当前位置:文档之家› 风电标准大全、整机厂及中国风力发电叶片厂商名录、风力发电机组特点

风电标准大全、整机厂及中国风力发电叶片厂商名录、风力发电机组特点

风电标准大全、整机厂及中国风力发电叶片厂商名录、风力发电机组特点
风电标准大全、整机厂及中国风力发电叶片厂商名录、风力发电机组特点

风力发电整机制造机构名称

维斯塔斯风力技术公司

新疆金风科技发展公司

四川风瑞能源

GAMESA

GE能源集团

华锐风电科技股份有限公司

浙江华仪风能开发有限公司

苏司兰能源有限公司

江西麦德风能设备股份有限公司

常州轨道车辆牵引传动工程技术研究中心上海电气风电设备有限公司

中国南车株洲电力机车研究所风电事业部湖南湘电风能有限公司

中船重工(重庆)海装风电设备有限公司Repower

浙江运达风力发电工程有限公司

上海万德风力发电有限公司

佛山市东兴风盈风电设备制造有限公司潍坊中云机器有限公司

东方汽轮机有限责任公司

保定惠德风电工程有限公司

哈尔滨哈电风电设备公司

北京北重汽轮电机有限责任公司

沈阳华创风能有限公司

西安维德风电设备有限公司

广东明阳风电有限责任公司

三一电气有限责任公司

中小型风力发电机组(含并网/离网型)机构名称

广州红鹰能源科技公司

扬州神州风力发电有限公司

嘉兴市安华风电设备有限公司

上海思源致远绿色能源有限公司

宁波风神风电科技有限公司

深圳风发科技发展有限公司

广州中科恒源能源科技有限公司

宁夏风霸机电有限公司

上海林慧新能源科技有限公司

西安大益风电科技有限公司

瑞安海立特风力发电有限公司

风能蓄电池机构名称

北京辉泽世纪科技有限公司

叶片及其材料机构名称

重庆国际复合材料有限公司

艾尔姆玻璃纤维制品(天津)有限公司

上海玻璃钢研究院

江苏九鼎新材料股份有限公司

南京先进复合材料制品有限公司

上海越科复合材料有限公司

中国兵器工业集团第五三科技研究院

威海市碳素渔竿厂

金陵帝斯曼树脂有限公司

中航(保定)惠腾风电设备有限公司

浙江联洋复合材料有限公司

常熟市卡柏(Core Board)复合材料有限公司北京恒吉星工贸有限责任公司

风力发电机机构名称

湘潭电机股份有限公司

南车电机股份有限公司

西安捷力电力电子有限公司

兰州电机有限责任公司

东方电机股份有限公司

上海电气集团

盾安电气

齿轮箱/回转支承机构名称

南京高速齿轮制造有限公司

德国GA T传动技术有限公司

洛阳精联机械基础件有限公司

徐州罗特艾德回转支承股份有限公司

舍弗勒中国有限公司

马鞍山方圆回转支承股份有限公司

浙江通力减速机有限公司

变桨系统机构名称

桂林星辰电力电子有限公司

德国GA T传动技术有限公司

路斯特绿能电气系统(上海)有限公司

电控系统及变流器机构名称

Mita-Teknik公司

德国GA T传动技术有限公司

合肥阳光电源有限公司

上海麦腾电器有限公司

洛阳精联机械基础件有限公司

艾黙生网络能源有限公司

南京环力重工机械有限公司

奔联电子技术有限公司

Elspec中国代表处

北京科诺伟业能源科技有限公司

北京东土科技股份有限公司

阿尔斯通机电(上海)有限公司

大连威科特自控系统有限公司

胜业电器有限公司

研祥智能科技股份有限公司

南京冠亚电源设备有限公司

中电电气集团有限公司

艾黙生网络能源有限公司

北京欧买特数字科技有限公司

北京清能华福风电技术有限公司

刹车系统及联轴器机构名称

安特制动系统(天津)有限公司

德国GA T传动技术有限公司

上海晟达传动设备有限公司

开天传动技术上海有限公司

洛阳精联机械基础件有限公司

焦作市制动器开发有限公司

汉中海利液压控制有限公司

贺德克液压技术(上海)有限公司

意大利阿托斯上海有限公司

伊顿流体动力上海有限公司

邵阳维克液压有限责任公司

焦作市力创制动器有限公司

贺尔碧格(无锡)自动化技术有限公司上海敏泰科技有限公司

塔架组件(塔筒/升降机)机构名称

上海泰胜电力工程机械有限公司

北京欧亚新科技发展有限公司

常州轨道车辆牵引传动工程技术研究中心

无锡罗尼威尔机械设备有限公司

宁夏银光钢构件制造有限公司

