当前位置:文档之家› 带电粒子在复合场中运动及电磁感应计算题专题

带电粒子在复合场中运动及电磁感应计算题专题

带电粒子在复合场中运动及电磁感应计算题专题
带电粒子在复合场中运动及电磁感应计算题专题

带电粒子在复合场中运动及电磁感应计算题专题

——09年高考物理第二轮复习专题研讨

带电粒子在电场、磁场和复合场中的运动及电磁感应问题是高中物理重点内容之一,是电学部分的基础,也是力学的拓展和延伸,是高中物理主干知识的有机结合,即考查基础知识,也考查综合应用能力,因而历年高考对本部分知识考查覆盖面大,是高考试题各考点分布的重点区之一,多以计算题形式出现,且难度较大。

一.本部分计算题考点、近五年(全国Ⅱ卷)命题情况

二.复习方法

1.建议高三老师发挥组内团队合作精神,搜集历年带电粒子运动、电磁感应的高考真题。

2.深层次分析历年高考中本部分内容的出题意图和命题方向,并能够大胆预测2009年的命题方向。带电粒子运动、电磁感应计算题经常被安排在最后一道或倒数第二道计算题的位置。近5年常出现在最后一道计算的题目中,主要针对学生结合数学知识解决物理问题的能力、学生的计算能力、学生应用已有知识解决实际问题等能力、考查学生物理思维及模型构建能力进行考查。

3.我们在分析出题者意图的同时,也要研究自己的学生。现在这个时候来说,对基础薄弱的学生我们要建议提前回归教材,该记的记,该背的背;对于中等学生我们老师一定要注意“质”的把握,做一道会一道,做一道准一道,不要苛求“量”的累积;对可以拿高分的学生,我们老师要挖掘学生的“建模”能力,能让学生做到举一反三、触类旁通。

4.我们高三把关教师要对习题重新组合,创建符合自己学校学生特点的练习题和检测题,精选精练、一题多解、一题多遍。

5.教会学生处理问题的方法提炼,例如:高考信息题

⑴处理高考信息计算题的一般思路和步骤:

①领会问题的情景,在问题给出的信息中,提取有用信息,构建出正确的物理模型;

②合理选择研究对象;

③分析研究对象的受力情况和运动情况;

④运用物理学的规律列式求解。

可归纳为以下几个环节:

提取物理信息→构建物理模型→转化为数学问题→还原为物理结论

在这几个环节中,根据题给的信息建立起正确的物理情景,进而构建出物理模型是最关

键的、也是较困难的环节。

⑵难点突破:如何快速获取并处理信息,可参考以下几点:

①对信息,特别是文字信息要重在理解。理解是最基础的一环,理解了其中的新术语、新概念,实际上也就是接受了信息,有了进一步处理的基础。

②要善于抓住问题的关键,找到思维的链接点,并由此展开思维,确定思路,就能提起一条关系链,排除游离于这条关系链之外的一些信息和无用的干扰信息。

③要在比较中认识事物,通过比较找出异中之同,或同中之异。“比较”常常是发现隐蔽信息的有效方法。

④要有坚实的物理知识和技能作基础。高考中接触的信息,除了要求考生理解外,还要求将他“与已学过的知识结合、重组、转移、迁移”,“并能与已学过的知识结合起来解决问题”。

【带电粒子运动信息题】2009年考试大纲

串列加速器是用来产生高能离子的装置,如图所示,图中虚线框内为其主体的原理示意图,其中加速管的中部b处有很高的正电势U,a、c两段均有电极接地(电势为零)。现将速度很低的负一价碳离子从a端进入,当离子到达b处时,可被设在b处的特殊装置将其电子剥离,成为n价正离子,而不改变其速度大小。这Array些正n价碳离子从c端飞出后进入一与其速度方向

垂直的、磁感应强度为B的匀强磁场中,在磁场中

做半径为R的圆周运动。已知碳离子的质量m=2.0

×10-26kg,U=7.5×105V,B=0.50T,n=2,基元电

荷e=1.6×10-19C,求R。

6.近期教学中应注意的问题

⑴清点储备,锻炼技巧

①理清知识网络、体系、重点、难点、必考点

②典型问题与方法是否掌握:

备考复习不在于你做了多少题,而在于你对基础知道是否掌握得扎实,熟练地掌握了多少种解题方法。注意题是做不完的,资料也是看不完的,关键是要有针对性。

⑵查缺补漏,注重实效

①查知识的薄弱之处,针对性地强化

②归纳总结每次考试暴露的问题。(知识、心理、技巧、性格粗心马虎等方面)看是常出现的老毛病,还是偶尔出现,进行针对性训练与校正,使发生问题的可能降低到最小限度

③针对高考出现频率较高的问题,进行归纳总结和整理多种方法。

④把握训练计算题的特点、方法与技巧,以及可能存在的误区。

⑤考前多看几套已考过的好试卷。注意,适应高考的试题模式,掌握多种题型,不要再去盲目多做题或做难题、偏题

⑶稳定心态,切勿浮燥

三.应试技巧

在现行的高考体制中仍然延续“一张试卷定终身”的现状,所以怎样能让学生在有限的时间内把自己能得到得分全得到是我们高三把关教师面临的另一难题。我们共备组计划从五种应试技巧的培养对学生强化训练:

1.抓分技巧(配题)

对采分点训练,我们把握“三采”原则:

对难题——“采上分”

对中等题——“采准分”

对简单题——“采死分”

我们计划在近期分别利用一周的时间分别对中等题和简单题进行强化训练。

【举例分析】2008年天津卷第23题

在平面直角坐标系xOy 中,第Ⅰ象限存在沿y 轴负方向的匀强电场,第Ⅳ象

限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B 。一质量为m 、电荷量为

q 的带正电的粒子从y 轴正半轴上的M 点以速度v 0垂直于y 轴射入电场,经x 轴

上的N 点与x 轴正方向成θ=60°角射入磁场,最后从y 轴负半轴上的P 点垂直于

y 轴射出磁场,如图所示。不计粒子重力,求

(1)M 、N 两点间的电势差U MN ;

(2)粒子在磁场中运动的轨道半径r ;

(3)粒子从M 点运动到P 点的总时间t 。

2.审题技巧(配题)

我们可以教会学生把审题过程分为三个步骤:

通读——头脑中出现图景的轮廓,图景与某种物理模型找关系,初步确定研究对象,猜想物理模型;

细读——审题最关键的部分,头脑中出现较清晰的物理情景,画出情景分析图,可以建议学生画“关键词”,筛选出一些关键条件,从而明确状态,建立过程情景;

选读——对关键词的领悟和理解,要从题目中找到过程、规律、联系条件和隐藏条件等,切忌遗漏,干扰因素排除后对题目有清楚的认识。

【带电粒子运动信息题】2009年考试大纲

串列加速器是用来产生高能离子的装置,如图所示,图中虚线框内为其主体的原理示意图,其中加速管的中部b 处有很高的正电势U ,a 、c 两段均有电极接地(电势为零)。现将速度很低的负一价碳离子从a 端进入,当离子到达b 处时,可被设在b 处的特殊装置将其电子剥离,成为n 价正离子,而不改变其速度大小。这些正n 价碳离子从c 端飞出后进入一与其速度方向垂直的、磁感应强度为B 的匀强磁场中,在磁场中做半径为R 的圆周运动。已知碳离子的质量m=2.0×10-26kg ,

U=7.5×105V ,B=0.50T ,n=2,基元电荷e=1.6×10-19C ,

求R 。

3.时间安排技巧

我们可以建议学生在做计算题时将时间分成三个阶段:

