件和夹具而组成的半自动或自动专用机床。组合机床一般采用多轴、多刀、多工序、多面或多工位同时加工的方式,生产效率比通用机床高几倍至几十倍。组合机床兼有低成本和高效率的优点,在大批、大量生产中得到广泛应用,并可用以组成自动生产线。组合机床通常采用多轴、多刀、多面、多工位同时加工的方式,能完成钻、扩、铰、镗孔、攻丝、车、铣、磨削及其他精加工工序,生产效率比通用机床高几倍至几十倍。液压系统由于具有结构简单、动作灵活、操作方便、调速范围大、可无级连读调节等优点,在组合机床中得到了广泛应用。

液压系统在组合机床上主要是用于实现工作台的直线运动和回转运动,如图1所示,如果动力滑台要实现二次进给,则动力滑台要完成的动作循环通常包括:原位停止→快进→I工进→II工进→死挡铁停留→快退→原位停止。

图1 组合机床动力滑台工作循环

2 设计的技术要求和设计参数

工作循环:快进→工进→快退→停止;

系统设计参数如表1所示,动力滑台采用平面导轨,其静、动摩擦系数分别为f s = 0.2、f d = 0.1。

表1 设计参数

参数数值

切削阻力(N)30468

滑台自重(N) 9800

快进、快退速度(m/s) 0.1

工进速度(m/s) 0.88×10-3

快进行程(mm) 100

工进行程(mm) 50

往复运动的加速时间(s)0.2

液压缸机械效率0.9

3 工况分析

3.1 确定执行元件

金属切削机床的工作特点要求液压系统完成的主要是直线运动,因此液压系统的执行元件确定为液压缸。

3.2 分析系统工况

在对液压系统进行工况分析时,本设计实例只考虑组合机床动力滑台所受到的工作负载、惯性负载和机械摩擦阻力负载,其他负载可忽略。

(1)工作负载F W

工作负载是在工作过程中由于机器特定的工作情况而产生的负载,对于金属切削机床液压系统来说,沿液压缸轴线方向的切削力即为工作

负载,即

F W =30468N

(2)惯性负载

最大惯性负载取决于移动部件的质量和最大加速度,其中最大加速度可通过工作台最大移动速度和加速时间进行计算。已知启动换向时间为0.2s ,工作台最大移动速度,即快进、快退速度为0.1m/s ,因此惯性负载可表示为

F m =m △v/△t=9800/9.8×0.1/0.2=500

(3)阻力负载

阻力负载主要是工作台的机械摩擦阻力,分为静摩擦阻力和动摩擦阻力两部分。

静摩擦阻力 F fj = f j ×N =F fs =0.2×9800=1960N 动摩擦阻力 F fd = f d ×N =0.1220002200fd F =?=N 根据上述负载力计算结果,可得出液压缸在各个工况下所受到的负载力和液压缸所需推力情况,如表2所示。

表2 液压缸在各工作阶段的负载(单位:N )

工况

负载组成

负载值F

液压缸推力

'F =F /m η

起动 F =fs F 4400 N 4889 N 加速 F =fd F +m F 4071 N 4523 N 快进 F =fd F 2200 N 2444 N 工进 F =fd F +t F 17200 N 19111 N 反向起动 F =fs F 4400 N 4889 N 加速 F =fd F +m F

4071 N 4523 N 快退

F =fd F

2200 N

2444 N

注:此处未考虑滑台上的颠覆力矩的影响。

3.3 负载循环图和速度循环图的绘制

根据表2中计算结果,绘制组合机床动力滑台液压系统的负载循环图如图2所示。

图2 组合机床动力滑台液压系统负载循环图

图2表明,当组合机床动力滑台处于工作进给状态时,负载力最大为19111N,其他工况下负载力相对较小。

所设计组合机床动力滑台液压系统的速度循环图可根据已知的设计

参数进行绘制,已知快进和快退速度

135

υυ

==m/min、快进行程

1350200150

l=-=mm、工进行程

2200

l=mm、快退行程

3350

l=mm,

工进速度

2100

υ=mm/min。根据上述已知数据绘制组合机床动力滑台液压系统的速度循环图如图3所示。

图3 组合机床液压系统速度循环图

3.4 确定系统主要参数

3.4.1 初选液压缸工作压力

所设计的动力滑台在工进时负载最大,其值为19111N,其它工况时的负载都相对较低,参考第2章表3和表4按照负载大小或按照液压系统应用场合来选择工作压力的方法,初选液压缸的工作压力p1=2.5MPa。

3.4.2 确定液压缸主要尺寸

由于工作进给速度与快速运动速度差别较大,且快进、快退速度要求相等,从降低总流量需求考虑,应确定采用单杆双作用液压缸的差动连接方式。通常利用差动液压缸活塞杆较粗、可以在活塞杆中设置通油孔的有利条件,最好采用活塞杆固定,而液压缸缸体随滑台运动的常用

A是有典型安装形式。这种情况下,应把液压缸设计成无杆腔工作面积

1

A两倍的形式,即活塞杆直径d与缸筒直径D呈d = 杆腔工作面积

2

0.707D的关系。

工进过程中,当孔被钻通时,由于负载突然消失,液压缸有可能会发生前冲的现象,因此液压缸的回油腔应设置一定的背压(通过设置背压阀的方式),选取此背压值为p 2=0.8MPa 。

快进时液压缸虽然作差动连接(即有杆腔与无杆腔均与液压泵的来油连接),但连接管路中不可避免地存在着压降p ?,且有杆腔的压力必须大于无杆腔,估算时取p ?≈0.5MPa 。快退时回油腔中也是有背压的,这时选取被压值2p =0.6MPa 。

工进时液压缸的推力计算公式为

11221112/(/2)m F A p A p A p A p η=-=-,

式中:F ——负载力

ηm ——液压缸机械效率

A 1——液压缸无杆腔的有效作用面积 A 2——液压缸有杆腔的有效作用面积 p 1——液压缸无杆腔压力

p 2——液压有无杆腔压力

因此,根据已知参数,液压缸无杆腔的有效作用面积可计算为

2116

19111

(

)/()0.00910.82 2.5102m

F

p A p η=-

==??-? ?

?

?m 2

液压缸缸筒直径为

61(4)(40.009110)107.6D A ππ==??= mm

由于有前述差动液压缸缸筒和活塞杆直径之间的关系,d = 0.707D ,因此活塞杆直径为d=0.707×107.6=76.1mm ,根据GB/T2348—1993对液

压缸缸筒内径尺寸和液压缸活塞杆外径尺寸的规定,圆整后取液压缸缸筒直径为D =110mm ,活塞杆直径为d =80mm 。

此时液压缸两腔的实际有效面积分别为:

231/49.510A D π-==? m 2

2232()/4 4.4810A D d π-=-=? m 2

3.4.3 计算最大流量需求

工作台在快进过程中,液压缸采用差动连接,此时系统所需要的流量为

q快进=(A1-A2)×v1=25.1 L/min

工作台在快退过程中所需要的流量为

q快退=A2×v2=22.4/min

工作台在工进过程中所需要的流量为

q工进=A1×v1’=0.95 L/min

其中最大流量为快进流量为25.2L/min。

根据上述液压缸直径及流量计算结果,进一步计算液压缸在各个工作阶段中的压力、流量和功率值,如表3所示。

表3 各工况下的主要参数值

工况

推力

F’/N 回油腔压

力P2/MPa

进油腔压

力P1/MPa

输入流量

q/L.min-1

输入功率

P/Kw

计算公式

快进

启动4889 0 1.42 ————P1=错误!未找到引用

源。

q=(A1-A2)v1

P=p1q

p2=p1+Δp 加速4523 1.85 1.35 ————

恒速2444 1.43 0.93 25.1 0.39

工进19111 0.8 2.39 0.95 0.038

P1=(F’+p2A2)/A1

q=A1v2

P=p1q

快退起动4889 0 1.09 ————P

1

=(F’+p2A1)/A2

q=A2v3

P=p1q

加速4523 0.6 2.28 ————

恒速2444 0.6 1.82 22.4 0.679

把表3中计算结果绘制成工况图,如图4所示。

图4 液压系统工况图

3.5 拟定液压系统原理图

根据组合机床液压系统的设计任务和工况分析,所设计机床对调速范围、低速稳定性有一定要求,因此速度控制是该机床要解决的主要问题。速度的换接、稳定性和调节是该机床液压系统设计的核心。此外,与所有液压系统的设计要求一样,该组合机床液压系统应尽可能结构简单,成本低,节约能源,工作可靠。