北京盛汇恒科贸有限责任公司

河北宁强公司

哈尔滨红光锅炉集团公司

3S lift

A VANTL

冷却/润滑/防腐系统机构名称

克鲁勃润滑剂(上海)有限公司

埃尔夫润滑油(广州)投资有限公司

埃克森美孚(中国)投资有限公司

天津摩通润滑技术有限公司

林肯工业有限公司

四川国润贸易有限公司

中国兵器工业集团第五三研究所

中国石油化工股份有限公司润滑油分公司

特变电工(德阳)电缆股份有限公司

美国百通电线电缆公司

上海蓝科电气有限公司

精密轴承/高强度螺栓机构名称

浙江迪特高强度螺栓有限公司

舍弗勒(中国)有限公司

北京戴乐克工业锁具有限公司

洛阳LYC轴承有限公司

陕西海丰石油机械制造有限公司

米迪菲五金工具(上海)有限公司

上海申光高强度螺栓有限公司

优必胜轴承公司成都办事处

宁波市镇海盛大高强度紧固件厂

韩国(株)平山大连代表处

轮毂/铸锻件/法兰/压铸件毛坯及加工机构名称

江苏华东风能

上海长京金属制作有限公司

江阴方圆环锻法兰有限公司

山西省定襄金瑞高压环件有限公司

无锡大昶重型环件有限公司

江阴华西法兰管件厂

杭州申达铸造有限公司

无锡宝露锻造有限公司

定襄县闫氏锻业有限公司

山西襄龙风电设备制造有限公司

江苏国光重型机械有限公司

中国一汽铸造有限公司铸造研究所

河南宏宇特铸股份有限公司

无锡卓越铸造有限公司

上海嘉颉进出口有限公司

机舱罩机构名称

秦皇岛耀华玻璃钢股份公司

山东双一集团有限公司

兰州电机有限责任公司

江苏九鼎新材料股份有限公司

测风/防雷装置机构名称

德和盛电气(上海)有限公司

同拓合盛北京贸易有限公司

浙江华仪风能开发有限公司

北京泛泰克斯仪器有限公司

北京巨匠动力技术有限公司

德国科瑞文工业电子有限公司北京代表处

青岛方雷降阻材料有限公司

南京菲尼克斯电气有限公司

BALLUFF(巴鲁夫)

运输/安装/维修服务及工具机构名称

上海凯道贸易有限公司

广州市齐多工业设备有限公司(机组装配/检修维护工具)新疆鑫风安装工程有限公司

天津通天科技有限公司

北京诺鼎工业设备有限责任公司

上海希瑞实业有限公司

德莱奇起重吊索具(昆山)有限公司

常州爱普超高压系统有限公司

北京加汇通机电技术有限公司

科尼起重机集团

美国特科阿普液压扳手公司

咨询/认证/评估/培训机构名称

中国气象局风能太阳能资源评估中心

浩瀚国际风电中心

北京计鹏信息咨询有限公司

中国船级社产品处

英国Garrad Hassan伙伴有限公司北京代表处(GH)公司通标标准技术服务有限公司

诺德麦康国投风电设备有限公司

黑龙江省国测风力资源评估中心

河北省电力勘察设计院

中国气象科学研究所

黑龙江省电力勘察设计院

中国福霖风能开发公司

中国水电顾问集团中南勘测设计研究院

河北省电力勘测设计研究院

苏州白鹭风电职业技术培训中心

风力发电投资商/运营管理/风场机构名称

中国水利投资集团投资开发部

中国节能投资公司

大唐发电集团

华能集团公司

EVER E控股集团公司

美国美腾能源集团有限公司北京代表处

辽宁恒祥风力发电科技开发有限公司

中国广东核电集团公司

中国水利投资集团投资开发部

浙江华仪风能开发有限公司

世纪恒丰控股有限公司

国电龙源集团

中国水利水电建设集团公司

风电行业大专院校/科研院所及行业组织机构名称

中国农机工业协会风能设备分会

中国资源综合利用协会可再生资源专业委员会

中国气象局风能太阳能资源评估中心

汕头大学能源研究所

西华大学风电技术研究所

上海玻璃钢研究所

沈阳工业大学风能技术研究所

全国风力机械标准化技术委员会

国家风力发电工程技术研究中心

上海图书馆上海科技情报研究所信息咨询与研究中心重庆大学风力发电技术及装备研究所

其他(涉风保险/融资/产业基地/未分类)机构名称

保定国家高新技术产业开发区

包头国家稀土高新技术产业开发区

江苏东海经济开发区

摩根士丹利

卡朋罗兰碳制品(上海)有限公司

江苏海外集团国际技术工程有限公司

天津通天科技有限公司

山东法因数控机械股份有限公司

中国风力发电叶片厂商名录艾尔姆玻璃纤维制品有限公司(LM)

