当前位置:文档之家› 金属的塑性变形与再结晶-材料科学基础-实验-06

金属的塑性变形与再结晶-材料科学基础-实验-06

金属的塑性变形与再结晶-材料科学基础-实验-06
金属的塑性变形与再结晶-材料科学基础-实验-06

实验六 金属的塑性变形与再结晶

(Plastic Deformation and Recrystallization of Metals ) 实验学时:2 实验类型:综合

前修课程名称:《材料科学导论》

适用专业:材料科学与工程

一、实验目的

1. 观察显微镜下变形孪晶与退火孪晶的特征;

2. 了解金属经冷加工变形后显微组织及机械性能的变化;

3. 讨论冷加工变形度对再结晶后晶粒大小的影响。

二、概述

1. 显微镜下的滑移线与变形孪晶

金属受力超过弹性极限后,在金属中将产生塑性变形。金属单晶体变形机理指出,塑性变形的基本方式为:滑移和孪晶两种。

所谓滑移,是晶体在切应力作用下借助于金属薄层沿滑移面相对移动(实质为位错沿滑移面运动)的结果。滑移后在滑移面两侧的晶体位向保持不变。

把抛光的纯铝试样拉伸,试样表面会有变形台阶出现,一组细小的台阶在显微镜下只能观察到一条黑线,即称为滑移带。变形后的显微组织是由许多滑移带(平行的黑线)所组成。

在显微镜下能清楚地看到多晶体变形的特点:① 各晶粒内滑移带的方向不同(因晶粒方位各不相同);② 各晶粒之间形变程度不均匀,有的晶粒内滑移带多(即变形量大),有的晶粒内滑移带少(即变形量小);③ 在同一晶粒内,晶粒中心与晶粒边界变形量也不相同,晶粒中心滑移带密,而边界滑移带稀,并可发现在一些变形量大的晶粒内,滑移沿几个系统进行,经常看见双滑移现象(在面心立方晶格情况下很易发现),即两组平行的黑线在晶粒内部交错起来,将晶粒分成许多小块。(注:此类样品制备困难,需要先将样品进行抛光,再进行拉伸,拉伸后立即直接在显微镜下观察;若此时再进行样品的磨光、抛光,滑移带将消失,观察不到。原因是:滑移带是位错滑移现象在金属表面造成的不平整台阶,不是材料内部晶体结构的变化,样品制备过程会造成滑移带的消失。)

另一种变形的方式为孪晶。不易产生滑移的金属,如六方晶系的镉、镁、铍、锌等,或某些金属当其滑移发生困难的时候,在切应力的作用下将发生的另一形式的变形,即晶体的一部分以一定的晶面(孪晶面或双晶面)为对称面,与晶体的另一部分发生对称移动,这种变形方式称为孪晶或双晶。

孪晶的结果是:孪晶面两侧晶体的位向发生变化,呈镜面对称。所以孪晶变形后,由于对光的反射能力不同,在显微镜下能看到较宽的变形痕迹——孪晶带或双晶带。在密排六方结构的锌中,由于其滑移系少,则易以孪晶方式变形,在显微镜下看到变形孪晶呈发亮的竹叶状特征。(注:孪晶是材料内部晶体结构上的变化,样品制备过程不会造成孪晶的消失。) 对体心立方结构的Fe -α,在常温时变形以滑移方式进行;而在0℃以下受冲击载荷时,则以孪晶方式变形;而面心立方结构大多是以滑移方式变形的。

2.变形程度对金属组织和性能的影响

若变形前金属为等轴晶粒,则,经微量变形后晶粒内即有滑移带出现,经过较大的变形

后即发现晶粒被拉长,变形程度愈大,晶粒被拉得愈长;当变形程度很大时,则加剧了晶粒沿一定方向伸长,晶粒内部被许多的滑移带分割成细小的小块,晶界与滑移带分辨不清,呈纤维状组织。(注:实验中观察的Fe -α、单相黄铜形变组织中看不到滑移带)

由于变形的结果,滑移带附近晶粒破碎,产生较严重的晶格歪扭,造成临界切应力提高,

使继续变形发生困难,即产生了所谓加工硬化现象。随变形程度的增加,金属的硬度、强度、矫顽力、电阻增加,而塑性和韧性下降。

3.形变金属在加热后组织和性能的影响

加工硬化后的金属,由于晶粒破碎,晶格歪扭、位错密度、空位和间隙原子等缺陷的增加,使其内能增加,金属处于不稳定状态,有力求恢复到稳定状态的趋势,加热则为之创造了条件,促进这一过程的进行。

变形后的金属在较低温度加热时,金属内部的应力部分消除,歪曲的晶格恢复正常但显微组织没有变化,原来拉长的晶粒仍然是伸长的。这个过程是靠原子在一个晶粒范围内的移动来实现的,称为回复。这时金属可部分地恢复机械性能,而物理性能,如导电性,几乎全部恢复。

变形后金属加热到再结晶温度以上时,发生再结晶过程,显微组织发生显著变化。再

结晶使金属中被拉长的晶粒消失,生成新的无内应力的等轴晶粒,机械性能完全恢复。

如变形60%的α-黄铜经270℃再结晶退火后,其组织是由许多细小的等轴晶粒及原来

纤维状组织组成;温度继续升高,纤维状组织全部消失为等轴晶粒。此后温度再升高,就发生积聚再结晶;温度愈高,晶粒愈大。

在单相黄铜-α组织内,经再结晶退火后能看到明显的退火孪晶,它是与基体颜色不同、边很直的小块。退火孪晶的产生是再结晶过程中,面心立方结构的新晶粒界面在推移过程中发生层错现象所致。

对于立方晶系的金属,当变形度达到70~80%以上时,最低(开始)的再结晶温度与熔

点有如下关系:

(绝对温度)

熔化再T T 4.0= 金属中有杂质存在时,最低的再结晶温度显著变化。在大多数情况下,杂质均使再结晶

温度升高。

为了消除加工硬化现象,通常退火温度要比其最低再结晶温度高出100~200℃。

变形金属经过再结晶后的晶粒度,不仅会影响其强度和塑性,而且还会显著影响动载下

的冲击韧性值。

再结晶后晶粒的大小,不仅与再结晶退火的温度有关,而且与再结晶退火前的变形度有

关。在同一再结晶退火温度下,晶粒度的大小与预先变形程度的关系,如下图所示:

临界变形度

预先变形程度

当变形度很小时,由于晶格歪扭程度很小,不足以引起再结晶,故晶粒大小不变;当变形度在2~10%范围内时,金属中变形极不均匀,再结晶时形核数量很少,再结晶后晶粒度很不均匀,晶粒极易相互吞并长大,这样的变形度称“临界变形度”。大于临界变形度后,随着变形度的增加,变形愈均匀,再结晶时的形核率愈大,再结晶后的晶粒便愈细。

在进行冷塑性变形时,应尽量避免在临界变形度下变形,而采用较大的变形度,以获

得较细小的晶粒。临界变形度,因金属的本性及纯度而异,铁为7~15%,铝为2~4%。

三、实验设备和材料

⑴金相显微镜;

⑵常温下,变形度为10%的锌变形孪晶试样;

⑶变形度为60%的α-黄铜,经过270℃、350℃、550℃、750℃退火30min的一组金相试样;

⑷变形度为0%、20%、40%、60%的工业纯铁金相试样一组;

⑸工业纯铁低温冲击试样;

