当前位置:文档之家› 酶法提高蛋清粉起泡功能及其机理的研究

酶法提高蛋清粉起泡功能及其机理的研究

酪蛋白磷酸肽的药理作用

酪蛋白磷酸肽的药理作用 【摘要】酪蛋白磷酸肽具有促进钙、铁、锌的吸收、利用,增强精卵的结合等作用。近年来对其进行了深入研究发现它在增强机体免疫力,促肿瘤细胞凋亡方面有潜在的药理作用,通过对其作用机制的研究,将为其用于临床提供理论依据。 【Abstract】Casein protein phosphorylation peptide with the promotion of calcium,iron,zinc absorption,utilization and enhance the integration of sperm,In recent years their has conducted in-depth study found that it enhanced immunity,and promote apoptosis of tumor cells have the potential pharmacological effects,through the mechanism of its role will be to provide a theoretical basis for clinical. 【Key words】Casein Phospho peptides; Pharmacological effects 英文:Casein Phospho Peptides(CPP) 别名:酪蛋白磷肽 化学结构:CPP的活性中心是成串的磷酸丝氨酸和谷氨酸族,其基本结构可表示为-serp-serp-serp-glu-glu-,相对分子质量约2000~4000。 性状:乳白色或淡黄色粉末,有轻微的芳香气味。易溶于水,水溶液呈中性,在酸性条件下不易沉淀。有良好的热稳定性。 来源与结构:Nato[1]最早用酪蛋白喂养大鼠,在肠内容物中发现CPP。Nicholas等[ 2-3]用胰酶或胰蛋白酶水解酪蛋白,精制、纯化制备CCP。CPPs有α和β两种构型[4],其主要功能区是αSI-(59-79)5P和β(1-25)4P,不同条件下制备的CPP 都含有相同的核心构:-Ser(P)-Ser(P)-Ser(P)-Glu-Glu-(Ser:丝氨酸,Glu:谷氨酸,P:磷酸基)。此结构中磷酸丝氨酸残基[-Ser(P)-]成簇存在,在肠道pH弱碱性环境下带负电荷,可阻止消化酶的进一步作用,使CPP不会被进一步水解而在肠道中稳定存在。同时,-Ser(P)-对CPP 的功能发挥起重要作用。冯凤琴等[5]研究了CPP的纯度、CPP 中氮与磷摩尔比值(N∶P)与其功能的关系,发现N∶P 越小,CPP的肽链越短,磷酸基密度越大,CPP 纯度越高,促进钙吸收和利用的作用越强。 1 酪蛋白磷酸肽的药理功能 1.1 促进小肠对钙的吸收25-(OH)2VitD3可促进钙吸收,其吸收率取决于小肠内游离的钙离子浓度。人日常膳食中,谷类等植物性食物中含有大量的植酸、肌醇六磷酸等高磷成分,它们在小肠下端pH 7~8 的环境下与钙结合成磷酸钙沉淀,因此影响钙离子的被动吸收。CPP[1] 能抑制磷酸钙沉淀的形成,使游离钙保持较高的浓度,促进钙离子的被动吸收,从另一个途径提高钙离子的吸收率。冯凤琴等[3]用pH-stat法观察实验室制得的CPP抑制磷酸钙沉淀的效果。结果发现0.11~0.12 g/L的CPP使磷酸钙沉淀的形成延缓5~40 min。相同条件下,不加

酸性蛋白酶生产工艺

第六节酸性蛋白酶生产工艺 07040642 47 李继江 1 蛋白酶、蛋白类酶、酸性蛋白酶 1.1 蛋白酶的定义 蛋白酶是催化肽键水解的一类酶,它可迅速水解蛋白质为胨、肽类,广泛存在于动物内脏、植物茎叶、果实和微生物中。同时大多数微生物蛋白酶都是胞外酶。 1.2 微生物蛋白酶分类 微生物蛋白酶按其作用的最适pH可分为酸性蛋白酶、中性蛋白酶、碱性蛋白酶三类。 碱性蛋白酶为透明褐色液体,能与水混溶,最适温度50~60℃,最适pH8.5。 中性蛋白酶为金属酶,褐色颗粒或液体,易溶于水,最适温度45~55℃,最适pH5.5~7.5。 酸性蛋白酶为近乎白色至浅黄色无定型粉末或液体,易溶于水,最适温度45℃,最适pH2.5。 1.3 蛋白类酶 蛋白类酶主要是指由蛋白质组成的酶(P酶);而主要由核糖核酸组成的酶称为核酸类酶(R酶)。 蛋白类酶分为氧化还原酶、转移酶、水解酶、裂合酶、异构酶、合成酶(或称连接酶)。 1.4 酶的生产方法 酶的生产方法主要有:提取分离法、生物合成法、化学合成法。 酶的微生物合成法主要有:液体深层发酵、固体培养发酵、固定化细胞培养、固定化原生质发酵。 酸性蛋白酶用微生物发酵法生产,采用液体深层发酵。 液体深层发酵是指液体培养基在发酵罐中灭菌冷却后,接入产酶细胞,一定条件下发酵,适用于微生物细胞、动植物细胞的培养。具有机械化程度高、技术管理严格、酶产率高、质量稳定,产品回收率高的特点,是目前酶发酵的主要方式。 1.5 酸性蛋白酶制剂的性能 1.5.1 酸性蛋白酶的作用机理 酶是一种蛋白质,它是活细胞产生的生物催化剂,生物体的新陈代谢活动都离不开酶的作用。酶的种类很多,酸性蛋白酶是水解酶类的一种,能够在微酸环境下(pH2.5~4.0)

QZH 0005 S-2015 山东中惠生物科技股份有限公司 酸水解植物蛋白调味粉

Q/ZH 山东中惠生物科技股份有限公司企业标准 Q/ZH 0005S-2015 酸水解植物蛋白调味粉 2015-06-4发布2015-06-10实施山东中惠生物科技股份有限公司发布

Q/ZH 0005S-2015 前言 根据《中华人民共和国食品安全法》制定本标准。 本标准严格按照GB/T 1.1《标准化工作导则第1部分:标准的结构和编写规则》的要求进行编写。本标准由山东中惠生物科技股份有限公司提出并起草。 本标准主要起草人:赵吉兴 本标准自发布之日起有效期限3年,到期复审。