连云港中复连众复合材料集团有限公司

中航(保定)惠腾风电设备有限公司

中能风电设备有限公司

维斯塔斯风力技术(中国)有限公司

无锡瑞尔风机叶片科技有限公司

天津东汽风电叶片工程有限公司

国电联合动力技术(保定)有限公司

德国恩德能源有限公司

歌美飒风电设备有限公司

保定华翼风电叶片研究开发有限公司

上海玻璃钢研究院

中材科技风电叶片股份有限公司

株洲时代新材料科技股份有限公司

印度Suzlon 能源有限公司

迪皮埃复材构件(太仓)有限公司

河南名都风电有限公司

广西银河艾万迪斯风力发电有限公司

德州世纪威能风电设备有限公司

中山明阳风能叶片技术有限公司

南京江标集团有限责任公司

张家口金奥港风电环保设备制造安装有限公司汉维风力发电成套设备(大庆)有限公司

白城天奇新能源设备有限公司

东方汽轮机树脂有限公司

上海乘风新能源设备有限公司

上海艾朗风电科技发展有限公司

哈尔滨联创股份有限公司

汉德风能装备控股有限公司

天津鑫茂鑫风能源科技有限公司

新加坡腾龙控股公司

北京玻璃刚复合材料有限公司中国建材股份有限公司

中国复合材料集团有限公司

河北拓安叶片有限公司

沈阳风电设备发展有限责任公司大连海派集团

南通锴练风电设备有限公司

江苏新誉风力发电设备有限公司山东航宇风能设备有限公司

红叶风电

上海万德风力发电有限公司

广东明阳风电技术有限公司

瑞能北方风电设备有限公司

新疆金风科技股份有限公司

保定天威风电科技有限公司

恩德银川风电设备有限公司

江苏复天诺德文德

江苏九鼎新材料股份有限公司

保定惠德风电工程有限公司

通用电气能源沈阳有限公司

中科宇能科技发展有限公司

苏司兰能源天津有限公司

西安维德风电设备制造有限公司

中科宇能科技发展有限公司

风电标准大全

GB/T 2900.50-1998 电工术语发电、输电及配电通用术语

GB/T 2900.53-2001 电工术语风力发电机组

GB/T 8116-87 风力发电机组型式与基本参数

GB/T 10760.1-2003离网型风力发电机组用发电机第1部分:技术条件GB/T 10760.2-2003 离网型风力发电机组用发电机第2部分:试验方法

GB/T 13981-1992 风力机设计通用要求

GB 17646-1998 小型风力发电机组安全要求

GB 18451.1-2001 风力发电机组安全要求

GB/T 18451.2-2003 风力发电机组功率特性试验

GB/T 18709-2002风电场风能资源测量方法

GB/T 18710-2002风电场风能资源评估方法

GB/T 19068.1-2003 离网型风力发电机组第1部分:技术条件

GB/T 19068.2-2003 离网型风力发电机组第2部分:试验方法

GB/T 19068.3-2003 离网型风力发电机组第3部分:风洞试验方法

GB/T 19069-2003 风力发电机组控制器技术条件

GB/T 19070-2003 风力发电机组控制器试验方法

GB/T 19071.1-2003 风力发电机组异步发电机第1部分:技术条件

GB/T 19071.2-2003 风力发电机组异步发电机第2部分:试验方法

GB/T 19072-2003 风力发电机组塔架

GB/T 19073-2003 风力发电机组齿轮箱

GB/T 19115.1-2003 离网型户用风光互补发电系统第1部分:技术条件

GB/T 19115.2-2003 离网型户用风光互补发电系统第2部分:试验方法

GB/T 19568-2004 风力发电机组装配和安装规范

GB/T 19960.1-2005 风力发电机组第1部分:通用技术条件

GB/T 19960.2-2005 风力发电机组第2部分:通用试验方法

GB/Z 19963-2005 风电场接入电力系统技术规定

GB/T 20319-2006 风力发电机组验收规范

GB/T 20320-2006 风力发电机组电能质量测量和评估方法

GB/T 20321.1-2006 离网型风能、太阳能发电系统用逆变器第1部分:技术条件GB/T 20321.2-2006 离网型风能、太阳能发电系统用逆变器第2部分:试验方法JB/T 6939.1-2004 离网型风力发电机组用控制器第1部分:技术条件

