当前位置:文档之家› 架空线路避雷线的研究

架空线路避雷线的研究

架空线路避雷线的研究
架空线路避雷线的研究

架空线路避雷的研究

李玉婷

(李玉婷,东北农业大学,哈尔滨150030)

摘要:通过分析国内外输电线路实际运行的雷电跳闸故障,发现其造成的主要原因雷电绕击导线。它是相对较小的雷电流造成避雷线屏蔽失效引起的,从而造成雷电跳闸。Dellera 和Garbagnati 的输电线路雷电绕击先导发展模型和王晓榆的输电线路绕击概率模型的基础上,进行避雷线的研究,结合其引雷作用、屏蔽作用、分流作用和耦合作用的分析,进行侧面距离、屏蔽失效宽度、保护角等参数的计算,最后得出避雷线的架设方法及现实意义。

关键词:220kV 以上输电线路、雷击跳闸、绕击导线、避雷线

Abstract:This paper is about the research of overhead ground wire in open-wire circuit.Lightning strike wire around the is the most possible cause of tje Lightning trip fault.Based on two models and its functions,the methods of overhead ground wire's construction are given.

Keywords:More than 220kV power transmission lines,lightning outage,Strike wire around,overhead ground wire

引言

根据国内外输电线路运行经验,雷击跳闸故障是影响输电线路安全的主要原因。国际大电网会议公布在美国、前苏联等12个国家的电压为275-500kV,总长32700km 的输电线路连续3年的运行资料中指出,雷电事故占总事故的60%]21[?。

输电线路的雷击不仅直接导致跳闸,也会使得系统的参数发生变化,直接影响系统的稳定运行。降低雷击跳闸率有着深远的意义——减少线路故障,保障线路的稳定运行。所以我们需要结合电网安全运行的实际情况,进行防雷措施的研究,讨论线路防雷的新方法。

1.国内外雷击跳闸事故的分析

通过分析得出,雷电主要以感应雷和直击雷的形式对输电线路造成危害。感应雷是通过感应电荷产生高电压,产生放电火花,引起火灾、爆炸或造成触电事故。但由于输电线路自身绝缘度很高,所以感应雷不会造成危害。对输电线路造成的主要是直击雷,它分为直击杆塔顶部、直击避雷线档距中央和绕击导线。通过加强杆塔接地电阻的测量和接地装置的维护,能够控制反击发生的条件,所以直击杆按顶部的几率很小。“闪络”指的是沿绝缘体表面的放电现象。在防雷设计上按

1

012.0+=L s 的标准控制地线和导线之间的距离,所以避雷线档距中央受到雷击后不会造成“闪络”,即危害不大。绕击导线是由相对较小的雷电流引起的,它会造成避雷线屏蔽失效,从而雷击绕击导线,使输电线路(220kV 以上)跳闸。

湖南kV 220≥输电线雷击情况调研]3[表明,1996至2004年一季度,湖南省kV 220≥输电线路共发生雷击跳闸143次,通过对其中的45次典型雷击跳闸故障分析,绕击导线有32次,占到71.1%。因此,我们主要研究的是如何解决绕击导线的问题。

2.输电线路防雷绕击的理论基础

2.1规程法

规程法]4[规定,线路的绕击率、保护角和杆塔高度的关系如下:平原线路9.386

lg ?=h P αα山区线路35.386

lg ?=h P ααα——避雷导线对边导线的保护角(度)

;h ——杆塔高度(米)

;αP ——雷电绕击率。

2.2关于雷电绕击的模型

2.2.1Dellera 和Garbagnati 的输电线路雷电绕击先导发展模型]

5[基于自然雷电放电过程和长空气间隙放电过程的相似性提出的,引入了侧面距离(简称LD)和屏蔽失效宽度(简称SFW)这两个基本参数,他们是雷电流幅值和结构高度的函数。侧面距离指下行自由雷电先导能够击中地面结构物的最大水平侧向距离;屏蔽失效宽度指雷电先导能够避开结构物的保护设备而击向结构物的空间范围的宽度。

图一输电线路的侧面距离和屏蔽失效宽度图解说明

2.2.2王晓榆的输电线路绕击概率模型]

6[华中科技大学王晓榆教授等在输电线路绕击模拟试验研究的基础上,考虑了雷电绕击分散性,提出了输电线路的雷电绕击概率模型。模拟试验采用ZM1-39型杆塔,比例尺为143∶1和20∶1。其基本依据是:采用[棒-板]间隙结构模拟雷击过程的最后阶段恰当,可采用长棒上电极来模拟接近最后跃变的下行先

导;当放电间隙尺寸较小时,模拟试验会跨大棒形物和线形物的引雷能力,而当间隙尺寸>1m 时,棒形物和线形物的引雷能力与运行观测所推算的击距系数比较接近。所得试验结果见图二和图三(图中百分数为导线的绕击概率)。

图二1760kV 试验平原地段ZM1型杆塔线路绕击概率空间分布曲线

图三1760kV 试验山坡地段ZM1型杆塔线路绕击概率空间分布曲线

从结果曲线可知,定位于输电线路旁同一位置的下行雷先导,将随机击中地线、导线和大地;绕击概率与下行先导在空间的定位位置有关,可分别用绕击概率空间分布曲线来表达。每一绕击概率空间分布曲线可分为两段,当上电极定位于曲线的上段时,放电主要对地线或导线两者之一发生,而当上电极定位于曲线的下段时,放电主要对导线或大地两者之一发生。分别对这两段曲线进行回归分析,得:

X

P K 001.016.092.01++=P

K 5.025.12?=K 1——曲线上段的定位点到地线和导线的几何击距之比;

K 2——曲线下段的定位点到导线和大地的几何击距之比;

P——导线的绕击概率;

X——定位点远离线路的侧面距离(m)。

上面两式可作为自然情况下,输电线路空间绕击概率分布曲线上段或下段绕击概率与击距比值的关系。

该模型可计算任意结构参数的输电线路旁定位空间的绕击概率分布,并成功地说明了经典电气几何法难以解释的现场事故原因。

2.2.3输电线路绕击区域的界定

根据模拟试验、运行经验和分析计算认为,由于输电线路杆塔的引雷作用和档距中央的弧垂效应,沿输电线路的档距,绕击可分为三个区域,依次为:安全区、危险区和正常区]7[。

在平原地形下,对500kV 线路危险区约在距离杆塔10-30米的区域。

3.绕击避雷线的研究

3.1避雷线的作用]

8[避雷线又称架空地线,架设在杆塔顶部,一根或二根,用于防雷,110-220千伏线路一般沿全线架设。避雷线常与架空线路同杆架设,用来保护架空线路

3.1.1引雷作用

当雷云放电接近地面时。避雷线使地面的电场发生畸变。在其周围形成局部电场强度集中的空间。以影响雷电先导放电的发展方向。引导雷电向避雷线放电。再通过接地装置将雷电流引入大地。从而使导线受到保护。