Q/ZH 0005S-2015 酸水解植物蛋白调味粉 1 范围 本标准规定了酸水解植物蛋白调味粉的技术要求、食品添加剂、生产加工过程卫生要求、检验方法、检验规则、标志、包装、运输与贮存。 本标准适用于以大豆为主要原料,经盐酸水解、过滤、氢氧化钠中和、过滤、脱醇、调配、检验、喷雾、干燥、包装等主要工艺加工制成的酸水解植物蛋白调味粉。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 191包装储运图示标志 GB 1352 大豆 GB 1897 食品添加剂盐酸 GB 2760食品安全国家标准食品添加剂使用标准 GB 4789.2 食品安全国家标准食品微生物学检验菌落总数测定 GB 4789.3 食品安全国家标准食品微生物学检验大肠菌群计数 GB 4789.4 食品安全国家标准食品微生物学检验沙门氏菌检验 GB 4789.5 食品安全国家标准食品微生物学检验志贺氏菌检验 GB 4789.10 食品安全国家标准食品微生物学检验金黄色葡萄球菌检验 GB 5009.3 食品安全国家标准食品中水分的测定 GB 5009.5 食品安全国家标准食品中蛋白质的测定 GB/T 5009.11 食品中总砷及无机砷的测定 GB 5009.12 食品安全国家标准食品中铅的测定 GB/T 5009.191 食品中氯丙醇含量的测定 GB/T 5009.39 酱油卫生标准的分析方法 GB 5175 食品添加剂氢氧化钠 GB 5749 生活饮用水卫生标准 GB/T 6543 运输包装用单瓦楞纸箱和双瓦楞纸箱 GB 7718 食品安全国家标准预包装食品标签通则 GB 9683 复合食品包装袋卫生标准 GB 14881 食品安全国家标准食品生产通用卫生规范 SB 10322 pH值测定法 JJF 1070 定量包装商品净含量计量检验规则 国家质量监督检验检疫总局[2005]第75号令《定量包装商品计量监督管理办法》 3 技术要求 3.1 原辅料 3.1.1 大豆 应符合GB 1352的规定。 3.1.2 盐酸 应符合GB 1897的规定。

酪蛋白水解物

酪蛋白水解物 一、中文名称:酪蛋白水解物 二、拉丁文名称/或英文名称:Lactium 三、主要成分:多肽 四、酪蛋白水解物(Lactium)的来源 酪蛋白水解物(Lactium)是以脱脂牛奶为原料,经过分离酪蛋白、水解、喷雾干燥等程序得到的一种酪蛋白水解产物。其典型化学成分为:蛋白质75%,脂肪1%,水分5%,灰分15%,乳糖1%。可溶解于水,无苦味,pH2-9时稳定,热稳定,可耐180℃高温50min。 酪蛋白水解后得到的αs1-Cn (f91-100),是一种含10个氨基酸的三维结构多肽,在Lactium中的典型含量为1.8%,其氨基酸序列为:Tyr-Leu-Gly-Tyr-Leu-Glu-Gln-Leu-Leu-Arg。 五、酪蛋白水解物(Lactium )生产工艺流程图和简述 1.工艺流程图: 脱脂牛奶 酪蛋白分离 碱化 胰蛋白酶水解

酸化 热处理 巴氏杀菌 浓缩、喷雾干燥 过筛 包装 2. 工艺说明 1.)以脱脂牛奶为原料,沉淀分离酪蛋白 2.)使用氢氧化钠将其碱化到pH为7.5-8.5之间 3.)在40-55℃下用胰蛋白酶进行水解。得到的产物中,游离10肽在干物质中的含量最低为1.8%。 4.)用盐酸进行酸处理,将pH降到3.0- 5.0 5.)在90℃下热处理1.5分钟 6.) 85℃进行巴氏杀菌、浓缩,此步骤为关键控制点 7.)喷雾干燥(进风温度180-200℃),得到粉末产品。 8.)过筛得到粒度在1mm以下的均匀粉末,其中游离10肽的含量最低为1.8%。此过程为关键控制点。

3. 拟公告的生产工艺简述:以脱脂牛奶为原料,经过酪蛋白分离、水解、浓缩、喷雾干燥等工艺制成。 六、酪蛋白水解物(Lactium)对酸奶的促进作用 酸奶具有促进肠道蠕动与消化和机体物质的代谢,并具有提高人体免疫力、防衰老、抗肿瘤等作用。酸奶中的大量乳酸菌及乳酸代谢产物能调节人体肠道微生态平衡,达到补充营养、防病、治病和保健的目的。 将酪蛋白水解物(含蛋白质7.6%)以2%(w/w)添加到奶液中混合发酵,做空白样对照。研究了二者发酵过程中各发酵参数的变化,并对二者的质构进行了分析比较。研究结果表明:酪蛋白水解物能明显促进酸奶发酵;促发酵作用随所添加的水解物水解程度提高而增强;添加酪蛋白水解物改变了酸奶发酵过程中的 pH 下降速度,在发酵中期二者的 pH 下降速度之间存在最大差距;质构分析表明添加2%酪蛋白水解物对酸奶整体质构有所改善。 七、酪蛋白水解物(Lactium)的作用 1、增强记忆力 2、提高精神状态、集中注意力 3、提高睡眠质量下降 4、缓解压力 5、控制体重 6、美容养颜 八、酪蛋白水解物(Lactium)的适应人群 1、记忆力下降者 2、注意力不集中精神状态不佳者 3、失眠、睡眠质量下降者 4、工作、生活、学习压力大者 5、肥胖人群 6、需要美容养颜者 九、酪蛋白水解物(Lactium)的社会及经济效益 在现代社会,生活节奏加快,人们面对的各种各样的压力越来越大。由于个体差异,