⑹纯铝片不同变形度对再结晶晶粒大小影响组样

四、实验内容和步骤

⒈测定纯铝再结晶后晶粒大小与变形度的关系;

⒉测量、记录工业纯铁不同变形度(0、20、40、60%)试样的硬度(HRB);

⒊观察工业纯铁不同变形度(0%、20%、40%、60%)试样的显微组织;

⒋观察锌的变形孪晶、60%变形度的α-黄铜的纤维组织;

⒌观察α-黄铜经60%形变后,不同再结晶温度对再结晶晶粒大小的影响及退火孪晶的特征。

五、实验过程

⒈根据实际观察、图片,简述单相多晶体材料在变形情况下,等轴晶晶粒的形貌变

化:(

由本组试样,希望建立明确的感性认识:等轴晶粒在不断加大的变形度的条件下形貌的变化;不同晶粒在变形时参与形变的程度的差异。

工业纯铁20%形变工业纯铁40%形变

工业纯铁60%形变工业纯铁60%形变750度再结晶

工业纯铁20%形变后不同晶粒内部显微硬度测试

⒉观察变形度为60%的α-黄铜,经过270℃、350℃、550℃、750℃退火30min的一组金相试样。根据观察、图片,了解再结晶温度对再结晶晶粒大小的影响效果。

黄铜60%形变黄铜60%形变270度再结晶

黄铜60%形变350度再结晶黄铜60%形变550度再结晶

黄铜60%形变750度再结晶

270℃退火与未退火时的区别在于:()。

350℃退火与550℃退火的区别在于:()。

由750℃退火组织,说明退火孪晶的特点是:()。

⒊根据Zn孪晶样品观察、图片,了解形变的另一种方式是:()。

纯锌形变孪晶

Zn出现孪晶现象的原因是:()。

⒋工业纯铁在0℃以下接受冲击时,会出现与常规条件下的不同形变方式:()。

工业纯铁低温冲击

其孪晶形貌是:();与划痕如何区别:

)。

根据工业纯铁低温冲击样品与常规条件下变形样品的比较,同学们可以知道:同样的材料,在不同的变形条件下,变形的方式会()。

⒌记录不同变形度的工业纯铁的硬度值(HRB):

)。

⒍根据教师提供的样品组,建立纯铝片“变形度与再结晶后晶粒大小”的关系曲线,讨论变形度对纯铝片再结晶晶粒大小的影响。

⒎请记录下列组织的金相组织形貌:

工业纯铁的不同变形度的连续组织形貌;单相黄铜60%形变550或750℃再结晶退火的

工业纯铁0% 工业纯铁20% 工业纯铁40% 工业纯铁60%

工业纯铁低温冲击锌的形变孪晶黄铜60%形变再结晶退火

(退火温度:)

金属塑性变形物理本质

4 固态塑性变形物理本质 材料经过加工成形使其具有需要的形状和性能,才体现出它的价值。材料加工的目的就是两个:一是改变材料的形状,另一个是改善其性能。塑性变形是既改变材料的形状,又改变材料的组织结构及相应性能的有效方法。 通过塑性变形可以有效地改变材料的性能,材料的性能又直接影响到工艺的进行。金属材料的性能(包括使用性能和深加工性能)在使用条件一定时,是决定于成分和组织结构的。在材料的化学成分一定的情况下,其组织结构是由加工工艺决定的,既通过冷、热加工、热处理和形变热处理可以在很大范围内改变金属材料的组织结构,从而改变材料的性能。我们掌握了形变、相变、形变和相变相结合的过程中金属材料组织结构的变化规律,就可以利用这些规律,设计和优化加工工艺来获得满足性能要求所需要的组织结构。有时为了充分发挥冷、热加工、热处理和形变热处理改变金属材料的组织结构的作用,也经常适当地调整化学成分,从而获得更好的效果。这些知识是制定各种金属材料生产工艺的理论依据,为了达到有效的控制材料性能目的,我们首先要认识塑性加工过程中材料的组织及性能变化。 4.1 固态塑性变形机理 材料塑性变形包括晶内变形和晶间变形。通过各种位错运动而实现的晶内一部分相对于另一部分的剪切运动,这就是晶内变形。剪切运动有不同的机理,其中最基本的形式是:滑移、孪生、形变带和扭折带。在r T T 5.0>(r T 熔化温度)时,可能出现晶间变形。当 变形温度比晶体熔点低很多时,起控制作用的变形机理是滑移和孪生。在高温塑性变形时,扩散机理起重要作用。 在金属和合金的塑性变形过程中,常常同时有几种机理起作用。各种机理作用的情况受许多因素影响,例如:晶体结构、化学成分、相状态等材料的内在因素,及变形温度、变形速度、应力状态等外部条件的影响。因此要研究和控制材料的变形过程,掌握基本的塑性变形机理很有必要。 4.1.1 滑移 (1)点阵阻力 晶内变形是晶体的一部分相对于另一部分的剪切变形,都是通过位错运动来实现的,所以研究基本的塑性变形机理就应研究相应的各种位错运动形式。滑移是重要的切变机理之一。虽说位错的滑移运动是很容易的,但是,它也必须至少克服点阵阻力对它的阻碍才能运动。所谓点阵阻力也就是派一纳力。当位错从一个低能的稳定位置过渡到另一个低能的稳定位置,必须越过一个能量最大值的位置,就需要对位错施加足够的力以供克服这一能垒所需要的能量,这个能垒就称为派尔斯垒,克服这个能垒所需要的力就是派一纳力。 派尔斯等作者,在经典的弹性介质假设和滑移面上原子的相互作用为原子相对位移的正弦函数假设的基础上,求出了单位长度位错的激活能△W (即派尔斯垒)和其临界切应力(派一纳力)p τ,按指数规律随面间距 a 和柏氏矢量 b 的比值a /b 而变化。

