当前位置:文档之家› 铂科磁芯

铂科磁芯

铂科磁芯
铂科磁芯

磁芯材料知识

磁芯材料知識 摘要: 1.磁芯材料基本概念 ui值磁芯的初始透磁率,表征材料對于磁力線的容納與傳導能力。(ui=B/ H) AL值:電感系數. 表征CORE成品所具備的幫助線圈產生電感的能力.其數值等于單 1.磁芯材料 基本概念 ui值 磁芯的初始透磁率,表征材料對于磁力線的容納與傳導能力。(ui=B/H) AL值:電感系數. 表征CORE成品所具備的幫助線圈產生電感的能力.其數值等于單匝電感值,單位是nH/N2 . 磁滯回線:1﹕B-H CURVES (磁滯曲線) Bms:飽和磁束密度﹐表征材料在磁化過程中﹐磁束密度趨于飽和狀態的物理量﹐磁感應強度單位﹕特斯拉=104高斯﹒ 我們對磁芯材料慢慢外加電流,磁通密度(磁感應強度)也會跟著增加,當電流加至某一程度時我們會發現磁通密度會增加很慢,而且會趨近一漸進線,當趨近這一漸進線時這個時候的磁通密度我們就稱為的飽和磁通密度(Bms) Bms高:表明相同的磁通需要較小的橫截面積,磁性元件體積小

Brms:殘留磁束密度﹐也叫剩余磁束密度﹐表征材料在磁化過程結束以后﹐外磁場消失﹐而材料內部依然尚存少量磁力線的特性﹒ Hms:能夠使材料達到磁飽和狀態的最小外磁場強度﹐單位﹕A/m=104/2π奧斯特﹒ Hc:矯頑力﹐也叫保持力﹐是磁化過程結束以后﹐外磁場消失,因殘留 磁束密度而引起的剩余磁場強度﹒因為剩余磁場的方向与磁化方向一 致﹐所以﹐必須施加反向的外部磁場﹐才可以使殘留磁束密度減小到 零﹒ 從磁滯回線我們可以看出:剩磁大,表示磁芯ui值高。磁滯回線越傾斜,表示Hms越大磁芯的耐電流大。矯頑力越大,磁芯的功率損耗大。 鐵粉芯: 鐵粉芯是磁芯材料四氧化三鐵的通俗說法,主要成分是氧化鐵,價格比較低,飽和磁感應強度在1.4T左右:磁導率范圍從22-100,初始磁導率ui值隨頻率的變化穩定性好,直流電流疊加性能好,但高頻下消耗高。 該材料可以從涂裝顏色來辨認材質,例如:26材:黃色本體/白色底面,52材:綠色本體/藍色底面。該類材料價格便宜,如果感量不很高,該材料是首選。可以根據感量大小和IDC要求,選擇所需材料,8材耐電

磁芯材料知识

磁芯材料知識 摘要:1.磁芯材料基本概念ui值磁芯的初始透磁率,表征材料對于磁力線的容納與傳導能力。(ui=B/ H)AL值:電感系數. 表征CORE成品所具備的幫助線圈產生電感的能力.其數值等于單 1.磁芯材料 基本概念 ui值 磁芯的初始透磁率,表征材料對于磁力線的容納與傳導能力。(ui=B/ H) AL值:電感系數. 表征CORE成品所具備的幫助線圈產生電感的能力.其數值等于單匝電感值,單位是nH/N2 . 磁滯回線:1﹕B-H CURVES (磁滯曲線) Bms:飽和磁束密度﹐表征材料在磁化過程中﹐磁束密度趨于飽和狀態的物理量﹐磁感應強度單位﹕特斯拉=104高斯﹒ 我們對磁芯材料慢慢外加電流,磁通密度(磁感應強度)也會跟著增加,當電流加至某一程度時我們會發現磁通密度會增加很慢,而且會趨近一漸進線,當趨近這一漸進線時這個時候的磁通密度我們就稱為的飽和磁通密度(Bms)

Bms高:表明相同的磁通需要較小的橫截面積,磁性元件體積小 Brms:殘留磁束密度﹐也叫剩余磁束密度﹐表征材料在磁化過程結束以后﹐外磁場消失﹐而材料內部依然尚存少量磁力線的特性﹒ Hms:能夠使材料達到磁飽和狀態的最小外磁場強度﹐單位﹕A/m=104/ 2π奧斯特﹒ Hc:矯頑力﹐也叫保持力﹐是磁化過程結束以后﹐外磁場消失,因殘留磁束密度而引起的剩余磁場強度﹒因為剩余磁場的方向与磁化方向一致﹐所以﹐必須施加反向的外部磁場﹐才可以使殘留磁束密度減小到零﹒ 從磁滯回線我們可以看出:剩磁大,表示磁芯ui值高。磁滯回線越傾斜,表示Hms越大磁芯的耐電流大。矯頑力越大,磁芯的功率損耗大。 鐵粉芯: 鐵粉芯是磁芯材料四氧化三鐵的通俗說法,主要成分是氧化鐵,價格比較低,飽和磁感應強度在1.4T左右:磁導率范圍從22-100,初始磁導率ui值隨頻率的變化穩定性好,直流電流疊加性能好,但高頻下消耗高。