3.5.1 速度控制回路的选择

工况图4表明,所设计组合机床液压系统在整个工作循环过程中所需要的功率较小,系统的效率和发热问题并不突出,因此考虑采用节流调速回路即可。虽然节流调速回路效率低,但适合于小功率场合,而且结构简单、成本低。该机床的进给运动要求有较好的低速稳定性和速度-

负载特性,因此有三种速度控制方案可以选择,即进口节流调速、出口节流调速、限压式变量泵加调速阀的容积节流调速。钻镗加工属于连续切削加工,加工过程中切削力变化不大,因此钻削过程中负载变化不大,采用节流阀的节流调速回路即可。但由于在钻头钻入铸件表面及孔被钻通时的瞬间,存在负载突变的可能,因此考虑在工作进给过程中采用具有压差补偿的进口调速阀的调速方式,且在回油路上设置背压阀。由于选定了节流调速方案,所以油路采用开式循环回路,以提高散热效率,防止油液温升过高。

3.5.2 换向和速度换接回路的选择

所设计多轴钻床液压系统对换向平稳性的要求不高,流量不大,压力不高,所以选用价格较低的电磁换向阀控制换向回路即可。为便于实现差动连接,选用三位五通电磁换向阀。为了调整方便和便于增设液压夹紧支路,应考虑选用Y型中位机能。由前述计算可知,当工作台从快进转为工进时,进入液压缸的流量由25.1 L/min降为0.95 L/min,可选二位二通行程换向阀来进行速度换接,以减少速度换接过程中的液压冲击,如图5所示。由于工作压力较低,控制阀均用普通滑阀式结构即可。由工进转为快退时,在回路上并联了一个单向阀以实现速度换接。为了控制轴向加工尺寸,提高换向位置精度,采用死挡块加压力继电器的行程终点转换控制。

a.换向回路

b.速度换接回路

图5 换向和速度切换回路的选择

3.5.3 油源的选择和能耗控制

表3表明,本设计多轴钻床液压系统的供油工况主要为快进、快退时的低压大流量供油和工进时的高压小流量供油两种工况,若采用单个定量泵供油,显然系统的功率损失大、效率低。在液压系统的流量、方向和压力等关键参数确定后,还要考虑能耗控制,用尽量少的能量来完成系统的动作要求,以达到节能和降低生产成本的目的。

在图4工况图的一个工作循环内,液压缸在快进和快退行程中要求油源以低压大流量供油,工进行程中油源以高压小流量供油。其中最大流量与最小流量之比max min /25.1/0.9526.4q q =≈,而快进和快退所需的时间1t 与工进所需的时间2t 分别为:

11133(/)(/)[(60150)/(51000)(60350)/(51000)]t l l υυ=+=??+??

6=s

222(/)(60200)/(0.11000)120t l υ==??=s

上述数据表明,在一个工作循环中,液压油源在大部分时间都处于高压小流量供油状态,只有小部分时间工作在低压大流量供油状态。从提高系统效率、节省能量角度来看,如果选用单个定量泵作为整个系统的油源,液压系统会长时间处于大流量溢流状态,从而造成能量的大量损失,这样的设计显然是不合理的。

如果采用单个定量泵供油方式,液压泵所输出的流量假设为液压缸所需要的最大流量25.1L/min ,假设忽略油路中的所有压力和流量损失,液压系统在整个工作循环过程中所需要消耗的功率估算为

快进时 P =0.93?25.1=0.39Kw 工进时P =p ?q max =2.39?25.1=1Kw 快退时 P =1.82?25.1=0.76Kw

如果采用一个大流量定量泵和一个小流量定量泵双泵串联的供油方式,由双联泵组成的油源在工进和快进过程中所输出的流量是不同的,此时液压系统在整个工作循环过程中所需要消耗的功率估算为

快进时 P =0.93?25.1=0.39Kw

工进时,大泵卸荷,大泵出口供油压力几近于零,因此

P=p?q max=2.39?0.95=0.038Kw

快退时P=1.82?25.1=0.76Kw

除采用双联泵作为油源外,也可选用限压式变量泵作油源。但限压式变量泵结构复杂、成本高,且流量突变时液压冲击较大,工作平稳性差,最后确定选用双联液压泵供油方案,有利于降低能耗和生产成本,如图6所示。

图6 双泵供油油源

3.5.4 压力控制回路的选择

由于采用双泵供油回路,故采用液控顺序阀实现低压大流量泵卸荷,用溢流阀调整高压小流量泵的供油压力。为了便于观察和调整压力,在液压泵的出口处、背压阀和液压缸无杆腔进口处设测压点。

将上述所选定的液压回路进行整理归并,并根据需要作必要的修改和调整,最后画出液压系统原理图如图7所示。

为了解决滑台快进时回油路接通油箱,无法实现液压缸差动连接的问题,必须在回油路上串接一个液控顺序阀10,以阻止油液在快进阶段返回油箱。同时阀9起背压阀的作用。

为了避免机床停止工作时回路中的油液流回油箱,导致空气进入系统,影响滑台运动的平稳性,图中添置了一个单向阀11。

考虑到这台机床用于钻孔(通孔与不通孔)加工,对位置定位精度要求较高,图中增设了一个压力继电器6。当滑台碰上死挡块后,系统压力升高,压力继电器发出快退信号,操纵电液换向阀换向。

在进油路上设有压力表开关和压力表,钻孔行程终点定位精度不高,采用行行程开关控制即可。

图7 液压系统原理图

3.6 液压元件的选择

本设计所使用液压元件均为标准液压元件,因此只需确定各液压元件的主要参数和规格,然后根据现有的液压元件产品进行选择即可。

3.6.1 确定液压泵和电机规格

(1)计算液压泵的最大工作压力

由于本设计采用双泵供油方式,根据图4液压系统的工况图,大流量液压泵只需在快进和快退阶段向液压缸供油,因此大流量泵工作压力较低。小流量液压泵在快速运动和工进时都向液压缸供油,而液压缸在工进时工作压力最大,因此对大流量液压泵和小流量液压泵的工作压力分别进行计算。

根据液压泵的最大工作压力计算方法,液压泵的最大工作压力可表示为液压缸最大工作压力与液压泵到液压缸之间压力损失之和。

对于调速阀进口节流调速回路,选取进油路上的总压力损失p 0.8MPa ∑?=,同时考虑到压力继电器的可靠动作要求压力继电器动作压力与最大工作压力的压差为0.5MPa ,则小流量泵的最高工作压力可估算为

1max (2.390.80.5)MPa 3.69MPa

p p p p p =++=++=损继电器大流量泵只在快进和快退时向液压缸供油,图4表明,快退时液压缸中的工作压力比快进时大,如取进油路上的压力损失为0.5MPa ,则大流量泵的最高工作压力为:

21()(2.280.5) 2.78p p p p MPa MPa =+=+=损

(2)计算总流量

表3表明,在整个工作循环过程中,液压油源应向液压缸提供的最大流量出现在快进工作阶段,为25.1 L/min ,若整个回路中总的泄漏量按液压缸输入流量的10%计算,则液压油源所需提供的总流量为:

1.125.1/min 27.61p q L =?=L/min 工作进给时,液压缸所需流量约为0.95 L/min ,但由于要考虑溢流阀的最小稳定溢流量3 L/min ,故小流量泵的供油量最少应为3.95 L/min 。

据据以上液压油源最大工作压力和总流量的计算数值,上网或查阅有关样本,例如YUKEN 日本油研液压泵样本,确定PV2R 型双联叶片泵能够满足上述设计要求,因此选取PV2R12-6/33型双联叶片泵,其中小泵的排量为6mL/r ,大泵的排量为33mL/r ,若取液压泵的容积效率

v

η=0.9,则当泵的转速n p

=940r/min 时,小泵的输出流量为

q p 小=6?940?0.9/1000=5.076 L/min

该流量能够满足液压缸工进速度的需要。

大泵的输出流量为

q p 大=33*940*0.9/1000=27.918 L/min 双泵供油的实际输出流量为

p q =[(6+33)9400.9/1000]L /min 32.994 L /min ??=

该流量能够满足液压缸快速动作的需要。

表4 液压泵参数

元件名称

估计流量

1/min L -

规格

额定流量

1/min L -

额定压力MPa 型号 双联叶片泵

(5.1+27.9)

最高工作压力为21 MPa

PV2R12—6/33

3.电机的选择

由于液压缸在快退时输入功率最大,这时液压泵工作压力为2.78MPa ,流量为32.994L/min 。取泵的总效率0.75p η=,则液压泵驱动

电动机所需的功率为:

2.7832.994

2.04600.75

p p

p

p q P KW KW η??=

=

=?