酸性蛋白酶的作用机理

酸性蛋白酶与碱性蛋白酶生产工艺的不同之处? 酸性蛋白酶是一种在酸性环境下(pH 2.5-4.0)催化蛋白酶水解的酶制剂,适用于酸性介质中水解动植物蛋白质。可用于毛皮软化,酒精发酵,啤酒、果酒澄清,动植物蛋白质水解营养液,羊毛染色,废胶片回收,饲料添加剂等等。本品在酸性条件下有利于皮纤维松散,且软化液可连续使用,是当前理想的毛皮软化酶制剂;在酒精发酵中,添加酸性蛋白酶,能有效水解原料中的蛋白质,破坏原料颗粒粒间细胞壁的结构,有利于糖化酶的作用,使原料中可利用碳源增加,从而可提高原料出酒率;另一方面,蛋白质的水解提高了醪液中α-氨基态氮的含量,促进酵母菌的生长与繁殖,提高发酵速度,从而缩短发酵周期和提高发酵设备的生产能力。 碱性蛋白酶碱性蛋白酶是在碱性条件下水解蛋白质肽键的酶类,是一类非常重要的工业用酶,最早发现于猪胰脏。碱性蛋白酶广泛存在于动、植物及微生物中。微生物蛋白酶均为胞外酶,不仅具有动植物蛋白酶所具有的全部特性,还有下游技术处理相对简单、价格低廉、来源广、菌体易于培养、产量高、高产菌株选育简单、快速、易于实现工业化生产等诸多优点。1945年瑞士M等在地衣芽孢杆菌中发现了微生物碱性蛋白酶。 碱性蛋白酶是由细菌原生质体诱变选育出的地衣芽孢杆菌 2709,经深层发酵、提取及精制而成的一种蛋白水解酶,其主要酶成分为地衣芽孢杆菌蛋白酶,是一种丝氨酸型的内切蛋白酶,它能水解蛋白质分子肽链生成多肽或氨基酸,具有较强的分解蛋白质的能力,广泛应用

于食品、医疗、酿造、洗涤、丝绸、制革等行业。 1、碱性蛋白酶是一种无毒、无副作用的蛋白质,属于丝氨酸型内切蛋白酶,应用在食品行业可水解蛋白质分子肽链生成多肽或氨基酸,形成具有独特风味的蛋白质水解液。 2、碱性蛋白酶成功应用于洗涤剂用酶工业,可添加在普通洗衣粉、浓缩洗衣粉和液体洗涤剂当中,既可用于家庭洗衣,也可用于工业洗衣,可以有效的去除血渍、蛋类、乳制品、或肉汁、菜汁等蛋白类的污渍,另外也可作为医用试剂酶清洗生化仪器等。 3、在生物技术领域,碱性蛋白酶可作为工具酶用于核酸纯化过程中的蛋白质(包括核酸酶类)去除,而对DNA无降解作用,避免对DNA 完整性的破坏。 酸性蛋白酶如何灭活第一种方法几乎所有酶都适用,就是加热。第二种,既然是酸性酶,加入强碱应该也是可以的。 酸性蛋白酶产生菌的筛选方法?酸性蛋白酶是一种能在酸性环境下水解蛋白质的酶类,其最适作用pH值为2.5-5.0。由于酸性蛋白酶具有较好的耐酸性,因此被广泛地应用于食品、医药、轻工、皮革工艺以及饲料加工工业中。目前用于工业化生产的酸性蛋白酶大多为霉菌酸性蛋白酶,此类酶的最适作用pH值为3.0左右,当pH值升高时,酸性蛋白酶的酶活会明显降低,且此类酶不耐热,当温度达到50℃以上时很不稳定,从而限制了酸性蛋白酶的应用范围。因此,本研究以开发耐温偏酸性蛋白酶为目标,进行了以下几方面的研究:(1)偏酸性蛋白酶产生菌的分离筛选。 (2)偏酸性蛋白酶粗酶酶学性

植物水解蛋白

植物水解蛋白 一.植物水解蛋白的性质 植物蛋白质水解物(HVP,hydrolyzed vegetable protein)是指在酸或酶的作用下,水解含蛋白质的植物组织所得到的多肽及氨基酸的中间混合胶体溶液,再经加工处理后得到的产物。HVP主要性状为淡黄色至黄褐色液体、糊状体、粉状体或颗粒。糊状体含水分17%-21%,粉状及颗粒状者含水分3%-7%,总氮量5%-14%(相当于粗蛋白25%-87%),2%水溶液的pH 值为5.0-6.5,所含氨基酸组成视所用原料而定,其鲜味物质和程度不尽相当,视所用原料和加工方法而各异。 水解植物蛋白是近年来蓬勃发展起来的新型食品增味剂,它集色、香、味等营养成分于一体,主要作用为鲜味剂、营养强化剂以及肉类香精原料,投放市场以来即为广大消费者认可。由于其谷氨基酸含量较高,逐渐成为取代味精的新一代调味品,并且HVP的制造原料植物蛋白质来源丰富,经水解、脱色、除臭、除杂、调味、杀菌、喷雾干燥等工艺制造而成,可机械化、大规模、自动化生产。 植物蛋白质占世界蛋白供应总量70%以上,其营养价值与动物蛋白质接近,且胆固醇含量低,含有大量人体必需氨基酸,是人类食用蛋白质重要来源。因此,水解植物蛋白作为调味品前景非常广阔。 以下为3种水解蛋白的含量指标 氨基酸大豆蛋白水解产品小麦蛋白水解产品玉米蛋白水解产品 名称 赖氨酸8.62 1.98 1.81 组氨酸 2.89 1.73 2.59 精氨酸7.05 2.97 4.40 苏氨酸 4.06 2.48 3.57 丝氨酸 5.39 3.96 5.70 谷氨酸19.67 40.08 24.12 脯氨酸11.83 15.84 11.93 甘氨酸 5.02 2.23 2.85 丙氨酸 6.05 2.33 7.78 缬氨酸 4.75 3.96 2.07 蛋氨酸0.78 1.98 2.59 异亮氨酸 3.08 7.67 9.08 亮氨酸 3.87 3.47 4.15 酪氨酸0.32 1.00 3.89 苯丙氨酸 3.45 4.46 5.70 天冬氨酸13.17 3.96 7.77 合计100 100 100 二.植物水解蛋白生产工艺 目前,水解植物蛋白常用的方法有酸法和酶法,一般为酸法为主。 1. 酸水解法生产HVP 常用的酸水解方法是:在大豆、小麦、花生、玉米和大米等植物蛋白原料中,加浓盐酸进行加水分解(110℃回流酸解),中和后,经脱色、脱臭、再过滤并浓缩而成浆状体,或喷雾干燥制成粉状成品。