磁芯参数参看

z变压器基础知识 1、变压器组成: 原边(初级primary side ) 绕组 副边绕组(次级secondary side ) 原边电感(励磁电感)‐‐magnetizing inductance 漏感‐‐‐leakage inductance 副边开路或者短路测量原边 电感分别得励磁电感和漏感 匝数比:K=Np/Ns=V1/V2 2、变压器的构成以及作用: 1)电气隔离 2)储能 3)变压 4)变流 ●高频变压器设计程序: 1.磁芯材料 2.磁芯结构 3.磁芯参数 4.线圈参数 5.组装结构 6.温升校核 1.磁芯材料 软磁铁氧体由于自身的特点在开关电源中应用很广泛。 其优点是电阻率高、交流涡流损耗小,价格便宜,易加 工成各种形状的磁芯。缺点是工作磁通密度低,磁导率 不高,磁致伸缩大,对温度变化比较敏感。选择哪一类 软磁铁氧体材料更能全面满足高频变压器的设计要求, 进行认真考虑,才可以使设计出来的变压器达到比较理 想的性能价格比。 2.磁芯结构 选择磁芯结构时考虑的因数有:降低漏磁和漏感, 增加线圈散热面积,有利于屏蔽,线圈绕线容易,装配 接线方便等。 漏磁和漏感与磁芯结构有直接关系。如果磁芯不需 要气隙,则尽可能采用封闭的环形和方框型结构磁芯。 3.磁芯参数: 磁芯参数设计中,要特别注意工作磁通密度不只是受磁化曲线限制,还要受损耗的限制,同时还与功率传送的工作方式有关。 磁通单方向变化时:ΔB=Bs‐Br,既受饱和磁通密度限制,又更主要是受损耗限制,(损耗引起温升,温升又会影响磁通密度)。工作磁通密度Bm=0.6~0.7ΔB 开气隙可以降低Br,以增大磁通密度变化值ΔB,开气隙后,励磁电流有所增加,但是可以减小磁芯体积。对于磁通双向工作而言: 最大的工作磁通密度Bm,ΔB=2Bm。在双方向变化工作模式时,还要注意由于各种原因造成励磁的正负变化的伏秒面积不相等,而出现直流偏磁问题。可以在磁芯中加一个小气隙,或者在电路设计时加隔直流电容。 4.线圈参数: 线圈参数包括:匝数,导线截面(直径),导线形式,绕组排列和绝缘安排。 导线截面(直径)决定于绕组的电流密度。通常取J为2.5~4A/mm2。导线直径的选择还要考虑趋肤效应。如必要,还要经过变压器温升校核后进行必要的调整。 4.线圈参数: 一般用的绕组排列方式:原绕组靠近磁芯,副绕组反馈绕组逐渐向外排列。下面推荐两种绕组排列形式: 1)如果原绕组电压高(例如220V),副绕组电压低,可以采用副绕组靠近磁芯,接着绕反馈绕组,原绕组在最外层的绕组排列形式,这样有利于原绕组对磁芯的绝缘安排; 2)如果要增加原副绕组之间的耦合,可以采用一半原绕组靠近磁芯,接着绕反馈绕组和副绕组,最外层再绕一半原绕组的排列形式,这样有利于减小漏感。 5.组装结构:

常用磁芯材料总结

常用磁芯材料 (一)粉芯类 1.磁粉芯 可以隔绝涡流,材料适用于较高频率;材料具有低导磁率及恒导磁特性,磁导率随频率的变化也就较为稳定。主要用于高频电感。 常用的磁粉芯有铁粉芯、坡莫合金粉芯及铁硅铝粉芯三种。 (1).铁粉芯 在粉芯中价格最低。磁导率范围从22~100; 初始磁导率me随频率的变化稳定性好;直流电流叠加性能好;但高频下损耗高。 (2).坡莫合金粉芯 坡莫合金粉芯主要有钼坡莫合金粉芯(MPP)及高磁通量粉芯 MPP主要特点是:磁导率范围大,14~550;在粉末磁芯中具有最低的损耗;温度稳定性极佳,在不同的频率下工作时无噪声产生。粉芯中价格最贵。 高磁通粉芯主要特点是:磁导率范围从14~160;在粉末磁芯中具有最高的磁感应强度,最高的直流偏压能力;磁芯体积小。 价格低于MPP。 (3).铁硅铝粉芯 铁硅铝粉芯主要是替代铁粉芯,损耗比铁粉芯低80%,可在8KHz以上频率下使用;导磁率从26~125;在不同的频率下工作时无噪声产生;具有最佳的性能价格比。主要应用于交流电感、输出电感、线路滤波器、功率因素校正电路等。 2. 软磁铁氧体 软磁铁氧体是以Fe2O3为主成分的亚铁磁性氧化物。有Mn-Zn、Cu-Zn、Ni-Zn等几类,其中Mn-Zn铁氧体的产量和用量最大,Mn-Zn铁氧体的电阻率低,一般在100KHZ以下的频率使用。Cu-Zn、Ni-Zn铁氧体在100kHz~10兆赫的无线电频段的损耗小。 由于软磁铁氧体不使用镍等稀缺材料也能得到高磁导率,粉末冶金方法又适宜于大批量生产,因此成本低,又因为是烧结物硬度大、对应力不敏感,在应用上很方便。而且磁导率随频率的变化特性稳定,在150kHz以下基本保持不变。随着软磁铁氧体的出现,磁粉芯的生产大大减少了,很多原来使用磁粉芯的地方均被软磁铁氧体所代替。 综上所述,可以选择Mn-Zn铁氧体作为磁芯的材料。 轴套材料选择

磁芯资料

1.磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2.软磁材料的常用磁性能参数 饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。 剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。 矩形比:Br∕Bs 矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。 磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。 初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。 居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。 损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。在自由静止空气中磁芯的损耗与磁芯的温升关系为: 总功率耗散(mW)/表面积(cm2) 3.软磁材料的磁性参数与器件的电气参数之间的转换