审题(40%)——读懂题,弄清问题,并构建模型;

分析(30%)——画草图、找状态、明确过程和确定规律;

解题(30%)——合理分配在草纸上和最终答题卡上的书写时间。

我们要提醒学生这样的时间安排训练是让学生重视审题过程,而不是在审题部分磨蹭时间。

4.规范书写技巧(配题,扫描)

解题规范性训练能够提高学生采分点意识,增强解答的实效性,建议学生书写时应注意: 书写的逻辑性——符合物理思想,要用物理语言和物理公式表述物理过程,不要把物理题变成“小作文”或数学题;

书写的简洁性——书写一定要简练,采分的写,不采分的不要乱写,采分点需要标号,不必要的计算过程不要体现在试卷上,不要把试卷当草纸用;

书写的准确性——题目中没有涉及的物理量必须设,要注意每个过程或每个物体所对应的公式,注重规律的原始公式,往往一些推导规律要在原始公式的引导下才可以使用;同时还要注意物理符号的书写,什么样的符号表示什么样的参量,不能瞎写,尤其要注意同一个符号或公式在重复使用时要注意下角标的区分。

5.强化学生思维技巧

①先常规,再技巧:大多试题都是考你的常规思维,考你的双基,考你的运算能力,并不都要求使用简便方法或根本就没有简便方法,所以解题时应先使用最常规,最熟悉的思路去思考,在我们常规思维受阻时,再去考虑有没有特殊技巧。

②先特殊,后发散:有些题目,上手较难,可以以退为进,从特殊情况着手,将普遍问题特殊化,将抽象问题具体化、一般化,在这个过程中,思维可能会得到“茅塞顿开”的启迪,使看起来很难的问题得到简化。

③先结果,再探索:对一个问题正面思考,出现了思维障碍,我们应想到“正难则反”的原则,先假设已有相应结果然后逆向思维探求解决问题的突破点、新思路,常用的反证法、分析法都是典型的逆向思维方法。

④先联想,再转化:也有一些题目,往往与实际生活紧密相关,但最终解决还是离不开已学的理论知识,所以遇到这样的问题,应该先联想到实际问题的具体背景,再将它抽象化,模型化,完成从未知到已知,从实际问题到理论知识之间的转化,也有很多题目看似陌生,但若对其特征、特点、形成进行联想转化就不难发现,它们不过是我们熟悉问题的变形,于是问题也就迎刃而解了。

做到:力抓心理分,细心分,规范分,情感分。

四.共性规律(配题)

我们共备组经过整理二轮复习资料时发现,近几年有些全国卷计算题中,电磁感应和带电粒子运动几乎很少同时出现的。这一点能否引发我们有所思考,说明这两部分内容一定存在着共性的东西,进一步说明这个共性的部分就是高考命题要考查的方向。我们共备组分析如下:

共性一:场中力的特性。由于受到场中特定力的作用,导致研究对象产生相应的运动,而这些运动都是我们学习磁场前研究过的重要的运动形式,例如:带电粒子的圆周运动或导体棒的直线运动等,这使得运动的分析成为了工具,我们都要通过分析运动来研究电场、磁场的这种力的特性,这种特性也是从运动中体现出来的。

共性二:场中能量的特性。磁场独特的地方就是对运动的带电粒子不做功(洛仑兹力),而导体棒、线框在磁场中受到的力(安培力)所做的功,却对应特定的能量分配和能量转化。对这个共性的考查,就针对于这种功能关系的掌握和区分。

所以我们如果在复习中把握好这两个共性和规律,也就把握了高考中针对这部分的考查方向和考点,也就是我们引导学生明确解决这部分问题的思考方向以及切入点。

2.如图所示,一边长L = 0.2m,质量m1=0.5kg,电阻R = 0.1Ω的正方形导体线框abcd ,与一质量为m2=2kg 的物块通过轻质细线跨过两定滑轮相连。起初ad边距磁场下边界为

d1= 0.8m,磁感应强度B=2.5T,磁场宽度d2=0.3m,物块放在倾角θ=53°

的斜面上,物块与斜面间的动摩擦因数μ=0.5。现将物块由静止释放,

经一段时间后发现当ad边从磁场上边缘穿出时,线框恰好做匀速运

动。(g取10m/s,sin53°=0.8,cos53°= 0.6)求:

(1)线框ad边从磁场上边缘穿出时速度的大小?

(2)线框刚刚全部进入磁场时动能的大小?

(3)整个运动过程线框产生的焦耳热为多少?

五.组卷意图

1.通过题型的重组,能够让师生把握高考命题的方向,了解出题人的意图;

2.提高学生的审题能力、建模能力、分析综合能力、规范解题意识、知识的迁移能力等;从而强化学生的物理思想方法和思维技巧(如:理想化的观点、守恒的观点、等效的观点、等量代换的观点、控制变量的观点等。)

3.针对学生出现的问题,提高二轮复习的实效性;

4.从题的难易程度上分类,重新对不同难度的题确立目标:

简单题——狠抓得分率,争取能得全分;

中等题——加强采分点意识,争取能多得分;

难题——训练“建模”的能力,锻炼审题能力,争取能得上分。

5.为实现本专题研讨的目标

(完整版)力-电电磁感应计算题——含答案.docx

1、如图( a)两相距L=0.5m的平行金属导轨固定于水平面上,导轨左端与阻值R=2Ω的电阻连接,导轨间虚线右侧 存在垂直导轨平面的匀强磁场,质量 m=0.2kg的金属杆垂直于导轨上,与导轨接触良好,导轨与金属杆的电阻可忽略, 杆在水平向右的恒定拉力作用下由静止开始运动,并始终与导轨垂直,其v- t 图像如图(b)所示,在15s 时撤去拉力,同时使磁场随时间变化,从而保持杆中电流为0,求: ( 1)金属杆所受拉力的大小为F; ( 2)0-15s 匀强磁场的磁感应强度大小为; ( 3)15-20s 内磁感应强度随时间的变化规律。 2、如图所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为L=0.2m ,长为 2d, d=0.5m,上半段 d 导轨光滑, 下半段 d 导轨的动摩擦因素为μ=,导轨平面与水平面的夹角为θ=30°.匀强磁场的磁感应强度大小为B=5T,方向与导轨平面垂直.质量为m=0.2kg 的导体棒从导轨的顶端由静止释放,在粗糙的下半段一直做匀速运动,导体棒始终与导轨垂直,接在两导轨间的电阻为R=3Ω,导体棒的电阻为r=1 Ω,其他部分的电阻均不计,重力加速度取 g=10m/s 2,求: (1)导体棒到达轨道底端时的速度大小; (2)导体棒进入粗糙轨道前,通过电阻R 上的电量 q; (3)整个运动过程中,电阻R 产生的焦耳热 Q. 3、如图甲所示,两根足够长、电阻不计的光滑平行金属导轨相距为L1=1m,导轨平面与水平面成θ=30角,上端连接阻值= 1. 5Ω的电阻;质量为= 0. 2kg 、阻值r= 0. 5Ω的金属棒 ab 放在两导轨上,距离导轨最上端为L 2= 4m,棒与导轨垂直并保持良好接触。整个装置处于一匀强磁场中,该匀强磁场方向与导轨平面垂直,磁感应强度大 小随时间变化的情况如图乙所示。为保持ab 棒静止,在棒上施加了一平行于导轨平面的外力F,g=10m/s 2 求:(1)当t= 2s 时,外力F1的大小; (2)当t= 3s 前的瞬间,外力F2的大小和方向; ( 3)请在图丙中画出前4s 外力F随时间变化的图像(规定F方向沿斜面向上为正);