(推荐)溶菌酶作用机理

溶菌酶作用机理 1.溶菌酶:是催化某些细菌细胞壁水解、从而溶解其细胞壁的酶,主要存在于鸡蛋清及动物的眼泪中。 2.细胞壁多糖:是N-乙酰氨基葡萄糖(NGA)-N-乙酰氨基葡萄糖乳酸(NAM)的共聚物,其中的NGA及NAM通过b-1,4糖苷键而交替排列: 3.溶菌酶的结构:由129个氨基酸组成的单肽链蛋白质,含有四对二硫键,一级结构如图所示 4.溶菌酶的催化作用:为葡糖苷酶,能水解NAM的C1与NAG的C4之间的糖苷键,但不能水解NAG的C1 与NAM的C4之间的糖苷键,水解作用如下: 5.溶菌酶的三维结构:溶菌酶分子内部几乎是非极性的,在分子的表面有一个较深的裂缝,恰好能容纳多糖底物的六个单糖(ABCDEF环),是溶菌酶的活性部位,其中白色所示的是活性部位的Glu35和Asp52。 6.溶菌酶与底物的复合物的三维结构: 7.溶菌酶-底物结合部位示意图:NAG多聚体水解速率表明从5到6聚体增加到最大,活性部位的裂缝正好被六个糖残基所装满,水解部位是D和E之间的糖苷键

8.溶菌酶与底物的复合物的三维结构示意图:第四个糖残基D环由于空间的原因必须由正常的椅式变形为能量较高的半椅式,因此降低了糖苷键的稳定性容易断裂。 9.溶菌酶催化作用机制要点总结: (1)Glu35的-COOH提供一个H+到D环与E环间的糖苷键O原子上。H+的转移使D环的C1键与糖苷键O原子间的键断开,并形成正碳离子过渡中间产物。(2)含有E及F残基的NAG二聚体离开酶分子。 (3)正碳离子中间产物进一步与来自溶剂的OH-发生反应, Glu35质子化,酶游离出来。

(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。可复制、编制,期待你的好评与关注)

酪蛋白课程报告

生物技术学院 课程论文 课程名称:高级生物化学成绩: 教师签名:

酪蛋白研究进展综述 提纲:酪蛋白简介-酪蛋白亚基结构-酪蛋白酶特性-酪蛋白活性肽研究进展 摘要:酪蛋白是一种含磷钙的结合蛋白,常见于哺乳动物及其乳汁中,如母牛、羊 以及人奶。酪蛋白对酸敏感,pH较低时会沉淀,因此本科生实验室常用其进行蛋 白质的沉淀反应。哺乳动物的主要蛋白是α-酪蛋白,然而人类乳汁中没有α-酪蛋 白,人乳中的酪蛋白主要是β-酪蛋白形式。对于人类幼儿而言,酪蛋白是氨基酸 的来源,但同时,它也是钙和磷的主要来源,同时,因为胃的酸性环境,酪蛋白还 能在胃中形成凝乳以便消化。本文综合中外文献,对酪蛋白进行了研究进展综述。 关键词:酪蛋白;蛋白亚基;活性肽 酪蛋白简介 在20℃,pH值为4.6时,牛乳中能沉淀下来一种呈酸性的蛋白质,我们将其称为酪蛋白。酪蛋白又名干酪素、乳酪素、酪朊,在牛奶中含量非常丰富。它是一种含磷的蛋白质,具有极高的营养价值,其中含有多种生物活性肽,因此它具有抗菌、降血压、抗氧化和促进双歧杆菌增殖等功能。 酪蛋白在母体蛋白质序列内是无活性的,通过体内或体外酶水解的方式释放出来后,它们即可作为具有类似激素活性的调节物质。这些产物可用作肽类药物、肽类试剂,主要用于科学试验和生化检测;也可用于活性肽功能性食品中,具有增强机体防御功能、调节生理节律、预防疾病和促进康复等功能。 酪蛋白的亚基结构 酪蛋白的分子质量约为20-25ku,由4类遗传变种组成,分别为αs1-酪蛋白、αs2-酪蛋白、β-酪蛋白和K-酪蛋白。其中,αs2-酪蛋白是牛乳中的主要酪蛋白,占总含量的38%;β-酪蛋白含量仅次于αs-酪蛋白,占总含量的35%,

调味类食品添加剂

调味类食品添加剂 食品甜味剂:赋予食品以甜味的物质(蔗糖、葡萄糖、果糖、麦芽糖、果葡糖浆、淀粉糖浆等糖是重要的营养素、食品原料,不属于食品添加剂范畴) 分类: 按来源分:分为天然甜味剂和合成甜味剂。 按结构、性质分:分为糖类(糖醇)和非糖类甜味剂,非糖类按结构又分为磺氨类、二肽类、蔗糖衍生物等。 按营养价值分:分为营养型和非营养型甜味剂,两者主要区别在于能量含量不同。 非营养型甜味剂:能量为相同甜度蔗糖的2%以下,因此一般为非碳水化合物类(即非糖类甜味剂) 特点: 非糖类甜味剂特点 - 高甜度:甜度很高,用量极少; - 低热值:热值很小,在相同甜度蔗糖的2%以下; -无致龋性:不被口腔微生物利用,故不致龋; -甜味保留时间长; -加热时不易焦化; -多不参与代谢过程,对血糖无影响 甜度及其影响因素 (1) 甜度的定义及其表示方法 * 甜度:指甜味的高低。 * 表示方法:设蔗糖的甜度为1或100,其它甜味剂的甜度是以此为标准的相对甜度。?(2)影响甜度的因素 -浓度、温度、介质、其它甜味剂 浓度越高,则甜度越大。 温度越高,甜度越小 介质:对甜度影响较大,不同介质影响不同。 酸:醋酸能提高甜味,盐酸无影响; 盐:浓度高时降低甜度,而浓度< 0.5%可提高甜味; 增稠剂:使甜度稍有提高。 甜味剂的协同效应:不同甜味剂混合时可互相提高甜度,此外还可改善味质、提高稳定性,减少使用量的作用。 常用甜味剂的特性与使用

优点: ?人工合成,化学性质稳定,应用范围广 ?不参与机体代谢过程,不提供能量 ?有利于牙齿健康,无致龋性 ?甜度高,用量少 ?价格便宜 缺点: ?甜味不纯正 ?安全性低 糖醇类甜味剂 糖的四大功能特性 味觉功能:提供纯正的甜味,以遮盖食品中的酸味、苦味,并赋予特殊的口感; 物理功能:为食品提供一定的体积结构和粘度,平衡渗透压,限制结晶过程,并降低水溶液的冰点; 化学功能:在高温下可变成焦糖,为烘烤食品提供焦黄色和焦糖香味,并可防止水果氧化变黑; ?(1)根据食品的品质和功能,以及生产工艺需要确定甜味剂 ?(2)使用高倍甜味剂替代蔗糖后,食品生产商能降低生产成本 ?(3)符合消费者对风味的要求,高倍甜味剂替代蔗糖产生的口味的差异能被消费者接受或不