第六章 回复与再结晶

第六章回复与再结晶 (一)填空题 1. 金属再结晶概念的前提是,它与重结晶的主要区别是。 2. 金属的最低再结晶温度是指,它与熔点的大致关系是。 3 钢在常温下的变形加工称,铅在常温下的变形加工称。 4.回复是,再结晶是。 5.临界变形量的定义是,通常临界变形量约在范围内。 6 金属板材深冲压时形成制耳是由于造成的。 7.根据经验公式得知,纯铁的最低再结晶温度为。 (二)判断题 1.金属的预先变形越大,其开始再结晶的温度越高。(×) 2.变形金属的再结晶退火温度越高,退火后得到的晶粒越粗大。(√)3.金属的热加工是指在室温以上的塑性变形过程。(×) 4.金属铸件不能通过再结晶退火来细化晶粒。(√) 金属铸件不能通过再结晶退火达到细化晶粒的目的,因为铸件,没有经受冷变形加工,所以当加热至再结晶退火温度时,其组织不会发生根本变化,因而达不到细化晶粒的目的。 再结晶退火必须用于经冷塑性变形加工的材料,其目的是改善冷变形后材料的组织和性能。再结晶退火的温度较低,一般都在临界点以下。若对铸件采用再结晶退火,其组织不会发生相变,也没有形成新晶核的驱动力(如冷变形储存能等),所以不会形成新晶粒,也就不能细化晶粒。 5.再结晶过程是形核和核长大过程,所以再结晶过程也是相变过程。(×); 6 从金属学的观点看,凡是加热以后的变形为热加工,反之不加热的变形为冷加工。 (×) 7 在一定范围内增加冷变形金属的变形量,会使再结晶温度下降。( √) 8.凡是重要的结构零件一般都应进行锻造加工。(√) 9.在冷拔钢丝时,如果总变形量很大,中间需安排几次退火工序。( √) 10.从本质上讲,热加工变形不产生加工硬化现象,而冷加工变形会产生加工硬化现象。这是两者的主要区别。( ×) (三)选择题 1.变形金属在加热时发生的再结晶过程是一个新晶粒代替旧晶粒的过程,这种新晶粒的晶型( )。 A.与变形前的金属相同 B 与变形后的金属相同 C 与再结晶前的金属相同D.形成新的晶型 2.金属的再结晶温度是( ) A.一个确定的温度值B.一个温度范围 C 一个临界点D.一个最高的温度值 3.为了提高大跨距铜导线的强度,可以采取适当的( A )。 A.冷塑变形加去应力退火 B 冷塑变形加再结晶退火 C 热处理强化D.热加工强化 4 下面制造齿轮的方法中,较为理想的方法是( C )。 A.用厚钢板切出圆饼再加工成齿轮B用粗钢棒切下圆饼再加工成齿轮 C 由圆钢棒热锻成圆饼再加工成齿轮D.由钢液浇注成圆饼再加工成齿轮 5.下面说法正确的是( C )。 A.冷加工钨在1 000℃发生再结晶 B 钢的再结晶退火温度为450℃ C 冷加工铅在0℃也会发生再结晶D.冷加工铝的T再≈0.4Tm=0.4X660℃=264℃ 6 下列工艺操作正确的是(D ) 。 A.用冷拉强化的弹簧丝绳吊装大型零件淬火加热时入炉和出炉 B 用冷拉强化的弹簧钢丝作沙发弹簧 C 室温可以将保险丝拉成细丝而不采取中间退火 D.铅的铸锭在室温多次轧制成为薄板,中间应进行再结晶退火 7 冷加工金属回复时,位错(C )。

上海交大材基-第五章塑性变形与回复再结晶--复习提纲.

第5章材料的形变和再结晶 提纲 5.1 弹性和粘弹性 5.2 晶体的塑性变形(重点) 5.3 回复和再结晶(重点) 5.4 高聚物的塑性变形 学习要求 掌握材料的变形机制及特征,以及变形对材料组织结构、性能的影响;冷、热加工变形材料的回复和结晶过程。 1.材料的弹性变形本质、弹性的不完整性及黏弹性; 2.单晶体塑性变形方式、特点及机制(滑移、孪生、扭折) 3.多晶体、合金塑性变形的特点及其影响因素 4.塑性变形对材料组织与性能的影响; 5.材料塑性变形的回复、再结晶和晶粒长大过程; 6.影响回复、再结晶和晶粒长大的诸多因素(包括变形程度、第二相粒子、工艺参数等) 7、结晶动力学的形式理论(J-M-A方程) 8、热加工变形下动态回复、再结晶的微观组织特点、对性能影响。 9、陶瓷、高聚物材料的变形特点 重点内容 1. 弹性变形的特征,虎克定律(公式),弹性模量和切变弹性模量; 材料在外力作用下发生变形。当外力较小时,产生弹性变形。弹性变形是可逆变形,卸载时,变形消失并恢复原状。在弹性变形范围内,其应力与应变之间保持线性函数关系,即服从虎克(Hooke)定律: 式中E为正弹性模量,G为切变模量。它们之间存在如下关系: 弹性模量是表征晶体中原子间结合力强弱的物理量,故是组织结

构不敏感参数。在工程上,弹性模量则是材料刚度的度量。 2. 弹性的不完整性和粘弹性; 理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等。3. 滑移系,施密特法则(公式),滑移的临界分切应力; 晶体中一个滑移面和该面上一个滑移方向组成。 fcc和bcc,bcc的滑移系?滑移系多少与塑性之间的关系。 滑移的临界分切应力: 如何判断晶体中各个滑移系能不能开动? 解释几何软化和几何硬化?为何多晶体塑性变形时要求至少有5个独立的滑移系进行滑移? 4. 滑移的位错机制,派-纳力(公式); 为什么晶体中滑移系为原子密度最大的面和方向? 5. 比较塑性变形两种基本形式:滑移与孪生的异同特点; 6. 多晶体塑性变形的特点:晶粒取向的影响,晶界的影响;

回复与再结晶

1、一块单相多晶体包含。 A.不同化学成分的几部分晶体B.相同化学成分,不同结构的几部分晶体C.相同化学成分,相同结构,不同位向的几部分晶体 2、在立方系中点阵常数通常指。 A.最近的原子间距B.晶胞棱边的长度 3、每一个面心立方晶胞中有八面体间隙m个,四面体间隙n个,其中。 A.m=4,n=8B.m=13,n=8C.m=1,n=4 4、原子排列最密的一族晶面其面间距。 A.最小B.最大 5、晶体中存在许多点缺陷,例如 A.被激发的电子B.空位C.沉淀相粒子 6、金属中通常存在着溶质原子或杂质原子,它们的存在。 A.总是使晶格常数增大B.总是使晶格常数减小C.可能使晶格常数增大,也可能使晶格常数减小 7、金属中点缺陷的存在使电阻。 A.增大B.减小C.不受影响 8、空位在过程中起重要作用。

A.形变孪晶的形成B.自扩散C.交滑移 9、金属的自扩散的激活能应等于。 A.空位的形成能与迁移激活能的总和B.空位的形成能C.空位的迁移能 10、位错线上的割阶一般通过形成 A.位错的交割B.交滑移C.孪生 一、名词解释 沉淀硬化、细晶强化、孪生、扭折、第一类残余应力、第二类残余应力、、回复、再结晶、多边形化、临界变形量、冷加工、热加工、动态回复、动态再结晶 沉淀硬化:在金属的过饱和固溶体中形成溶质原子偏聚区和由之脱出微粒弥散分布于基体中导致硬化。 细晶强化:通过细化晶粒而使金属材料力学性能提高的方法。 孪生:在切应力作用下,晶体的一部分沿一定晶面和晶向发生均匀切变并形成晶体取向的镜面对称关系。 扭折:在滑移受阻、孪生不利的条件下,晶体所做的不均匀塑性变形和适应外力作用,是位错汇集引起协调性的形变。 按残余应力作用范围不同,可分为宏观残余应力和微观残余应力等两大类,其中宏观残余应力称为第一类残余应力(由整个物体变形不均匀引起),微观残余应力称为第二类残余应力(由晶粒变形不均匀引起)。 储存能:在塑性变形中外力所作的功除大部分转化为热之外,由于金属内部的形变不均匀及点阵畸变,尚有一小部分以畸变能的形式储存在形变金属内部,这部分能量叫做储存能。回复:经冷塑性变形的金属加热时,尚未发生光学显微组织变化前(即再结晶之前)的微观结构变化过程。 再结晶:经冷变形的金属在一定温度下加热时,通过新的等轴晶粒形成并逐步取代变形晶粒的过程。 多边形化:指回复过程中油位错重新分布而形成确定的亚晶结构过程。 临界变形量:需要超过某个最小的形变量才能发生再结晶,这最少的形变量就称为临界变形量。 冷加工:在再结晶温度以下的加工过程;在没有回复和在接近的条件下进行的塑性变形加工。热加工:在再结晶温度以上的加工过程;在再结晶过程得到充分进行的条件下进行的塑性变形加工。 动态回复:热加工时由于温度很高,金属在变形的同时发生回复,同时发生加工硬化和软化两个相反的过程。这种在热变形时由于温度和外力联合作用下发生的回复过程 动态再结晶:是指金属在热变形过程中发生的再结晶现象。 二、问答题