单端反激式开关电源磁芯尺寸和类型的选择

单端反激式开关电源磁芯尺寸和类型的选择字体大小:大|中|小2008-08-28 12:53 - 阅读:1655 - 评论:1 单端反激式开关电源磁芯尺寸和类型的选择徐丽红王佰营wbymcs51.blog.bokee .net A、InternationalRectifier 公司--56KHz 输出功率推荐磁芯型号 0---10WEFD15 SEF16 EF16 EPC17 EE19 EF(D)20 EPC25 EF(D)25 10-20WEE19 EPC19 EF(D)20 EE,EI22 EF(D)25 EPC25 20-30WEI25 EF(D)25

EPC25 EPC30 EF(D)30 ETD29 EER28(L) 30-50WEI28 EER28(L) ETD29 EF(D)30 EER35 50-70WEER28L ETD34 EER35 ETD39 70-100WETD34 EER35 ETD39 EER40 E21 摘自 InternationalRectifier,AN1018- “应用 IRIS40xx 系列单片集成开关 IC 开关电源的反激式变压器设计” B、ELYTON公司https://www.doczj.com/doc/6a8075351.html, 型号输出功率( W) <5 5-10 10-20 20-50 50-100 100-200 200-500 500-1K

EI EI12.5 EI16 EI19 EI25 EI40 -- EI50 EI60 EE EE13 EE16 EE19 EE25 EE40 EE42 EE55 EE65 EF EF12.6 EF16 EF20 EF25 EF30 EF32 EFD -- EFD12 EFD15 EFD20 EFD25 EFD30 EPC -- EPC13 EPC17 EPC19 EPC25 EPC30 EER EER9.5 EER11 EER14.5 EER28 EER35 EER42 EER49 -- ETD ETD29 ETD34 ETD44 ETD49 ETD54 -- EP EP10 EP13 EP17 EP20 -- RM RM4 RM5 RM6 RM10 RM12 POT POT1107 POT1408 POT1811 POT2213POT3019 POT3622 POT4229 -- PQ -- -- -- PQ2016 PQ2625 PQ3230 PQ3535 PQ4040 EC ---------------------------- -- EC35 EC41 EC70 摘自 PowerTransformers OFF-LINE Switch Mode APPLICATION NOTES

磁芯材料(基础)

2.软磁材料的常用磁性能参数 饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。 剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。 矩形比:Br∕Bs 矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。 磁导率m:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。 初始磁导率mi、最大磁导率mm、微分磁导率md、振幅磁导率ma、有效磁导率me、脉冲磁导率mp。 居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。 磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe的方法是减薄磁性材料的厚度t及提高材料的电阻率ρ。在自由静止空气中磁芯的损耗与磁芯的温升关系为: 总功率耗散(mW)/表面积(cm2) 3.软磁材料的磁性参数与器件的电气参数的转换 在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。设计软磁器件通常包括三个步骤:正确选用磁性材料;合理确定磁芯的几何形状及尺寸;根据磁性参数要求,模拟磁芯的工作状态得到相应的电气参数。 二、软磁材料的发展及种类 1.软磁材料的发展 软磁材料在工业中的应用始于19世纪末。随着电力工及电讯技术的兴起,开始使用低碳钢制造电机和变压器,在电话线路中的电感线圈的磁芯中使用了细小的铁粉、氧化铁、细铁丝等。到20世纪初,研制出了硅钢片代替低碳钢,提高了变压器的效率,降低了损耗。直到现在硅钢片在电力工业用软磁材料中仍居首位。到20年代,无线电技术的兴起,促进了高导磁材料的发展,出现了坡莫合金及坡莫合金磁粉芯等。从40年代到60年代,是科学技术飞速发展的时期,雷达、电视广播、集成电路的发明等,对软磁材料的要求也更高,生产出了软磁合金薄带及软磁铁氧体材料。进入70年代,随着电讯、自动控制、计算机等行业的发展,研制出了磁头用软磁合金,除了传统的晶态软磁合金外,又兴起了另一类材料—非晶态软磁合金。 2.常用软磁磁芯的种类 铁、钴、镍三种铁磁性元素是构成磁性材料的基本组元。 按(主要成分、磁性特点、结构特点)制品形态分类: (1)粉芯类:磁粉芯,包括:铁粉芯、铁硅铝粉芯、高磁通量粉芯(HighFlux)、坡莫合金粉 芯(MPP)、铁氧体磁芯 (2)带绕铁芯:硅钢片、坡莫合金、非晶及纳米晶合金 三常用软磁磁芯的特点及应用 (一)粉芯类 1.磁粉芯 磁粉芯是由铁磁性粉粒与绝缘介质混合压制而成的一种软磁材料。由于铁磁性颗粒很小(高频下使用的为0.5~5微米),又被非磁性电绝缘膜物质隔开,因此,一方面可以隔绝涡流,材料适用于较高频率;另一方面由于颗粒之间的间隙效应,导致材料具有低导磁率及恒导磁特性;又由于颗粒尺寸小,基本上不发生集肤现象,磁导率随频率的变化也就较为稳定。主

磁芯参数表

常用磁芯参数表 【EER磁芯】 ■ 用途:高频开关电源变压器、匹配变压器、扼流变压器等。 【EE磁芯】 ■ 用途:电源转换用变压器及扼流圈、通讯及其他电子设备变压器、滤波器、电感器及扼流圈、脉冲变压器等。