根据文]9[。若送电线路不架设避雷线或雷绕击于导线时,线路的耐雷水平为

)(100

%50kA U I =%50U ——绝缘子串的50%冲击放电电压,单位为kV。

3.2.2屏蔽作用

在雷击放电的先导阶段,导线处于雷云及先导通道与大地构成的电场之中。当雷击于导线附近的大地时,由于雷电通道周围空间电磁场的急剧变化,会在导线上产生感应雷过电压,其值为

c

i ah U =a——感应过电压系数,其值等于以s

kA μ计的雷电流陡度值;c h ——导线平均高度,单位为米。

当架设避雷线后,因接地避雷线的电磁屏蔽作用,使雷云及先导通道在导线处建立的电场降低,从而导致导线上的感应过电压降低,其计算公式为

i

i U k U )1(*?=K ——避雷线与导线之间的几何耦合系数。

可见耦合系数越大,感应过电压越低,即屏蔽作用越明显。由于感应过电压的极性与雷云电荷相反,所以感应过电压降低,会导致作用于线路绝缘子串上的过电压降低。

3.2.3分流作用

若线路架设避雷线,当雷击塔顶时,雷电流将经杆塔及两侧避雷线入地,如图四所示。显然,流经杆塔的雷电流减少,其塔顶电位的计算公式为

t

t t i t

top R i d d L U t +=t i ——经杆塔入地的雷电流,i t i β=;β——杆塔分流系数,在0.86至0.90之间。

图四雷击塔顶时,作用于线路绝缘上的过电压分量

3.2.4耦合作用

当架设避雷线后,雷击塔顶时,雷电波经避雷线向两侧传播,如图四所示。由于避雷线与导线之间存在电容,会将避雷线上的雷电波通过电容耦合到导线上,导线上的耦合电压为

top

co KU U =由于其极性与top U 相同,所以它也会使作用于线路绝缘子串上的过电压降

低。

综上所述,雷击塔顶时,作用于线路绝缘子串上的过电压为

top

i top KU U U U ?+=?*可见,由于避雷线的屏蔽、分流、耦合作用,使作用于线路绝缘子串上的过电压降低,从而使线路的耐雷水平提高,雷击跳闸率降低。

3.3安装避雷线的情况

1)走明线,在地上高于其它建筑。

2)穿山越岭,距离长。

3)雷区,有历史记录。

4)电缆。

3.4避雷线的架设

避雷线的保护效果还同它下方的导线与它所成的角度有关,角度较小时,保护效果较好。在架有两根避雷线的情况下,容易获得较小的保护角,线路运行时的雷击跳闸故障也较少,但建设投资较大。我国近年来新建的220千伏以下线路,多采用一根避雷线。在雷击不严重的110千伏及较低电压的线路上,通常仅在靠近变电所两公里左右范围内装设避雷线,作为变电所进线的防雷措施。

避雷线一般使用镀锌钢绞线架设,常用的截面是25、35、50、70平方毫米。导线的截面越大,使用的避雷线截面也越大。避雷线也会因风吹而振动,常易发生振动的地方通常装有防振锤。

避雷线的重要作用是使线路雷击跳闸率降低,所以110kV线路一般沿全线架设避雷线;220kV线路宜沿全线架设双避雷线,以降低其雷击跳闸率。而对35kV及以下线路,考虑到感应过电压及架设避雷线对整个线路造价的影响,一般不沿全线架设避雷线。

近年来,国外超高压线路有采用良导线架空地线的趋势,主要采用铅包钢线,它具有强度较高、不生锈、又有适当的导电率的优点。一般用绝缘子使之与杆塔相互绝缘,利用间隙引导雷电流入地,这样,可利用架空地线作为载波通道并减少电能感应损耗。]10[

结束语

在满足现行规程的前提下,220kV以上输电线路雷击跳闸主要是由避雷线屏蔽引起的,重点是防止雷电绕击导线。防绕击避雷线,技术上可行,电气、机械等方面安全可靠,在经济上也十分合理,可作为超高压输电线路防绕击的推广应用。随着防绕击避雷线的发展及广泛应用,必将对输电线路的安全运行做出更大的贡献。

参考文献

[1]IEEC work group on estimating lighting pre-formance of transmission lines.A simplified method for estimating lighting performance of transmission lines.[J].IEEE

Trans,1985,PAS-104(4):919-932

[2]IEEC work group on estimating lighting pre-formance of transmission lines.Estimating lighting performance of transmission lines II-Updates to Analytical Models[J].IEEE

Trans,1993,PWRD-8(3):1254-1267

[3]曹志煌,蒋正龙,林峰,周卫华。湖南kV

≥输电线雷击情况调研和对策[J]。高电压

220

技术,2005(8)

[4]DL/T620-1997。交流电气装置的过电压保护和绝缘配合[S]

[5]Dellera Garbagnati E.Lighting strokes simulation by means of the leader progressions

model[J].IEEE TPWRD,1990,(5):2009-2030

[6]钱冠军,王晓榆。输电线路绕击保护的新措施。中国电机工程学报。1999,19(8):40-44

[7]钱冠军,王晓榆,徐先芝,汪雁,丁一正,刘兆林。沿输电线路档距方向绕击概率的变化。高电压技术。1999,25(1):23-25

[8]胡付民。避雷线的作用分析。安徽水利水电职业技术学院学报。2009,12,Vol.9No.4.

[9]DL/T620-1997,交流电气装置的过电压保护和绝缘配合[S]

[10]河北天龙电力设备有限公司2009/12/1,https://www.doczj.com/doc/618911928.html,/info_show.do?nid=152486,2011/12/16查阅

10KV架空线路防雷措施

10kV架空配电线路防雷措施 目前10kV架空配电线路上,现在都已广泛地应用了绝缘导线。可以说,配电网架空导线的绝缘化,已是一项成熟的技术。 但是,绝缘导线在应用过程中,也出现了一些新的问题。其中,最为突出的问题,是遭受雷击时,容易发生断线事故。据有关资料的统计,南昌经开区2008至2009年两年内,一个30平方公里的供电区域内,雷击断线事故与雷击跳闸事故约为35次,直接损失电量约为30万千瓦时,严重降低了供电可靠性,给社会带来了不良的效果。这两年里雷击断线事故率占76.2%。 以上一些统计资料表明:雷击断线事故,是应用绝缘导线中最突出的一个严重问题,这引起我们的广泛注意,并积极开展对等试验研究工作,并找到许多有效的防范措施。 一、雷击断线与跳闸机理 1 电弧放电规律 (1)配电网雷电过电压闪络,亦即大气压或高于大气压中大电流放电,为电弧放电形式。 (2)雷电过电压闪络时,瞬间电弧电流很大、但时间很短。 (3)当雷电过电压闪络,特别是在两相或三相(不一定是在同一电杆上)之间闪络而形成金属性短路通道,引起数千安培工频续流,电弧能量将骤增。 2 架空绝缘导线断线 当雷击架空绝缘线路产生巨大雷电过电压,当它超过导线绝缘层的耐压水平时(一般大于139KV)就会沿导线寻找电场最薄弱点将导线的绝缘层击穿(通常在绝缘子两端30公分范围内),形成针孔大小的击穿点,然后对绝缘子沿面放电形成闪络,最后工频电弧向绝缘子根部的金属发展后形成金属性短路通道,工频电弧固定在一点燃烧后熔断导线。 3 架空裸导线的断线率低但跳闸事故频繁 当雷击架空裸导线产生巨大雷电过电压时,就会沿导线寻找电场最薄弱点的绝缘子沿面放电形成闪络,最后工频电弧向绝缘子根部的金属发展后形成金属性短路通道,引发线路跳闸事故。由于接续的工频短路电流电弧在电磁力的作用下沿着导线向背离电源方向移动,一般不会烧断导线。 二、灭弧方法 1 使电弧的弧根拉长熄灭 2 断路器跳闸灭弧 3 使过电压能量释放 三、防止雷击断线与跳闸事故的思路