根据上述功率计算数据,此系统选取Y112M-6型电动机,其额定功率 2.2KW p n

=,额定转速940r /min n n

=。

3.6.2 阀类元件和辅助元件的选择

图7液压系统原理图中包括调速阀、换向阀、单项阀等阀类元件以及滤油器、空气滤清器等辅助元件。

1.阀类元件的选择

根据上述流量及压力计算结果,对图7初步拟定的液压系统原理图中各种阀类元件及辅助元件进行选择。其中调速阀的选择应考虑使调速

阀的最小稳定流量应小于液压缸工进所需流量。通过图7中5个单向阀的额定流量是各不相同的,因此最好选用不同规格的单向阀。

图7中溢流阀2、背压阀9和顺序阀10的选择可根据调定压力和流经阀的额定流量来选择阀的型式和规格,其中溢流阀2的作用是调定工作进给过程中小流量液压泵的供油压力,因此该阀应选择先导式溢流阀,连接在大流量液压泵出口处的顺序阀10用于使大流量液压泵卸荷,因此应选择外控式。背压阀9的作用是实现液压缸快进和工进的切换,同时在工进过程中做背压阀,因此采用内控式顺序阀。最后本设计所选择方案如表5所示,表中给出了各种液压阀的型号及技术参数。

表5 阀类元件的选择

序号元件名称估计流量

1

/min

L-

规格

额定流量

1

/min

L-

额定压力MPa 型号

1 三位五通电磁阀66/8

2 100 6.

3 35D-100B

2 行程阀49.5/61.5 6

3 6.3 22C-63BH

3 调速阀<1 6 6.3 Q-6B

4 单向阀66/82 100 6.3 I-100B

5 单向阀8 16.5/20.5 25 6.3 I-25B

6 背压阀9 0.475/0.6 10 6.3 B-10B

7 溢流阀 4.13/5 10 6.3 Y-10B

8 单向阀11 66/82 100 6.3 I-100B

9 单向阀3 27.92/34.7 63 6.3 I-63B

10 单向阀4 5.1/5.1 10 6.3 I-10B

11 顺序阀28.4/35.2 63 6.3 XY-63B

2.过滤器的选择

按照过滤器的流量至少是液压泵总流量的两倍的原则,取过滤器的流量为泵流量的2.5倍。由于所设计组合机床液压系统为普通的液压传

动系统,对油液的过滤精度要求不高,故有

2.5(33 2.5)/min82.5/min

q q L L

=?=?=

泵入

过滤器

因此系统选取通用型WU 系列网式吸油过滤器,参数如表6所示。

表6 通用型WU 系列网式吸油中过滤器参数

型号 通径 mm 公称流量

/min L

过滤精度

m μ

尺寸

M (d )

H D

1

d

WU —100?100-J

32

100

100

422M ?

153

82φ

3.空气滤清器的选择

按照空气滤清器的流量至少为液压泵额定流量2倍的原则,即有

2233/min 66/min q q L p

>?=?=过滤器

选用EF 系列液压空气滤清器,其主要参数如表7所示。

表7 液压空气滤清器

参数 型号 过滤注油口径 mm

注油流量 L/min

空气流量 L/min

油过滤面积 L/min

A mm

B mm

a mm

b mm

c mm

四只螺钉均布 mm 空气过滤精度

mm 油过滤精度

μm

E 2

F -32

32

14

105

120

100

50

φ47 φ59 φ64

M5

?8

0.279

125

注:液压油过滤精度可以根据用户的要求进行调节。

3.6.3 油管的选择

图7中各元件间连接管道的规格可根据元件接口处尺寸来决定,液压缸进、出油管的规格可按照输入、排出油液的最大流量进行计算。由于液压泵具体选定之后液压缸在各个阶段的进、出流量已与原定数值不同,所以应对液压缸进油和出油连接管路重新进行计算,如表8所示。

表8 液压缸的进、出油流量和运动速度

流量、速度

快进

工进

快退

输入流量

1/min L -

1112()/()

(9.532.994)(9.5 4.48)62.43p q A q A A =-?=

-=

10.95q =

132.994p q q ==

排出流量

1/min L -

2211

()/4.4862.439.529.44q A q A =?=

=

2211

()/4.480.959.50.448q A q A =?=

=

2112

()/9.532.9944.4869.96q A q A =?=

=

运动速度

1/min m -

112()

32.9949.5 4.486.57p

q v A A =

-=

-= 1

21

0.959.50.1q v A ==

= 1

32

32.9944.487.36

q v A ==

= 根据表8中数值,当油液在压力管中流速取3m/s 时,可算得与液压缸无杆腔和有杆腔相连的油管内径分别为:

6

69.96102222.24mm 331060

q d v ππ?==?=???,取标准值20mm ;

6

32.994102215.28331060

q d mm mm v ππ?==?=???,取标准值

15mm 。

因此与液压缸相连的两根油管可以按照标准选用公称通径为20φ和15φ的无缝钢管或高压软管。如果液压缸采用缸筒固定式,则两根连接管采用无缝钢管连接在液压缸缸筒上即可。如果液压缸采用活塞杆固定式,则与液压缸相连的两根油管可以采用无缝钢管连接在液压缸活塞杆上或采用高压软管连接在缸筒上。

液压传动课程设计液压系统设计举例

液压系统设计计算举例 液压系统设计计算是液压传动课程设计的主要内容,包括明确设计要求进行工况分析、确定液压系统主要参数、拟定液压系统原理图、计算和选择液压件以及验算液压系统性能等。现以一台卧式单面多轴钻孔组合机床动力滑台液压系统为例,介绍液压系统的设计计算方法。 1 设计要求及工况分析 设计要求 要求设计的动力滑台实现的工作循环是:快进 → 工进 → 快退 → 停止。主要性能参数与性能要求如下:切削阻力F L =30468N ;运动部件所受重力G =9800N ;快进、快退速度υ1= υ3=0.1m/s ,工进速度υ2=×10-3m/s ;快进行程L 1=100mm ,工进行程L 2=50mm ;往复运动的加速时间Δt =;动力滑台采用平导轨,静摩擦系数μs =,动摩擦系数μd =。液压系统执行元件选为液压缸。 负载与运动分析 (1) 工作负载 工作负载即为切削阻力F L =30468N 。 (2) 摩擦负载 摩擦负载即为导轨的摩擦阻力: 静摩擦阻力 N 196098002.0s fs =?==G F μ 动摩擦阻力 N 98098001.0d fd =?==G F μ (3) 惯性负载 N 500N 2.01 .08.99800i =?=??= t g G F υ (4) 运动时间 快进 s 1s 1.0101003 11 1=?==-υL t 工进 s 8.56s 1088.010503 322 2=??==--υL t 快退 s 5.1s 1.010)50100(3 3 2 13=?+=+= -υL L t 设液压缸的机械效率ηcm =,得出液压缸在各工作阶段的负载和推力,如表1所列。

机床夹紧、进给液压传动系统设计

液压传动课程设计 中国矿业大学机电学院 选修课

设计参数: 不计惯性负载 题目:在某专用机床上有一夹紧进给液压系统,完成工件的先夹紧后、后进给任务,工作原理如下: 夹紧油缸: 快进→慢进→达到夹紧力后启动进给油缸工作 进给油缸: 快进→慢进→达到进给终点→快速退回 夹紧油缸快速退回。 夹紧缸快进速度:0.05m/s 夹紧缸慢进速度:8mm/s 最大夹紧力:40KN 进给油缸快进速度:0.18m/s 进给油缸慢进速度:0.018m/s 最大切削力:120KN 夹紧缸行程:用行程开关调节(最大250mm) 进给缸行程:用行程开关调节(最大1000mm) 一、工况分析: 1.负载分析

已知最大夹紧力为40KN,则夹紧油缸工作最大负载 140 F KN = 已知最大切削力为120KN,则进给油缸工作最大负载 2120 F KN = 根据已知负载可画出负载循环图1(a) 根据已知快进、快退速度及工进时的速度范围可画出速度循环图1(b) 图1(a) 图1(b)