【ETD磁芯】 ■ 用途:电源转换用变压器及扼流圈、通讯及其他电子设备变压器、滤波器。 【EI 磁芯】 ■ 用途:高频开关电源变压器、功率变压器、整流变压器、电压互感器等。 【ET 磁芯】 ■ 用途:滤波变压器 【EFD 磁芯】 ■ 用途:高频开关电源变压器器、整流变压器、开关变压器等。

【UF 磁芯】 ■ 用途:整流变压器、脉冲变压器、扼流变压器、电源变压器等。 【PQ 磁芯】 ■ 用途高频开关电源变压器、整流变压器等。 【RM 磁芯】 ■ 用途:高频开关电源变压器、整流变压器、屏蔽变压器、脉冲变压器、脉冲功率变压器、扼流变压器、滤波变压器。 【EP 磁芯】 ■ 用途:功率变压器、宽频变压器、屏蔽变压器、脉冲变压器等。

【H 磁芯】 ■ 用途:宽带变压器、脉冲变压器、脉冲功率变压器、隔离变压器、滤波变压器、扼流变压器、匹配变压器等。 软磁铁氧体磁芯形状与尺寸标准(一) 软磁铁氧体磁芯形状 软磁铁氧体是软磁铁氧体材料和软磁铁氧体磁芯的总称。软磁铁氧体磁芯是用软磁铁氧体材料制成的元件或零件,或是由软磁铁氧体材料根据不同形式组成的磁路。磁芯的形状基本上由成型(形)模具决定,而成型(形)模具又根据磁芯的形状进行设计与制造。 磁芯按磁力线的路径大致可分两大类;磁芯按具体形状分,有各种各样: 1.1磁芯按磁力线路径分类 磁芯按使用时磁化过程所产生磁力线的路径可分为开路磁芯和闭路磁芯两类。 第一类为开路磁芯。这类磁芯的磁路是开启的(open magnetic circuits),通过磁芯的磁通同时要通过周围空间(气隙)才能形成闭合磁路。开路磁芯的气隙占磁路总长度的相当部分,磁阻很大,磁路中的部分磁通在达到气隙以前就已离开磁芯形成漏磁通。因而,开路磁芯在磁路各个截面上的磁通不相等,这是开路磁芯的特点。由于开路磁芯存在大的气隙,磁路受到退磁场作用,使磁芯的有效磁导率μe比材料的磁导率μi有所降低,降低的程度决定于磁芯的几何形状及尺寸。 开路磁芯有棒形、螺纹形、管形、片形、轴向引线磁芯等等。IEC 1332《软磁铁氧体材料分类》标准中称开路磁芯为OP类磁芯。 第二类磁芯为闭路磁芯。这类磁芯的磁路是闭合的(closed magnetic circuits),或基本上是闭合的。IEC 1332称闭路磁芯为CL类磁芯。磁路完全闭合的磁芯最典型的是环形磁芯。此外,还有双孔磁芯、多孔磁芯等等。 目前大量生产和使用的闭路磁芯是组合型的闭磁路磁芯,它由二个相同形状尺寸或不同形状尺寸的磁芯配对后才能形成闭合磁路,为EE、UU磁芯或EI、UI磁芯。这类磁芯的接触面间可能存在气隙,组合后磁路不一定完全闭合,因此,组合型闭路磁芯的有效磁导率基本上等于磁芯材料的磁导率,但不完全等于磁芯材料的磁导率。 1.2 磁芯按形状分类

磁芯材料分析

磁性材料 一. 磁性材料的基本特性 1. 磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2. 软磁材料的常用磁性能参数 饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。 剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。 矩形比:Br∕Bs 矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。 磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。 初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。 居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。 损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝f2 t2 / ,ρ 降低, 磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。在自由静止空气中磁芯的损耗与磁芯的温升关系为: 总功率耗散(mW)/表面积(cm2) 3. 软磁材料的磁性参数与器件的电气参数之间的转换 在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。设计软磁器件通常包括三个步骤:正确选用磁性材料;合理确定磁芯的几何形状及尺寸;根据磁性参数要求,模拟磁芯的工作状态得到相应的电气参数。 二、软磁材料的发展及种类 1. 软磁材料的发展 软磁材料在工业中的应用始于19世纪末。随着电力工及电讯技术的兴起,开始使用低碳钢制造电机和变压器,在电话线路中的电感线圈的磁芯中使用了细小的铁粉、氧化铁、细铁丝等。到20世纪初,研制出了硅钢片代替低碳钢,提高了变压器的效率,降低了损耗。直至现在硅钢片在电力工业用软磁材料中仍居首位。到20年代,无线电技术的兴起,促进了高导磁材料的发展,出现了坡莫合金及坡莫合金磁粉芯等。从40年代到60年代,是科学技术飞速发展的时期,雷达、电视广播、集成电路的发明等,对软磁材料的要求也更高,生产出了软磁合金薄带及软磁铁氧体材料。进入70年代,随着电讯、自动控制、计算机等行业的发展,研制出了磁头用软磁合金,除了传统的晶态软磁合金外,又兴起了另一类材料—非晶态软磁合金。2. 常用软磁磁芯的种类 铁、钴、镍三种铁磁性元素是构成磁性材料的基本组元。 按(主要成分、磁性特点、结构特点)制品形态分类: (1) 粉芯类:磁粉芯,包括:铁粉芯、铁硅铝粉芯、高磁通量粉芯(High Flux)、坡莫合金粉芯(MPP)、铁氧体磁芯