JB/T 6939.2-2004 离网型风力发电机组用控制器第2部分:试验方法

JB/T 7143.1-1993 风力发电机组用逆变器_技术条件

JB/T 7143.2-1993 风力发电机组用逆变器试验方法

JB/T 7323-1994 风力发电机组试验方法

JB/T 7878-1995 风力机术语

JB/T 7879-1999 风力机械产品型号编制规则

JB/T 9740.1-1999 低速风力机系列

JB/T 9740.2-1999 低速风力机型式与基本参数

JB/T 9740.3-1999低速风力机技术条件

JB/T 9740.4-1999 低速风力机安装规范

JB/T 1O137-1999提水和发电用小型风力机试验方法

JB/T 10194-2000 风力发电机组风轮叶片

JB/T 10300-2001 风力发电机组设计要求

JB/T 10395-2004 离网型风力发电机组安装规范

JB/T 10396-2004 离网型风力发电机组可靠性要求

JB/T 10397-2004 离网型风力发电机组验收规范

JB/T 10398-2004 离网型风力发电系统售后技术服务规范

JB/T 10399-2004 离网型风力发电系统售后技术服务规范

JB/T 10400.1-2004 离网型风力发电机组用齿轮箱第1部分:技术条件

JB/T 10400.2-2004 离网型风力发电机组用齿轮箱第2部分:试验方法

JB/T 10401.1-2004 离网型风力发电机组制动系统第1部分:技术条件

JB/T 10401.2-2004 离网型风力发电机组制动系统第2部分:试验方法

JB/T 10402.1-2004 离网型风力发电机组偏航系统第1部分:技术条件

JB/T 10402.2-2004 离网型风力发电机组偏航系统第2部分:试验方法

JB/T 10403-2004 离网型风力发电机组塔架

JB/T 10404-2004 离网型风力发电集中供电系统运行管理规范

JB/T 10405-2004 离网型风力发电机组基础与联接技术条件

JB/T 10425.1-2004 风力发电机组偏航系统第1部分:技术条件

JB/T 10425.2-2004 风力发电机组偏航系统第2部分:试验方法

JB/T 10426.1-2004 风力发电机组制动系统第1部分:技术条件

JB/T 10426.2-2004 风力发电机组制动系统第2部分:试验方法

JB/T 10427-2004 风力发电机组一般液压系统

DL/T 666-1999风力发电场运行规程

DL/T 796-2001 风力发电场安全规程

DL/T 797-2001风力发电场检修规程

DL/T 5067-1996风力发电场项目可行性研究报告编制规程

DL/T 5191-2004风力发电场项目建设工程验收规程

IEC 61400-1:2005 Wind turbines-Part1:Design requirements

IEC 61400-2:1996 Wind turbine generator systems-Part2:Safety of small wind turbines

IEC 61400-11:2002 Wind turbine generator systems-Part11:Acoustic noise measurement techniques

IEC 61400-12:1998 Wind turbine generator systems-Part12:Wind turbine power performance testing

IEC 61400-13:2001 Wind turbine generator systems-Part13:Measurement of mechanical loads

IEC 61400-14:2005 Wind turbines-Part14:Declaration of apparent sound power level and tonality values IEC 61400-21:2001 Wind turbine generator systems-Part21:Measurement and assessment of power quality characteristics of grid connected wind turbines

IEC 61400-22: Wind turbine generator systems-Part22:Wind turbines certification

IEC 61400-23:2001 Wind turbine generator systems-Part23:Full-scale structural testing of rotor blades

IEC 61400-24:2002 Wind turbine generator systems-Part24:Lightning protection

IEC 61400-25-1:2006 Wind turbines -Part25-1:Communications for monitoring and control of wind power plants-Overall description of principles and models

IEC 61400-25-2:2006 Wind turbines -Part25-2:Communications for monitoring and control of wind power plants- Information models

IEC 61400-25-3:2006 Wind turbines -Part25-3:Communications for monitoring and control of wind power plants- Information exchange models

IEC 61400-25-5:2006 Wind turbines -Part25-5:Communications for monitoring and control of wind power plants- Conformance testing

JB/T 10705-2007 风电轴承标准

FD001-2007-风电场工程可行性研究报告设计概算编制办法及计算标准(2007年版)

FD002-2007-风电场工程等级划分及设计安全标准-(试行)

FD003-2007-风电机组地基基础设计规定-(试行)

FD004-2007-风电场工程概算定额-(2007年版)

GB/T 21150-2007 失速型风力发电机组国家标准

1.5MW永磁直驱风力发电机组特点:

1. 直接驱动,无齿轮箱,大大简化了结构,降低噪音,提高可靠性。

2. 采用新型永磁发电机,体积小、重量轻、效率高,提高机组的容量系数。

3. 发电机转子采用特殊结构,以减小转矩脉动和磁阻转矩、改善发电机的电压波形和抗退磁能力。

4. 采用自然风直接冷却发电机外壁,无需冷却风扇或水泵,简化结构,不用耗能,还不降低防护等级。

5. 发电机定子绕组采用成型线圈,提高了发电机运行的可靠性和寿命。

6. 结构形式保证发电机尺寸(外径4.2m)能正常运输。

7. 叶片设计采用全三维气动仿真和结构有限元仿真。

8. 采用真空灌注工艺进行叶片生产。

9.根据风速自动调节风轮转速以获取高风能利用系数, 而保持输出频率恒定。

10.使风力机的叶片角度能随着风速的大小相应地改变。提高风能利用效率1-2%,使发电风速范围扩大到3-27m/s。

11.可通过变频装置灵活快速的调节发电机有功功率、无功功率和功率因数,有利于电网稳定。

12.平稳并网,并网冲击电流不大于额定电流的20% 。

13.采用DCS系统控制,DSP单机控制,使用维护方便,提高了运行可靠性。

风电机组叶片防雷检查

关于叶片防雷及接地的避免措施和检查方法整理如下,希望有所帮助。 一、目前叶片雷击基本为:雷电释放巨大能量,使叶片结构温度急剧升高,分解叶片内部气体高温膨胀, 压力上升造成爆裂破坏(更有叶片内存在水分而产生高温气体,爆裂)。叶片防雷系统的主要目标是避免雷电直击叶片本体而导致叶片损害。经过统计:不管叶片是用木头或玻璃纤维制成,或是叶片包导电体,雷电导致损害的范围取决于叶片的形式。叶片全绝缘并不减少被雷击的危险,而且会增加损害的次数。多数情况下被雷击的区域在叶尖背面(或称吸力面)。根据以上叙述,叶片防雷设计一般在叶尖装有接闪器捕捉雷电,再通过敷设在叶片内腔连接到叶片根部的导引线使雷电导入大地,约束雷电,保护叶片。 二、按IEC61400-24标准的推荐值,叶片防雷击铜质电缆导线截面积最小为50平方毫米。如果为高发区, 可适当增加铜质电缆导线截面积。 三、我集团近期刚出的一个检查标准: 1、叶片吊装前,逐片检查叶片疏水孔通畅。 2、叶片吊装前,逐片检查叶片表面是否存在损伤。 3、叶片吊装前,应逐片检查叶片防雷引下线连接是否完好、防雷引下线截面是否损伤,检测叶片接闪器到叶片根部法兰之间的直流电阻,并做好检测记录。若叶片接闪器到叶片根部法兰之间的直流电阻值