金属的塑性变形与再结晶

实验名称:金属的塑性变形与再结晶实验类型: 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、实验步骤与实验结果(必填) 五、讨论、心得(必填) 一、实验目的 1.了解冷塑性变形对金属材料的内部组织与性能的影响; 2.了解变形度对金属再结晶退火后晶粒大小的影响。 二、实验原理 金属塑性变形的基本方式有滑移和孪生两种。在切应力作用下,晶体的一部分沿某一晶面相对于另一部分滑动,这种变形方式称为滑移;在切应力作用下,晶体的一部分沿某一晶面相对另一部分产生剪切变形,且变形部分与未变形部分的位向形成了镜面对称关系,这种变形方式称为孪生。 (一) 冷塑性变形对金属组织与性能的影响 若金属在再结晶温度以下进行塑性变形,称为冷塑性变形。冷塑性变形不仅改变了金属材料的形状与尺寸,而且还将引起金属组织与性能的变化。金属在发生塑性变形时,随着外形的变化,其内部晶粒形状由原来的等轴晶粒逐渐变为沿变形方向伸长的晶粒,在晶粒内部也出现了滑移带或孪晶带。当变形程度很大时,晶粒被显著地拉成纤维状,这种组织称为冷加工纤维组织。同时,随着变形程度的加剧,原来位向不同的各个晶粒会逐渐取得近于一致的位向,而形成了形变织构,使金属材料的性能呈现出明显的各向异性。金属经冷塑性变形后,会使其强度、硬度提高,而塑性、韧性下降,这种现象称为加工硬化。 (二) 冷塑性变形后金属在加热时组织与性能的变化 金属经冷塑性变形后,由于其内部亚结构细化、晶格畸变等原因,处于不稳定状态,具有自发地恢复到稳定状态的趋势。但在室温下,由于原子活动能力不足,恢复过程不易进行。若对其加热,因原子活动能力增强,就会使组织与性能发生一系列的变化。 1.回复当加热温度较低时,原子活动能力尚低,故冷变形金属的显微组织无明显变化,仍保持着纤组织的特征。此时,因晶格畸变已减轻,使残余应力显著下降。但造成加工硬化的主要原因未消除,故其机械性能变化不大。 2.再结晶当加热温度较高时,将首先在变形晶粒的晶界或滑移带、孪晶带等晶格畸变严重的地带,通过晶核与长大方式进行再结晶。冷变形金属在再结晶后获得了新的等轴晶粒,因而消除了冷加工纤维组织、加工硬化和残余应力,使金属又重新恢复到冷塑性变形前的状态。 金属的再结晶过程是在一定温度范围内进行的。通常把变形程度在70%以上的冷变形金属经1h加热能完全再结晶的最低温度,定为再结晶渡。实验证明,金属的熔点愈高,在其他条件相同时,其再结晶温度也愈高。金属的再结晶温度(T再)与其熔点(T熔)间的关系,大致可用下式表示: T再≈0.4 T熔 3.晶粒长大冷变形金属再结晶后,一般都得到细小均匀的等轴晶粒。但继续升高加热温度或延长保温时间,再结晶后的晶粒又会逐渐长大,使晶粒粗化。 (三) 变形程度对金属再结晶后晶粒度的影响 冷变形金属再结晶后晶粒度除与加热温度、保温时间有关外,还与金属的预先变形程度有关。金属再结晶后的晶粒度与其预先变形程度间的关系如下图所示:

金属塑性变形与断裂

金属塑性变形与断裂集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

金属材料塑性变形与断裂的关系 摘要:金属的断裂是指金属材料在变形超过其塑性极限而呈现完全分开的状态。材料受力时,原子相对位置发生了改变,当局部变形量超过一定限度时,原于间结合力遭受破坏,使其出现了裂纹,裂纹经过扩展而使金属断开。任何断裂都是由裂纹形成和裂纹扩展两个过程组成的,而裂纹形成则是塑性变形的结果。金属塑性的好坏表明了它抑制断裂能力的高低。 关键词:塑性变形解理断裂准解理断裂沿晶断裂冷脆疲劳应力腐蚀 氢脆高温断裂 一、解理断裂与塑变的关系 解理断裂在主应力作用下,材料由于原子键的破断而产生的沿着某一晶面的快速破断过程。解理断裂的的产生条件是位错滑移必须遇到阻力,且位错滑移聚集到一定程度。断裂面沿一定的晶面发生,这个平面叫做解理面。解理台阶是沿两个高度不同的平行解理面上扩展的解理裂纹相交时形成的。形成过程有两种方式:通过解理裂纹与螺型位错相交形成;通过二次解理或撕裂形成。 第一种,当解理裂纹与螺型位错相遇时,便形成一个台阶,裂纹继续向前扩展,与许多螺型位错相交便形成众多台阶,他们沿裂纹前端滑动而相互交汇,同号台阶相互汇合长大,异号台阶相互抵消,当汇合台阶足够大的时候便在电镜下观察为河流状花样。

第二种,二次解理是指在解理裂纹扩展的两个互相平行解理面间距较小时产生的,但若解理裂纹的上下两个面间距远大于一个原子间距时,两解理裂纹之间的金属会产生较大的塑性变形,结果由于塑性撕裂而形成台阶,称为撕裂棱晶界。舌状花样是由于解理裂纹沿孪晶界扩散留下的舌头状凹坑或凸台。 从宏观上看,解理断裂没有塑性变形,但从微观上看解理裂纹是以塑性变形为先导的,尽管变形量很小。解理断裂是塑性变形严重受阻,应力集中非常严重的一种断裂。 二、准解理断裂与塑变的关系 准解理断裂介于解理断裂和韧窝断裂之间,它是两种机制的混合。产生原因: (1)、从材料方面考虑,必为淬火加低温回火的组织,回火温度低,易产生此类断裂。 (2)、构件的工作温度与钢材的脆性转折温度基本相同。 (3)、构件的薄弱环节处处于平面应变状态。 (4)、材料的尺寸比较粗大。 (5)、回火马氏体组织的缺陷,如碳化物在回火时的定向析出。 准解理断裂往往开始是因为碳化物,析出物或者夹杂物在外力作用下产生裂纹,然后沿某一晶面解理扩展,之后以塑性变形方式撕裂,其断裂面上显现有较大的塑性变形,特征是断口上存在由于几个地方的小裂纹分别扩展相遇发生塑性撕裂而形成的撕裂岭。准解理断裂面不是一

金属的塑性变形与再结晶-材料科学基础学习知识-实验-06

实验六金属的塑性变形与再结晶 (Plastic Deformation and Recrystallization of Metals)实验学时:2 实验类型:综合 前修课程名称:《材料科学导论》 适用专业:材料科学与工程 一、实验目的 1.观察显微镜下变形孪晶与退火孪晶的特征; 2.了解金属经冷加工变形后显微组织及机械性能的变化; 3.讨论冷加工变形度对再结晶后晶粒大小的影响。 二、概述 1.显微镜下的滑移线与变形孪晶 金属受力超过弹性极限后,在金属中将产生塑性变形。金属单晶体变形机理指出,塑性变形的基本方式为:滑移和孪晶两种。 所谓滑移,是晶体在切应力作用下借助于金属薄层沿滑移面相对移动(实质为位错沿滑移面运动)的结果。滑移后在滑移面两侧的晶体位向保持不变。 把抛光的纯铝试样拉伸,试样表面会有变形台阶出现,一组细小的台阶在显微镜下只能观察到一条黑线,即称为滑移带。变形后的显微组织是由许多滑移带(平行的黑线)所组成。