鸡蛋清中提取溶菌酶方法的研究

第7卷第3期大连民族学院学报V ol.7 No.3 2005年5月 JOURNAL OF DALIAN NATIONALITIES UNIVERSITY May 2005 鸡蛋清中提取溶菌酶方法的研究 大连民族学院生命科学学院2001级高威孙纯义 溶菌酶是一种有效的抗菌剂,全称为1,4-β-N-溶菌酶. 因其对人体细胞没有毒性作用,故在医学、食品科学等领域广泛应用. 蛋清中溶菌酶的含量约2‰,但杂蛋白的含量很高,使得在制取高纯度溶菌酶时操作比较复杂,成本较高. 本文介绍的方法操作简便,成本低,收率高. 1 实验材料与方法 1.1 实验材料 实验原料:新鲜的鸡蛋清. 试剂:冰醋酸、磷酸氢二钠、磷酸二氢钠、考马斯亮蓝G-250、磷酸、95%乙醇(以上试剂均为国产分析纯级),CM Sepharose FF(Parmacia公司生产). 仪器:TDL—50B低速台式大容量离心机、752紫外可见分光光度计、TA2104H电子天平、恒温水浴锅等. 1.2 实验方法[1] 取100mL纯净水,用醋酸调pH值为3.5,水浴加热到85℃. 加入50mL新鲜蛋清,搅拌加热5min.将所得液体3000r/min离心10min,收集上清液. 将上清液加入处理好的CM Sepharose FF层析柱中,控制流速在200mL/h 左右. 吸附完毕用纯净水冲洗吸附柱,以除去杂蛋白. 用100mL 0.1mol/L的氯化钠溶液洗脱溶菌酶,流速200mL/h. 收集洗脱液,检测酶活力. 1.3 检测方法[2] 溶菌酶活力测定:将处理好的黄色小球菌用生理盐水稀释,使其在波长450nm处,吸光度在0.3~0.8之间. 用生理盐水做空白相,在比色皿中加入20μL洗脱液,然后加入3mL稀释好的菌液,于波长在λ450处,测量1min 内的吸光度下降值. 酶活力单位定义:每分钟引起ΔOD450下降0.001为一个酶活力单位. 溶菌酶活力=ΔOD450/0.001×W(W为加入溶菌酶质量). 蛋白浓度的测定:采用考马斯亮蓝染色法. 以溶菌酶标准品为标准蛋白. 2 结果与分析 2.1 溶菌酶的提取及初步纯化 溶菌酶属于碱性蛋白酶,化学性质非常稳定,pH在3.0~7.0时其结构几乎不变,仍保持原酶活性. 在中性介质的条件下,溶菌酶能与鸡蛋清中其他蛋白质形成络合物,大大提高了其稳定性. 在这种情况下,溶菌酶的析出被抑制,但如果在该体系加入酸,降低体系pH值,就可破坏上述络合物的形成,使得溶菌酶与酸作用生成相应的盐,这样溶菌酶就可很好地被水提取. 同时,由于大多数的蛋白质分子的等电点都处在酸性或弱酸性范围内,所以也可去除部分杂蛋白,达到初步纯化的目的. 溶菌酶具有较好的热稳定性,当温度不是很高时,短时间的热处理,酶活力不会有明显的变化,而一般的杂蛋白分子会在较低的温度下变性沉淀. 将体系温度升高到85℃时,鸡蛋清中大量的其他蛋白质凝聚,而溶菌酶由于其耐热性较高则不会凝聚,仍在上清液中,这样也可以促进溶菌酶与其他蛋白质分开. 这样通过调节体系的pH值及温度,可达到从蛋清中较好地提取溶菌酶的目的. 2.2 用CM Sepharose FF高度纯化 CM Sepharose FF是弱酸性阳离子交换树脂,对溶菌酶有较高的吸附能力,与传统离子交换剂相比具有吸附速度快,能够快速洗脱的特点. 可使溶菌酶比活力由吸附前874U/mg上升到18 830U/mg,蛋白活力提高了22倍,且收率较高. 3 结论 查溶菌酶标准曲线可得洗脱液中溶菌酶的含量为1.05mg/mL,总得率为0.19%. 以黄色小球菌测定,酶活力为18 830U/mg. 所得酶活力与传统提取工艺相比纯度有较大的提高,同时具有操作简便、成本较低、收率较高、生产周期短等优点. 参考文献: [1] 张文会,王艳辉. 离子交换法提取鸡蛋清溶菌酶[J]. 食品工业科 技,2003(6)24:57-59. [2] 林亲录,马美湖. 鸡蛋卵清中溶菌酶的提取与纯化[J]. 食品科学, 2002(2)23:43-46.

胰蛋白酶活力测定

实验胰蛋白酶活力测定 一、原理 福林—酚试剂中的磷钨酸和磷钼酸,在碱性条件下极不稳定,易被酚类化合物还原为蓝色化合物(钨蓝和钼蓝)。 蛋白质中含具酚基的氨基酸(酪氨酸、色氨酸、苯丙氨酸),用胰蛋白酶水解蛋白底物,生成含酚基的氨基酸与福林—酚试剂反应,生成蓝色化合物,在一定的范围内,蓝色化合物颜色的深浅与酶活力的大小成正比。 二、实验仪器 试管 7220分光光度计 恒温水浴锅 三、实验试剂 福林试剂B:见福林(Folin)-酚试剂法测定蛋白质的浓度部分(冰箱中) 0.55mol/L碳酸钠溶液:58.3g无水碳酸钠溶于蒸馏水,稀释并定容至1000ml 10%三氯乙酸溶液 0. 2mol/L磷酸缓冲液(pH7.5): 0.5% 酪素溶液:称取0.5g酪素,以0.5mol/L氢氧化钠1ml湿润,再