高于20 mΩ,应仔细检查防雷引下线各连接点联接是否存在问题。 叶片接闪器到叶片根部法兰之间直流电阻测量采用直流微欧计、双臂电桥或直流电阻测试仪(仪器分辨率不低于 1 mΩ),采用四端子法测量,检查叶片叶尖及叶片上全部接闪点与叶片根部法兰之间直流电阻,每点应测三次取平均值。 4、机组吊装前后,应检查变桨轴承、主轴承、偏航轴承上的泄雷装置(碳刷、滑环、放电间隙 等)的完好性,并确认塔筒跨接线连接可靠。 表1 防雷检查及测试验收清单

风力发电机原理及结构

风力发电机原理及结构 风力发电机是一种将风能转换为电能的能量转换装置,它包括风力机和发电机两大部分。空气流动的动能作用在风力机风轮上,从而推动风轮旋转起来,将空气动力能转变成风轮旋转机械能,风轮的轮毂固定在风力发电机的机轴上,通过传动系统驱动发电机轴及转子旋转,发电机将机械能变成电能输送给负荷或电力系统,这就是风力发电的工作过程。 1、风机基本结构特征 风力机主要有风轮、传动系统、对风装置(偏航系统)、液压系统、制动系统、控制与安全系统、机舱、塔架和基础等组成。 (1)风轮 风力机区别于其他机械的主要特征就是风轮。风轮一班有2~3个叶片和轮毂所组成,其功能是将风能转换为机械能。 风力发电厂的风力机通常有2片或3片叶片,叶尖速度50~70m/s,3也片叶轮通常能够提供最佳效率,然而2叶片叶轮及降低2%~3%效率。更多的人认为3叶片从审美的角度更令人满意。3叶片叶轮上的手里更平衡,轮毂可以简单些。 1)叶片叶片是用加强玻璃塑料(GRP)、木头和木板、碳纤维强化塑料(CFRP)、钢和铝职称的。对于小型的风力发电机,如叶轮直径小于5m,选择材料通常关心的是效率而

不是重量、硬度和叶片的其他特性,通常用整块优质木材加工制成,表面涂上保护漆,其根部与轮毂相接处使用良好的金属接头并用螺栓拧紧。对于大型风机,叶片特性通常较难满足,所以对材料的选择更为重要。 目前,叶片多为玻璃纤维增强负荷材料,基体材料为聚酯树脂或环氧树脂。环氧树脂比聚酯树脂强度高,材料疲劳特性好,且收缩变形小,聚酯材料较便宜它在固化时收缩大,在叶片的连接处可能存在潜在的危险,即由于收缩变形,在金属材料与玻璃钢之间坑能产生裂纹。 2)轮毂轮毂是风轮的枢纽,也是叶片根部与主轴的连接件。所有从叶片传来的力,都通过轮毂传到传动系统,在传到风力机驱动的对象。同时轮毂也是控制叶片桨距(使叶片作俯仰转动)的所在。 轮毂承受了风力作用在叶片上的推理、扭矩、弯矩及陀螺力矩。通常安装3片叶片的水平式风力机轮毂的形式为三角形和三通形。 轮毂可以是铸造结构,也可以采用焊接结构,其材料可以是铸钢,也可以采用高强度球墨铸铁。由于高强度球墨铸铁具有不可替代性,如铸造性能好、容易铸成、减振性能好、应力集中敏感性低、成本低等,风力发电机组中大量采用高强度球墨铸铁作为轮毂的材料。 轮毂的常用形式主要有刚性轮毂和铰链式轮毂(柔性轮毂

中国风力发电调研报告

—1— 我国风电发展情况调研报告 风电发展情况调研组 风能作为一种清洁的可再生能源,党中央、国务院对其开发利用非常重视,有关部门出台了一系列的方针政策,对增加我国能源供应、调整能源结构和保护生态环境起到了积极作用,促进了可再生能源的发展。 华北、西北、东北三个地区是我国陆上风能资源最丰富地区,江苏是海上风能资源最丰富地区之一,这四个地区风电发展具有一定代表性。为深入研究大规模风电接入系统对电网稳定运行的影响,制定完善相应的标准和管理规范,电监会组织并邀请中国科学院、中国电力科学研究院风电专家组成调研组,先后对东北三省、内蒙古、甘肃、新疆、江苏等七省(区)的风电场建设、运行情况进行了调研。调研组与地方政府有关部门、电网公司、风电企业进行了座谈,并实地考察了相关电力调度中心和部分风电场。 在此次调研的基础上,形成此报告,供参考。一、风电建设与运行情况 我国风能资源丰富,根据全国风能资源普查最新成果统计,初步探明陆域离地10米高度风能资源总储量为43.5亿千瓦, 其 https://www.doczj.com/doc/637457270.html,