高压架空线路的防雷保护

编号:AQ-JS-07098 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 高压架空线路的防雷保护 Lightning protection of high voltage overhead lines

高压架空线路的防雷保护 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科 学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 1.引言 佛山电力局送电管理所所辖110kV及以上高压送电线路总长732.8km,分布于珠江三角洲一带,属于雷电活动频繁地区,年平均雷暴日高达80~90天。近年来,根据我市电网故障分类统计,高压送电线路因雷击而引起的事故日益增多,雷击引起的跳闸占总跳闸率的70~80%,1999年是雷电活动最为强烈的一年,我所110kV 及以上线路跳闸总数达到了10次之多。2000年线路17次事故障碍中,因雷击而引起的达到13次。严重威胁着输变电设备的安全运行,也大大加重了运行维护人员的劳动强度。由此可见,加强线路防雷保护尤为迫切。 2.雷电对电力线路的危害 架空线路受到直接雷击或线路附近落雷时,导线上会因电磁感应而产生过电压,即大气过电压(外过电压)。这个电压往往高出线路

相电压的2倍及以上,使线路绝缘遭受破坏而引起事故。当雷击线路时,巨大的雷电流在线路对地阻抗上产生很高的电位差,从而导致线路绝缘闪络。雷击不但危害线路本身的安全,而且雷电会沿导线迅速传到变电站,若站内防雷措施不良,则会造成站内设备严重损坏。 3.防范措施及应用情况 根据运行经验,采取降低杆塔接地电阻、加装耦合地线及线路避雷器、减小线路地线保护角、增加绝缘子片数、采用自动重合闸等措施均可以有效地降低雷击跳闸率。以上加强防护措施可根据线路的重要性、雷电活动的频数、地形地貌特点以及土壤电阻率等情况确定选取合理的一种或几种组合。 3.1架设地线以及减少地线保护角 地线是送电线路最基本的防雷措施之一,它的功能:①防止雷直击导线;②雷击杆塔时对雷电流的分流作用,减小流入杆塔的雷电流,使杆塔顶电位降低;③对导线有耦合使用,降低雷击杆塔时塔头绝缘上的电压;④对导线能起到屏蔽作用,降低导线上的感应

架空输电线路的防雷(标准版)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 架空输电线路的防雷(标准版) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

架空输电线路的防雷(标准版) 1架设避雷线 架设避雷线是输电线路防雷保护的最基本和最有效的措施。避雷线的主要作用是防止雷直击导线,同时还具有以下作用:①分流作用,以减小流经杆塔的雷电流,从而降低塔顶电位;②通过对导线的耦合作用可以减小线路绝缘子的电压;③对导线的屏蔽作用还可以降低导线上的感应过电压。 通常来说,线路电压愈高,采用避雷线的效果愈好,而且避雷线在线路造价中所占的比重也愈低。因此规程规定,220kV及以上电压等级的输电线路应全线架设避雷线,110kV线路一般也应全线架设避雷线。 同时,为了提高避雷线对导线的屏蔽效果,减小绕击率。避雷线对边导线的保护角应做得小一些,一般采用20°~30°。220kV

及330kV双避雷线线路应做到20°左右,500kV及以上的超高压、特高压线路都架设双避雷线,保护角在15°及以下。 为了起到保护作用,避雷线应在每基杆塔处接地。在双避雷线的超高压输电线路上,正常的工作电流将在每个档距中两根避雷线所组成的闭合回路里感应出电流并引起功率损耗。为了减小这一损耗,同时为了把避雷线兼作通讯及继电保护的通道,可将避雷线经过一个小间隙对地(杆塔)绝缘起来。雷击时,间隙被击穿,使避雷线接地。 2降低杆塔接地电阻 降低杆塔接地电阻可以减小雷击杆塔时的电位升高,这是配合架设避雷线所采取的一项有效措施。规程要求,有避雷线的线路,每基杆塔的工频接地电阻在雷季干燥时不宜超过表1所列数值。 表1有避雷线输电线路杆塔的工频接地电阻 土壤电阻率Ωm100及以下100~500500~10001000~20002000以上 接地电阻Ω1015202530

高压架空线路的防雷保护(最新版)

高压架空线路的防雷保护(最 新版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0902

高压架空线路的防雷保护(最新版) 1.引言 佛山电力局送电管理所所辖110kV及以上高压送电线路总长732.8km,分布于珠江三角洲一带,属于雷电活动频繁地区,年平均雷暴日高达80~90天。近年来,根据我市电网故障分类统计,高压送电线路因雷击而引起的事故日益增多,雷击引起的跳闸占总跳闸率的70~80%,1999年是雷电活动最为强烈的一年,我所110kV及以上线路跳闸总数达到了10次之多。2000年线路17次事故障碍中,因雷击而引起的达到13次。严重威胁着输变电设备的安全运行,也大大加重了运行维护人员的劳动强度。由此可见,加强线路防雷保护尤为迫切。 2.雷电对电力线路的危害 架空线路受到直接雷击或线路附近落雷时,导线上会因电磁感

应而产生过电压,即大气过电压(外过电压)。这个电压往往高出线路相电压的2倍及以上,使线路绝缘遭受破坏而引起事故。当雷击线路时,巨大的雷电流在线路对地阻抗上产生很高的电位差,从而导致线路绝缘闪络。雷击不但危害线路本身的安全,而且雷电会沿导线迅速传到变电站,若站内防雷措施不良,则会造成站内设备严重损坏。 3.防范措施及应用情况 根据运行经验,采取降低杆塔接地电阻、加装耦合地线及线路避雷器、减小线路地线保护角、增加绝缘子片数、采用自动重合闸等措施均可以有效地降低雷击跳闸率。以上加强防护措施可根据线路的重要性、雷电活动的频数、地形地貌特点以及土壤电阻率等情况确定选取合理的一种或几种组合。 3.1架设地线以及减少地线保护角 地线是送电线路最基本的防雷措施之一,它的功能:①防止雷直击导线;②雷击杆塔时对雷电流的分流作用,减小流入杆塔的雷电流,使杆塔顶电位降低;③对导线有耦合使用,降低雷击杆塔时

架空输电线路防雷措施通用范本

内部编号:AN-QP-HT547 版本/ 修改状态:01 / 00 The Production Process Includes Determining The Object Of The Problem And The Scope Of Influence, Analyzing The Problem, Proposing Solutions And Suggestions, Cost Planning And Feasibility Analysis, Implementation, Follow-Up And Interactive Correction, Summary, Etc. 编辑:__________________ 审核:__________________ 单位:__________________ 架空输电线路防雷措施通用范本