电磁感应计算题精选

3. 如图所示,两根光滑的金属导 计。斜面处在一匀强磁场中,磁场方向垂直于斜面向上。质量为m,电阻可不计的金属棒 直的恒力作用下沿导轨匀速上滑,并上升h高度,如图所示。在这过程中 A. 作用于金属捧上的各个力的合力所作的功等于零 B. 作用于金属捧上的各个力的合力所作的功等 于mgh与电阻R上发出的焦耳热之和 C. 恒力F与安培力的合力所作的功等于零 ab,在沿着斜面与棒垂 4. 两根光滑金属导轨平行放置在倾角为0=30。的斜面上,导轨左端接 有电阻R=10 / Q,导轨自身电阻忽略不计。匀强磁场垂直于斜面向上,磁感强度B=0.5T。质量Y 为m=0.1kg ,电阻可不计的金属棒ab静止释放,沿导轨下滑。如图所示,设导轨足够长,导轨宽度L=2m,金属棒ab下滑过程中始终与导轨接触良好,当金属棒下滑h=3m时,速度恰好达到最大速度,求此(1)最大速度(2)从开始到速度达到T h 』 第12讲法拉第电磁感应定律4----能量问题1 能的转化与守恒,是贯穿物理学的基本规律之一。从能量的观点来分析、解决问题,既是学习物理的基本功,也是一 种能力。自然界存在着各种不同形式的能,如; ■-动能 机械能:重力势能 I弹性势能(弹簧) ?热能 1. 如图16-7-6所示,在竖直向上B=0.2T的匀强磁场内固定一水平无电阻的光滑U形金属导轨,轨距50cm。 金属导线ab的质量m=0.1kg,电阻r=0.02 Q且ab垂直横跨导轨。导轨中接入电阻 F=0.1N拉着ab向右匀速平移,贝U (1) ab的运动速度为多大? (2 )电路中消耗的电功率是多大? (3)撤去外力后R上还能产生多少热量? 图16-7-6 2. 相距为d的足够长的两平行金属导轨(电阻不计)固定在绝缘水平面上,导轨间有垂直轨道平面的匀强磁 场,磁感强度为B,导轨左端接有电容为C的电容器,在导轨上放置一金属棒并与导轨接触良好,如图所 示。现用水平拉力使金属棒开始向右运动,拉力的功率恒为P,在棒达到最大速度之前,下列叙述正确的是 R=0.08 Q,今用水平恒力 A.金属棒做匀加速运动 B.电容器所带电量不断增加 C.作用于金属棒的摩擦力的功率恒为P D.电容器a极板带负电

电磁感应计算题总结(易错题型)

电磁感应易错题 1.如图所示,边长L=0.20m 的正方形导线框ABCD 由粗细均匀的同种材料制成,正方形导线框每边的电阻R 0=1.0Ω,金属棒MN 与正方形导线框的对角线长度恰好相等,金属棒MN 的电阻r=0.20Ω。导线框放置在匀强磁场中,磁场的磁感应强度B =0.50T ,方向垂直导线框所在平面向里。金属棒MN 与导线框接触良好,且与导线框对角线BD 垂直放置在导线框上,金属棒的中点始终在BD 连线上。若金属棒以v =4.0m/s 的速度向右匀速运动,当金属棒运动至AC 的位置时,求:(计算结果保留两位有效数字) (1)金属棒产生的电动势大小; (2)金属棒MN 上通过的电流大小和方向; (3)导线框消耗的电功率。 2.如图所示,正方形导线框abcd 的质量为m 、边长为l ,导线框的总电阻为R 。导线框从垂直纸面向里的水平有界匀强磁场的上方某处由静止自由下落,下落过程中,导线框始终在与磁场垂直的竖直平面内,cd 边保持水平。磁场的磁感应强度大小为B ,方向垂直纸面向里,磁场上、下两个界面水平距离为l 。已知cd 边刚进入磁场时线框恰好做匀速运动。重力加速度为g 。 (1)求cd 边刚进入磁场时导线框的速度大小。 (2)请证明:导线框的cd 边在磁场中运动的任意瞬间,导线框克服安培力做功的功率等于导线框消耗的电功率。 (3)求从线框cd 边刚进入磁场到ab 边刚离开磁场的过程中,线框克服安培力所做的功。 3.如图所示,在高度差h =0.50m 的平行虚线范围内,有磁感强度B =0.50T 、方向水平向里的匀强磁场,正方形线框abcd 的质量m =0.10kg 、边长L =0.50m 、电阻R =0.50Ω,线框平面与竖直平面平行,静止在位置“I”时,cd 边跟磁场下边缘有一段距离。现用一竖直向上的恒力F =4.0N 向上提线框,该框由位置“Ⅰ”无初速度开始向上运动,穿过磁场区,最后到达位置“Ⅱ”(ab 边恰好出磁场),线框平面在运动中保持在竖直平面内,且cd 边保持水平。设cd 边刚进入磁场时,线框恰好开始做匀速运动。(g 取10m /s 2) 求:(1)线框进入磁场前距磁场下边界的距离H 。 (2)线框由位置“Ⅰ”到位置“Ⅱ”的过程中,恒力F 做的功是多少?线框内产生的热量又是多少 ? a b d c l l

电磁感应计算题偏难

12.磁悬浮列车运行的原理是利用超导体的抗磁作用使列车向上浮起,同时通过周期性变换磁极方向而获得推进动力,其推进原理可简化为如图所示的模型,在水平面上相距L 的两根平行导轨间,有竖直方向且等距离分布的匀强磁场B 1和B 2,且B 1=B 2=B ,每个磁场的宽度都是l ,相间排列,所有这些磁场都以速度v 向右匀速运动,这时跨在两导轨间的长为L 宽为l 的金属框abcd (悬浮在导轨上方)在磁场力作用下也将会向右运动,设直导轨间距L = 0.4m ,B = 1T ,磁场运动速度为v = 5 m/s ,金属框的电阻R = 2Ω。试问:(1)金属框为何会运动,若金属框不受阻力时金属框将如何运动?(2)当金属框始终受到f = 1N 阻力时,金属框最大速度是多少? (3)当金属框始终受到1N 阻力时,要使金属框维持最大速度,每秒钟需消耗多少能量?这些能量是谁提供的? 8.如图所示,一正方形平面导线框abcd ,经一条不可伸长的绝缘轻绳与另一正方形平面导线框a 1b 1c 1d 1相连,轻绳绕过两等高的轻滑轮,不计绳与滑轮间的摩擦.两线框位于同一竖直平面内,ad 边和a 1d 1边是水平的.两线框之间的空间有一匀强磁场区域,该区域的上、下边界MN 和PQ 均与ad 边及a 1d 1边平行,两边界间的距离为h =78.40 cm .磁场方向垂直线框平面向里.已知两线框的边长均为l = 40. 00 cm ,线框abcd 的质量为m 1 = 0. 40 kg ,电阻为R 1= 0. 80Ω。线框a 1 b 1 c 1d 1的质量为m 2 = 0. 20 kg ,电阻为R 2 =0. 40Ω.现让两线框在磁场外某处开始释放,两线框恰好同时以速度v =1.20 m/s 匀速地进入磁场区域,不计空气阻力,重力加速度取g =10 m/s 2. (1)求磁场的磁感应强度大小. (2)求ad 边刚穿出磁场时,线框abcd 中电流的大小. 5、 (20分)如图所示间距为 L 、光滑的足够长的金属导轨(金属导轨的电阻不计)所在斜面倾角为α两根同材料、长度均为 L 、横截面均为圆形的金属棒CD 、 PQ 放在斜面导轨上.已知CD 棒的质量为m 、电阻为 R , PQ 棒的圆截面的半径是CD 棒圆截面的 2 倍。磁感应强度为 B 的匀强磁场垂直于导轨所在平面向上两根劲度系数均为 k 、相同的弹簧一端固定在导轨的下端另一端连着金属棒CD 开始时金属棒CD 静止,现用一恒力平行于导轨所在平面向上拉金属棒 PQ .使金属棒 PQ 由静止开始运动当金属棒 PQ 达到稳定时弹簧的形变量与开始时相同,已知金属棒 PQ 开始运动到稳定的过程中通过CD 棒的电量为q,此过程可以认为CD 棒缓慢地移动,已知题设物理量符合 αsin 5 4 mg BL qRk =的关系式,求此过程中(l )CD 棒移动的距离; (2) PQ 棒移动的距离 (3) 恒力所做的功。 (要求三问结果均用与重力mg 相关的表达式来表示). v