加少量0. 2mol/L 磷酸缓冲液稀释。在水浴中煮沸溶解,冷却,稀释并容至100ml ,冷藏在(冰箱)里。 500ug/L 酪氨酸溶液 胰蛋白酶溶液(冰箱中) 四、实验步骤 标准曲线的制作:按下表加入试剂: 0.20.40.60.81.0蒸馏水 1.0 0.80.60.40.20500ug/L 酪氨酸溶液6 54321管号 各管中加0.5%酪素2ml ,于37℃水浴中反应15分钟,然后加入10%三氯乙酸3ml ,过滤除去沉淀,取清液1ml ,加入0.55mol/L 碳酸钠5ml ,再加入福林试剂1ml ,于37 ℃水浴中显色15分钟,测OD 680。 以光密度为纵坐标,酪氨酸的微克数为横坐标绘制标准曲线。 样品测定:取干燥的试管2支,按下表加入试剂

0 OD6801 1福林试剂B 5.0 5.0 0.55mol/L碳酸钠溶液 37水浴中显色15分钟1 1上清液 过滤3.0 3.0 10%三氯乙酸溶液1.0 0 2mg/ml胰酶溶液0 1.0 0. 2mol/L磷酸缓冲液 37水浴中酶解15分钟2.0 2.0 0.5%酪素溶液 备注2 1 管号 五、结果计算 酶活力:在37℃下每分钟水解酪素产生lug酪氨酸为一个活力单位。样品中含酶活力单位=A/15 ╳F A—样品测定光密度查曲线得相当酪氨酸ug数 F—酶液稀释倍数 原始数据:(注:7号为待测液) 液体编 号 0 1 2 3 4 5 7 分光光 度计值 0 0.057 0.172 0.201 0.255 0.373 0.919 分光光 度计值 0 0.057 0.173 0.194 0.263 0.386 0.928 分光光 度计值 0 0.068 0.174 0.194 0.271 0.391 0.934

一种从鸡蛋清中分离溶菌酶的方法

(10)授权公告号 (45)授权公告日 2014.11.12 C N 103114082 B (21)申请号 201310069093.9 (22)申请日 2013.03.04 C12N 9/36(2006.01) (73)专利权人浙江工业大学 地址310014 浙江省杭州市下城区潮王路 18号 (72)发明人张健 金志敏 夏春年 姚小武 张岩 (74)专利代理机构杭州天正专利事务所有限公 司 33201 代理人黄美娟 王兵 CN 1108381 C,2003.05.14, 陈若飞.从蛋壳中提取溶菌酶的研究..《沈 阳化工学院院报》.2008, 卢庆祥.用聚丙烯酸凝聚提取溶菌酶..《化 学教学》.1995, M. Sternberg 和D. Hershberger.Separation of proteins with polyacrylic acids..《Biochimica et Biophysica Acta (BBA) - Protein Structure 》.1974,(54)发明名称 一种从鸡蛋清中分离溶菌酶的方法 (57)摘要 本发明公开了一种从鸡蛋清中分离溶菌酶的 方法:用水将鸡蛋清溶解,调节pH 至4.0~5.0 并加热至80℃左右,使杂蛋白沉淀、过滤除去,获 得滤液;再在弱酸性条件下,用木质素磺酸钠与 滤液中的溶菌酶进行聚合、沉淀;然后,将沉淀物 在碱性条件下溶解,用聚丙烯酰胺水溶液使其解 离,过滤得滤液;最后,向滤液中加入无水乙醇使 其结晶,过滤、干燥即得溶菌酶;本发明使用的原 材料价格低、工艺简单、条件温和、便于操作控制、 生产周期短,比以往的沉淀法更经济,更适合于工 业化生产。(51)Int.Cl.(56)对比文件 审查员 孙彦珂 权利要求书1页 说明书5页 (19)中华人民共和国国家知识产权局(12)发明专利权利要求书1页 说明书5页(10)授权公告号CN 103114082 B

酶作用机理和调节【生物化学】

酶作用机理和调节 一、选择题 ⒈关于酶活性中心的描述,哪一项正确?() A、所有的酶都有活性中心; B、所有酶的活性中心都含有辅酶; C、酶的必须基团都位于酶的活性中心内; D、所有的抑制剂都是由于作用于酶的活性中心; E、所有酶的活性中心都含有金属离子 ⒉酶分子中使底物转变为产物的基团是指:() A、结合基团; B、催化基团; C、疏水基团; D、酸性基团; E、碱性基团

⒊酶原的激活是由于:() A、氢键断裂,改变酶分子构象; B、酶蛋白和辅助因子结合; C、酶蛋白进行化学修饰; D、亚基解聚或亚基聚合; E、切割肽键,酶分子构象改变 ⒋同工酶是指() A、辅酶相同的酶; B、活性中心的必需基团相同的酶; C、功能相同而分子结构不同的酶; D、功能和性质都相同的酶; E、功能不同而酶分子结构相似的酶 ⒌有关别构酶的结构特点,哪一项不正确?() A、有多个亚基; B、有与底物结合的部位; C、有与调节物结合的部位; D、催化部位和别

构部位都位于同一亚基上;E、催化部位与别构部位既可以处于同一亚基也可以处于不同亚基上。 ⒍属于酶的可逆性共价修饰,哪项是正确的? A、别构调节; B、竞争性抑制; C、酶原激活; D、酶蛋白和辅基结合; E、酶的丝氨酸羟基磷酸化 ⒎溶菌酶在催化反应时,下列因素中除哪个外,均与酶的高效率有关?() A、底物形变; B、广义酸碱共同催化; C、临近效应与轨道定向; D、共价催化; E、无法确定 ⒏对具有正协同效应的酶,其反应速度为最大反应速度0.9时底物浓度([S]0.9)与最大反应

旗开得胜速度为0.1时的底物浓度([S]0.1)二者的比值[S]0.9/[S]0.1应该为() A、>81; B、=81; C、<81; D、无法确定 ⒐以Hill系数判断,则具负协同效应的别构酶() A、n>1; B、n=1; C、n<1; D、n≥1; E、n≤1