架空输电线路防雷措施通用范本 使用指引:本解决方案文件可用于对工作想法的进一步提升,对工作的正常进行起指导性作用,产生流程包括确定问题对象和影响范围,分析问题提出解决问题的办法和建议,成本规划和可行性分析,执行,后期跟进和交互修正,总结等。资料下载后可以进行自定义修改,可按照所需进行删减和使用。 架空输电线路是电力网及电力系统的重要组成部分。由于它暴露在自然之中,故极易受到外界的影响和损害,其中最主要的一个方面是雷击。架空输电线路所经之处大都为旷野或丘陵、高山,输电线路长,遭遇雷击的机率较大。 架空输电线路雷害事故的形成通常要经历这样四个阶段:输电线路受到雷电过电压的作用:输电线路发生闪络;输电线路从冲击闪络转变为稳定的工频电压;线路跳闸,供电中断。针对雷害事故形成的四个阶段,现代输电线路在采取防雷保护措施时,要做到“四道防

10kV架空配电线路防雷措施

10kV架空配电线路防雷措施 摘要:针对10KV架空配电线路常发生雷击断线事故,从而进行防范措施探讨,以求提高10KV 配电网安全运行水平。目前10KV架空配电线路上,现在都已广泛地应用了绝缘导线。可以说,配电网架空导线的绝缘化,已是一项成熟的技术。 但是,绝缘导线在应用过程中,也出现了一些新的问题。其中,最为突出的问题,是遭受雷击时,容易发生断线事故。据有关资料的统计,南昌经开区2008至2009年两年内,一个30平方公里的供电区域内,雷击断线事故与雷击跳闸事故约为35次,直接损失电量约为30万千瓦时,严重降低了供电可靠性,给社会带来了不良的效果。这两年里雷击断线事故率占76.2%。 以上一些统计资料表明:雷击断线事故,是应用绝缘导线中最突出的一个严重问题,这引起我们的广泛注意,并积极开展对等试验研究工作,并找到许多有效的防范措施。 一、雷击断线与跳闸机理 1电弧放电规律 ①电网雷电过电压闪络,亦即大气压或高于大气压中大电流放电,为电弧放电形式。 ②雷电过电压闪络时,瞬间电弧电流很大、但时间很短。 ③当雷电过电压闪络,特别是在两相或三相(不一定是在同一电杆上)之间闪络而形成金属性短路通道,引起数千安培工频续流,电弧能量将骤增。 2 架空绝缘导线断线 当雷击架空绝缘线路产生巨大雷电过电压,当它超过导线绝缘层的耐压水平时(一般大于139KV)就会沿导线寻找电场最薄弱点将导线的绝缘层击穿(通常在绝缘子两端30公分范围内),形成针孔大小的击穿点,然后对绝缘子沿面放电形成闪络,最后工频电弧向绝缘子根部的金属发展后形成金属性短路通道,工频电弧固定在一点燃烧后熔断导线。 3 架空裸导线的断线率低但跳闸事故频繁 当雷击架空裸导线产生巨大雷电过电压时,就会沿导线寻找电场最薄弱点的绝缘子沿面放电形成闪络,最后工频电弧向绝缘子根部的金属发展后形成金属性短路通道,引发线路跳闸事故。由于接续的工频短路电流电弧在电磁力的作用下沿着导线向背离电源方向移动,一般不会烧断导线。

架空线路的防雷措施

架空线路的防雷措施 架空线路的防雷措施是否得当,直接关系到电网的安全运行与矿井的安全生产。现在我们结合实际了解几种防雷措施: 一、架设避雷线 避雷线主要是防止雷直击导线,它是架空线路最基本的防雷措施。 规程规定:35KV_110KV架空线路,如果未沿全线架设避雷线,则应在1KM_2KM的进线段架设避雷线。 公司现在运行的架空线路最高电压等级是35KV:它们是曲矿线、铜矿线、王坡线、相坡线共四条35KV等级线路,其中曲矿线和铜矿线都是在主焦变电站进线段约1.5KM范围内架设有避雷线。相坡线和王坡线原先也是只在坡北变电站进线段装设有避雷线,但是由于线路雷电活动较强,几乎每年都会发生雷击跳闸事故。严重威胁到了矿井的安全生产,所以在2005年底,将这两条线路在全线补设了避雷线。全线封闭后,到现在已有四年。只在07年王坡线24#铁塔发生了一起雷电绕击事故。(这与24#铁塔在龙山山顶的位置有关)事实证明,全线架设避雷线虽然成本较高,但它防止直击雷的效果还是非常明显的。

二、装设自动重合闸 重合闸的作用是在线路因雷击跳闸后,能在1.5秒的时间内重新自动合一次闸。一般设定只让重合闸一次,如果线路出现的是永久性故障,重合一次合不上,就不再重合了。雷击造成的闪路大多数能在跳闸后自行恢复绝缘,所以重合成功率比较高。由于它能在极短时间内恢复送电,因此对矿井的安全生产有重要意义。咱们的35KV铜矿线就有这套装置。实践证明,合闸成功率接近100%。(但是它不能保护设备绝缘) 三、装设避雷器 公司35kv和6kv线路上都装有避雷器,使用非常广泛。避雷器在正常工作电压下,对地呈绝缘状态;在雷电过电压(不管是直击雷还是感应雷),则呈低电阻状态,对地泄放雷电流,将过电压数值限制在设备绝缘安全值以下,从而有效地保护了被保护电器设备的绝缘免受过电压的损害。 除了这三种,还有采用消弧线圈接地、降低杆塔接地电阻等措施,这里不再讲了。现在我们知道:避雷线是防直击雷的,对导线起屏蔽作用;自动重合闸能在架空线路因雷击跳闸后,缩短事故停电时间,但是它不能保护电气设备的绝缘;避雷器则能有效保护电气设备的绝缘,并且由于它具有成本较低、安装方便、残压低等优点,已成为架空线路不可替代的防雷措施。我们在考虑架空线路的防雷措施时,要充分考

架空输电线路防雷措施正式版

In the schedule of the activity, the time and the progress of the completion of the project content are described in detail to make the progress consistent with the plan.架空输电线路防雷措施正 式版

架空输电线路防雷措施正式版 下载提示:此解决方案资料适用于工作或活动的进度安排中,详细说明各阶段的时间和项目内容完成的进度,而完成上述需要实施方案的人员对整体有全方位的认识和评估能力,尽力让实施的时间进度与方案所计划的时间吻合。文档可以直接使用,也可根据实际需要修订后使用。 架空输电线路是电力网及电力系统的重要组成部分。由于它暴露在自然之中,故极易受到外界的影响和损害,其中最主要的一个方面是雷击。架空输电线路所经之处大都为旷野或丘陵、高山,输电线路长,遭遇雷击的机率较大。 架空输电线路雷害事故的形成通常要经历这样四个阶段:输电线路受到雷电过电压的作用:输电线路发生闪络;输电线路从冲击闪络转变为稳定的工频电压;线路跳闸,供电中断。针对雷害事故形成的四个阶段,现代输电线路在采取防雷保护