电磁感应计算题复习

电磁感应计算题专题 计算题 (共15小题) 1. 如图13-17所示,两根足够长的固定平行金属导轨位于同一水平面内,导轨间的中距离为L ,导轨上横放着两根导体棒ab 和cd.设两根导体棒的质量皆m ,电阻皆为R ,导轨光滑且电阻不计,在整个导轨平面内都有竖直向上的匀强磁场,磁感强度为B 。开始时ab 和cd 两导体棒有方向相反的水平初速,初速大小分别为v 0和2v 0,求: (1)从开始到最终稳定回路中产生的焦耳热。 (2)当ab 棒的速度大小变为 4 v 时,回路中消耗的电功率。 2. 如图13-18所示,在空中有一水平方向的匀强磁场区域, 区域的上下边缘间距为h ,磁感强度为B 。有一宽度为b(b <h =、长度为L ,电阻为R 。质量为m 的矩形导体线圈紧贴磁场区域的上边缘从静止起竖直下落,当线圈的PQ 边到达磁场 下边缘时,恰好开始做匀速运动。求: (1)线圈的MN 边刚好进入磁场时,线圈的速度大小。 (2)线圈从开始下落到刚好完全进入磁场,经历的时间。 3. 水平面上两根足够长的金属导轨平行固定放置,问距为L ,一端通过导线与阻值为R 的电阻连接;导轨上放一质量为m 的金属杆(见右上图),金属杆与导轨的电阻忽略不计;均匀磁场竖直向下.用与导轨平行的恒定拉力F 作用在金属杆上,杆最终将做匀速运动.当改变拉力的大小时,相对应的匀速运动速度v 也会变化,v 与F 的关系如右下图.(取重力加速度g=10m/s 2) (1)金属杆在匀速运动之前做什么运动? (2)若m=0.5kg,L=0.5m,R=0.5Ω;磁感应强度B 为多大? (3)由v —F 图线的截距可求得什么物理量?其值为多少? 4. 如图1所示,两根足够长的直金属导轨MN 、PQ 平行放置在倾角为θ的绝缘斜面上,两导轨间距为L 0、M 、P 两点间接有阻值为R 的电阻。一根质量为m 的均匀直金属杆ab 放在两导轨上,并与导轨垂直。整套装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直斜面向下,导轨和金属杆的电阻可忽略。让ab 杆沿导轨由静止开始下滑,导轨和金属杆接触 图13-17 图13-18

(完整版)法拉第电磁感应定律练习题40道

xxxXXXXX学校XXXX年学年度第二学期第二次月考XXX年级xx班级 姓名:_______________班级:_______________考号:_______________ 题号 一、选 择 题二、填空 题 三、计算 题 四、多项 选择 总分 得分 一、选择题 (每空?分,共?分) 1、彼此绝缘、相互垂直的两根通电直导线与闭合线圈共面,下图中穿过线圈的磁通量可能为零的是 2、伟大的物理学家法拉第是电磁学的奠基人,在化学、电化学、电磁学等领域都做出过杰出贡献,下列陈述中不符合历史事实的是() A.法拉第首先引入“场”的概念来研究电和磁的现象 B.法拉第首先引入电场线和磁感线来描述电场和磁场 C.法拉第首先发现了电流的磁效应现象 D.法拉第首先发现电磁感应现象并给出了电磁感应定律 3、如图所示,两个同心放置的共面金属圆环a和b,一条形磁铁穿过圆心且与环面垂直,则穿过两环的磁通量Φa和Φb大小关系为: A.Φa>Φb B.Φa<Φb C.Φa=Φb D.无法比较 4、关于感应电动势大小的下列说法中,正确的是() 评卷人得分

A.线圈中磁通量变化越大,线圈中产生的感应电动势一定越大 B.线圈中磁通量越大,产生的感应电动势一定越大 C.线圈放在磁感强度越强的地方,产生的感应电动势一定越大 D.线圈中磁通量变化越快,产生的感应电动势越大 5、对于法拉第电磁感应定律,下面理解正确的是 A.穿过线圈的磁通量越大,感应电动势越大 B.穿过线圈的磁通量为零,感应电动势一定为零 C.穿过线圈的磁通量变化越大,感应电动势越大 D.穿过线圈的磁通量变化越快,感应电动势越大 6、如图所示,均匀的金属长方形线框从匀强磁场中以匀速V拉出,它的两边固定有带金属滑轮的导电机构,金属框向右运动时能总是与两边良好接触,一理想电压表跨接在PQ两导电机构上,当金属框向右匀速拉出的过程中,电压表的读数:(金属框的长为a,宽为b,磁感应强度为B) A.恒定不变,读数为BbV B.恒定不变,读数为BaV C.读数变大 D.读数变小 7、如图所示,平行于y轴的导体棒以速度v向右匀速直线运动,经过半径为R、磁感应强度为B的圆形匀强磁场区域,导体棒中的感应电动势ε与导体棒位置x关系的图像是 8、如图所示,一个高度为L的矩形线框无初速地从高处落下,设线框下落过程中,下边保持水平向下平动。在线框的下方,有一个上、下界面都是水平的匀强磁场区,磁场区高度为2L,磁场方向与线框平面垂直。闭合线圈下落后,刚好匀速进入磁场区,进入过程中,线圈中的感应电流I0随位移变化的图象可能是

2019届高考物理二轮复习 计算题题型专练(五)电磁感应规律的综合应用

计算题题型专练(五) 电磁感应规律的综合应用 1.如图所示,两根间距为L =0.5 m 的平行金属导轨,其cd 左侧水平,右侧为竖直的1 4圆 弧,圆弧半径r =0.43 m ,导轨的电阻与摩擦不计,在导轨的顶端接有R 1=1.5 Ω的电阻,整个装置处在竖直向上的匀强磁场中,现有一根电阻R 2=10 Ω的金属杆在水平拉力作用下,从图中位置ef 由静止开始做加速度a =1.5 m/s 2 的匀加速直线运动,金属杆始终保持与导轨垂直且接触良好,开始运动的水平拉力F =1.5 N ,经2 s 金属杆运动到cd 时撤去拉力,此时理想电压表的示数为1.5 V ,此后金属杆恰好能到达圆弧最高点ab ,g =10 m/s 2 ,求: (1)匀强磁场的磁感应强度大小; (2)金属杆从cd 运动到ab 过程中电阻R 1上产生的焦耳热。 解析 (1)金属杆运动到cd 时,由欧姆定律可得 I =U R 1 =0.15 A 由闭合电路的欧姆定律可得E =I (R 1+R 2)=0.3 V 金属杆的速度v =at =3 m/s 由法拉第电磁感应定律可得E =BLv ,解得B =0.2 T (2)金属杆开始运动时由牛顿第二定律可得F =ma ,解得 m =1 kg 金属杆从cd 运动到ab 的过程中,由能量守恒定律可得Q =12 mv 2 -mgr =0.2 J 。