2.确定液压缸主要参数 根据系统工作原理可知系统最大负载约为120KN 参照负载选择执行元件工作压力和主机类型选择执行元件工作压力最大负载宜选取18p MPa =。动力滑台要求快进、快退速度相等,选用单杆液压缸。此时液压缸无缸腔面积1A 与有缸腔面积2A 之比为2,即用活塞杆直径d 与活塞直径D 有d=的关系。为防止液压缸冲击,回油路应有背压2P ,暂时取MPa P 6.02=。 从负载循环图上可知,工进时有最大负载,按此负载求液压缸尺寸。根据液压缸活塞力平衡关系可知: M e F A p A p η+= 2211 212A A = 其中,M η为液压缸效率,取95.0=M η 2 46 2 111046.8910)3.04(95.031448)2 (m p p F A M e -?=?-= - = η m A D 1067.014 .31046.894441 =??== -π m D d 075.0707.0== 将D 和d 按GB2348-30圆整就近取标准值,即

【精品】液压传动系统设计计算

液压传动系统设计计算 液压系统的设计步骤与设计要求 液压传动系统是液压机械的一个组成部分,液压传动系统的设计要同主机的总体设计同时进行.着手设计时,必须从实际情况出发,有机地结合各种传动形式,充分发挥液压传动的优点,力求设计出结构简单、工作可靠、成本低、效率高、操作简单、维修方便的液压传动系统。 1.1设计步骤 液压系统的设计步骤并无严格的顺序,各步骤间往往要相互穿插进行。一般来说,在明确设计要求之后,大致按如下步骤进行。 1)确定液压执行元件的形式; 2)进行工况分析,确定系统的主要参数; 3)制定基本方案,拟定液压系统原理图; 4)选择液压元件; 5)液压系统的性能验算; 6)绘制工作图,编制技术文件。 1.2明确设计要求

设计要求是进行每项工程设计的依据。在制定基本方案并进一步着手液压系统各部分设计之前,必须把设计要求以及与该设计内容有关的其他方面了解清楚。 1)主机的概况:用途、性能、工艺流程、作业环境、总体布局等; 2)液压系统要完成哪些动作,动作顺序及彼此联锁关系如何; 3)液压驱动机构的运动形式,运动速度; 4)各动作机构的载荷大小及其性质; 5)对调速范围、运动平稳性、转换精度等性能方面的要求; 6)自动化程序、操作控制方式的要求; 7)对防尘、防爆、防寒、噪声、安全可靠性的要求; 8)对效率、成本等方面的要求。 制定基本方案和绘制液压系统图 3。1制定基本方案 (1)制定调速方案 液压执行元件确定之后,其运动方向和运动速度的控制是拟定液压回路的核心问题.

方向控制用换向阀或逻辑控制单元来实现。对于一般中小流量的液压系统,大多通过换向阀的有机组合实现所要求的动作。对高压大流量的液压系统,现多采用插装阀与先导控制阀的逻辑组合来实现。 速度控制通过改变液压执行元件输入或输出的流量或者利用密封空间的容积变化来实现.相应的调整方式有节流调速、容积调速以及二者的结合——容积节流调速。 节流调速一般采用定量泵供油,用流量控制阀改变输入或输出液压执行元件的流量来调节速度。此种调速方式结构简单,由于这种系统必须用闪流阀,故效率低,发热量大,多用于功率不大的场合。

液压传动系统的设计和计算word文档

10 液压传动系统的设计和计算 本章提要:本章介绍设计液压传动系统的基本步骤和方法,对于一般的液压系统,在设计过程中应遵循以下几个步骤:①明确设计要求,进行工况分析;②拟定液压系统原理图;③计算和选择液压元件;④发热及系统压力损失的验算;⑤绘制工作图,编写技术文件。上述工作大部分情况下要穿插、交叉进行,对于比较复杂的系统,需经过多次反复才能最后确定;在设计简单系统时,有些步骤可以合并或省略。通过本章学习,要求对液压系统设计的内容、步骤、方法有一个基本的了解。 教学内容: 本章介绍了液压传动系统设计的内容、基本步骤和方法。 教学重点: 1.液压元件的计算和选择; 2.液压系统技术性能的验算。 教学难点: 1.泵和阀以及辅件的计算和选择; 2.液压系统技术性能的验算。 教学方法: 课堂教学为主,充分利用网络课程中的多媒体素材来表示设计的步骤及方法。 教学要求: 初步掌握液压传动系统设计的内容、基本步骤和方法。

10.1 液压传动系统的设计步骤 液压传动系统的设计是整机设计的一部分,它除了应符合主机动作循环和静、动态性能等方面的要求外,还应当满足结构简单,工作安全可靠,效率高,经济性好,使用维护方便等条件。液压系统的设计,根据系统的繁简、借鉴的资料多少和设计人员经验的不同,在做法上有所差异。各部分的设计有时还要交替进行,甚至要经过多次反复才能完成。下面对液压系统的设计步骤予以介绍。 10.1.1 明确设计要求、工作环境,进行工况分析 10.1.1.1 明确设计要求及工作环境 液压系统的动作和性能要求主要有:运动方式、行程、速度范围、负载条件、运动平稳性、精度、工作循环和动作周期、同步或联锁等。就工作环境而言,有环境温度、湿度、尘埃、防火要求及安装空间的大小等。要使所设计的系统不仅能满足一般的性能要求,还应具有较高的可靠性、良好的空间布局及造型。 10.1.1.2 执行元件的工况分析 对执行元件的工况进行分析,就是查明每个执行元件在各自工作过程中的速度和负载的变化规律,通常是求出一个工作循环内各阶段的速度和负载值。必要时还应作出速度、负载随时间或位移变化的曲线图。下面以液压缸为例,液压马达可作类似处理。 就液压缸而言,承受的负载主要由六部分组成,即工作负载,导向摩擦负载,惯性负载,重力负载,密封负载和背压负载,现简述如下。 (1)工作负载w F 不同的机器有不同的工作负载,对于起重设备来说,为起吊重物的重量;对液压机来说,压制工件的轴向变形力为工作负载。工作负载与液压缸运动方向相反时为正值,方向相同时为负值。工作负载既可以为定值,也可以为变量,其大小及性质要根据具体情况加以分析。

典型液压传动系统实例分析

第四章典型液压传动系统实例分析 第一节液压系统的型式及其评价 一、液压系统的型式 通常可以把液压系统分成以下几种不同的型式。 1.按油液循环方式的不同分 按油液循环方式的不同,可将液压系统分为开式系统和闭式系统。 (1)开式系统 如图4.1所示,开式系统是指液压泵1从油 箱5吸油,通过换向阀2给液压缸3(或液压马 达)供油以驱动工作机构,液压缸3(或液压马 达)的回油再经换向阀回油箱。在泵出口处装溢 流阀4。这种系统结构较为简单。由于系统工作 完的油液回油箱,因此可以发挥油箱的散热、沉 淀杂质的作用。但因油液常与空气接触,使空气 易于渗入系统,导致工作机构运动的不平稳及其 它不良后果。为了保证工作机构运动的平稳性, 在系统的回油路上可设置背压阀,这将引起附加 的能量损失,使油温升高。 在开式系统中,采用的液压泵为定量泵或单 向变量泵,考虑到泵的自吸能力和避免产生吸空 现象,对自吸能力差的液压泵,通常将其工作转 速限制在额定转速的75%以内,或增设一个辅助 泵进行灌注。工作机构的换向则借助于换向阀。 换向阀换向时,除了产生液压冲击外,运动部件 的惯性能将转变为热能,而使液压油的温度升高。 图4.1 开式系统 但由于开式系统结构简单,因此仍为大多数工程 机械所采用。 (2)闭式系统 如图4.2所示。在闭式系统中,液压泵的进油管直接与执行元件的回油管相联,工作液体在系统的管路中进行封闭循环。闭式直系统结构较为紧凑,和空气接触机会较少,空气不易渗入系统,故传动的平稳性好。工作机构的变速和换向靠调节泵或马达的变量机构实现,避免了在开式系统换向过程中所出现的液压冲击和能量损失。但闭式系统较开式系统复杂,由于闭式系统工作完的油液不回油箱,油液的散热和过滤的条件较开式系统差。为了补偿系统中的泄漏,通常需要一个小容量的补油泵进行补油和散热,因此这种系统实际上是一个半