措施时,要做到“四道防线”,即: 1防直击,就是使输电线路不受直击雷。 2防闪络,就是使输电线路受雷后绝缘不发生闪络。 3防建弧,就是使输电线路发生闪络后不建立稳定的工频电弧。 4防停电,就是使输电线路建立工频电弧后不中断电力供应。 架空输电线路防雷的具体措施 现对生产运行部门常用的架空输电线路防雷改进措施简述如下: 1架设避雷线 架设避雷线是输电线路防雷保护的最基本和最有效的措施。避雷线的主要作用

线路导线及避雷线液压施工工艺规程

部标准架空送电线路导线及避雷线液压施工工艺规程 SDJ 226-87(试行) 主编部门:水利电力部电力建设研究所 批准部门:中华人民共和国水利电力部 实行日期;1 9 8 7 年 9 月 1 日 水利电力出版社 1987北京 中华人民共和国水利电力部 关于颁发SDJ226-87《架空送电线路导线及避雷线液压施工工艺规程(试行)》部标准通知 (87)水电基字第49号 我部电力建设研究所负责编制的《架空送电线路导线及避雷线液压施工工艺规程(试行)》(编号为SDJ226-87),已经过广泛征求意见和专业会议审查通过,现予颁发试行。 各单位在试行中,请随时将发现的问题和改进意见函告部电力建设研究所。 一九八七年九月一日 第一章一般规定 第1.0.1条本规程适用于架空送电线路中,以高压油泵为动力,以盯应钢模对导线及避雷线进行液压施工。接续管及耐张线夹为圆形,压后呈六角形。 第1.0.2条液压施工是架空送电线路施工中的一项重要隐蔽工序,操作人员必须经过培训及考试合格、持有操作许可证方能进行操作。操作时应有指定的质量检查人员在场进行监督。 第1.0.3条本规程适用于国家标准GB1179-74、GB1179-83《铝绞线有钢芯铝绞线》中有相应液压接续管及耐张线夹的那一部分导线(钢芯铝绞线)。也适用于国家标准GB1200-75《镀锌钢绞线》中有相应液压接续管及耐张线夹的那部分避雷线。 注:1.GB1179-74、GB1179-83及GB1200-75中有关导线及避雷线的数据见附录一; 2.GB1179-74中有关导线的耐张线夹及接续管,GB1179-83中有关导线接续管的数据见附录二; 3.本规程避雷线是专指镀锌钢绞线。良导体避雷线由于尚未列入国家标准,也无正式配套接续管及耐张线夹,故本规程暂不列入。如目前采用此类避雷线,其液压操作仍可遵照本规程的有关规定进行。 第1.0.4条所使用的液压机必须有足够的与所用钢模相匹配的出力。 第1.0.5条为了对每个工程都准确无误地进行液压施工,确保质量,在操作前,操作人员必须备有并熟悉该工程经批准的施工手册(或技术措施)。手册中至少应包括下列有关内容: 一、导线及避雷线的具体规格及有关数据; 二、所采用液压管的外形与尺寸(包括公差); 三、各种管子压前在导线与避雷线上的“定位印记”的量尺尺寸; 四、耐张线夹钢锚U型环与铝管引流板相对方位的要求; 五、液压钢模、压接管压后尺寸及质量补充要求; 六、液压时,油压机必须达到的油压力;

浅谈35kV架空输电线路防雷措施及在实际工程中的应用

浅谈35kV架空输电线路防雷措施及在实际工程中的应用 【摘要】输电线路是传送电能的电力系统中的重要组成部分,本文结合架空输电线路的防雷措施与当地的环境因素,重点分析对新上海庙矿区镇属变电站至某井田煤矿的35kV架空输电线路的防雷设计,工程施工过程中遇到的相关问题及解决办法。 【关键词】35kV输电线路;防雷措施;实际应用 现代社会中,电能是一种最为广泛使用的能源,其应用程度已经成为一个国家发展水平的主要标志之一,随着科学技术和国民经济的发展,对电能的需要量日益剧增,同时对电能质量的要求也越来越高。电力系统中电厂大部分建在动力资源所在地,而大电力负荷中心则多集中在工业区和大城市,因而发电厂和负荷中心往往相距很远,就出现了电能输送的问题,需要用输电线路进行电能的输送。 根据调研,在国内高压输电线路跳闸事故中,因雷击引起的线路跳闸事故约占总跳闸事故的40%~60%,特别是在地形复杂、土壤电阻率高的多雷地带,跳闸率更高,严重威胁着电网运行的安全。随着电网建设的不断加强,输电电路越来越多,电能质量要求也越来越高。因此,如何切实有效地制定及改善架空输电线路的防雷措施,从而降低线路雷击跳闸率,一直是设计施工和运行维护工作中的重点。 1 防雷的原则 线路防雷保护首先在于抓好基础工作,目前国内外在雷电防护手段上并没有出现根本的变化,很大程度上要依赖传统的技术措施,我们应该结合当地的地貌、地形、气象环境以及土壤状况,找出可能存在薄弱环节或缺陷,因地制宜地采取措施。 2 新上海庙矿区某井田35kV输电线路工程 新上海庙矿区某某井田位于鄂尔多斯高原西侧,毛乌素沙漠西南边缘,地形呈低缓丘陵地貌,地势开阔,起伏不大,地表多为沙土;气候具有冬寒长、夏热短,干旱少雨、蒸发强烈的特点;全年冻土时间为11月至次年3月,冻土最大深度为90cm;据当地气象台(站)记录年平均为40个雷暴日。现因井田生产建设的需要,需建立一条镇属变电站至煤矿工业广场的35kV架空输电线路。 3 雷击跳闸原因分析 架空输电线路雷击跳闸类型主要有绕击跳闸、反击跳闸、感应跳闸。经过统计分析该地区的输电线路跳闸情况,引起线路跳闸雷击形式主要为反击跳闸和感应雷跳闸。

架空输电线路的防雷(正式版)

文件编号:TP-AR-L3224 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 架空输电线路的防雷(正 式版)

架空输电线路的防雷(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 1 架设避雷线 架设避雷线是输电线路防雷保护的最基本和最有 效的措施。避雷线的主要作用是防止雷直击导线,同 时还具有以下作用:①分流作用,以减小流经杆塔的 雷电流,从而降低塔顶电位;②通过对导线的耦合作 用可以减小线路绝缘子的电压;③对导线的屏蔽作用 还可以降低导线上的感应过电压。 通常来说,线路电压愈高,采用避雷线的效果愈 好,而且避雷线在线路造价中所占的比重也愈低。因

此规程规定,220kV及以上电压等级的输电线路应全线架设避雷线,110kV线路一般也应全线架设避雷线。 同时,为了提高避雷线对导线的屏蔽效果,减小绕击率。避雷线对边导线的保护角应做得小一些,一般采用20°~30°。220kV及330kV双避雷线线路应做到20°左右,500kV及以上的超高压、特高压线路都架设双避雷线,保护角在15°及以下。 为了起到保护作用,避雷线应在每基杆塔处接地。在双避雷线的超高压输电线路上,正常的工作电流将在每个档距中两根避雷线所组成的闭合回路里感应出电流并引起功率损耗。为了减小这一损耗,同时为了把避雷线兼作通讯及继电保护的通道,可将避雷