在显微镜下能清楚地看到多晶体变形的特点:① 各晶粒内滑移带的方向不同(因晶粒方位各不相同);② 各晶粒之间形变程度不均匀,有的晶粒内滑移带多(即变形量大),有的晶粒内滑移带少(即变形量小);③ 在同一晶粒内,晶粒中心与晶粒边界变形量也不相同,晶粒中心滑移带密,而边界滑移带稀,并可发现在一些变形量大的晶粒内,滑移沿几个系统进行,经常看见双滑移现象(在面心立方晶格情况下很易发现),即两组平行的黑线在晶粒内部交错起来,将晶粒分成许多小块。(注:此类样品制备困难,需要先将样品进行抛光,再进行拉伸,拉伸后立即直接在显微镜下观察;若此时再进行样品的磨光、抛光,滑移带将消失,观察不到。原因是:滑移带是位错滑移现象在金属表面造成的不平整台阶,不是材料内部晶体结构的变化,样品制备过程会造成滑移带的消失。) 另一种变形的方式为孪晶。不易产生滑移的金属,如六方晶系的镉、镁、铍、锌等,或某些金属当其滑移发生困难的时候,在切应力的作用下将发生的另一形式的变形,即晶体的一部分以一定的晶面(孪晶面或双晶面)为对称面,与晶体的另一部分发生对称移动,这种变形方式称为孪晶或双晶。 孪晶的结果是:孪晶面两侧晶体的位向发生变化,呈镜面对称。所以孪晶变形后,由于对光的反射能力不同,在显微镜下能看到较宽的变形痕迹——孪晶带或双晶带。在密排六方结构的锌中,由于其滑移系少,则易以孪晶方式变形,在显微镜下看到变形孪晶呈发亮的竹叶状特征。(注:孪晶是材料内部晶体结构上的变化,样品制备过程不会造成孪晶的消失。) 对体心立方结构的Fe -α,在常温时变形以滑移方式进行;而在0℃以下受冲击载荷时,则以孪晶方式变形;而面心立方结构大多是以滑移方式变形的。 2.变形程度对金属组织和性能的影响

回复与再结晶

理论课教案 编号:NGQD-0707-09版本号:A/0页码:编制/时间:审核/时间:批准/时间: 学科金属材料及 热处理 第三章金属的塑性变形与再结晶 第三节回复与再结晶 教学类型授新课授课时数1授课班级 教学目的 和要求 1、了解加热过程中,变形金属内部组织的变化。 教学重点和难点1、重点:回复、再结晶的作用。 2、难点:再结晶温度的计算。 教具准备 复习提问再结晶温度如何计算? 作业布置P33习题8 教学方法主要教学内容和过程附记 §3-3回复与再结晶 经冷塑性变形后的金属晶粒破碎,晶格扭曲,位错密度增高,产生内应力,其内部能量增高,因而组织处于不稳定 的状态,并存在向稳定状态转变的趋势。在低温下,这种转 变一般不易实现。而在加热时,由于原子的动能增大,活动 能力增强,冷塑性变形后的金属组织会发生一系列的变化, 最后趋于较稳定的状态。随着加热温度的升高,变形金属的 内部相继发生回复、再结晶、晶粒长大三个阶段的变化

理论课教案附页 编制/时间: 教学方法主要教学内容和过程附记 一、回复 回复:当加热温度不太高时,原子活动能力有所增加,原子已能作短距离的运动,此时,晶格畸变程度大为减轻, 从而使内应力有所降低,这个阶段称为回复。 1、回复是冷塑性变形金属在较低温度下加热的阶段。 在这个温度范围内,随温度的升高,变形金属中的原子活动 能力有所增大。 2、通过回复,变形金属的晶格畸变程度减轻,内应力 大部分消除,但金属的显微组织无明显变化,因此力学性能 变化不大。 3、在生产实际中,常利用回复现象将冷变形金属在低 温加热,进行消除内应力的处理,适当提高塑性、韧性、弹 性,以稳定其组织和尺寸,并保留加工硬化时留下的高硬度 的性能。 二、再结晶 再结晶:当冷塑性变形金属加热到较高温度时,由畸变晶粒通过形核及晶核长大而形成新的无畸变的等轴晶粒的 过程。 1、再结晶过程是发生在较高温度(再结晶温度以上), 其过程以形核和核长大的方式进行。(见教材P30) 2、再结晶后,冷变形金属的组织和性能恢复到变形前 的状态(教材P31) 3、再结晶过程是新晶粒重新形成的过程,而晶格类型 并没有发生改变,所以它不是相变过程。(教材P31)

第四章 塑性变形(含答案)

第四章塑性变形(含答案) 一、填空题(在空白处填上正确的内容) 1、晶体中能够产生滑移的晶面与晶向分别称为________和________,若晶体中这种晶面与晶向越多,则金属的塑性变形能力越________。 答案:滑移面、滑移方向、好(强) 2、金属的再结晶温度不仅与金属本身的________有关,还与变形度有关,这种变形度越大,则再结晶温度越________。 答案:熔点、低 3、晶体的一部分沿一定晶面和晶向相对于另一部分发生滑动位移的现象称为________。答案:滑移 4、由于________和________的影响,多晶体有比单晶体更高的塑性变形抗力。 答案:晶界、晶粒位向(晶粒取向各异) 5、生产中消除加工硬化的方法是________。 答案:再结晶退火 6、在生产实践中,经冷变形的金属进行再结晶退火后继续升高温度会发生________现象。答案:晶粒长大 7、金属塑性变形后其内部存在着残留内应力,其中________内应力是产生加工硬化的主要原因。 答案:第三类(超微观) 8、纯铜经几次冷拔后,若继续冷拔会容易断裂,为便于继续拉拔必须进行________。 答案:再结晶退火 9、金属热加工时产生的________现象随时被再结晶过程产生的软化所抵消,因而热加工带来的强化效果不显著。 答案:加工硬化 10、纯铜的熔点是1083℃,根据再结晶温度的计算方法,它的最低再结晶温度是________。答案: 269℃ 11、常温下,金属单晶体塑性变形方式有________和________两种。 答案:滑移、孪生 12、金属产生加工硬化后会使强度________,硬度________;塑性________,韧性________。答案:提高、提高、降低、降低 13、为了合理地利用纤维组织,正应力应________纤维方向,切应力应________纤维方向。答案:平行(于)、垂直(于) 14、金属单晶体塑性变形有________和________两种不同形式。 答案:滑移、孪生 15、经过塑性变形的金属,在随后的加热过程中,其组织、性能和内应力将发生一系列变化。大致可将这些变化分为________、________和________。 答案:回复、再结晶、晶粒长大 16、所谓冷加工是指金属在________以下进行的塑性变形。 答案:再结晶温度

上海交大材基第五章塑性变形与回复再结晶习题集讲解.