故Q= R1 R1+R2 Q=0.15 J。 答案(1)0.2 T (2)0.15 J 2.如图所示,两条间距L=0.5 m且足够长的平行光滑金属直导轨,与水平地面成α=30°角固定放置,磁感应强度B=0.4 T的匀强磁场方向垂直导轨所在的斜面向上,质量m ab =0.1 kg、m cd=0.2 kg的金属棒ab、cd垂直导轨放在导轨上,两金属棒的总电阻r=0.2 Ω,导轨电阻不计。ab在沿导轨所在斜面向上的外力F作用下,沿该斜面以v=2 m/s的恒定速度向上运动。某时刻释放cd,cd向下运动,经过一段时间其速度达到最大。已知重力加速度g=10 m/s2,求在cd速度最大时,求: (1)abcd回路的电流强度I以及F的大小; (2)abcd回路磁通量的变化率以及cd的速率。 解析(1)以cd为研究对象,当cd速度达到最大值时,有:m cd g sin α=BIL① 代入数据,得:I=5 A 由于两棒均沿斜面方向做匀速运动,可将两棒看作整体,作用在ab上的外力:F=(m ab +m cd)g sin α② (或对ab:F=m ab g sin α+BIL) 代入数据,得:F=1.5 N (2)设cd达到最大速度时abcd回路产生的感应电动势为E,根据法拉第电磁感应定律,

高二物理电磁感应计算题

高二物理计算题专题训练(一)(电磁感应) 1.如图所示,由粗细相同的导线制成的正方形线框边长为L ,每条边的电阻均为R ,其中ab 边材料的密度较大,其质量为m ,其余各边的质量均可忽略不计.线框可绕与cd 边重合的水平轴O O '自由转动,不计空气 阻力及摩擦.若线框从水平位置由静止释放,经历时间t 到达竖直位置,此时ab 边的速度大小为v .若线框始终处在方向竖直向下、磁感强度为B 的匀强磁场中,重力加速度为g .求: (1)线框在竖直位置时,ab 边两端的电压及所受安培力的大小; (2)在这一过程中,通过线框导线横截面的电荷量。 2.如图所示PQ 、MN 为足够长的两平行金属导轨,它们之间连接一个阻值 Ω=8R 的电阻;导轨间距为kg m m L 1.0;1==一质量为,电阻Ω=2r ,长约m 1的均 匀金属杆水平放置在导轨上,它与导轨的滑动摩擦因数5 3 = μ,导轨平面的倾角为0 30=θ在垂直导轨平面方向有匀强磁场,磁感应强度为0.5T B =,今让 R B

金属杆AB由静止开始下滑从杆静止开始到杆AB恰好匀速运动的过程中经过杆的电量1C q ,求: (1)当AB下滑速度为s 2时加速度的大小 m/ (2)AB下滑的最大速度 (3)从静止开始到AB匀速运动过程R上产生的热量 3.如图所示,一个很长的竖直放置的圆柱形磁铁,在其外部产生一个中心辐射的磁场(磁场水平向外),其大小为B=k/r(其中r为辐射半径——考察点到圆柱形磁铁中心轴线的距离,k为常数),设一个与磁铁同轴的圆形铝环,半径为R(大于圆柱形磁铁的半径),圆环通过磁场由静止开始下落,下落过程中圆环平面始终水平,已知铝丝电阻为R0,质量为m,当地的重力加速度为g,试求: (1)圆环下落的速度为v时的电功率多大 (2)圆环下落的最终速度v m是多大 (3)如果从开始到下落高度为h时,速度最大,经 历的时间为t,这一过程中圆环中电流的有效值 I是多大

电磁感应计算题

电磁感应计算题 1、如图所示,两根相距L平行放置的光滑导电轨道,与水平面的夹角为θ,轨道间有电阻R,处于磁感应强度为B、方向垂直轨道向上的匀强磁场中,一根质量为m 、电阻为r 的金属杆ab,由静止开始沿导电轨道下滑,设下滑过程中杆ab 始终与轨道保持垂直,且接触良好,导电轨道有足够的长度且电阻不计,求: (1)金属杆的最大速度就是多少; (2)当金属杆的速度刚达到最大时,金属杆下滑的距离为S,求金属杆在此过程中克服安培力做的功; (3)若开始时就给杆ab 沿轨道向下的拉力F使其由静止开始向下做加速度为a 的匀加速运动(a>gsinθ),求拉力F与时间t 的关系式? 2、如图所示,水平面上有两电阻不计的光滑金属导轨平行固定放置,间距d 为0、5 m,左端通过导线与阻值为2 Ω的电阻R 连接,右端通过导线与阻值为4 Ω的小灯泡L 连接,在CDEF 矩形区域内有竖直向上的匀强磁场,CE 长为2 m,CDEF 区域内磁场的磁感应强度B 随时间变化如图所示,在t =0时,一阻值为2 Ω的金属棒在恒力F 作用下由静止开始从AB 位置沿导轨向右运动,当金属棒从AB 位置运动到EF 位置过程中,小灯泡的亮度没有发生变化,求: (1)通过小灯泡的电流强度; (2)恒力F 的大小; (3)金属棒的质量。 R B a b θ θ

3.如图甲所示,电阻不计的光滑平行金属导轨相距L=0.5m,上端连接R=0、5Ω的电阻,下端连接着电阻不计的金 属卡环,导轨与水平面的夹角θ=30°.导轨间虚线区域存在方向垂直导轨平面向上的磁场,其上、下边界之间的距离S =10m,磁感应强度的B -t 图如图乙所示。长为L 且质量为m=0.5kg 的金属棒ab 的电阻不计,垂直导轨放置于距离磁场上边界d =2.5m 处,与导轨始终接触良好.在t =0时刻棒由静止释放,滑至导轨底端被环卡住不动,g 取10m/s 2,求: (1)棒运动到磁场上边界的时间; (2)棒进入磁场时受到的安培力; (3)在0—5s 时间内电路中产生的焦耳热。 4如图所示,质量为M 的导体棒ab 的电阻为r ,水平放在相距为l 的竖直光滑金属导轨上.导轨平面处于磁感应强度大小为B 、方向垂直于导轨平面向外的匀强磁场中.左侧就是水平放置、间距为d 的平行金属板.导轨上方与一可变电阻R 连接,导轨电阻不计,导体棒与导轨始终接触良好.重力加速度为g. (1)调节可变电阻的阻值为R 1=3r ,释放导体棒,当棒沿导轨匀速下滑时,将带电量为+q 的微粒沿金属板间的中 心线水平射入金属板间,恰好能匀速通过.求棒下滑的速率v 与带电微粒的质量m . (2)改变可变电阻的阻值为R 2=4r ,同样在导体棒沿导轨匀速下滑时,将该微粒沿原来的中心线水平射入金属板 间,若微粒最后碰到金属板并被吸收.求微粒在金属板间运动的时间t . 乙 t/s 1