35 kV架空线路防雷措施(正式)

编订:__________________ 单位:__________________ 时间:__________________ 35 kV架空线路防雷措施 (正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-2220-16 35 kV架空线路防雷措施(正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 1 、35 kV线路现状 南京供电公司共有35 kV线路39条,线路长度约350 km,半数以上的线路处于丘林地带的小山区和水网平坦地带,线路起始两端1~2 km的线路架设架空地线,线路中间绝大多数的线路长度无架空地线,杆塔采用金属或混凝土。 2 、35 kV线路雷击统计 20xx年6月15日至8月4日共发生24起35 kV 线路雷击故障,重合成功17次;试送成功4次;设备故障3次。6月15日1:12分,35 kV八四线断路器速断动作,4#和5#顶线被雷击而断线,线路处于空旷地带;7月30日15:08分,35 kV长芦断路器速断保护动作,55#耐张塔顶线跳线被雷击中断开,顶线与一边线合成绝缘子被雷击,杆塔位于平地;8月4日20:09

架空输电线路防雷措施

编号:SM-ZD-12767 架空输电线路防雷措施Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

架空输电线路防雷措施 简介:该方案资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 架空输电线路是电力网及电力系统的重要组成部分。由于它暴露在自然之中,故极易受到外界的影响和损害,其中最主要的一个方面是雷击。架空输电线路所经之处大都为旷野或丘陵、高山,输电线路长,遭遇雷击的机率较大。 架空输电线路雷害事故的形成通常要经历这样四个阶段:输电线路受到雷电过电压的作用:输电线路发生闪络;输电线路从冲击闪络转变为稳定的工频电压;线路跳闸,供电中断。针对雷害事故形成的四个阶段,现代输电线路在采取防雷保护措施时,要做到“四道防线”,即: 1防直击,就是使输电线路不受直击雷。 2防闪络,就是使输电线路受雷后绝缘不发生闪络。 3防建弧,就是使输电线路发生闪络后不建立稳定的工频电弧。 4防停电,就是使输电线路建立工频电弧后不中断电力

架空送电线路导线及避雷线液压施工工艺规程

架空送电线路导线及避雷线液压施工工艺规程 注:1.GB1179—74、GB1179—83及GB1200—75中有关导线及避雷线数据见附录一; 2.GB1179—74中有关导线的耐张线夹及接续管,GB1179—83中有关导线接续管的数据见附录二; 3.本规程避雷线是专指镀锌钢绞线。良导体避雷线由于尚未列入国家标准,也无正式配套接续管及耐张线夹,故本规程暂不列入。如目前采用此类避雷线,其液压操作仍可遵照本规程的有关规定执行。 第1.0.4条所使用的液压机必须有足够的与所用钢模相匹配的出力。 第1.0.5条为了对每个工程都准确无误地进行液压施工,确保质量,在操作前,操作人员必须备有并熟悉该工程经批准的施工手册(或技术措施)。手册中至少应包括下列有关内容: 一、导线及避雷线的具体规格及有关数据; 二、所采用液压管的外形与尺寸(包括公差); 三、各种管子压前在导线与避雷线上的“定位印记”的量尺尺寸; 四、耐张线夹钢锚U型环与铝管引流板相对方位的要求; 五、液压钢模、压接管压后尺寸及质量补充要求; 六、液压时,油压机必须达到的油压力; 七、对液压施工的其他有关特殊要求。 第1.0.6条导线及避雷线的受压部分应平整完好,同时与管口距15m以内应不存在必须处理的缺陷。 第1.0.7条液压的导线及避雷线的端部在割线前应先将线掰直,并加防止松散的绑线,切割时应与轴线垂直。 第1.0.8条在钢芯铝绞线割断铝股时,严禁伤及钢芯。 第1.0.9条量尺画印的定位印记,画好后应立即复查,以确保正确无误。 第二章液压前的操作 第一节液压设备及材料检验 第2.1.1条对所使用的导线及避雷线,其结构及规格应认真进行检查,其规格应与工程设计相符,并符合国家标准的各项规定。 第2.1.2条所使用的各种接续管及耐张线夹,应用精度为0.02mm游标卡尺测量受压部分的内外直径。外观检查应符合GB2314—85有关规定。用钢尺测量各部长度,其尺寸、公差应符合国家标准要求。 第2.1.3条在使用液压设备之前,应检查其完好程度,以保证正常操作。油压表必须定期校核,做到准确可靠。 第二节清洗 第2.2.1条对使用的各种规格的接续管及耐张线夹,应用汽油清洗管内壁的油垢,并清除影响穿管的锌疤与焊渣。短期不使用时,清洗后应将管口临时封堵,并以塑料袋封装。 第2.2.2条镀锌钢绞线的液压部分穿管前应以棉纱擦去泥土。如有油垢应以汽油清洗。清洗长度应不短于穿管长的1.5倍。 第2.2.3条钢芯铝绞线的液压部分在穿管前,应以汽油清除其表面油垢,清除的长度对先套入铝管端应不短于铝管套入部位;对另一端应不短于半管长的1.5

输电线路的防雷技术措施

仅供参考[整理] 安全管理文书 输电线路的防雷技术措施 日期:__________________ 单位:__________________ 第1 页共7 页

输电线路的防雷技术措施 随着经济的发展,对输电线路供电可靠性的要求越来越高。同时伴随着电网的发展,雷击输电线路引起的跳闸、停电事故绝对值也日益增多。据电网故障分类统计表明,在我国跳闸率较高的地区,高压线路运行的总跳闸次数中,由于雷击原因的事故次数约占(50~70)%。尤其是在多雷、土壤电阻率高、地形复杂的山区,雷击输电线路引起的事故率更高,带来巨大的损失。要保障线路安全运行;应对雷害原因进行有效的分析,确定雷击性质,并采取相应有效的防雷措施。 1雷害原因分析 输电线路雷击闪电是由雷云放电造成的过电压通过线路杆塔建立 放电通道,导致线路绝缘击穿,这种过电压也称为大气过电压,可分为直击雷过电压和感应雷过电压。雷击主要是通过建立一个放电泄流通道,从而使大地感应电荷中和雷云中的异种电荷,因此雷击和接地装置的完好性有直接的关系。 输电线路感应雷过电压最大可达到400kV左右,它对35KV及以下线路绝缘威胁很大,但对于110kV及以上线路绝缘威胁很小,110kV及以上输电线路雷击故障多由直击雷引起,并且同接地装置的完好性有直接的关系。直击雷又分为反击和绕击,都严重危害线路安全运行。在采取各种防雷措施之前,应该对雷击性质进行有效分析,准确分析每次线路故障的闪络类型,采用针对性强的防雷措施,才能达到很好的防雷效果。 反击雷过电压是雷击杆顶和避雷线出现的雷过电压,主要与绝缘强度和杆塔接地电阻有关,一般发生在绝缘弱相,无固定闪络相别,所以对于反击雷过电压应采取降低杆塔接地电阻,加强绝缘,提高耐雷水平。 第 2 页共 7 页