液压传动系统的设计与计算

液压传动系统的设计与计算 [原创2006-04-09 12:49:44 ] 发表者: yzc741229 液压传动系统设计与计算 液压系统设计的步骤大致如下: 1.明确设计要求,进行工况分析。 2.初定液压系统的主要参数。 3.拟定液压系统原理图。 4.计算和选择液压元件。 5.估算液压系统性能。 6.绘制工作图和编写技术文件。 根据液压系统的具体内容,上述设计步骤可能会有所不同,下面对各步骤的具体内容进行介绍。 第一节明确设计要求进行工况分析 在设计液压系统时,首先应明确以下问题,并将其作为设计依据。 1.主机的用途、工艺过程、总体布局以及对液压传动装置的位置和空间尺寸的要求。 2.主机对液压系统的性能要求,如自动化程度、调速范围、运动平稳性、换向定位精度以及对系统的效率、温升等的要求。 3.液压系统的工作环境,如温度、湿度、振动冲击以及是否有腐蚀性和易燃物质存在等情况。 图9-1位移循环图 在上述工作的基础上,应对主机进行工况分析,工况分析包括运动分析和动力分析,对复杂的系统还需编制负载和动作循环图,由此了解液压缸或液压马达的负载和速度随时间变化的规律,以下对工况分析的内容作具体介绍。 一、运动分析

主机的执行元件按工艺要求的运动情况,可以用位移循环图(L—t),速度循环图(v—t),或速度与位移循环图表示,由此对运动规律进行分析。 1.位移循环图L—t 图9-1为液压机的液压缸位移循环图,纵坐标L表示活塞位移,横坐标t表示从活塞启动到返回原位的时间,曲线斜率表示活塞移动速度。该图清楚地表明液压机的工作循环分别由快速下行、减速下行、压制、保压、泄压慢回和快速回程六个阶段组成。 2.速度循环图v—t(或v—L) 工程中液压缸的运动特点可归纳为三种类型。图9-2为三种类型液压缸的v—t图,第一种如图9-2中实线所示,液压缸开始作匀加速运动,然后匀速运动, 图9-2 速度循环图 最后匀减速运动到终点;第二种,液压缸在总行程的前一半作匀加速运动,在另一半作匀减速运动,且加速度的数值相等;第三种,液压缸在总行程的一大半以上以较小的加速度作匀加速运动,然后匀减速至行程终点。v—t图的三条速度曲线,不仅清楚地表明了三种类型液压缸的运动规律,也间接地表明了三种工况的动力特性。 二、动力分析 动力分析,是研究机器在工作过程中,其执行机构的受力情况,对液压系统而言,就是研究液压缸或液压马达的负载情况。 1.液压缸的负载及负载循环图 (1)液压缸的负载力计算。工作机构作直线往复运动时,液压缸必须克服的负载由六部分组成: F=F c+F f+F i+F G+F m+F b (9-1) 式中:F c为切削阻力;F f为摩擦阻力;F i为惯性阻力;F G为重力;F m为密封阻力;F b为排油阻力。 图9-3导轨形式 ①切削阻力F c:为液压缸运动方向的工作阻力,对于机床来说就是沿工作部件运动方向的切削力,此作用力的方向如果与执行元件运动方向相反为正值,两者同向为负值。该作用力可能是恒定的,也可能是变化的,其值要根据具体情况计算或由实验测定。 ②摩擦阻力F f:

液压传动装置电气控制系统的设计样本

天津渤海职业技术学院 毕业设计说明书 专业电气自动化 课题名称液压传动装置电气控制系统的设计学生姓名赵蕊蕊 指导老师秦立芳杨利 电气工程系 2009年3月

内容摘要 液压传动是用液体作为工作介质来传递能量和进行控制的传动方式。液压系统利用液压泵将原动机的机械能转换为液体的压力能, 经过液体压力能的变化来传递能量, 经过各种控制阀和管路的传递, 借助于液压执行元件(缸或马达)把液体压力能转换为机械能, 从而驱动工作机构, 实现直线往复运动和回转运动而进行能量传递的一种传动方式。由于液压执行结构尺寸小, 反应速度快, 调节性能好, 传递的力和扭矩较大, 操纵、控制、调节比较方便, 容易实现功率放大和过载保护, 因此被广泛应用于机械制造、冶金、工程机械、农业、汽车、航空、船舶、轻纺等行业。近年来, 又被应用于太空跟踪系统, 海浪模拟装置, 宇航环境模拟火箭发射助飞装置。 在机械加工中, 例如组合机床加工长孔, 为满足其技术要求并达到相应的自动化水平, 加工前, 应按工艺工程进行可行性模拟加工试验。本方案即为满足液压试验装置设计电气控制和自动控制。 本课题属于典型的机电技术结合项目, 经过对课题的设计, 研究和制作过程可达到综合利用自动化专业理论知识, 提高专业综合操作技能, 提高分析、组织能力, 拓展学科领域的目的, 并为机械加工生产技术改革提供试验操作平台。

常见词; 液压装置、电器控制、 PLC可编程控制器 致谢: 在本次毕业设计过程中得到了众多老师的帮助, 在此表示忠心的感谢! 同时也感谢这三年来在学习和生活上给予帮助的所有老师! 目录 第1章设计对象及基本要求 (4) 1.1 设计对象 1.2 基本要求 1.3 技术要求 第2章电气线路的设计 (5) 2.1 线路设计的基本原理 2.2 绘制原理图 2.3 元器件的选择 2.4 元器件的分布图 第3章柜体内电气线路的安全 (11) 第4章电气控制柜的通电试验 (15)

液压传动课程设计

课程设计说明书 (2016-2017学年第二学期) 课程名称液压传动与控制技术课程设计 设计题目卧式组合钻床动力滑台液压系统 院(系)机电工程系 专业班级14级机械设计制造及其自动化x班 姓名陈瑞玲 学号20141032100 地点教学楼B301 时间2017年5月25日—2017年6月22日成绩:指导老师:蓝莹

目录 液压传动与控制技术课程设计任务书 (3) 1.概述 (4) 1.1 课程设计的目的 (4) 1.2 课程设计的要求 (4) 2. 液压系统设计 (4) 2.1 设计要求及工况分析 (4) 2.1.1设计要求 (4) 2.1.2 负载与运动分析 (5) 2.2 确定液压系统主要参数 (7) 小结 (17) 参考文献 (18)

液压传动与控制技术课程设计任务书

1.概述 1.1 课程设计的目的 本课程是机械设计制造及其自动化专业的主要专业基础课和必修课,是在完成《液压与气压传动》课程理论教学以后所进行的重要实践教学环节。本课程的学习目的在于使学生综合运用《液压与气压传动》课程及其它先修课程的理论知识和生产实际知识,进行液压传动的设计实践,使理论知识和生产实际知识紧密结合起来,从而使这些知识得到进一步的巩固、加深和扩展。通过设计实际训练,为后续专业课的学习、毕业设计及解决工程问题打下良好的基础。 1.2 课程设计的要求 (1) 液压传动课程设计是一项全面的设计训练,它不仅可以巩固所学的理论知识,也可以为以后的设计工作打好基础。在设计过程中必须严肃认真,刻苦钻研,一丝不苟,精益求精。 (2) 液压传动课程设计应在教师指导下独立完成。教师的指导作用是指明设计思路,启发学生独立思考,解答疑难问题,按设计进度进行阶段审查。 (3) 设计中要正确处理参考已有资料与创新的关系。任何设计都不能凭空想象出来,利用已有资料可以避免许多重复工作,加快设计进程,同时也是提高设计质量的保证。另外任何新的设计任务又总有其特定的设计要求和具体工作条件。 (4) 学生应按设计进程要求保质保量的完成设计任务。 2. 液压系统设计 液压系统设计计算是液压传动课程设计的主要内容,包括明确设计要求进行工况分析、确定液压系统主要参数、拟定液压系统原理图、计算和选择液压件以及验算液压系统性能等。现以一台卧式组合钻床动力滑台液压系统为例,介绍液压系统的设计计算方法。 2.1 设计要求及工况分析 2.1.1设计要求 要求设计的动力滑台实现的工作循环是:快进→工进→快退→停止。

液压传动试卷①(含答案)

液压传动与控制 1图示液压系统,已知各压力阀的调整压力分别为:p Y1=6MPa,p Y2=5MPa,p Y3=2MPa,p Y4=1.5MPa,p J=2.5MPa,图中活塞已顶在工件上。忽略管道和换向阀的压力损失,试问当电磁铁处于不同工况时,A、B点的压力值各为多少?(“+”代表电磁铁带电,“-”代表断电) 2MPa 5MPa

2 图5所示为专用钻镗床的液压系统,能实现“快进→一工进→二工进→快退→原位停止”的工作循环(一工进的运动速度大于二工进速度)。阀1和阀2的调定流量相等,试填写其电磁铁动作顺序表。(以“+”代表电磁铁带电,“-”代表断电) 2 进给 退回