磁芯各参数详解

一、磁芯初始磁导率 磁感应强度与磁场强度的比值称为磁导率。 初始磁导率高:相同圈数感值大,反之亦然; 初始磁导率高:相同电流下容易饱和,反之亦然; 初始磁导率高:低频特性好,高频差,反之亦然; 初始磁导率高:相同产品价格高,反之亦然; 1、磁导率的测试仪器功能 磁导率的测量是间接测量,测出磁心上绕组线圈的电感量,再用公式计算出磁心材料的磁导率。所以,磁导率的测试仪器就是电感测试仪。在此强调指出,有些简易的电感测试仪器,测试频率不能调,而且测试电压也不能调。例如某些电桥,测试频率为100Hz 或1kHz,测试电压为0.3V,给出的这个0.3V并不是电感线圈两端的电压,而是信号发生器产生的电压。至于被测线圈两端的电压是个未知数。如果用高档的仪器测量电感,例如Agilent 4284A精密LCR测试仪,不但测试频率可调,而且被测电感线圈两端的电压及磁化电流都是可调的。了解测试仪器的这些功能,对磁导率的正确测量是大有帮助的。 2、材料磁导率的测量方法和原理 说起磁导率μ的测量,似乎非常简单,在材料样环上随便绕几匝线圈,测其电感,

找个公式一算就完了。其实不然,对同一只样环,用不同仪器,绕不同匝数,加不同电压或者用不同频率都可能测出差别甚远的磁导率来。造成测试结果差别极大的原因,并非每个测试人员都有精力搞得清楚。本文主要讨论测试匝数及计算公式不同对磁导率测量的影响。 2.1 计算公式的影响 大家知道,测量磁导率μ的方法一般是在样环上绕N匝线圈测其电感L,因为可推得L的表达式为: L=μ0 μN 2A/l (1) 所以,由(1)式导出磁导率的计算公式为: μ=Ll/μ0N 2A(2)式中:l为磁心的磁路长度,A为磁心的横截面积。 对于具有矩形截面的环型磁芯,如果把它的平均磁路长度l=π(D+d)/2就当作磁心的磁路长度l,把截面积A=h(D-d)/2,μ0=4π×10-7都代入(2)式得 二、饱和磁通密度 1.什么是磁通:磁场中垂直通过某一截面的磁感应线总数,称为磁通量(简称磁通) 2.什么是磁通密度:单位面积垂直通过的磁感应线的总数(磁通量)称为磁通密度,磁通密度即磁感应强度。

变压器输出功率与磁芯尺寸的关系

变压器输出功率与磁芯尺寸的关系 发布者:admin 发布时间:2012-4-20 阅读:64次 要使变压器输出更大的功率,我们希望在电压一定的情况下,圈数要尽可能的少、导线尽可能的粗。 这样才有利于提供较大的电流,输出更大的功率。前者需要较大的磁芯截面积,后者需要较大的磁芯窗口面积。因此要获得较大的输出功率磁芯尺寸必须够大才行。 变压器初级绕组的圈数可用下式来算: N = k *10^5 * U /(f *Ae* Bmax ) k 为最大导通时间与周期之比,通常取k=0.4; U 是初级绕组输入电压(V),(近似等于直流输入电压); f 是变压器的工作频率(KHZ); Ae 是磁芯的截面积(cm2); Bmax 是允许的磁通密度最大变化幅度(G) 因此,在一定电压下,增大截面积Ae、提高工作频率f和选择更大的峰值磁通密度Bmax,都有利于减少圈数,提高输出功率。但是,磁芯的损耗(铁损)是按Bmax的2.7次幂和f的1.7次幂呈指数增长的,Bmax还受磁芯饱和的限制。因此,提高工作频率f和选择更大的峰值磁通密度Bmax都是有限度的。大多数适合做开关电源的铁氧体磁芯频率通常限制在10-50KHZ以内,Bmax限制在2000G (高斯)以内,一般取Bmax=1600G较为合适。因此,功率主要靠磁芯截面积Ae、其次靠工作频率f控制。 但必须明确的是,这种控制关系是间接的而不是直接的,Ae加大和f提高只是表示对同样的电压,允许绕的圈数更少,只有实际把圈数减少了才能提高功率。如果在同样材料的一个大磁芯和一个小磁芯上,用一样的导线绕同样的圈数,对同样的输入电压输出功率是基本相同的。同样,如果一个做好的变压器,仅仅靠改变工作频率,也是不会使输出功率提高的。 联想到楼主张伟明的问题,因为变压器已经做好,所以我建议提高输入电压来提高功率;如果从变压器入手的话,可以尝试把导线适当加粗,同时把频率提高一些,以允许圈数能有所减少,这样就可加大输出功率。 导线加粗受到磁芯窗口面积Ac限制。用截面积为Ad的导线绕N圈,占用的窗口面积为: Awc = N *Ad = k * 10^5 * U *Ad / (f *Ae* Bmax ) 设,初级绕组窗口占用系数为Sn =Awc / Ac, Ad用电流I(有效值)和允许的电流密度J表示为 Ad=I/J/100,(Ad-平方厘米,I-A有效值,J-A/平方毫米) 则上式可写成:Ac* Sn = k * U *I*10^3 / ( f *Ae* Bmax * J) 或,U*I = Sn * Bmax * J * f *Ae* Ac * 10^-3 / k 因为输入功率等于输入电压U与电流平均值k*Ip的乘积,而电流有效值I 与峰值Ip的关系为 Ip= 1.58*I,所以输入功率Pi = 1.58*k*U*I = 1.58*Sn * Bmax * J * f *Ae* Ac * 10^-3 再乘上效率Ef就得到最大输出功率的表达式