酪蛋白磷酸肽的概况

酪蛋白磷酸肽的概况 第一节:酪蛋白磷酸肽的基本概况 中文名称:酪蛋白磷酸肽 英文名称:Casein Phosphopeptides 钙是人体内含量最丰富的元素之一,对人体健康起着十分重要的作用,然而它也是最易缺乏的矿物质元素之一。当今世界上缺钙已成为一大营养问题,即使经济很发达的国家也未能幸免,在我国表现得尤为突出。据报道,我国老年人因缺钙引起的骨质疏松发病率高达30%-50%,儿童因缺钙引起的佝偻病高达40%,妊娠妇女缺钙比例也非常高,严重威胁着人们的健康。因此,补钙是众所需求。 现代研究已证实钙缺乏的主要原因并不是食物不足,而是由于吸收率低下。如何提高钙的吸收率,是人们长期以来一直在进行的研究。而今从牛奶中分离的一种生物活性肽——酪蛋白磷酸肽(CPP),由于具有很强的促钙吸收活性,正成为功能性食品添加剂的开发和研究热点。 酪蛋白磷酸肽(Casein Phosphopeptides),简称CPP,是以牛奶酪蛋白为原料,经单一酶或复合酶水解,再对水解产物进行分离纯化而得到的含有簇磷酸丝氨酚的多肽。专家们认为,将钙和CPP应用于各类食品中,作为一种食品基料,可提高食品的附加值,使人们长期存在的钙摄取量不足的问题得以解决,有效地预防骨质疏松症和儿童缺钙症。 CPP具有促进成长期儿童骨骼和牙齿发育的作用,并能预防和改善骨质疏松症,促进骨折患者的康复,预防和改善缺铁性贫血;还具有抗龋齿作用。 CPP可添加于各类食品。包括饮料、烘烤食品、冷饮、乳制品、发酵食品、快餐食品、糖果、果酱、儿童咖喱饭、口香糖及保健品和调料中,可满足各种年龄段人群的需要。CPP还可用于动物饲料中,促进动物体外受精。纯CPP和高纯CPP可应用于制药工业,能进一步促进钙质吸收,防止矿物质流失。

复合调味料的研究进展 2018.7

复合调味料的研究进展 1 复合调味料的概述 复合调味料是区别于传统的糖、盐等单一口味调味品的一类调味料,根据GB/T 20903 -2007 对调味品的定义为:在饮食、烹饪和食品加工中广泛应用的,用于调和滋味和气味,并具有去腥、除膻、解腻、增香增鲜作用的产品。复合调味料指的是用两种或两种以上的调味品配制,经特殊加工而制成的调味料。复合调味品并不是刚刚出现的新兴事物,相反它已拥有了悠久的发展历史,有着相当广泛的应用。我国传统烹饪中常用的五香粉、十三香,饭店中常用的各式调味酱汁都属于复合调味料。复合调味料一般以两种以上调味品为主要原料,添加(或不添加)油脂、香辛料、鲜味物质等成分,采用物理的或者生物的技术措施进行加工 处理,最终制成安全可食用的调味产品。其原料主要有决定味道的咸味料(食用盐等)、鲜味料(味精、酵母提取物、HVP、水解植物蛋白等)、甜味料(白砂糖、葡萄糖、果葡糖浆等),还有决定风味特征的香辛料(辛辣性香辛料有胡椒、辣椒、咖喱、洋葱粉等;芳香性香辛料有丁香、肉桂、茴香等),还有着色料(焦糖色素、辣椒红、酱油粉等)、油脂(食用大豆油、花椒油等)、鲜物料(肉类有牛肉、鸡肉等;菜类有洋葱、蒜等)、食品添加剂(谷氨酸钠、山梨酸钾等)。 2 国内外发展历程 2.1 国外发展历程 复合调味料的工业化研究与国家的工业化进程是密不可分的。对复合调味料工业化研究开始最早的国家就是日本。日本最早的研究始于20 世纪中叶,日本大洋渔业公司首次将动物性提取物用南冰洋鲸鱼提取的肉汁作为调味原料调配复合调味料使用在方便面调料包当中,这标志着复合调味料工业化生产的开始。直到1964 年,日本研发出添加钨苷酸钠的味精,这种复合的“强力味精”鲜味是普通味精的数倍,并被普通家庭和食品生产企业所接受。它的出现标志着现代化复合调味料工业化生产的开始。此外,植物蛋白水解液(HVP),动物蛋白水解液(HAP)和酵母提取物等鲜味料最早也是由日本开发,并最早添加在鸡肉精等调味料中用做增鲜剂。专用于中式菜肴的复合调味料,在日本开发也较早,如日本味之素于1978 年生产的“麻婆豆腐调料”、“青椒肉兹调料”、“八宝菜调料”、“宫爆鸡丁”等复合调味料,称为中华调料。 近几年国外的调味品发展趋势为:人工合成的食用香料由水果香型食用香料向肉香型、海鲜型、麦芽香型、花香型、蔬菜香型、奶香型、酱香型及烘炸烤等香型发展。复合调味料是国际上发展最快的调味品,欧美国家流行的沙司、蛋黄酱等,日本流行的“塔来”(煮用 调味料)、“兹出”(面汤调料)等均已形成了批量生产规模,并在国外调味品市场中占重要地位。新近国外研究出的各种风味类、烹调类、咖哩类、烧煮类、香料类等复合调味品也正在投入生产,进入市场。国外很大一部分调味品与我国调味品有着相当大的差异,如我国称为西式调味品的各种调味沙司、调味汁、蛋黄酱、色拉酱等,在我国的销售市场上很常见。日本作为一个调味品生产大国,它的调味品也是既有西方特色,又有东方特点。日本酱油生产技术源于中国,但如今日本的酱油生产技术日臻完善,使传统的中国酿造酱油技术率先在日本完成工业化进程,代表着当今国际先进的酱油技术水平。 2.2 国内发展历程

溶菌酶溶液配制及应用

溶菌酶溶液 简介: 华越洋溶菌酶溶液是浓度分别为10mg/ml的蛋清型溶菌酶溶液,可以用于下列分子生物学实验: 1.核酸纯化 2.包涵体蛋白纯化 3.质粒DNA纯化 4.几丁质的水解 5.细胞壁的水解 运输及保存: 低温运输,-20℃保存,有效期一年。 ============================================================= 溶菌酶存在于卵清、唾液等生物分泌液中,催化细菌细胞壁肽聚糖N-乙酰氨基葡糖与N-乙酰胞壁酸之间的1,4-β-糖苷键水解的酶。 溶菌酶(lysozyme)又称胞壁质酶(muramidase)或N-乙酰胞壁质聚糖水解酶(N-acetylmuramide glycanohydrlase),是一种能水解致病菌中黏多糖的碱性酶。主要通过破坏细胞壁中的N-乙酰胞壁酸和N-乙酰氨基葡糖之间的β-1,4糖苷键,使细胞壁不溶性黏多糖分解成可溶性糖肽,导致细胞壁破裂内容物逸出而使细菌溶解。溶菌酶还可与带负电荷的病毒蛋白直接结合,与DNA、RNA、脱辅基蛋白形成复盐,使病毒失活。因此,该酶具有抗菌、消炎、抗病毒等作用。