—2— 中技术可开发量约为3亿千瓦,如果推算到风电机组轮毂高度,风能的技术可开发量约为6亿千瓦1,主要分布在我国西北地区大部、华北北部、东北北部、青藏高原腹地以及沿海地区(见图1) 。 图1全国风能资源区划图(高度为50米) (一)风电装机容量 2006年《可再生能源法》颁布后,我国风电取得跨越式发展。截至2008年底,全国风电装机容量为894万千瓦2,占全国 1引自国家能源局《2008 中国风电发展报告》 2引自中国电力企业联合会《全国电力工业统计快报》(2008年)。该数据和有关部门统计的2008年底风电吊装容量1217万千瓦存在差别,主要因为部分风电场机组未通过240小时试运行或接入工程滞后尚未进入商业化运行。

我国大型风电机组技术发展情况

截至2013年底,国内约30家大型风电机组整机制造企业已向国内外风电市场提供了合格的大型风电机组整机产品。2013年在我国风电场建设中,国产风电机组的市场占有率达到94%,大幅超过外资企业。其中,在国内新增总装机占比中,金风科技的份额最大,占23.31%;联合动力第二,占9.25%;广东明阳第三,占7.99%。通过对我国大型风电机组发展情况的分析,归纳出我国大型风电机组技术主要呈现如下特点。 1 水平轴风电机组是主流 水平轴风电机组的应用已近100年。由于水平轴风电机组的风轮具有风能转换效率高、传动轴较短、控制和制动技术成熟、制造成本较低、并网技术可靠等优点,近年来大型并网水平轴风电机组得到快速发展,使大型双馈式和直驱永磁式等水平轴风电机组成为国内大型风电场建设所需的主流机型,并在国内风电场建设中占到100%的市场份额。 2 垂直轴风电机组有所发展 大型垂直轴风电机组因具有全风向对风、变速装置及发电机可置于风轮下方或地面等优点。近年来相关研究和开发也在不断进行并取得一定进展,单机试验示范正在进行,在美国已有大型垂直轴风电机组在风电场运行,但在我国还无垂直轴风电机组产品在风电场成功应用的先例。 3 风电机组单机容量持续增大 近年来,国内风电市场中风电机组的单机容 我国大型风电机组技术发展情况 中国农业机械化科学研究院 ■ 沈德昌 量持续增大,2012年新安装机组的平均单机容量达1.65 MW , 2013年为1.73 MW 。2013年我国风电场安装的最大风电机组为6 MW 。 随着单机容量不断增大和利用效率的提高,国内主流机型已从2005年的750~850 kW 增加到2014年的1.5~2.5 MW 。 近年来,海上风电场的开发进一步加快了大容量风电机组的发展。我国华锐风电的3 MW 海上风电机组已在海上风电场批量应用。3.6、4、5、5.5、6和6.5 MW 的海上风电机组已陆续下线或投入试运行。目前,华锐、金风、联合动力、湖南湘电、重庆海装、东方汽轮机、广东明阳和太原重工等公司都已研制出5~6.5 MW 的大容量海上风电机组产品。 4 变桨变速功率调节技术得到全面应用 由于变桨距功率调节方式具有载荷控制平稳、安全高效等优点,近年在大型风电机组上得到广泛应用。结合变桨距技术的应用及电力电子技术的发展,大多数风电机组制造厂商采用了变速恒频技术,并开发出变桨变速风电机组,在风能转换效率上有了进一步完善和提高。从2012年起,国内定桨距并网风电机组已停止生产,在全国安装的风电机组全部采用了变桨变速恒频技术。2 MW 以上的风电机组大多采用3个独立的电控调桨机构,通过3组变速电机和减速箱对桨叶分别进行闭环控制。 5 双馈异步发电技术仍占主导地位 外资企业如丹麦V estas 公司、西班牙Gamesa 收稿日期:2014-11-27 通信作者:沈德昌 ,男,研究员,中国农业机械化科学研究院。shendc06@https://www.doczj.com/doc/637457270.html,

大型风力发电机组控制系统的安全保护功能(新编版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 大型风力发电机组控制系统的安全保护功能(新编版) Safety management is an important part of production management. Safety and production are in the implementation process

大型风力发电机组控制系统的安全保护功 能(新编版) 1制动功能 制动系统是风力发电机组安全保障的重要环节,在硬件上主要由叶尖气动刹车和盘式高速刹车构成,由液压系统来支持工作。制动功能的设计一般按照失效保护的原则进行,即失电时处于制动保护状态。在风力发电机组发生故障或由于其他原因需要停机时,控制器根据机组发生的故障种类判断,分别发出控制指令进行正常停机、安全停机以及紧急停机等处理,叶尖气动刹车和盘式高速刹车先后投入使用,达到保护机组安全运行的目的。 2独立安全链 系统的安全链是独立于计算机系统的硬件保护措施,即使控制系统发生异常,也不会影响安全链的正常动作。安全链采用反逻辑