高压架空线路铁塔防雷接地设计方案

雷电是自然界一种常见的放电现象,自然界里每年都有几百万次的闪电,每年雷电造成的人员伤亡和财产流失,仅次于水灾而大于其他的任何灾害。 随着国民经济的大幅度增长,人民生产生活层次的不断提高,对消费用电的需求量直线上升,从而推动了电力产业的迅猛发展,走上了一个新的高度。电网面积覆盖越来越广,密度越来越大,电网容量不断增大,输送电技术也不断进步,对于输电线路的建设将是一个严峻的考验,使命重大。其建设过程中的防雷保护也就成为一个越来越重要的课题摆在我们的面前。 九十年代是防雷工作大发展的十年,国际上国际电工委员会颁布了IEC系列防雷标准,国内也颁布了基于IEC标准的国标,各相关行业也将防雷要求列入标准。电力部门对于预防雷电的危害,也颁布了许多关于电力设施保护、电力建设防雷新标准。 雷电的危害主要有三方面:直击雷、感应雷和雷电过电压侵入。电力系统的高压架空线路中,直击雷的危害最大最明显,其主要集中于线路中的铁塔。一般的架空线路都采用了避雷线防护,根据电压等级,35kV 线路不宜全线架设避雷线,一般在变电所的进线段架设1~2km的避雷线,同时在雷电活动强烈的地段架设避雷线,或者安装线路金属氧化物避雷器;110kV线路应全线架设避雷线,山区应采用双避雷线;但在年平均雷暴日数不超过15日或运行经验证明雷电活动轻微的地区,可不架设避雷线;220kV线路应全线架设避雷线,同时应采用双避雷线。通常在架空线路雷防护工程上,往往要结合当地的气候条件,雷电活动的强弱,地形地貌特点及土壤电阻率的高低等情况,其中线路中的铁塔防雷接地尤为重要与关键。 本方案主要是针对高压架空线路中铁塔的保护防雷,采用接地防雷方式,主要是引下线与接地网的设计。将电力系统或电气装置的某一部分经接地线连接到接地极或地网称为接地。连接到接地极的导线称为接地线。 一个接地装置正确与合理,不仅能为有效防雷提供保障,还能降低工程的建设成本,不过也是电力系统中一直攻关的难题。高压架空线一般组成有:高压输电线、避雷线、避雷器及铁塔本体,本方案重点针对危害最常见的直击雷而设计,采用直接接地制式。 一、引下线的设计 输电铁塔所处位置不定,相对高度较高,受直击雷影响明显而维护工程又比较艰巨。线 路中引下线主要包括避雷线的引下线,高压输电线防雷装备保护引线。根据电力系统设计标准,避雷线引下线可采用铁塔作为引线,铁塔有良好的接地,只需保证引线与铁塔有良好的电气连接,并做防腐处理;铁塔采用四角引线连接到地网接点。各相线的避雷保护器引线也同样可以采用此方法,但注意的是要确保引线连接的正确与科学,各连接点电气接触良好,一般选用导线截面为35-95mm2的多股铜导线。 高压架空线路铁塔的接地装置可采用下列模式: a)在土壤电阻率ρ≤100Ω*m的潮湿地区,可利用铁塔自然接地。对发电厂、变电站的进线段应另设雷电保护接地装置。在居民区,当自然接地电阻符合要求时,可不设人工接地装置。 b)在土壤电阻率100Ω*m<ρ≤300Ω*m的地区,除了利用铁塔的自然接地外,并应增设人工接地装备,接地极埋深不宜小于0.6m。 c)在土壤电阻率300Ω*m<ρ≤2000Ω*m的地区,可采用水平敷设的接地装置,接地极埋深不宜少于0.5m。d)在土壤电阻率ρ>2000Ω*m的地区,可采用6~8根总长度不超过500m的放射线接地极或者连续伸长接地极长短结合的方式。接地极埋深不宜小于0.3m。还可以采用引外接地或其他措施。 e)居民区和水田中的接地装置,宜围绕铁塔基础敷设成闭合环形。 架空线路铁塔的接地线及连接方式符合DL/T620-1997〈交流电气装置的过电压保护和 绝缘配合〉的要求。 二、地网的设计 要布置一个合理的接地网不仅仅是依靠丰富正确的理论计算,还应该从不断的实践中去 总结探索。接地电阻是表示接地体接地状态是否良好的主要指标,通常架空线路铁塔的接地电阻不宜大于

架空输电线路防雷措施

编号:AQ-JS-03414 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 架空输电线路防雷措施Lightning protection measures for overhead transmission lines

架空输电线路防雷措施 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科 学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 架空输电线路是电力网及电力系统的重要组成部分。由于它暴露在自然之中,故极易受到外界的影响和损害,其中最主要的一个方面是雷击。架空输电线路所经之处大都为旷野或丘陵、高山,输电线路长,遭遇雷击的机率较大。 架空输电线路雷害事故的形成通常要经历这样四个阶段:输电线路受到雷电过电压的作用:输电线路发生闪络;输电线路从冲击闪络转变为稳定的工频电压;线路跳闸,供电中断。针对雷害事故形成的四个阶段,现代输电线路在采取防雷保护措施时,要做到“四道防线”,即: 1防直击,就是使输电线路不受直击雷。 2防闪络,就是使输电线路受雷后绝缘不发生闪络。 3防建弧,就是使输电线路发生闪络后不建立稳定的工频电弧。 4防停电,就是使输电线路建立工频电弧后不中断电力供应。

架空输电线路防雷的具体措施 现对生产运行部门常用的架空输电线路防雷改进措施简述如下: 1架设避雷线 架设避雷线是输电线路防雷保护的最基本和最有效的措施。避雷线的主要作用是防止雷直击导线,同时还具有以下作用:1)分流作用,以减小流经杆塔的雷电流,从而降低塔顶电位; 2)通过对导线的耦合作用可以减小线路绝缘子的电压; 3)对导线的屏蔽作用还可以降低导线上的感应过电压。 通常来说,线路电压愈高,采用避雷线的效果愈好,而且避雷线在线路造价中所占的比重也愈低。因此,110kV及以上电压等级的输电线路都应全线架设避雷线。 同时,为了提高避雷线对导线的屏蔽效果,减小绕击率,避雷线对边导线的保护角应做得小一些,一般采用20°~30°。220kV及330kV双避雷线线路应做到20°左右,500kV及以上的超高压、特高压线路都架设双避雷线,保护角在15°左右。

架空输电线路防雷措施实用版

YF-ED-J3782 可按资料类型定义编号 架空输电线路防雷措施实 用版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

架空输电线路防雷措施实用版 提示:该解决方案文档适合使用于从目的、要求、方式、方法、进度等都部署具体、周密,并有很强可操作性的计划,在进行中紧扣进度,实现最大程度完成与接近最初目标。下载后可以对文件进行定制修改,请根据实际需要调整使用。 架空输电线路是电力网及电力系统的重要组成部分。由于它暴露在自然之中,故极易受到外界的影响和损害,其中最主要的一个方面是雷击。架空输电线路所经之处大都为旷野或丘陵、高山,输电线路长,遭遇雷击的机率较大。 架空输电线路雷害事故的形成通常要经历这样四个阶段:输电线路受到雷电过电压的作用:输电线路发生闪络;输电线路从冲击闪络转变为稳定的工频电压;线路跳闸,供电中断。针对雷害事故形成的四个阶段,现代输电