用途用于生化研究,临床上用于急慢性咽喉炎、扁平苔癣、扁平疣等疾病的治疗。 生产 以蛋清为原料,在pH6.5条件下用弱酸性阳离子交换树脂732吸附后,再用硫酸铵洗脱,经透析后冷冻干燥得产品。 制备 溶菌酶是采用生物工程技术进行克隆、提取而制取,它是一种天然酶,安全绿色的添加剂,无抗药性。该酶广泛存在于人体多种组织中,鸟类和家禽的蛋清、哺乳动物的泪、唾液、血浆、尿、乳汁等体液以及微生物中也含此酶,其中以蛋清含量最为丰富。从鸡蛋清中提取分离的溶菌酶是由18种129个氨基酸残基构成的单一肽链。它富含碱性氨基酸,有4对二硫键维持酶构型,是一种碱性蛋白质,其N端为赖氨酸,C端为亮氨酸。可分解溶壁微球菌、巨大芽孢杆菌、黄色八叠球菌等革兰阳性菌。 优点 1.溶菌酶是很稳定的蛋白质,有较强的抗热性。蛋清溶菌酶是C型,是已知的最耐热的酶;2.溶菌酶不会因为有机溶剂的处理而失活,当转移到水溶液中时,溶菌酶的活力可全部恢复;3.溶菌酶可被冷冻或干燥处理,且活力稳定;4.溶菌酶适宜pH5.3~6.4,可用于低酸性食品防腐;5.溶菌酶生产成本较低;6.溶菌酶的抗菌谱较广,不仅局限于G+ 菌,对部分G­ 菌也有抑制效果;7.溶菌酶作为防腐剂安全性高。溶菌酶是一种天然蛋白质,1992年FAO/WTO 的食品添加剂协会已经认定溶菌酶在食品中应用是安全的。 应用 医学应用 可作为一种具有杀菌作用的天然抗感染物质。有抗菌、抗病毒、止血、消肿止痛及加快组织恢复功能等作用。临床用于慢性鼻炎、急慢性咽喉炎、口腔溃疡、水痘、带状疱疹和扁平疣等。也可与抗菌药物合用治疗各种细菌和病毒感染。口服和肌注均有效。口服,3~5片/次(肠溶片含10mg),3次/日。口含,1片/次(口含片含20mg),4~6次/日。外用:以1%~2%溶液滴注、涂擦或直接喷粉。肌注,50mg~100mg/次,1~2次/日。滴眼:用2%溶液。副作用偶有较轻的过敏反应。氯化溶菌酶医疗效果更广,有浓痰分散、出血抑制、组织修复、消炎镇痛、抗过滤性病毒等作用,因而用氯化溶菌酶的制药有消炎消痔、治感冒、皮肤病及眼、鼻、喉等用药. 食品应用 可作为防腐剂,它的主要功用是水解细菌细胞壁,在细胞内,则对吞噬后的病原菌起破坏作用.该酶对革兰氏阳性菌中的枯草杆菌、耐辐射微球菌有分解作用。对大肠杆菌、普通变形菌和副溶血性弧菌等革兰氏阴性菌也有一定程度溶解作用,其最有效浓度为0.05%。与植酸、聚合磷酸盐、甘氨酸等配合使用,可提高其防腐效果。

蛋白酶活力的测定

实验三蛋白酶活力的测定 一、目的 掌握用分光光度计法测定蛋白酶活力的原理与操作技术。 二、原理 蛋白酶水解酪蛋白,其产物酪氨酸能在碱性条件下使福林——酚试剂还原,生成鉬蓝与钨蓝,以比色法测定。 三、试剂及仪器 1.福林—酚试剂 称取50g钨酸钠(Na2WO4?2H2O),12.5g钼酸钠(Na2MoO4?2H2O),置入1000mL原底烧瓶中,加350mL水,25mL85%磷酸,50mL浓盐酸,文火微沸回流10h,取下回流冷凝器,加50g硫酸锂(Li2SO4)和25mL水,混匀后,加溴水脱色,直至溶液呈金黄色,再微沸15min,驱除残余的溴,冷却,用4号耐酸玻璃过滤器抽滤,滤液用水稀释至500mL。 使用时用2倍体积的水稀释。 2.0.4mol/L碳酸钠溶液:称取42.4g碳酸钠,用水溶解并定容至1000mL。 3.0.4mol/L三氯乙酸溶液:称取65.5g三氯乙酸,用水溶解并定容至1000mL。 4.2%酪蛋白溶液 称取2.00g酪蛋白(又名干酪素),加约40mL水和2~3滴浓氨水,于沸水浴中加热溶解,冷却后,用pH7.2磷酸缓冲溶液稀释定容至100mL,贮存于冰箱中。 5.pH7.2磷酸缓冲液 0.2mol/L 磷酸二氢钠溶液:称取31.2g磷酸二氢钠(NaH2PO4?2H2O),用水溶解稀释至1000mL; 0.2mol/L 磷酸氢二钠溶液:称取71.6g磷酸氢二钠(Na2HPO4?12H2O),用水溶解稀释至1000mL; pH7.2磷酸缓冲溶液:取28mL 0.2mol/L磷酸二氢钠溶液和72mL 0.2mol/L磷酸氢二钠溶液,用水稀释至1000mL。 6.标准酪氨酸溶液: 准确称取0.1g DL-酪氨酸,加少量0.2mol/L盐酸溶液(取1.7mL浓盐酸,用水稀释至100mL),加热溶解,用水定容至1000mL,每毫升含DL-酪氨酸100微克。 7.仪器:分光光度计、试管 四、操作步骤 1.标准曲线绘制 在上述各管中各取1mL,分别加入5mL 0.4mol/L碳酸钠溶液,1mL福林—酚试剂,于400C水浴显色20min,在680nm波长下测吸光度,绘制标准曲线,在标准曲线上求得吸光度为1时相当的酪氨酸μg数,即为K值。 2.酶液的制备

相关主题
相关文档 最新文档