设计,将可能对风力发电机造成致命伤害的超常故障串联成一个回路,当安全链动作后,将引起紧急停机,执行机构失电,机组瞬间脱网,从而最大限度地保证机组的安全。发生下列故障时将触发安全链:叶轮过速、看门狗、扭缆、24V电源失电、振动和紧急停机按钮动作。 3防雷保护 多数风机都安装在山谷的风口处或海岛的山顶上,易受雷击,安装在多雷雨区的风力发电机组受雷击的可能性更大,其控制系统最容易因雷电感应造成过电压损害,因此在600kW风力发电机组控制系统的设计中专门做了防雷处理。使用避雷器吸收雷电波时,各相避雷器的吸收差异容易被忽视,雷电的侵入波一般是同时加在各相上的,如果各相的吸收特性差异较大,在相间形成的突波会经过电源变压器对控制系统产生危害。因此,为了保障各相间平衡,我们在一级防雷的设计中使用了3个吸收容量相同的避雷器,二、三级防雷的处理方法与此类同。控制系统的主要防雷击保护:①主电路三相690V输入端(即供给偏航电机、液压泵等执行机构的前段)

风力发电机介绍

风力发电机介绍 目录 1. 风力发电发展的推动力 2.风力发电的相关参数 2.1.风的参数 2.2.风力机的相关参数(以水平轴风力机为例) 3.风力机的种类 3.1.水平轴风力机 3.2.垂直轴风力机 4.水平轴风力机详细介绍 4.1.风轮机构 4.2.传动装置 4.3.迎风机构 4.4.发电机 4.5.塔架 4.6.避雷系统 4.7.控制部分 5.风力发电机的变电并网系统 5.1.(恒速)同步发电机变电并网技术

5.2.(恒速)异步发电机变电并网技术 5.3.交—直—交并网技术 5.4.风力发电机的变电站的布置 6.风力发电场 7.风力机发展方向 1. 风力发电发展的推动力: 1) 新技术、新材料的发展和运用; 2) 大型风力机制造技术及风力机运行经验的积累; 3) 火电发电成本(煤的价格)上涨及环保要求的提高(一套脱硫装置价格相当 一台锅炉价格)。 2. 风力发电的相关参数: 2.1. 风的参数: 2.1.1. 风速: 在近300m的高度内,风速随高度的增加而增加,公式为: V:欲求的离地高度H处的风速; V0:离地高度为H0处的风速(H0=10m为气象台预报风速的高度); n:与地面粗糙度等因素有关的指数,平坦地区平均值为0.19~0.20。 2.1.2. 风速频率曲线:

在一年或一个月的周期中,出现相同风速的小时数占这段时间总小时数的百分比称风速频率。 图1:风速频率曲线 2.1. 3. 风向玫瑰图(风向频率曲线): 在一年或一个月的周期中,出现相同风向的小时数占这段时间总小时数的百分比称风向频率。以极座标形式表示的风向频率图叫风向玫瑰图。 图2:风向玫瑰图

垂直轴风轮涡轮式风力发电机组技术说明书汇总

垂直轴风轮涡轮式风力发电机组 技术说明书 二〇一一年五月二十六日

一、项目概述 硕普智能科技有限公司是一家具有国际背景的高科技企业集团。其团队由国内外的高级技术专家所组成。集团主要研发、生产具有国际水平的风力发电设备和风力发电场建设。硕普公司法人连志敏先生是从新西兰回国的技术专家,是新西兰研制垂直轴涡轮风电机组和智能控制技术的发明人。连志敏先生长期致力于垂直轴涡轮风力发电设备的研究,拥有国际发明专利一项,国内发明专利五项:国际专利: 智能垂直轴增压集风式风力发电机组 (专利申请号:PCT/CN2008/071744) 国内专利: 1、分布复合式能源系统 (专利号:200610063278.9) 2、智能全天候风力发电机组 (专利号:200610157277.0) 3、智能复合式发电能源塔 (专利号:200610157273.0) 4、智能垂直轴助吹式风力发电机组 (专利号:200710075268.1) 5、智能垂直轴增压集风式风力发电机组 (专利号:200710075267.1)

二、垂直轴涡轮式发电机组介绍 垂直轴涡轮式风力发电机组涉及了一种利用风力、涡轮效应、烟囱效应、集风体产生的正负压差、旋转气流的瞬间爆发力来推动传动系统的垂直轴风轮涡轮式风力发电机组做功发电,该机组包括由控制系统、组合钢架、多台发电机组、双层机房、垂直轴、联轴器、可转集风体&整流板、组合式风腔、垂直风轮、水平桨叶、支撑组合架、轴承。该机组以风力的大小、电机转速来同步控制进风百叶及出风百叶的角度及控制多电机的联动,以使风力发电机组全风况、最大化的发电。 垂直轴涡轮式风力发电机组具有以下特点: 1、体积小 采用多层、统一的结构和桨叶,模块式组装,标准构件体积小,易运输和安装。 2、效率高 应用集风、整流、磁悬浮风电系统,由于采用智能程控多发电机联动工作,可根据风机的转数及风力大小增减电机并机数量,并有多重蓄能方式。可根据多风况调节发电,从1级风到12级风都可以运行。将风能利用率从传统风电的28%提高到80%以上,每年发电小时数可以提高到6500小时(传统风电每年只能发电2500小时左右)。 3、造价低