线路在采取防雷保护措施时,要做到“四道防线”,即: 1防直击,就是使输电线路不受直击雷。 2防闪络,就是使输电线路受雷后绝缘不发生闪络。 3防建弧,就是使输电线路发生闪络后不建立稳定的工频电弧。 4防停电,就是使输电线路建立工频电弧后不中断电力供应。 架空输电线路防雷的具体措施 现对生产运行部门常用的架空输电线路防雷改进措施简述如下: 1架设避雷线 架设避雷线是输电线路防雷保护的最基本和最有效的措施。避雷线的主要作用是防止雷

架空输电线路的防雷保护与措施

架空输电线路的防雷保护与措施 发表时间:2019-01-08T17:12:22.577Z 来源:《电力设备》2018年第24期作者:于文滔[导读] 摘要:随着科技的发展,电力已成为最重要的资源之一,如何保证电力的供应对于国民经济发展和人民生活水平的提高都有非常重要的意义。 (广东电网有限责任公司清远供电局 511500)摘要:随着科技的发展,电力已成为最重要的资源之一,如何保证电力的供应对于国民经济发展和人民生活水平的提高都有非常重要的意义。输电线路的防雷保护就是重点之一。架空输电线路分布很广,地处旷野,易遗受雷击,线路的雷害事故在电力系统总的雷害事故中占很大比重。因此要研究防雷原则,及时做好相应措施。 关键词:输电线路;雷击跳闸分析;保护措施;雷电;防雷装置 一、线路防雷的基本原则 防雷的基本原则就是提供一条使雷电 (包括雷电电磁脉冲辐射)对大地泄放的合理低阻抗路径,而不是让其随机性选择放电通道.其含义就是要控制雷电能量的释放与转换。 1.1防绕击 线路直击雷事故有绕击和反击两种,线路的绕击耐雷水平远低于其反击耐雷水平。输电线路最有效的保护,是采用接地的避雷线。输电线路饷屏蔽系统由地线、杆塔和大地三者构成.输电线路发生绕击跳闸事故可归咎予屏蔽系统的引雷能力不够。对于具体情况,增强某一屏蔽体的引雷能力,可有效地防止绕击跳闸事敝的发生。 1.2防反击 避雷线或塔顶上落雷后,雷电流沿避雷线流入杆塔。由于杆塔或其接地引下线的电感和杆塔接地电阻的压降,塔顶的电位可能达到足以使线路绝缘发生反击的数值,这样仍会造成跳闸搴故。防止发生反击最有效的方法是降低秆塔的接地电阻。此外,还可以采取适当加强绝缘、在雷电强烈地区加装耦合地线以增大避雷线对导线的耦合系数等辅助方法来防止发生反击。 1.3防止雷击闪络后建立工频短路电弧 一般送电线路的绝缘在雷击闪络后,不会每次都能建立稳定的短路电弧。加强线路绝缘可以减少绝缘子串上的工频电场。降低建立稳定工频电弧的概率,从而可以抑制绝缘子串闪络后工频短路电弧的建立。 1.4保证线路不间断供电 根据运行经验,送电线路雷击闪络或短路多为瞬时性故障。当线路跳闸后电弧就会自行熄灭,绝缘子的电气强度即可完全恢复,如将线路重新合闸,就能继续恢复供电,保证用户正常生产。因此架空输电线路应广泛采用自动重合闸装置,这对提高供电可靠性有着十分重大的作用。 1.5特殊杆塔重点防护 对于送电线路上个别绝缘比较薄弱和需要重点保护的杆塔或设备,例如大跨越档特殊高杆塔等均须加以保护,一般可以改善接地,同时对特殊杆塔还应考虑适当加强其绝缘,安装线路避雷器等。线路的跳闸往往是由于个别绝缘弱点在雷击时发生闪络引起的,所以消除这些绝缘弱点并加强对它们的保护是保证送电线路安全运行十分重要的手段。 二、线路防雷的基本措施 为降低输电线路的雷击跳闸率,提高线路耐雷水平,保证安全连续运行,输电线路防雷常采用以下措施: 2.1架设避雷线等防雷装置 架设避雷线是输电线路防雷保护的最基本和最有效的措施。避雷线的主要作用是防止雷直击导线,同时还具有以下作用:1)分流作用,以减小流经杆塔的雷电流,从而降低塔顶电位; 2)通过对导线的耦合作用可以减小线路绝缘子的电压; 3)对导线的屏蔽作用还可以降低导线上的感应过电压。 通常来说,线路电压愈高,采用避雷线的效果愈好,而且避雷线在线路造价中所占的比重也愈低。因此,110kV及以上电压等级的输电线路都应全线架设避雷线。同时为了提高避雷线对导线的屏蔽效果,减小绕击率,避雷线对边导线的保护角应做得小一些,一般采用20°~30°。220kV及330kV双避雷线线路应做到20°左右,500kV及以上的超高压、特高压线路都架设双避雷线,保护角在15°左右。 2.2降低杆塔接地电阻 降低接地电阻是提高线路耐雷水平防止反击的有效措施。配合架设避雷线,降低杆塔接地电阻可以减小雷击杆塔时的电位升高。对于架设有避雷线的杆塔,我们都设置了接地装置。同时,要重视无避雷线杆塔的接地。无避雷线水泥杆、金属杆塔的接地电阻虽然一般不限制,但在年平均雷暴日超过40天的地区,接地电阻也不宜超过 30Ω(可减少由于雷击线路而引起多相短路和两相异点接地引起的断线事故)。 现行规程对杆塔接地电阻的要求见表 2,在雨季干燥时,每基杆塔的工频接地电阻不宜超过表中所列数值。 表 1 有避雷线输电线路杆塔的工频接地电阻 2.3架设耦合地线 若线路所经地区的七壤电阻率较高 (在2000Ω?m及以上)难以降低接地电阻,而且雷击跳闸频繁时,可在导线下方4~5 米处架设耦合地线。其作用是连同避雷线一起来增加它们与导线间的耦合系数,增大杆塔向两侧的分流作用,从而在雷击塔顶时使线路承受的过电压显著减小。运行经验表明,耦合地线可使线路雷击跳闸率下降50%左右。 2.4采用中性点非有效接地方式 我国35kV及以下电网一般采用中性点不接地或经消弧线圈接地的方式。这样可使雷击引起的大多数单相接地敝障自动消除,不致造成雷击跳闸。在两相或三相闪络时,因先对地闪络相的导线相当于一条避雷线,由于其对末闪络相的耦合作用,使未闪络相绝缘上的过电压下降。为了更好的发挥这一作用,并减少雷击引起的多相短路和两相异点接地引起的断线事故,铁塔和钢筋混凝土杆宜接地,接地电阻不受限制,但多雷区不易超过30 ?。

相关主题
文本预览
相关文档 最新文档