三判断分析题(判断对错,并简述原因。) 1 叶片泵通过改变定子和转子的偏心距来实现变量,而柱塞泵是通过改变斜盘倾角来实现变 量。错。单作用叶片泵和径向柱塞泵通过改变定子和转子的偏心距来实现变量,而斜盘式轴向柱塞泵通过改变斜盘倾角来实现变量。 2 单活塞杆液压缸称为单作用液压缸,双活塞杆液压缸称为双作用液压缸。错。只能输出单方向液压力,靠外力回程的液压缸,称为单作用液压缸;正、反两个方向都可输出液压力的液压缸为双作用液压缸。 3 串联了定值减压阀的支路,始终能获得低于系统压力调定值的稳定工作压力。 错。串联了定值减压阀的支路,当系统压力高于减压阀调定值时,才能获得低于系统压力的稳定工作压力。 4 与节流阀相比,调速阀的输出流量几乎不随外负载的变化而变化。对。由于调速阀内的定差减压阀正常工作时,能保证节流阀口的压差基本不变,因此调速阀的输出流量几乎不随外负载的变化而变化。 5 采用双泵供油的液压系统,工作进给时常由高压小流量泵供油,而大泵卸荷,因此其效率比单泵供油系统的效率低得多。错。采用双泵供油的液压系统,快进时两个泵同时给系统供油,执行元件运动速度较快;工作进给时常由高压小流量泵供油,而大流量泵卸荷,执行元件输出力大但速度慢。由于工进时大泵卸荷,因此其效率比单泵供油系统的效率高。 6 定量泵—变量马达组成的容积调速回路,将液压马达的排量由零调至最大时,马达的转速即可由最大调至零。错。定量泵—变量液压马达组成的容积调速回路,将液压马达的排量由零调至最大时,马达的转速即可由最大调至最小。 四简答题 1 在进口节流调速回路中,溢流阀正常溢流,如果考虑溢流阀的调压偏差,试分析: 1)负载恒定不变时,将节流阀口开度减小,泵的工作压力如何变化? 2)当节流阀开口不变,负载减小,泵的工作压力又如何变化? F

液压传动——液压传动系统设计与计算

第九章液压传动系统设计与计算 液压系统设计的步骤大致如下: 1.明确设计要求,进行工况分析。 2.初定液压系统的主要参数。 3.拟定液压系统原理图。 4.计算和选择液压元件。 5.估算液压系统性能。 6.绘制工作图和编写技术文件。 根据液压系统的具体内容,上述设计步骤可能会有所不同,下面对各步骤的具体内容进行介绍。 第一节明确设计要求进行工况分析 在设计液压系统时,首先应明确以下问题,并将其作为设计依据。 1.主机的用途、工艺过程、总体布局以及对液压传动装置的位置和空间尺寸的要求。 2.主机对液压系统的性能要求,如自动化程度、调速范围、运动平稳性、换向定位精度以及对系统的效率、温升等的要求。 3.液压系统的工作环境,如温度、湿度、振动冲击以及是否有腐蚀性和易燃物质存在等情况。 图9-1位移循环图 在上述工作的基础上,应对主机进行工况分析,工况分析包括运动分析和动力分析,对复杂的系统还需编制负载和动作循环图,由此了解液压缸或液压马达的负载和速度随时间变化的规律,以下对工况分析的内容作具体介绍。 一、运动分析 主机的执行元件按工艺要求的运动情况,可以用位移循环图(L—t),速度循环图(v—t),或速度与位移循环图表示,由此对运动规律进行分析。 1.位移循环图L—t 图9-1为液压机的液压缸位移循环图,纵坐标L表示活塞位移,横坐标t表示从活塞启动到返回原位的时间,曲线斜率表示活塞移动速度。该图清楚地表明液压机的工作循环分别由快速下行、减速下行、压制、保压、泄压慢回和快速回程六个阶段组成。 2.速度循环图v—t(或v—L) 工程中液压缸的运动特点可归纳为三种类型。图9-2为三种类型液压缸的v—t图,第一种如图9-2中实线所示,液压缸开始作匀加速运动,然后匀速运动,

液压传动系统设计说明书

中国矿业大学 液压传动系统设计说明书 设计题目:动力滑台液压系统 学院名称:中国矿业大学 专业:机械设计制造及其自动化 班级: 姓名:学号: 指导老师: 2012年6月24日

任务书 学生姓名学号 设计题目动力滑台液压系统 1.液压系统用途(包括工作环境和工作条件)及主要参数: 要求设计的动力滑台液压系统实现的工作循环是:快进、工进?快退?停止。主要性能参数与性能要求如下:切削阻力FL=30468N;运动部件所受重力G=9800N;快进、快退速度1= 3=0.1m/s,工进速度? 2=0.88×10-3m/s;快进行程L1=100mm,工进行程L2=50mm;往复运动的加速时间Δt=0.2s;动力滑台采用平导轨,静摩擦系数μs=0.2,动摩擦系数μd=0.1。液压系统执行元件选为液压缸。 2.执行元件类型:液压油缸 3.液压系统名称:动力滑台液压系统 设计内容 1. 拟订液压系统原理图; 2. 选择系统所选用的液压元件及辅件; 3. 验算液压系统性能; 4. 编写上述1、2、3的计算说明书。 设计指导教师签字 教研室主任签字 年月日签发

目录 1 序言·················- 4 - 2 设计的技术要求和设计参数·······- 5 - 3 工况分析···············- 5 - 3.1 确定执行元件············- 5 - 3.2 分析系统工况············- 5 - 3.3 负载循环图和速度循环图的绘制····- 7 - 3. 4 确定系统主要参数··········- 8 - 3.4.1 初选液压缸工作压力·········· - 8 - 3.4.2 确定液压缸主要尺寸·········· - 8 - 3.4.3 计算最大流量需求···········- 10 -3.5 拟定液压系统原理图········· - 11 - 3.5.1 速度控制回路的选择··········- 11 - 3.5.2 换向和速度换接回路的选择·······- 12 - 3.5.3 油源的选择和能耗控制·········- 13 - 3.5.4 压力控制回路的选择··········- 14 -3.6 液压元件的选择··········· - 15 - 3.6.1 确定液压泵和电机规格·········- 16 - 3.6.2 阀类元件和辅助元件的选择·······- 17 - 3.6.3 油管的选择··············- 19 - 3.6.4 油箱的设计··············- 21 - 3.7 液压系统性能的验算········· - 22 - 3.7.1 回路压力损失验算···········- 22 - 3.7.2 油液温升验算·············- 23 -

150T液压机设计全套图纸与说明计算资料

一绪论 1.1 液压传动与控制概述 液压传动与控制是以液体(油、高水基液压油、合成液体)作为介质来实现各种机械量的输出(力、位移或速度等)的。它与单纯的机械传动、电气传动和气压传动相比,具有传递功率大,结构小、响应快等特点,因而被广泛的应用于各种机械设备及精密的自动控制系统。液压传动技术是一门新的学科技术,它的发展历史虽然较短,但是发展的速度却非常之快。自从1795年制成了第一台压力机起,液压技术进入了工程领域;1906年开始应用于国防战备武器。 第二次世界大战期间,由于军事工业迫切需要反应快、精度高的自动控制系统,因而出现了液压伺服控制系统。从60年代起,由于原子能、空间技术、大型船舰及电子技术的发展,不断地对液压技术提出新的要求,从民用到国防,由一般的传动到精确度很高的控制系统,这种技术得到更加广泛的发展和应用。 在国防工业中:海、陆、空各种战备武器均采用液压传动与控制。如飞机、坦克、舰艇、雷达、火炮、导弹及火箭等。 在民用工业中:有机床工业、冶金工业、工程机械、农业方面,汽车工业、轻纺工业、船舶工业。 另外,近几年又出现了太阳跟踪系统、海浪模拟装置、飞机驾驶模拟、船舶驾驶模拟器、地震再现、火箭助飞发射装置、宇航环境模拟、高层建筑防震系统及紧急刹车装置等,均采用了液压技术。 总之,一切工程领域,凡是有机械设备的场合,均可采用液压技术。它的发展如此之快,应用如此之广,其原因就是液压技术有着优异的特点,归纳起来液压动力传动方式具有显著的优点:其单位重量的输出功率和单位尺寸输出功率大;液压传动装置体积小、结构紧凑、布局灵活,易实现无级调速,调速范围宽,便于与电气控制相配合实现自动化;易实现过载保护与保压,安全可靠;元件易于实现系列化、标准化、通用化;液压易与微机控制等新技术相结合,构成“机-电-液-光”一体化便于实现数字化。 1.2 液压机的发展及工艺特点 液压机是制品成型生产中应用最广的设备之一,自19世纪问世以来发展很快,液压机在工作中的广泛适应性,使其在国民经济各部门获得了广泛的应用。由于液压机的液压系统和整机结构方面,已经比较成熟,目前国内外液压机的发展不仅体现在控制系统方面,也主要表现在高速化、高效化、低能耗;机电液一体化,以充分合理利用机械和电子的先进技术促进整个液压系统的完善;自动化、智能化,实现对系统的自动诊断和调整,具有故障预处理功能;液压元件集成化、标准化,以有效防止泄露和污染等四个方面。 作为液压机两大组成部分的主机和液压系统,由于技术发展趋于成熟,国内