1 单晶体的塑性变形 铜单晶(a=0.36nm )在[112]方向加拉伸应力,拉伸应力为2.5×105Pa ,此条件下:(1)取向因子最大的滑移系有哪几个?(2)计算其分切应力多大? 解:(1) Cu 为F.C.C 结构,易滑移面为{1,1,1},滑移方向为〈1,1,0〉,可以分别求 出[112]方向与这些滑移系之间的两个夹角,然后得到12个取向因子的值。(这里省略了) 通过上述计算得到具体的滑移系(1,-1,1)[0,1,1]和(-1,1,1) [1,0,1]为具有最大取向因子滑移系。 (2) 根据施密特法则(公式略), F=δcosAcosB=1.02*105 Pa 何谓临界分切应力定律?哪些因素影响临界分切应力大小? 解:(略) 沿密排六方单晶的[0001]方向分别加拉伸力和压缩力,说明在这两种情况下,形变的可能方式。 解:1)滑移:a -拉伸的时,当c/a>=1.633,不会产生滑移,当c/a<1.633有可能产 生滑移,可产生滑移的是{1,1,-2,2}<1,1,-2,-3>;其他滑移面不能产生滑移; b -压缩的时候结果和拉伸一样; 2)孪生:拉伸和压缩的时候都可能产生孪生变形; 3)扭折:拉伸的时候一般不易扭折变形,压缩的时候可以产生扭折变形。 试指出单晶体的Cu 与α-Fe 中易滑移面的晶面与晶向,并分别求它们的滑移面间距,滑移方向上的原子间距及点阵阻力,已知泊松比为ν=0.3,G Cu =48300MPa , G α-Fe =81600MPa. 解:体心Fe 具有多种类的滑移系,但是滑移方向均相同。 力=90.56MPa 。

铝单晶体拉伸时,其力轴为[001],一个滑移系的临界分切应力为0.79MN/m2,取向因子COS φCOSλ=0.41,试问有几个滑移系可同时产生滑移?开动其中一个滑移系至少要施加多大的拉应力? 解:Al为F.C.C结构,其滑移系共有{1,1,1}4<1,1,0>3=12个。可以求得【001】与这些滑移系的取向因子。(可以列表列出来如下) 其它有4个滑移系,它们的滑移方向的第三个数字为0,因为取向因子为0,根据施密特法则,不能产生滑移。 开动其中一个滑移系需要施加的拉应力,可以根据施密特法则求得: F=0.79/0.41=1.93 MN/m2

工业纯铝的塑性变形与再结晶实验方案

实验方案金属的塑性变形与再结晶 一,实验目的 1、观察显微镜下滑移线、变形孪晶的特征; 2、了解金属经冷加工变形后显微组织及性能的变化; 二、概述 1 显微镜下的滑移线与变形挛晶 金属受力超过弹性极限后,在金属中特产生塑性变形。金属单晶体变形机理指出,塑性变形的基本方式为滑移和孪晶两种。 所谓滑移时晶体在切应力作用下借助于金属薄层沿滑移面相对移动实质为位错沿滑移面运动的结果。滑移后在滑移面两侧的晶体位相保持不变。把抛光的纯铝试样拉伸,试样表面会有变形台阶出现,一组细小的台阶在显微镜下只能观察到一条黑线,即称为滑移带。变形后的显微姐织是由许多滑移带所组成。 另一种变形的方式为孪晶。不易产生滑移的金属,如六方晶系镉、镁、铍、锌等,或某些金属当其滑移发生困难的时候,在切应力的作用下将发生的另一形式的变形,即晶体的—部分以一定的晶面为对称面;与晶体的另一部分发生对称移动,这种变形方式称为孪晶或双晶。孪晶的结果是孪晶面两侧晶体的位向发生变化,呈镜面对称。所以孪晶变形后,由于对光的反射能力不同,在显微镜下能看到较宽的变形痕迹——孪晶带或双晶带。 2、变形程度对金属组织和性能的影响 变形前金属为等轴晶粒,轻微量变形后晶粒内即有滑移带出现,经过较大的变形后即发现晶粒被拉长,变形程度愈大,晶粒被拉得愈长,当变形程度很大时,则加剧剧了晶粒沿一定方向伸长,晶粒内部被许多的滑移带分割成细小的小块,晶界与滑移带分辨不清,呈纤维状组织。 由于变形的结果,滑移带附近晶粒破碎,产生较严重的晶格歪扭,造成临界切应力提高,使继续变形发生困难,即产生了所谓加工硬化现象。随变形程度的增加,金属的硬度、强度、矫顽力、电阻增加,而塑性和韧性下降。 3、形变金属在加热后组织和性能的影响 变形后的金属在较低温度加热时,金属内部的应力部分消除,歪曲的晶格恢

第六章材料的塑性变形与再结晶

何谓滑移和孪生 滑移:晶体的一部分相对于另一部分沿某些晶面和晶向发生滑动 孪生:晶体的一部分相对于另一部分沿某些晶面和晶向作均匀切变 指出三种典型结构金属晶体的滑移面和滑移方向 1. 面心立方金属:密排面{}111密排晶向1101234=?个滑移系,塑性较好 2. 体心立方金属:密排面{}110密排晶向1111226=?个滑移系,塑性较好 3. 密排六方金属:室温时{}0001密排晶向2011331=?塑性较差 并比较其滑移难易程度 1. 当其他条件相同时,金属晶体中的滑移系越多,则滑移时可供采用的空间位 向也多,塑性也越好 2. 面心立方晶格的金属晶体的滑移系为12个,密排立方结构的金属晶体的滑移 系为3个()2011,0001,所以面心立方晶格的金属晶体更易发生滑移 3. 从此可以看出,面心立方和体心立方金属的塑性较好,而密排六方金属的塑 性较差 4. 金属塑性的好坏,不只是取决于滑移系的多少,还与滑移面上原子的密排程 度和滑移方向的数目有关 5. 例如Fe -α,它的滑移方向不及面心立方金属多,其滑移面上原子密排程度 也比面心立方金属低,因此它的滑移面间距较小,原子间结合力较大,必须在较大的应力作用下才开始滑移,所以它的塑性要比铜铝金银等面心立方金属差些 为何晶体的滑移通常沿着其最密晶面和最密晶向进行

1.在晶体原子密度最大的晶面上,原子间的结合力最强,而面与面之间的距离 却最大,即密排面之间的原子间结合力最小,滑移阻力最小,最易于滑移2.沿最密晶向滑移的步长最小,这种滑移所需要的切应力最小 何谓加工硬化 金属材料在再结晶温度以下塑性变形时强度和硬度升高,而塑性和韧性降低的现象 运用位错理论说明细化晶粒可以提高材料强度的原因 通常金属是由许多晶粒组成的多晶体,晶粒的大小可以用单位体积内晶粒的数目来表示,数目越多,晶粒越细。实验表明,在常温下的细晶粒金属比粗晶粒金属有更高的强度、硬度、塑性和韧性。这是因为细晶粒受到外力发生塑性变形可分散在更多的晶粒内进行,塑性变形较均匀,应力集中较小;此外,晶粒越细,晶界面积越大,晶界越曲折,越不利于裂纹的扩展。故工业上将通过细化晶粒以提高材料强度的方法称为细晶强化 运用位错理论说明细化晶粒可以提高材料强度的原因 来自69页北京工业大学2009细晶强化的位错理论 1.金属多晶体材料塑性变形时,粗大晶粒的晶界处塞积的位错数目多,形成较 大的应力场,能够使相邻晶粒内的位错源启动,使变形继续 2.相反,细小晶粒的晶界处塞积的位错数目少,要使变形继续,必须施加更大 的外加作用力以激活相邻晶粒内的位错源 3.因此,细晶材料要发生塑性变形需要更大外部作用力,即晶粒越细小晶体强 度越高 单相固溶体合金的强度均高于纯溶剂组元的强度,试用位错理论分析之