电磁感应中的动力学和能量问题计算题专练

电磁感应中的动力学和能量问题(计算题专练) 1、如图所示,在倾角θ=37°的光滑斜面上存在一垂直斜面向上的匀强磁场区域MNPQ,磁感应强度B的大小为5 T,磁场宽度d=0.55 m,有一边长L=0.4 m、质量m1=0.6 kg、电阻R=2 Ω的正方形均匀导体线框abcd通过一轻质细线跨过光滑的定滑轮与一质量为m2=0.4 kg的物体相连,物体与水平面间的动摩擦因数μ=0.4,将线框从图示位置由静止释放,物体到定滑轮的距离足够长.(取g=10 m/s2,sin 37°=0.6,cos 37°=0.8)求: (1)线框abcd还未进入磁场的运动过程中,细线中的拉力为多少? (2)当ab边刚进入磁场时,线框恰好做匀速直线运动,求线框刚释放时ab边距磁场MN边界的距离x多大? (3)在(2)问中的条件下,若cd边恰离开磁场边界PQ时,速度大小为2 m/s,求整个运动过程中ab边产生的热量为多少? 解析(1)m1、m2运动过程中,以整体法有 m1g sin θ-μm2g=(m1+m2)a a=2 m/s2 以m2为研究对象有F T-μm2g=m2a(或以m1为研究对象有m1g sin θ-F T=m1a) F T=2.4 N (2)线框进入磁场恰好做匀速直线运动,以整体法有 m1g sin θ-μm2g-B2L2v R =0 v=1 m/s ab到MN前线框做匀加速运动,有 v2=2ax x=0.25 m (3)线框从开始运动到cd边恰离开磁场边界PQ时: m1g sin θ(x+d+L)-μm2g(x+d+L)=1 2 (m1+m2)v21+Q 解得:Q=0.4 J 所以Q ab=1 4 Q=0.1 J 答案(1)2.4 N (2)0.25 m (3)0.1 J 2、如图所示,足够长的金属导轨MN、PQ平行放置,间距为L,与水平面成θ角,导轨与定值电阻R1和R2相连,且R1=R2=R,R1支路串联开关S,原来S闭合.匀强磁场垂直导轨平面向上,有一质量为m、有效电阻也为R的导体棒ab与导轨垂直放置,它与导轨粗糙接触且始终接触良好.现将导体棒ab从静止释放,沿导轨下滑,当导体棒运动达到稳定状 态时速率为v,此时整个电路消耗的电功率为重力功率的3 4 .已知 重力加速度为g,导轨电阻不计,求: (1)匀强磁场的磁感应强度B的大小和达到稳定状态后导体棒ab 中的电流强度I; (2)如果导体棒ab从静止释放沿导轨下滑x距离后达到稳定状态,这一过程回路中产生的电热是多少? (3)导体棒ab达到稳定状态后,断开开关S,从这时开始导体棒ab下滑一段距离后,通过导

电磁感应计算题专项训练及答案

电磁感应计算题专项训练 【注】该专项涉及规律:感应电动势、欧姆定律、牛顿定律、动能定理 1、( 2010重庆卷)法拉第曾提出一种利用河流发电的设想,并进行了实验研究。实验装置 的示意图如图所示,两块面积均为 S 的矩形金属板,平行、正对、竖直地全部浸在河水中, 间距为d 。水流速度处处相同,大小为 v ,方向水平。金属板与水流方向平行。地磁场磁感应强度的竖直分量为 B,水的电阻率为 p 键 K 连接到两金属板上。忽略边缘效应,求: (1) 该发电装置的电动势; (2) 通过电阻R 的电流强度; (3) 电阻R 消耗的电功率 水面上方有一阻值为 R 的电阻通过绝缘导线 和电 2、(2007天津)两根光滑的长直金属导轨 MN MN'平行置于同一水平面内,导轨间距为 I , 电阻不计。M M 处接有如图所示的电路,电路中各电阻的阻值均为 R,电容器的电容为 C 。 现有长度也为I ,电阻同为R 的金属棒ab 垂直于导轨放置,导轨处于磁感应强度为 B 方向 竖直向下的匀强磁场中。ab 在外力作用下向右匀速运动且与导轨保持良好接触,在 ab 在运 动距离为s 的过程中,整个回路中产生的焦耳热为 Q 求:⑴ab 运动速度v 的大小;⑵电容 3、( 2010江苏卷)如图所示,两足够长的光滑金属导轨竖直放置,相距为 L , 一理想电流表 与两导轨相连,匀强磁场与导轨平面垂直。一质量为 m 有效电阻为R 的导体棒在距磁场上 边界h 处由静止释放。导体棒进入磁场后,流经电流表的电流逐渐减小,最终稳定为 I 。整 个运动过程中,导体棒与导轨接触良好,且始终保持水平,不计导轨的电阻。求: ⑴磁感应强度的大小 B; ⑵ 电流稳定后,导体棒运动速度的大小 v ; ⑶ 流经电流表电流的最大值 I m 器所带的电荷量q 。

电磁感应计算题专题

电磁感应计算题专题 命题人:蓝杏芳 学号________. 姓名________. 四.计算题 (共15小题) 1. 如图13-17所示,两根足够长的固定平行金属导轨位于同一水平面内,导轨间的中距离为L ,导轨上横放着两根导体棒ab 和cd.设两根导体棒的质量皆m ,电阻皆为R ,导轨光滑且电阻不计,在整个导轨平面内都有竖直向上的匀强磁场,磁感强度为B 。开始时ab 和cd 两导体棒有方向相反的水平初速,初速大小分别为v 0和2v 0,求: (1)从开始到最终稳定回路中产生的焦耳热。 (2)当ab 棒的速度大小变为4 0v 时,回路中消耗的电功率。 2. 如图13-18所示,在空中有一水平方向的匀强磁场区域,区域的上下边缘间距为h ,磁感强度为B 。有一宽度为b(b <h =、长度为L ,电阻为R 。质量为m 的矩形导体线圈紧贴磁场区域的上边缘从静止起竖直下落,当线圈的PQ 边到达磁场 下边缘时,恰好开始做匀速运动。求: (1)线圈的MN 边刚好进入磁场时,线圈的速度大小。 (2)线圈从开始下落到刚好完全进入磁场,经历的时间。 3. 水平面上两根足够长的金属导轨平行固定放置,问距为L , 一端通过导线与阻值为R 的电阻连接;导轨上放一质量为m 的金属杆(见右上图),金属杆与导轨的电阻忽略不计;均匀磁场竖直向下.用与导轨平行的恒定拉力F 作用在金属杆上,杆最终将做匀速运动.当改变拉力的大小时,相对应的匀速运动速度v 也会变化,v 与F 的关系如右下图.(取重力加速度g=10m/s 2) (1)金属杆在匀速运动之前做什么运动? (2)若m=0.5kg,L=0.5m,R=0.5Ω;磁感应强度B 为多大? (3)由v —F 图线的截距可求得什么物理量?其值为多少? 4. 如图1所示,两根足够长的直金属导轨MN 、PQ 平行放置在倾角为θ的绝缘斜面上,两导轨间距为L 0、M 、P 两点间接有阻值为R 的电阻。一根质量为m 的均匀直金属杆ab 放在两导轨上,并与导轨垂直。整套装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直斜面向下,导轨和金属杆的电阻可忽略。让ab 杆沿导轨由静止开始下滑,导轨和金属杆接触 图13-17 图13-18

(完整版)电磁感应综合练习题(基本题型,含答案)