液压传动液压专用铣床动力滑台液压系统设计

1.液压系统用途(包括工作环境和工作条件)及主要参数: 卧式组合机床液压动力滑台。切削阻力F=15kN,滑台自重G=22kN,平面导轨,静摩擦系数,动摩擦系数,快进/退速度5m/min,工进速度100mm/min,最大行程350mm,其中工进行程200mm,启动换向时间,液压缸机械效率。 2.执行元件类型:液压油缸 3.液压系统名称: 钻镗两用卧式组合机床液压动力滑台。 设计内容 1. 拟订液压系统原理图; 2. 选择系统所选用的液压元件及辅件; 3. 验算液压系统性能; 4. 编写上述1、2、3的计算说明书。 设计指导教师签字 教研室主任签字 年月日签发

目录 1 序言····················· - 1 - 2 设计的技术要求和设计参数··········· - 2 - 3 工况分析··················· - 2 -确定执行元件·················· - 2 -分析系统工况·················· - 2 -负载循环图和速度循环图的绘制·········· - 4 -确定系统主要参数················ - 5 -初选液压缸工作压力············· - 5 -确定液压缸主要尺寸············· - 5 -计算最大流量需求·············· - 7 -拟定液压系统原理图··············· - 8 -速度控制回路的选择············· - 8 -换向和速度换接回路的选择·········· - 9 -油源的选择和能耗控制············- 10 -压力控制回路的选择·············- 11 -液压元件的选择·················- 12 -确定液压泵和电机规格············- 13 -阀类元件和辅助元件的选择··········- 14 -油管的选择·················- 1 6 -油箱的设计·················- 18 -液压系统性能的验算···············- 19 -回路压力损失验算··············- 19 -油液温升验算················- 20 -

液压传动系统设计与计算

液压传动系统设计与计算 第九章液压传动系统设计与计算 液压系统设计的步骤大致如下: 1.明确设计要求,进行工况分析。 2.初定液压系统的主要参数。 3.拟定液压系统原理图。 4.计算和选择液压元件。 5.估算液压系统性能。 6.绘制工作图和编写技术文件。 根据液压系统的具体内容,上述设计步骤可能会有所不同,下面对各步骤的具体内容进行介绍。第一节明确设计要求进行工况分析 在设计液压系统时,首先应明确以下问题,并将其作为设计依据。 1.主机的用途、工艺过程、总体布局以及对液压传动装置的位置和空间尺寸的要求。 2.主机对液压系统的性能要求,如自动化程度、调速范围、运动平稳性、换向定位精度以及对系统的效率、温升等的要求。 3.液压系统的工作环境,如温度、湿度、振动冲击以及是否有腐蚀性和易燃物质存在等情况。 位移循环图图9-1 在上述工作的基础上,应对主机进行工况分析,工况分析包括运动分析和动力分析,对复杂的系统还需编制负载和动作循环图,由此了解液压缸或液压马达的负载和速度随时间变化的规律,以下对工况分析的内容作具体介绍。 一、运动分析 主机的执行元件按工艺要求的运动情况,可以用位移循环图(L—t),速度循环图(v—t),或速度与位移循环图表示,由此对运动规律进行分析。 1.位移循环图L—t 图9-1为液压机的液压缸位移循环图,纵坐标L表示活塞位移,横坐标t表示从活塞启动到返回原位的时间,曲线斜率表示活塞移动速度。该图清楚地表明液压机的工作循环分别由快速下行、减速下行、压制、保压、泄压慢回和快速回程六个阶段组成。 2.速度循环图v—t(或v—L) 工程中液压缸的运动特点可归纳为三种类型。图9-2为三种类型液压缸的v—t图,第中实线所示,液压缸开始作匀加速运动,然后匀速运动,9-2一种如图

卧式钻床动力滑台液压传动系统设计

目录 1.负载分析 (1) 2.绘制液压工况(负载速度)图 (3) 3.初步确定液压缸的参数 (3) 3.1.初选液压缸的工作压力: (3) 3.2.计算液压缸尺寸: (4) 3.3.计算液压缸在工作循环中各阶段的压力、流量及功率: (4) 3.4.绘制液压缸工况图 (5) 4.拟定液压系 (5) 4.1.选择液压回路 (5) 4.2.液压系统的组合 (5) 5.液压元件的计算和选择 (7) 5.1.确定液压泵的容量及驱动电机的功率: (7) 5.2.液压泵的流量 (7) 5.3.选择电动机 (7) 5.4.元件选择 (8) 5.5.确定管道尺寸 (8) 5.6.确定油箱容积: (8) 6.管路系统压力损失验算 (9) 6.1.判断油流状态 (9) 6.2.沿程压力损失 (9) 6.3.局部压力损失 (10) 7.液压系统的发热与温升验算 (11) 7.1.液压泵的输入功率 (11) 7.2.有效功率 (11) 7.3.系统发热功率 (11) 7.4.散热面积 (11) 7.5.油液温升 (11) 8.参考文献: (12)

1. 负载分析 1.切削力: Ft=16000N 2.导轨摩擦阻力 静摩擦力: fs F =W f S =0.2 ?20000 = 4000N 动摩擦力:fd F = W f d =0.1?20000 = 2000N 3.惯性阻力 (1)动力滑台快进惯性阻力m F ,动力滑台启动加速、反向启动加速和快退减速制动的加速度相等,s m v /15.0=?,s t 20.0=? N t v g w F m 153020.015 .08.920000=?=??= (2)动力滑台快进惯性阻力' m F ,动力滑台由于转换到制动是减速,取s m v /1074-?=?, s t 20.0=? N t v g w F m 14.720 .01078.9200004' =??=??=- 液压缸各动作阶段负载列表如下: 工况 计算公式 液压缸负载F (N ) 液压缸推力 (m F F η =) 启动 F= W f S 5000 5556 加速 F =W f d + m F 6326 7029 快进 F=W f d 2500 2778 工进 F=t F +W f d 18000 20000 制动 F =W f d — ' m F 2483 2759 快退 F=W f d 2500 2778 制动 F =W f d — m F —1326 —1473

液压传动课程设计 (1)

计算机辅助设计与制造专业《液压传动》课程设计说明书 班级: 学号: 姓名:

一、液压传动课程设计的目的 1、巩固和深化已学的理论知识,掌握液压系统设计计算的一般方法和步骤。 2、锻炼机械制图,结构设计和工程运算能力。 3、熟悉并会用有关国家标准、部颁标准、设计手册和产品样本等技术资料。 4、提高学生使用计算机绘图软件(如AUTOCAD、PRO/E等)进行实际工程设计的能力。 二、液压课程设计题目 题目(一)设计一台卧式单面多轴钻镗两用组合机床液压系统,要求完成如下的动作循环:夹紧——快进——工进——死挡铁停留——快退——松开——原位停止;机床有16个主轴,钻削加工¢13.9mm的孔14个,¢8.5mm的孔2个,工件材料为铸铁,硬度HB240。动力滑台采用平导轨,工进速度要求无级调速,如用高速刚钻头进行加工,其他参数如下表所示。 试完成以下工作: 1、进行工况分析,绘制工况图。 2、拟定液压系统原理图(A3)。 3、绘制液压缸装配图(A1)。 4、编写液压课程设计说明书。 机床加工示意图如下: 图1 卧式动力滑台加工示意图