【材料课件】实验三金属的塑性变形与再结晶组织观察

实验三金属的塑性变形与再结晶组织观察 目的 1.加深对材料塑性编写过程的理解; 2.认识塑性变形的典型组织; 3.理解变形量对再结晶后晶粒尺寸的影响。 一、塑性变形引起材料组织的变化 晶体塑性材料塑性变形的基本方式有四种:滑移、孪生、蠕变、粘滞性流动。 滑移是晶体中位错在外力作用下发生运动,造成晶体的两部分在滑移面上沿滑移方向的相对移动,滑移是位错的移动,晶体内部原子从一个平衡位置移到另一个平衡位置,不一起晶体内的组织变化,位错移出晶体的表面,形成滑移台阶,一个位错源发出的位错都移出,在晶体表明形成台阶在显微镜下可以见到,就是滑移线。 孪生是在滑移困难时以形成孪晶的方式发生的塑性变形,晶体发生孪生,在晶体表面产生浮凸,晶体内部生成的孪晶与原晶体的取向不一样,并有界面分隔,所以在晶体内重新制样后依然可以看到孪晶。 多晶体材料发生塑性变形后,原等轴晶粒被拉长或压扁,晶界变模糊。两相材料经过塑性变形后,第二相的分布也与变形方向有关。 塑性变形后进行退火加热发生再结晶的晶粒尺寸与变形量有直接的关系。在临界变形量(不同材料不相同,一般金属在2—10%之间)以下,金属材料不发生再结晶,材料维持原来的晶粒尺寸;在临界变形量附近,刚能形核,因核心数量很少而再结晶后的尺寸很大,有时甚至可得到单晶;一般情况随着变形量的增加,再结晶后的晶粒尺寸不断减小;当变形量过大(>70%)后,可能产生明显织构,在退火温度高时发生晶粒的异常长大。 二、实验内容 1.观察几种塑性变形后的组织形貌 ①.低碳钢拉伸后的组织变化:看断口附近,变形量最大,组织特征明显,白色的软相的 晶粒的形状分布,黑色较硬相形状分布特征。 ②纯铁压缩表面的滑移线:为了观察,现将试样磨平,再压缩变形,晶体表面可留下滑移 线。若再打磨则滑移线就不可见。一个滑移系能开动,与之平行的滑移系也可能开动,滑移线往往时互相平行,因为存在交滑移,滑移线为波浪状。 ③锌的变形孪晶:Zn是hcp晶系,仅有三个滑移系,多晶体变形就会发生孪生,从试样 上可见到变形产生的孪晶。

金属塑性变形理论习题集

《金属塑性变形理论》习题集 张贵杰编 河北联合大学 金属材料与加工工程系 2013年10月

前言 《金属塑性变形理论》是关于金属塑性加工学科的基础理论课,也是“金属材料工程”专业大学本科生的主干课程,同时也是报考材料科学与工程专业方向硕士研究生的必考科目。 《金属塑性变形理论》总学时为72,内容上分为两部分,即“金属塑性加工力学”(40学时)和“塑性加工金属学”(32学时)。 为使学生能够学好本课,以奠定扎实的理论基础,提高分析问题和解决问题的能力,编者集20余年的教学经验特编制本习题集,一方面作为学生在学习本课程时的辅导材料,供课下消化课堂内容时使用,另一方面也可供任课教师在授课时参考,此外对报考研究生的学生还具有指导复习的作用。 本“习题集”在编写时,充分考虑了学科内容的系统性、学生学习的连贯性以及与教材顺序的一致性。该“习题集”中具有前后关联的一个个题目,带有由浅入深的启发性,能够引导学生将所学的知识不断深化。教师也可根据教学进程从中选题,作为课外作业指导学生进行练习。所有这些都会有助于学生理解和消化课堂上所学习的内容,从而提高课下的学习效率。 编者 2013年10月

第一部分 金属塑性加工力学 第一章 应力状态分析 1. 金属塑性加工中的外力有哪几种?其意义如何? 2. 为什么应力分量的表达需用双下标?每个下标都表示何物理意义? 3. 已知应力状态如图1-1所示,写出应力分量,并以张量形式表示。 4. 已知应力状态的六个分量7-=x σ,4-=xy τ,0=y σ,4=yz τ, 8-=zx τ,15-=z σ(MPa),画出应力状态图,写出应力张量。 5. 作出单向拉伸、单向压缩、三向等值压缩、平面应力、平面应变、 纯剪切应力状态的应力Mehr 圆。 6. 已知应力状态如图1-2所示,当斜面法线方向与三个坐标轴夹角余 弦31 ===n m l 时,求该斜面上的全应力S 、全应力在坐标轴上的 分量x S 、y S 、z S 及斜面上的法线应力n σ和切应力n τ。 图 1-1 ?? ?? ? ??------ =1548404847σT x y z 图 1-2 x 10

9塑性变形与回复再结晶实验指导书4

实验4 塑性变形与回复再结晶 一、实验目的 1.加深对加工硬化现象和回复再结晶的认识。 2.通过实验分析加工温度和变形程度对所选原材料组织和性能的影响。 3.测定所选原材料(例如工业纯铝)的形变度与再结晶后的晶粒度的关系曲线。 二、实验原理 1、加工硬化现象 当金属与合金在外力的作用下,应力超过弹性极限以后,将发生塑性形变。金属在塑性形变过程中,组织与性能将发生变化。一般说来随着形变程度的增加,金属的强度、硬度提高而塑性下降,同时也造成其它物理化学性能的明显变化。人们就把金属因塑性变而导致的强度和硬度增加的现象称为加工硬化。 2、金属经塑性形变后显微组织的变化 金属经塑性形变以后,其组织发生以下的变化。 (1)金属在塑性形变后,组织也将发生相应的变化,例如在轧制后,晶粒沿着形变方向被拉长,其程度随形变量的加大而增大,当形变量很大时,晶粒伸长呈“纤维状”。与此同时,除晶粒的形状发生变化外,组织中的第二相也将发生变化,硬的相将破碎,软的相将发生形变等。 (2)塑性形变导致金属组织内部的亚结构细化。在形变不大的情况下,晶粒内首先出现明显的滑移带,随着形变量的加大。滑移带逐渐增多。射线结构分析结果表明:晶粒被碎化成许多位向略有不同(位向差一般不大于1°)的晶块,其大小约为10-3~10-6厘米,即在原来晶粒内出现了很多小晶块,这种组织称为亚结构。 (3)金属塑性形变时,由于各部分的形变的不均匀性而造成的内应力(第一类,第二类,第三类内应力)将增大。 (4)当金属的塑性形变量很大时,在形变过程中晶体将产生转动和旋转,使各晶粒的某一晶向都不同程度的转向与外力相近的方向,这样便使得原来晶向不同的晶粒取向渐趋一致。而使其具有择优趋向组织称之为形变结构。 金属塑性形变后组织和性能的变化规律,在生产中有一定的实际意义,为此应了解这一变化规律,从而能更好的为生产服务。 塑性形变的方式,主要有两种。其一是滑移形变方式,其二是孪晶形变方式。至于形变结构与机理,这里不做叙述。 3、回复与再结晶 由于塑性形变,使晶格畸变增大(使错密度增加,亚结构细化等),使得冷形变金属的自由能升高而处于不稳定状态。因此,便有一种向较稳定状态转化的自发趋势。 如将冷形变后的金属加热到较高的温度,使其原子具有一定的扩散能力,就会产生一系列组织与性能的变化。这个变化过程就是回复——再结晶及晶粒长大(聚集再结晶)过程,参看图1。 回复:当加热温度较(再结晶温度)低时,通过原子作短距离的扩散,使某些晶体缺陷互相抵消而使缺陷数量减少;使晶格畸变程度减轻(由多边化结果导致);第一类、第二类内应力基本消除;显微组织无变化,机械性能和物理化学性能部分的恢复到形变前的状态,如硬度、强度稍微下降,塑性略有提高;导磁率上升,比电阻下降等,这一过程称为回复。 再结晶:冷形变金属加热到某一温度,由于原子扩散能力的增大,组织和性能将发生剧烈的变化,完全回复到形变以前的情况。从显微组织看形变组织完全消失,代之的是新的等轴晶粒;其强度硬度下降而塑性提高。把在这一温度下组织和性能发生剧烈变化的现象称做