电磁感应综合练习题(基本题型) 一、选择题: 1.下面说法正确的是 ( ) A .自感电动势总是阻碍电路中原来电流增加 B .自感电动势总是阻碍电路中原来电流变化 C .电路中的电流越大,自感电动势越大 D .电路中的电流变化量越大,自感电动势越大 【答案】B 2.如图9-1所示,M 1N 1与M 2N 2是位于同一水平面内的两条平行金属导轨,导轨间距为L 磁感应强度为B 的匀强磁场与导轨所 在平面垂直,ab 与ef 为两根金属杆,与导轨垂直且可在导轨上滑 动,金属杆ab 上有一伏特表,除伏特表外,其他部分电阻可以不计,则下列说法正确的是 ( ) A .若ab 固定ef 以速度v 滑动时,伏特表读数为BLv B .若ab 固定ef 以速度v 滑动时,ef 两点间电压为零 C .当两杆以相同的速度v 同向滑动时,伏特表读数为零 D .当两杆以相同的速度v 同向滑动时,伏特表读数为2BLv 【答案】AC 3.如图9-2所示,匀强磁场存在于虚线框内,矩形线圈竖直下落。 如果线圈中受到的磁场力总小于其重力,则它在1、2、3、4位置 时的加速度关系为 ( ) A .a 1>a 2>a 3>a 4 B .a 1 = a 2 = a 3 = a 4 C .a 1 = a 2>a 3>a 4 D .a 4 = a 2>a 3>a 1 【答案】C 4.如图9-3所示,通电螺线管两侧各悬挂一个小铜环,铜环平面与螺线管截面平行,当电键S 接通一瞬间,两铜环的运动情况是( ) A .同时向两侧推开 B .同时向螺线管靠拢 C .一个被推开,一个被吸引,但因电源正负极未知,无法具体判断 D .同时被推开或同时向螺线管靠拢,但因电源正负极未知,无法具体判断 【答案】 A 图9-2 图9-3 图9-4 图9-1

电磁感应最新计算题集(学生)

电磁感应最新计算题集 1.如图15(a )所示,一端封闭的两条平行光滑导轨相距L ,距左端L 处的中间一段被弯成半径为H 的1/4圆弧,导轨左右两段处于高度相差H 的水平面上。圆弧导轨所在区域无磁场,右段区域存在磁场B 0,左段区域存在均匀分布但随时间线性变化的磁场B (t ),如图15(b )所示,两磁场方向均竖直向上。在圆弧顶端,放置一质量为m 的金属棒ab ,与导轨左段形成闭合回路,从金属棒下滑开始计时,经过时间t 0滑到圆弧顶端。设金属棒在回路中的电阻为R ,导轨电阻不计,重力加速度为g 。 ⑴问金属棒在圆弧内滑动时,回路中感应电流的大小和方向是否发生改变?为什么? ⑵求0到时间t 0内,回路中感应电流产生的焦耳热量。 ⑶探讨在金属棒滑到圆弧底端进入匀强磁场B 0的一瞬间,回路中感应电流的大小和方向。 2.如图甲所示,两根足够长的平行光滑金属导轨固定放置在水平面上,间距L =0.2m ,一端通过导线与阻值为R =1Ω的电阻连接;导轨上放一质量为m =0.5kg 的金属杆,金属杆与导轨的电阻均忽略不计.整个装置处于竖直向上的大小为B =0.5T 的匀强磁场中.现用与导轨平行的拉力F 作用在金属杆上,金属杆运动的v-t 图象如图乙所示.(取重力加速度g =10m/s 2)求: (1)t =10s 时拉力的大小及电路的发热功率. (2)在0~10s 内,通过电阻R 上的电量. 3.如图所示,AB 和CD 是足够长的平行光滑导轨,其间距为l ,导轨平面与水平面的夹角为θ。整个装置处在磁感应强度为B 、方向垂直于导轨平面且向上的匀强磁场中。AC 端连有阻值为R 的电阻。若将一质量为M 、垂直于导轨的金属棒EF 在距 BD 端s 处由静止释放,则棒滑至底端前会有加速和匀速两个运动阶段。现用大小为F 、方向沿斜面向上的恒力把金属棒EF 从BD 位置由静止推至距BD 端s 处,此时撤去该力,金属棒EF 最后又回到BD 端。求: (1)金属棒下滑过程中的最大速度。 (2)金属棒棒自BD 端出发又回到BD 端的整个过程中,有多少电能转化成了内能(金属棒及导轨的电阻不计)? F R B 图甲 t 15 10 5 0 2 4 v(m/s) 图乙 A B C E F B s θ R

电磁感应综合练习题1

高二物理(理班)电磁感应的八种典型案例 【案例1】感应电动势的计算 (1)导体棒平动切割磁感线产生的感应电动势 练习1.如图所示,导轨与电流表相连,导轨的宽度为d,处于向里的大小为B的匀强磁场中,一根导线沿着导轨以速度v向右运动,求导线上产生的感应电动势. (2)导体棒转动产生的感应电动势 练习2.若导体棒半径为r,处于匀强磁场B中,以角速度ω匀速转动,则导线产生的感应电动势的大小是多少? (3)磁场变化产生的感生电动势 练习3.正方形线框边长为L、质量为m、电阻为R,线框的上半部 处于匀强磁场中,磁场的磁感应强度按B=kt的规律均匀增强,细 线能承受的最大拉力为T=2mg,从t=0起经多少时间绳被拉断? 【案例2】感应电流大小计算问题 练习4.由两个同种材料,同样粗细的导线制成圆环a、b已知其半径之比为2:1,在B中充满了匀强磁场,当匀强磁场随着时间均匀变化时,圆环a、b的感应电流之比为多少?

【案例3】阻碍“磁通量的变化” 练习5.判定下列各种情况下灯泡中是否有感应电流,若有则写明在ab 处感应电流的方向 (1)导体棒匀速向右运动 ( (2)导体棒匀加速向右运动 ( (3 )导体棒匀减速向右运动 ( (4)导体棒匀减速向左运动 ( 练习6. (1)当线圈a 中有电流,电流方向为逆时针且大小均匀增加时,线圈b 中的感应电流方向应为( )。 (2)若线圈b 中有电流,电流方向为逆时针且大小均匀增加时,线 圈a 中的感应电流方向应为( )。 【案例4】阻碍导体的相对运动——“跟着走” 练习7.线圈A 闭合,线圈B 开口,当条形磁铁插入线圈的过程中,线圈A 、 B 如何运动? 【案例5】电磁感应的能量问题 练习8.如图所示,导体棒向右匀速运动切割磁感线,已知匀 强磁场为B ,轨道宽度为L ,切割速度为v ,外电阻为R ,导体棒的电阻为R ’,求:安培力及t 时间内所做的功。