题目(二)设计一台上料机液压系统,要求该系统完成:快速上升——慢速上升(可调速)——快速下降——下位停止的半自动循环。采用900V 型导轨,垂直于导轨的压紧力为60N ,启动、制动时间均为0.5s ,液压缸的机械效率为0.9。设计原始数据如下表所示。 试完成以下工作: 1、进行工况分析,绘制工况图。 2、拟定液压系统原理图(A3)。 3、绘制液压缸装配图(A1)。 4、编写液压课程设计说明书。 上料机示意图如下: 图3 上料机示意图

典型液压传动系统实例分析

第四章 典型液压传动系统实例分析 第一节 液压系统的型式及其评价 一、液压系统的型式 通常可以把液压系统分成以下几种不同的型式。 1.按油液循环方式的不同分 按油液循环方式的不同,可将液压系统分为开式系统和闭式系统。 (1)开式系统 如图4.1所示,开式系统是指液 压泵1从油箱5吸油,通过换向阀2 给液压缸3(或液压马达)供油以驱 动工作机构,液压缸3(或液压马达) 的回油再经换向阀回油箱。在泵出口 处装溢流阀4。这种系统结构较为简 单。由于系统工作完的油液回油箱, 因此可以发挥油箱的散热、沉淀杂质 的作用。但因油液常与空气接触,使 空气易于渗入系统,导致工作机构运 动的不平稳及其它不良后果。为了保证工作机构运动的平稳性,在系统的回油路上可设置背压阀,这将引起附加的能量损失,使油温升高。 图4.1 开式系统

在开式系统中,采用的液压泵为定量泵或单向变量泵,考虑到泵的自吸能力和避免产生吸空现象,对自吸能力差的液压泵,通常将其工作转速限制在额定转速的75%以内,或增设一个辅助泵进行灌注。工作机构的换向则借助于换向阀。换向阀换向时,除了产生液压冲击外,运动部件的惯性能将转变为热能,而使液压油的温度升高。但由于开式系统结构简单,因此仍为大多数工程机械所采用。 (2)闭式系统 如图4.2所示。在闭式系统中,液压泵的进油管直接与执行元件的回油管相联,工作液体在系统的管路中进行封闭循环。闭式直系统结构较为紧凑,和空气接触机会较少,空气不易渗入系统,故传动的平稳性好。工作机构的变速和换向靠调节泵或马达的变量机构实现,避免了在开式系统换向过程中所出现的液压冲击和能量损失。但闭式系统较开式系统复杂,由于闭式系统工作完的油液不回油箱,油液的散热和过滤的条件较开式系统差。为了补偿系统中的泄漏,通常需要一个小容量的补油泵进行补油和散热,因此这种系统实际上是一个半闭式系统。

朱静静-矫直机液压传动系统设计说明书word文档

连铸机矫直液压系统设计计算说明书 作者朱静静 指导教师曹昌勇 1 引言 1.1 矫直机国外现状 根据设计任务书和国内外资料调研,国外发达国家专门有矫直机制造公司和研究机构。进十年来,德国、意大利、日本等国发展了手动伺服控制精密液压矫直机,其应用比较普遍。全自动精密液压矫直机发展也较为完备。 日本东和精机株式会社生产的ASP系列智能型矫直机克服了经验矫直的种种弊端,该机能自动检测工件在三维方向上的挠度,以计算结果为基础,选出矫直点控制滑块的行程值及其矫直挠度值。 日本国际计测器株式会社与长春试验研究所合作生产了ASC系列矫直机。该机有自动、半自动、两种模型,采用日本技术及其关键的零部件,由长春试验研究所生产主机装配。该矫直机有智能化的分析测量系统、可程控的电机、电器、机械、液压、空压等控制技术。ASC 系列矫直机灵活的人机界面、向用户开放的技术条件为提高整机的工作效率创造了极大的方便[1]。 德国DUNKES公司生产矫直机的矫直力围从100~2000KN共11个规格的手动伺服单柱精密液压矫直机。 德国的MAE公司发展了ADS2.5RH型25KN和ADSF63RH型630KN闭式全自动液压矫直机。该系统带有与材料性能有关的自动优化工艺软件,并以可编程的微处理器控制矫直和测试顺序。其功能有:最大8个感觉位置的测量、处理和记忆系统;数字键盘的屏幕显示终端并有人机对话系统;以清楚的文字修正错误信息和相应的程序,能确定最终矫直阶段的顺序;大量统计数据的修正和求值;还有与主计算机连接的接口。适用于矫直中、大批量生产的对称平衡件,或自动生产线中的矫直工序[2]。 MULLER WEINGARTEN公司生产了用于矫直轴类零件的全自动液压矫直机PRE系列。该系列矫直机为闭式,组合结构床身,由电子系统控制工件的回转和夹紧,可编程控制器可进行编程记忆和主要故障防护、数据存储及对矫直过程控制等。 还有一些生产矫直机知名度较高的企业,他们的矫直机都有较高的水平,集中表现在智能化、自动化、测量精度高、生产节拍快等。

第2章 液压传动系统的设计

第2章液压传动系统的设计 液压系统的设计是整机设计 的一部分,它除了应符合主机动作 循环和静、动态性能等方面的要求 外,还应当满足结构简单、工作安 全可靠、效率高、寿命长、经济性 好、使用维护方便等条件。 液压系统的设计没有固定的 统一步骤,根据系统的繁简、借鉴 的多寡和设计人员经验的不同,在 做法上有所差异。各部分的设计有 时还要交替进行,甚至要经过多次 反复才能完成。图2.1所示为液压 系统设计的基本内容和一般流程。 2.1 明确设计要求、进 行工况分析 图2.1 液压系统设计的一般流程 2.1.1 明确设计要求 1.明确液压系统的动作和性能要求 液压系统的动作和性能要求,主要包括有:运动方式、行程和速度范围、载荷情况、运动平稳性和精度、工作循环和动作周期、同步或联锁要求、工作可靠性等。 2.明确液压系统的工作环境 液压系统的工作环境,主要是指:环境温度、湿度、尘埃、是否易燃、外界冲击振动的情况以及安装空间的大小等。 2.1.2 执行元件的工况分析 对执行元件的工况进行分析,就是查明每个执行元件在各自工作过程中的速度和负载的大小、方向及其变化规律。通常是用一个工作循环内各阶段的速度和负载值列表表示,必要时还应作出速度和负载随时间(或位移)变化的曲线图(称速度循环图和负载循环图)。 在一般情况下,液压缸承受的负载由六部分组成,即工作负载、导轨摩擦负载、惯性负载、重力负载、密封负载和背压负载,前五项构成了液压缸所要克服的机械总负载。 1. 工作负载F W

不同的机器有不同的工作负载。对于金属切削机床来说,沿液压缸轴线方向的切削力即为工作负载;对液压机来说,工作的压制抗力即为工作负载。工作负载F W与液压缸运动方向相反时为正值,方向相同时为负值(如顺铣加工的切削力)。工作负载可能为恒值,也可能为变值,其大小要根据具体情况进行计算,有时还要由样机实测确定。 2. 导轨摩擦负载F f 导轨摩擦负载是指液压缸驱动运动部件时所受的导轨摩擦阻力,其值与运动部件的导轨型式、放置情况及运动状态有关。机床上常用平导轨和V形导轨支承运动部件,其摩擦负载值的计算公式(导轨水平放置时)为: 平导轨 F f = f ( G + F N ) (2.1) V形导轨 F f G F f N = + sin α 2 (2.2) 式中f——摩擦系数,其值参考表2.1; G ——运动部件的重力(N); F N ——垂直于导轨的工作负载(N); α—— V形导轨面的夹角,一般α=90o。 表2.1 导轨摩擦系数 导轨种类导轨材料工作状态摩擦系数 滑动导轨铸铁对铸铁 启动 低速运动 高速运动 0.16 ~ 0.2 0.1 ~ 0.22 0.05 ~ 0.08 滚动导轨铸铁导轨对滚动体 淬火钢导轨对滚动体0.005 ~ 0.02 0.003 ~ 0.006 静压导轨铸铁对铸铁0.000 5 3. 惯性负载F a 惯性负载是运动部件在启动加速或制动减速时的惯性力,其值可按牛顿第二定律求出,即 F m a G g t α υ == ? ? (2.3) 式中g——重力加速度(m/s2); ?υ——?t时间内的速度变化值(m/s); ?t——启动、制动或速度转换时间(s)。可取?t=(0.01 ~ 0.5)s,轻载低速时取较小值;重载高速时取较大值。 4. 重力负载F g 重力负载是指垂直或倾斜放置的运动部件在没有平衡的情况下,其自身质量造成的一种

相关主题
文本预览
相关文档 最新文档