第五章塑性变形与回复再结晶--习题集

psi是一种压力单位,定义为英镑/平方英寸,145psi=1Mpa PSI英文全称为Pounds per square inch。P是磅pound,S是平方square,I 是英寸inch。把所有的单位换成公制单位就可以算出:1bar≈14.5psi 1 KSI = 1000 lb / in. 2 = 1000 x 0.4536 x 9.8 N / (25.4 mm)2 = 6.89 N / mm2 材料机械强度性能单位,要用到试验机来检测 Density of Slip Planes The planar density of the (112) plane in BCC iron is 9.94 atoms/cm2. Calculate the planar density of the (110) plane and the interplanar spacings for both the (112) and the (110) planes. On which type of plane would slip normally occur? (112) planar density: The point of this problem is that slip generally occurs in high density directions and on high density planes. The high density directions are directions in which the Burgers' vector is short, and the high density planes are the "smoothest" for slip. It will help to visualize these two planes as we calculate the atom density.

第五章金属的塑性变形与再结晶全解

第五章金属的塑性变形与再 结晶 目的:掌握金属在塑性变形后组织与性能的变化。 要求: 1、掌握塑性变形对金属组织和性能的影响; 2、了解冷变形金属在加热过程中的变化,掌握回复和 再结晶的概念及其应用; 3、明确金属冷加工和热加工的区别。 重点:塑性变形对金属组织和性能的影响、回复和再结晶的概念及其应用。 §5-1 金属的塑性变形 一、单晶体金属的塑性变形 1、单晶体金属的塑性变形只能在切应力作用下发 生; 2、单晶体金属的塑性变形在晶体原子最密排面上 沿最密排方向进行; 3、单晶体金属的塑性变形伴随着晶体的转动;

二、多晶体金属的塑性变形 1、多晶体金属的组织、结构特点对塑性变形的影响 1)各晶粒形状、大小不同,成分、性能不均匀,各相邻晶粒的晶格位向不同:塑性变形抗力增大;相互约束、 阻碍;应力、应变分布不均匀;相互协调、适应。 2)存在大量晶界,晶内与晶界性能不同,晶界易聚集杂质,晶格排列紊乱:晶格畸变增大,滑移位错运动阻 力增大,难以变形,塑性变形抗力增大。晶粒越细,

强度越高:晶界总面积增加,周围不同取向的晶粒数越多,塑性变形抗力越大;晶粒越细,塑性、韧性越好:晶粒越细,单位体积中的晶粒数越多,变形量分散到更多晶粒中进行,产生较均匀的变形,不致造成局部应力集中,引发裂纹的产生和扩展,断裂前可发生较大塑性变形量。 工业上,常用压力加工、热处理方法细化晶粒,提高性能。 2 、多晶体金属的塑性变形过程 多晶体金属中各晶粒的 晶格位向不同,所受分切应 力不同,塑性变形在不同晶 粒中逐批进行,是个不均匀 过程。 软位向:晶格位向与外力处于或接近45°角的晶粒所受分切应力最大,首先发生塑性变形。 硬位向:晶格位向与外力处于或接近平行或垂直的晶粒所受分切应力最小,难以进行塑性变形。 多晶体金属的塑性变形是一批一批晶粒逐步发生,由少数晶粒发生塑性变形逐渐趋于大量晶粒发生塑性变形,由不均匀变形逐渐趋于较均匀变形。 §5-2 塑性变形对组织和性能的影 响 一、塑性变形对组织的影响 1、 晶粒形状发生变化: 沿变形方向被拉长,形成纤维组织; 2、 晶粒内产生亚结构:

金属塑性变形原理

金属塑性变形原理 1、变形和应力 1.1塑性变形与弹性变形 金属晶格在受力时发生歪扭或拉长,当外力未超过原子之间的结合力时,去掉外力之后晶格便会由变形的状态恢复到原始状态,也就是说,未超过金属本身弹性极限的变形叫金属的弹性变形。多晶体发生弹性变形时,各个晶粒的受力状态是不均匀的。 当加在晶体上的外力超过其弹性极限时,去掉外力之后歪扭的晶格和破碎的晶体不能恢复到原始状态,这种永久变形叫金属的塑性变形。金属发生塑性变形必然引起金属晶体组织结构的破坏,使晶格发生歪扭和紊乱,使晶粒破碎并且使晶粒形状发生变化,一般晶粒沿着受力方向被拉长或压缩。 1.2应力和应力集中 塑性变形时,作用于金属上的外力有作用力和反作用力。由于这两种外力的作用,在金属内部将产生与外力大小相平衡的内力。单位面积上的这种内力称为应力,以σ表示。 σ=P/S 式中σ——物体产生的应力,MPa: P——作用于物体的外力,N; S——承受外力作用的物体面积,mm2。 当金属内部存在应力,其表面又有尖角、尖缺口、结疤、折叠、划伤、裂纹等缺陷存在时,应力将在这些缺陷处集中分布,使这些缺陷部位的实际应力比正常应力高数倍。这种现象叫做应力集中。 金属内部的气泡、缩孔、裂纹、夹杂物及残余应力等对应力的反应与物体的表面缺陷相同,在应力作用下,也会发生应力集中。 应力集中在很大程度上提高了金属的变形抗力,降低了金属的塑性,金属的破坏往往最先从应力集中的地方开始。 2、塑性变形基本定律 2.1体积不变定律 钢锭在头几道轧制中因其缩孔、疏松、气泡、裂纹等缺陷受压缩而致密,体积有所减少,此后各轧制道次的金属体积就不再发生变化。这种轧制前后体积不变的客观事实叫做体积不变定律。它是计算轧制变形前后的轧件尺寸的基本依据。 H、B、L——轧制前轧件的高、宽、长;h、b、l——轧制后轧件的高、宽、长。根据体积不变定律,轧件轧制前后体积相等,即 HBL=hbl 2.2最小阻力定律 钢在塑性变形时,金属沿着变形抵抗力最小的方向流动,这就叫做最小阻力定律。根据这个定律,在自由变形的情况下,金属的流动总是取最短的路线,因为最短的路线抵抗变形的阻力最小,这个最短的路线,即是从该动点到断面周界的垂线。

相关主题
文本预览
相关文档 最新文档