磁芯材料类别

据这个电感的电感量量以及所通过的电流,由此计算出需要的漆包线的直径和绕制的圈数,大致估算出体积,然后再选购磁芯。 1、铁粉芯。 铁粉芯是工字电感磁芯中最常用的一种软磁铁粉芯,这种磁芯一般是通过采用纯铁粉,加入绝缘剂、粘结剂然后挤压成型而成的。这类磁芯的表面电阻较小,初始导磁率为75以下,拥有很高的饱和磁通密度B,因此它主要用于功率型的磁环电感的各种开关电源上。 2、镍锌磁芯。 工字电感磁芯中应用的镍锌磁芯属于一种软磁铁氧体磁芯,它具有电阻高、导磁率偏低、初始导磁率范围在5~1500的特点。另外,由于这类镍锌磁芯具有较高的表面电阻(100MΩ以上),因此一般用于中高频电路上。 3、锰锌磁芯。 锰锌磁芯与镍锌磁芯一样,也是一种软磁磁芯,具有表面电阻低、较高的初始导磁率、很高的饱和磁通密度,所以它是100KHz左右最理想的功率电感。而且由于磁芯的初始导磁率越高,其表面电阻越低,因此它一般使用在1MHz以下电路。 4、铁氧体磁芯。 工字电感磁芯中常用的铁氧体磁芯是一种高频导磁材料,主要由铁(Fe),锰(Mn),和锌(Zn)3种金属元素组成。这种铁氧体磁芯可以增大导磁率,提高电感品质因素的特点,但是它最大特点是高渗透性,

良好的温度特性,和低衰减率。因此它是制造宽带变压器,可调电感器及其他一些从10kHz到50MHz的高频电路等应用最理想的一种材料。 工字磁芯有镍锌也有锰锌。镍锌u值低,抗饱和能力强、卷数多。锰锌u值高抗饱和能力弱些需卷数少。常见以扼流卷电感为主。磁棒属1000u/2000u中波磁棒。有扁有圆。属锰锌材料。现在工字磁芯里有高u值品种为贴片用工字磁芯,Dc/Dc较常见,材料为95/99锰锌料、u值在10000左右。镍锌材料电阻率较大,外观粗糙些有颗粒状。锰锌料电阻率低、表面光滑、有光泽。以导磁率400为中线400u以下镍锌为主400u以上锰锌为主

最新常用铁氧体磁芯资料

常用铁氧体磁芯资料

PM型磁芯PM CORES 型号尺寸Dimensions(mm) Type A B C D E F PM50 49.15±0.85 39.65±0.65 19.70±0.30 5.50±0.10 26.80±0.40 38.80±0.20 PM62 61.00±1.00 48.0min 25.00±0.70 5.30±0.30 33.80±0.60 48.80±0.50 PM74 74.00 0 57.0min 29.00±1.00 5.40±0.30 41.00±0.80 59.00±0.60 -3.0 PM87 87.00 +2.0 66.5min 31.70±1.50 8.50±0.40 48.40±0.80 70.00±0.80 -3.0 PM114 114.00 0 88.0min 42.00±1.50 5.40±0.40 63.80±0.80 92.50±0.50 -5.0 型号磁芯参数Core parameter 重量LP2 LP3 Type C1 (mm- 1) Ae (mm2) le (mm) Ve (mm3) weight (g/pr.) AL(nH/N2 ±25%) Pc(W) (max) AL(nH/N2 ±25%) Pc(W) (max) PM50 0.227 370 84.0 31000 140 7700 3.1 PM62 0.190 570 109 62000 385 9700 6.2 PM74 0.162 790 128 101000 470 10000 3.5* PM87 0.161 910 146 133000 817 13000 4.0* 13000 2.7* PM114 0.116 1720 200 344000 1886 18000 10.3* 16000 6.9* 注:AL:1kHz,0.5mA,100Ts Pc:25kHz,200mT,100℃ 100kHz,200mT,100℃ EE型磁芯 EE CORES

磁芯种类和AP法选磁芯

磁芯分为铁氧体磁芯和合金类磁芯 铁氧体磁芯(常用的):锰锌系列,镍锌系列 铁氧体磁芯锰锌系镍锌系 组成 71%,MnO 20%, 其他为ZnO 50%,NiO 24%,其他为ZnO 特点电阻率高(10omh-cm) 铁芯损耗低 居里温度高电阻率高(omh-cm) 铁芯损耗较锰锌系高 工作频率高 居里温度高 形状EE,ER,EI,PQ,RM,POT DR,R,环形 用途功率变压器,EMI共模滤 波器,储能电感 常模滤波器,储能电感 合金类 磁芯 硅钢片铁粉芯铁硅铝合金铁镍合金钼坡莫合金 组成硅,钢极细的 铁粉和 有机材 料粘合铝6%,硅 9%,铁85% 组合成 镍50%, 铁50% 组合而 成 钼2%,铁17%, 镍81%组成 特点极高的磁导率 (μ约 60000) 很高的饱和磁 通密度 (0.6T~1.9T) 电阻率非常低 (取决于硅含 量),故使用频 率不高 成本低廉磁导率 在10~75 之间 低成本 铁芯损 耗很高 磁导率在 26~125之 间 成本中等 铁芯损耗低 饱和磁 通密度 高于铁 硅铝合 金 成本高 于铁硅 铝合金 铁芯损 耗于铁 硅铝合 金和铁 粉芯之 间 磁导率在14~550 之间 饱和磁通密度最 高 成本最高 铁芯损耗最低, 稳定性最好 型式片状或带状以 及加工后的O 型,R型等EE,ER, 环形等 环形环形环形根据变压器用途选磁芯: PQ功率磁芯:

功率传输变压器,开关电源变压器,滤波电感器,宽频及脉冲变压器,转换电源变压器 主要材质:TP3,TP4 EP型高导磁芯: 主要用于滤波器波形整理,消除杂波,使视频清晰或音频保真 根据工作频率选择磁芯适用的工作频率范围 TP3材质温度升高,功率呈下降趋势,中心工 作频率25KHz—200KHz TP4材质中心工作频率在200KHz—300KHz TH7,TH10,TH12材质中心工作频率小于150KHz 根据功率大小选择磁芯 小于5W可用磁芯ER9.5,ER11.5,EE8.3,EE10,EE13, EP7,EP10,RM4,UI19.8,URS7 5—10W可用磁芯ER20,EE19,RM5,GU14,EI22, EF16,EP13,UI11.5 10—20W可用磁芯ER25,EE20,EE25,RM6,GU18, EF20 20—50W可用磁芯ER28,EI28,EE28,EE30,EF25, RM8,GU22,PQ20系列,EFD20 50—100W可用磁芯ER35,ETD34,EE35,EI35,EF30, RM10,GU30,PQ26系列 100—200W可用磁芯ER40,ER42,EI40,RM12,GU36, PQ32系列 200—500W可用磁芯ER49,EC53,EE42,EE55,RM14, GU42,PQ35系列,PQ40系列,UU66 500W以上可用磁芯ER70,EE65,EE85,GU59,PQ50 系列,UU80,UU93 根据滤波器电感量大小: AL=(L/)*1000000() (准确的说法是叫电感系数,他是为了便于开关电源的匝数引入的,(N*N=Lp/Al 其中N为线圈的匝数,Lp为线圈的电感量,Al为电感系数)一般手册上给的是1匝线圈的电感量,有的给出的是1000的电感量.1mH=1000uH 1uH=1nH ,nH(纳亨) UU型磁芯1300—6000

磁芯材质对照表

ACME P4P41P42P43 P46P5P51P52 S3 TDK PC40PC44PC90PC95 PC50PC50NICERA NC-2H 2HM5 BM272M 5M EPCOS N67,N87N92N49N49FERROXCUBE 3C85,3C903C963C923C933F33F35 3R1 DMEGC DMR40DMR44DMR2KB DMR50TDG TP4TP4A TP4S TP5 TP5A TOKIN BH2BH1 B40FDK 6H207H10MAGNETICS P R K THOMSON F1TOMITA 2F8,2G8JFE(KAWTATETSU)MB3MB4MBT1 MC2 SAMWHA PL-5,PL-7PL-11PL-F1HS-1 ISU PM7PM11 BM15 PM12FM4 FM5HITACHI ML24D ML12D FAIR-RITE 7885 FERRITE INTˇTSF-7099TSF-7060 TSF-5099 KASCHKE K2008ISKRA 45G 55G 35G 75G ACME A041A043A05A07A10A101 A102 A121A151TDK DN45 DNW45 H5B H5B2H5C2H5C4H5C3NICERA NC-5Y NC-7NC-10H 10TB 12H 15H EPCOS T57N30T35/T37T38T38T42T46FERROXCUBE 3.00E+273E25/3E27 3.00E+05 3.00E+55 3.00E+06 3.00E+07DMEGC DMR4KDC DMR5K DMR7K DMR10K DMR12K DMR15K TDG TS5TS7TS10/TS10 A TH10TS13TS15TOKIN 5H 7H 10H 12H 15H FDK 2H062H07 2H102H15MAGNETICS J W H THOMSON T6,T6A T4A,T4NEOSID F-830F-860F-938F-942TOMITA 2F1 2.00E+01 2.00E+02 2H22H1JFE(KAWTATETSU)MA055MA070MA100 MA120 MA150SAMWHA SM50SM70S SM100SM150 STEWARD 36 46 353740KRVSTINEL K82K86K87HITACHI MQ53D MP70D MP10T MP15T FAIR-RITE 7576FERRITE INTˇTSF-3000 TSF-010K FERRONICS BE B T V KASCHKE K5000K10000K12000K15000ISKRA 19G 22G 12G 32G 52G ACME N10 N2N4 N42N43 TDK DN45 NICERA WT-10 2B EPCOS T57N48N45M33FERROXCUBE 3.00E+283B7 3B46,3S5 3D3 DMEGC DMR4KDC TDG TH2SAMWHA SM43T SM23T SM8T ISU BM30 STEWARD 36 HITACHI MQ25D 凝?