《电磁感应+动量》计算题专项

彭水一中高2012级期末复习《电磁感应+动量》计算题专项 1.在如图甲所示的电路中,螺线管匝数n=1500匝,横截面积S=20cm2.螺线管导线电阻r=1.0Ω,R1=4.0Ω,R2=5.0Ω,C=30μF.在一段时间内,穿过螺线管的磁场的磁感应强度B按如图乙所示的规律变化. 求:(1)求螺线管中产生的感应电动势; (2)闭合S,电路电流稳定后,求电阻R1 的电功率; (3)S断开后,求流经R2的电量. 2.如图所示,光滑平行的金属导轨MN和PQ,间距L=1.0 m,与水平面之间的夹角α=30°,匀强磁场磁感应强度B=2.0 T,垂直于导轨平面向上,MP间接有阻值R=2.0Ω的电阻,其它电阻不计,质量m=2.0 kg的金属杆ab垂直导轨放置,用变力F沿导轨平面向上拉金属杆ab,若金属杆ab以恒定加速度a=2 m/s2,由静止开始做匀变速运动,则:(g=10 m/s2) (1) 在5 s内平均感应电动势是多少?通过导体棒的电荷量q (2) 第5 s末,回路中的电流多大? (3) 第5 s末,作用在ab杆上的外力F多大? 3.如图所示,矩形线框的质量m=0.016kg,长L= 0.5m,宽d=0.1m,电阻R=0.1Ω.从离磁场区域高h1=5m处自由下落,刚入匀强磁场时,由于磁场力作用,线框正好作匀速运动. (取g=10m/s2) (1)求磁场的磁感应强度; (2) 如果线框下边通过磁场所经历的时间为△t=0.15s,求磁 场区域的高度h2 (3)求线框从刚开始下落到下边刚要出磁场的过程中产生的 焦耳热? 4.如图所示,光滑的定滑轮上绕有轻质柔软细线,线的一端系一质量为3m的重物,另一端系一质量为m、电阻为r的金属杆。在竖直平面内有间距为L的足够长的平行金属导轨PQ、EF,在QF之间连接有阻值为R的电阻,其余电阻不计,磁感应强度为B0的匀强磁场与导轨平面垂直,开始时金属杆 置于导轨下端QF处,将重物由静止释放,当重物下降h时恰 好达到稳定速度而匀速下降。运动过程中金属杆始终与导轨垂 直且接触良好,(忽略所有摩擦,重力加速度为g),求: (1)电阻R中的感应电流方向;

电磁感应计算题集(学生)

电磁感应最新计算题集(学生)

————————————————————————————————作者:————————————————————————————————日期:

电磁感应最新计算题集 1.如图15(a )所示,一端封闭的两条平行光滑导轨相距L ,距左端L 处的中间一段被弯成半径为H 的1/4圆弧,导轨左右两段处于高度相差H 的水平面上。圆弧导轨所在区域无磁场,右段区域存在磁场B 0,左段区域存在均匀分布但随时间线性变化的磁场B (t ),如图15(b )所示,两磁场方向均竖直向上。在圆弧顶端,放置一质量为m 的金属棒ab ,与导轨左段形成闭合回路,从金属棒下滑开始计时,经过时间t 0滑到圆弧顶端。设金属棒在回路中的电阻为R ,导轨电阻不计,重力加速度为g 。 ⑴问金属棒在圆弧内滑动时,回路中感应电流的大小和方向是否发生改变?为什么? ⑵求0到时间t 0内,回路中感应电流产生的焦耳热量。 ⑶探讨在金属棒滑到圆弧底端进入匀强磁场B 0的一瞬间,回路中感应电流的大小和方向。 2.如图甲所示,两根足够长的平行光滑金属导轨固定放置在水平面上,间距L =0.2m ,一端通过导线与阻值为R =1Ω的电阻连接;导轨上放一质量为m =0.5kg 的金属杆,金属杆与导轨的电阻均忽略不计.整个装置处于竖直向上的大小为B =0.5T 的匀强磁场中.现用与导轨平行的拉力F 作用在金属杆上,金属杆运动的v-t 图象如图乙所示.(取重力加速度g =10m/s 2)求: (1)t =10s 时拉力的大小及电路的发热功率. (2)在0~10s 内,通过电阻R 上的电量. 3.如图所示,AB 和CD 是足够长的平行光滑导轨,其间距为l ,导轨平面与水平面的夹角为θ。整个装置处在磁感应强度为B 、方向垂直于导轨平面且向上的匀强磁场中。AC 端连有阻值为R 的电阻。若将一质量为M 、垂直于导轨的金属棒EF 在距BD 端s 处由静止释放,则棒滑至底端前会有加速和匀速两个运动阶段。现用大小为F 、方向沿斜面向上的恒力把金属棒EF 从BD 位置由静止推至距BD 端s 处,此时撤去该力,金属棒EF 最后又回到BD 端。求: (1)金属棒下滑过程中的最大速度。 (2)金属棒棒自BD 端出发又回到BD 端的整个过程中,有多少电能转化成了内能(金属棒及导轨的电阻不计)? F R B 图 t / 15 10 5 0 2 4 v(m/ 图 A B D C E F B s θ R

物理考试电磁感应综合-导轨模型计算题(精选26题-含答案详解)

电磁感应综合-导轨模型计算题 1.(9分)如图所示,两根间距L=1m 、电阻不计的平行光滑金属导轨ab 、cd 水平放置,一端与阻值R =2Ω的电阻相连。质量m=1kg 的导体棒ef 在外力作用下沿导轨以v=5m/s 的速度向右匀速运动。整个装置处于磁感应强度B=0.2T 的竖直向下的匀强磁场中。求: (1)感应电动势大小; (2)回路中感应电流大小; (3)导体棒所受安培力大小。 【答案】(1)V 1=E (2)0.5A I = (3)0.1N F =安 【解析】 试题分析:(1)导体棒向右运动,切割磁感线产生感应电动势BLv E = 代入数据解得:V 1=E (2)感应电流R E I = 代入数据解得:A 5.0=I (3)导体棒所受安培力BIL F =安 代入数据解得:N 10.F =安 考点:本题考查了电磁感应定律、欧姆定律、安培力。 2.如图所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距1 m ,导轨平面与水平面成θ=37°角,下端连接阻值为R 的电阻.匀强磁场方向与导轨平面垂直,质量为0.2 kg 、电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数为0.25. (1)求金属棒沿导轨由静止开始下滑时的加速度大小. (2)当金属棒下滑速度达到稳定时,电阻R 消耗的功率为8 W ,求该速度的大小. (3)在上问中,若R =2 Ω,金属棒中的电流方向由a 到b ,求磁感应强度的大小与方向. (g 取10 m/s 2 ,sin 37°=0.6,cos 37°=0.8) 【答案】(1)4m/s 2 (2)10m/s (3)0.4T 【解析】 试题分析:(1)金属棒开始下滑的初速为零, V e b a c

(完整版)高中物理电磁感应习题及答案解析

高中物理总复习—电磁感应 本卷共150分,一卷40分,二卷110分,限时120分钟。请各位同学认真答题,本卷后附答案及解析。 一、不定项选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确.全部选对的得4分,选不全的得2分,有选错或不答的不得分. 1.图12-2,甲、乙两图为与匀强磁场垂直放置的两个金属框架,乙图除了一个电阻为零、自感系数为L的线圈外,其他部分与甲图都相同,导体AB以相同的加速度向右做匀加速直线运动。若位移相同,则() A.甲图中外力做功多B.两图中外力做功相同 C.乙图中外力做功多D.无法判断 2.图12-1,平行导轨间距为d,一端跨接一电阻为R,匀强磁场磁感强度为B,方向与导轨所在平面垂直。一根足够长的金属棒与导轨成θ角放置,金属棒与导轨的电阻不计。当金属棒沿垂直于棒的方向以速度v滑行时,通过电阻R的电流强度是() A. Bdv R B.sin Bdv R θ C.cos Bdv R θ D. sin Bdv Rθ 3.图12-3,在光滑水平面上的直线MN左侧有垂直于纸面向里的匀强磁场,右侧是无磁场空间。将两个大小相同的铜质矩形闭合线框由图示位置以同样的速度v向右完全拉出匀强磁场。已知制作这两只线框的铜质导线的横截面积之比是1:2.则拉出过程中下列说法中正确的是()A.所用拉力大小之比为2:1 B.通过导线某一横截面的电荷量之比是1:1 C.拉力做功之比是1:4 D.线框中产生的电热之比为1:2 4.图12-5,条形磁铁用细线悬挂在O点。O点正下方固定一 个水平放置的铝线圈。让磁铁在竖直面内摆动,下列说法中正确的 是() R v a b θ d 图12-1 M N v B 图12-3

相关主题
文本预览
相关文档 最新文档