磁芯材料的介绍

电力电子电路常用磁芯元件的设计 一、常用磁性材料的基本知识 磁性元件可以说是电力电子电路中关键的元件之一,它对电力电子装置的体积、效率等有重要影响,因此,磁性元件的设计也是电力电子电路系统设计的重要环节。磁性材料有很多种类,特性各异,不同的应用场合有不同的选择,以下是几种常用的磁性材料。 1.低碳钢 低碳钢是一种最常见的磁性材料,这种材料电阻率很低,因此涡流损耗较大,实际应用时常制成硅钢片。硅钢片是一种合金材料(通常由97%的铁和3%的硅组成),它具有很高的磁导率,并且每一薄片之间相互绝缘,使得材料的涡流损耗显著减小。磁芯损耗取决于材料的厚度与硅含量,硅含量越高、电阻率越大。这种材料大多应用于低频场合,工频磁性元件常用这种材料。 2.铁氧体 随着工作频率的提高,对磁芯损耗的要求更高,硅钢片由于制造工艺的限制,已经很难满足这种要求,铁氧体就是在这种形势下出现的。 铁氧体是一种暗灰色或者黑色的陶瓷材料。铁氧体的化合物是MeFe2O4,这里Me代表一种或几种二价的金属元素,例如,锰、锌、镍、钴、铜、铁或镁。这些化合物在特定的温度范围内表现出良好的磁性能,但是如果超出某个温度值,磁性将失去,这个温度称为居里温度(T c)。铁氧体材料非常容易磁化,并且具有相当高的电阻率。这些材料不需要像硅钢片那样分层隔离就能用在高频的应用场合。 高频铁氧体磁性材料主要可分为两大类:锰锌(MnZn)铁氧体材料和镍锌(NiZn)铁氧体材料。比较而言,NiZn材料的电阻率较高,一般认为在高频应用场合下具有较低的涡流损耗。但是最近的研究表明,如果颗粒的尺寸足够小而且均匀,在几兆赫兹范围内MnZn材料显示出较NiZn材料更为优越的特性,例如,TDK公司的H7F材料以及MAGNETICS公司的K材料就是采用这种技术,适用于兆赫兹工作频率下工作的新型铁氧体材料。 3.粉芯材料

磁芯规格对照表

Dimensions (mm)Ap Ae Aw A L Le Ve Wt P CL 100kHz 200mT Pt 100kHz 幅寬mm 窗口面积mm 2 PIN A * B * C ( cm 4 ) ( mm 2 )( mm 2 )(nH/N 2) ( mm ) ( mm 3 ) ( g ) @100℃(W) (W) 可配合BOBBIN EC353C8535.3*17.3*9.5 1.374184.30163.002100.077.406530.038.0021.5 8H EC413C8541.6*19.5*11.6 2.5894121.00214.002700.089.3010800.060.0024.58H EC523C8552.2*24.2*13.4 5.5980180.00311.003600.0105.0018800.0112.0028.312H EC703C8571.7*34.5*16.417.8281279.00639.003900.0144.0040100.0254.0041.412/34H EE05PC40 5.25*2.65*1.950.0013 2.63 5.00285.012.6033.10.160.02 1.1 2.76-8H EE6.3PC40 6.1*2.85*7.950.0015 3.31 4.46405.012.2040.40.240.02 2.76H EE8PC408.3*4.0*3.60.00917.0013.05590.019.47139.00.700.06 1.9 4.78 5.36H EE10/11PC4010.2*5.5*4.750.028712.1023.70850.02 6.60302.0 1.500.16 6.612.28V EE13PC4013.0*6.0*6.150.05701 7.1033.351130.030.20517.0 2.700.2357.422.210V EE16PC4016*7.2*4.80.076519.2039.851140.035.00672.0 3.300.31 8.527.36-10V H EE19PC401 9.1*7.95*5.00.124323.0054.041250.039.40900.0 4.800.42933.16-8V H EE19/16PC4019.29*8.1*4.750.119122.4053.151350.039.10882.0 4.800.41933.16-8V H EE20/20/5PC4020.15*10*5.10.119131.0050.701460.043.001340.07.500.51EE22PC4022*9.35*5.750.119141.0038.792180.039.401610.08.800.618.45208 V EE2329S PC4023*14.7*6 0.119135.80122.001250.064.902320.012.00 1.16EE25/19PC4025.4*9.46*6.290.119140.0078.202000.048.701940.09.100.99.842.5EE25.4PC4025.4*9.66*6.350.119140.3078.732000.048.701963.010.000.9EE2825PC4028*12.75*10.60.119186.9098.103300.057.705010.026.00 2.519.639.410V EE30 PC4030*13.15*10.70.1191109.0073.354690.057.706310.032.00 2.913.743.210-12V EE30/30/7PC4030.1*15*7.050.119159.70124.872100.066.904000.022.00 1.51EE3528PC4034.6*14.3*9.30.119184.80158.002600.069.705910.029.00 2.9615.788.712V EE40PC4040*17*10.70.1191127.00173.234150.077.009810.050.00 4.217.3 108 12 V EE4133PC4041.5*17*12.70.1191157.00180.004200.079.0012470.064.00 6.25EE42/21/15PC4042*21.2*150.1191178.00278.003800.097.9019510.088.008.8EE42/21/20PC4042*21.2*20 0.1191235.00275.005000.097.8023000.0116.0011.6EE47/39PC4047.12*19.63*15.620.1191242.00196.406660.090.6021930.0108.009.7EE50 PC4050*21.3*14.60.1191226.00253.736110.095.8021600.0116.009.421.317012V EE55/55/21PC4055.15*27.5*20.70.1191354.00386.347100.0123.0043700.0234.0011.0(150MT) EE57/47PC4056.57*23.6*18.80.1191344.00282.368530.0102.0035100.0190.008.5EE60PC4060*22.3*15.60.1191247.00399.025670.0110.0027100.0135.0012.523.829412V EE50.3 PC4050.3*25.6*6.10.1191120.85152.642900.0104.9012676.068.00 5.8328.2596.0512H EE62.3/62/6PC4062.3*31*6.10.1191153.01198.223100.0125.7419240.0102.008.8533.85115.0912H EE65/32/27 PC40 65.15*32.5*27 0.1191 535.00 575.00 8000.0 147.0078700.0 399.00 5.9(100MT) EC EE CORE参数对照表 形狀 TYPE MATE-RIAL

相关主题
文本预览
相关文档 最新文档