整机厂及中国风力发电配套厂商名录

风力发电整机制造机构名称 维斯塔斯风力技术公司 新疆金风科技发展公司 四川风瑞能源 GAMESA GE能源集团 华锐风电科技股份有限公司 浙江华仪风能开发有限公司 苏司兰能源有限公司 江西麦德风能设备股份有限公司 常州轨道车辆牵引传动工程技术研究中心上海电气风电设备有限公司 中国南车株洲电力机车研究所风电事业部湖南湘电风能有限公司 中船重工(重庆)海装风电设备有限公司Repower 浙江运达风力发电工程有限公司 上海万德风力发电有限公司 佛山市东兴风盈风电设备制造有限公司潍坊中云机器有限公司 东方汽轮机有限责任公司 保定惠德风电工程有限公司 哈尔滨哈电风电设备公司 北京北重汽轮电机有限责任公司

沈阳华创风能有限公司 西安维德风电设备有限公司 广东明阳风电有限责任公司 三一电气有限责任公司 中小型风力发电机组(含并网/离网型)机构名称 广州红鹰能源科技公司 扬州神州风力发电有限公司 嘉兴市安华风电设备有限公司 上海思源致远绿色能源有限公司 宁波风神风电科技有限公司 深圳风发科技发展有限公司 广州中科恒源能源科技有限公司 宁夏风霸机电有限公司 上海林慧新能源科技有限公司 西安大益风电科技有限公司 瑞安海立特风力发电有限公司 风能蓄电池机构名称 北京辉泽世纪科技有限公司 叶片及其材料机构名称 重庆国际复合材料有限公司 艾尔姆玻璃纤维制品(天津)有限公司

上海玻璃钢研究院 江苏九鼎新材料股份有限公司 南京先进复合材料制品有限公司 上海越科复合材料有限公司 中国兵器工业集团第五三科技研究院 威海市碳素渔竿厂 金陵帝斯曼树脂有限公司 中航(保定)惠腾风电设备有限公司 浙江联洋复合材料有限公司 常熟市卡柏(Core Board)复合材料有限公司北京恒吉星工贸有限责任公司 风力发电机机构名称 湘潭电机股份有限公司 南车电机股份有限公司 西安捷力电力电子有限公司 兰州电机有限责任公司 东方电机股份有限公司 上海电气集团 盾安电气 齿轮箱/回转支承机构名称 南京高速齿轮制造有限公司 德国GA T传动技术有限公司

风力发电机组偏航系统详细介绍

风力发电机组偏航系统详细介绍2012-12-15 资讯频道 偏航系统的主要作用有两偏航系统是水平轴式风力发电机组必不可少的组成系统之一。 使风力发电机组的风轮始终处于迎风状态,其一是与风力发电机组的控制系统相互配合,个。以保障风力发其二是提供必要的锁紧力矩,充分利用风能,提高风力发电机组的发电效率;被动风力发电机组的偏航系统一般分为主动偏航系统和被动偏航系统。电机组的安全运行。舵轮常见的有尾舵、偏航指的是依靠风力通过相关机构完成机组风轮对风动作的偏航方式,常见的有主动偏航指的是采用电力或液压拖动来完成对风动作的偏航方式,和下风向三种;通常都采用主动偏航的齿轮驱动对于并网型风力发电机组来说,齿轮驱动和滑动两种形式。形式。 1.偏航系统的技术要求 1.1. 环境条件 在进行偏航系统的设计时,必须考虑的环境条件如下: 1). 温度; 2). 湿度; 3). 阳光辐射; 雨、冰雹、雪和冰;4). 5). 化学活性物质; 机械活动微粒;6). 盐雾。风电材料设备7). 近海环境需要考虑附加特殊条件。8). 应根据典型值或可变条件的限制,确定设计用的气候条件。选择设计值时,应考虑几 气候条件的变化应在与年轮周期相对应的正常限制范围内,种气候条件同时出现的可能性。不影响所设计的风力发电机组偏航系统的正常运行。 1.2. 电缆 必须使电缆有足够为保证机组悬垂部分电缆不至于产生过度的纽绞而使电缆断裂失效, 电缆悬垂量的多少是根据电缆所允许的扭转角度确定的悬垂量,在设计上要采用冗余设计。的。阻尼1.3. 偏航系统在机组为避免风力发电机组在偏航过程中产生过大的振动而造成整机的共振, 阻尼力矩的大小要根据机舱和风轮质量总和的惯性力矩来偏航时必须具有合适的阻尼力矩。只有在其基本的确定原则为确保风力发电机组在偏航时应动作平稳顺畅不产生振动。确定。阻尼力矩的作用下,机组的风轮才能够定位准确,充分利用风能进行发电。 1.4. 解缆和纽缆保护 偏航系统的偏航动解缆和纽缆保护是风力发电机组的偏航系统所必须具有的主要功能。 所以在偏航系统中应设置与方向有关的计数作会导致机舱和塔架之间的连接电缆发生纽绞,检测装置或类一般对于主动偏航系统来说,装置或类似的程序对电缆的纽绞程度进行检测。对于被动偏航系统检测装置或类似似的程序应在电缆达到规定的纽绞角度之前发解缆信号;偏航系并进行人工解缆。的程序应在电缆达到危险的纽绞角度之前禁止机舱继续同向旋转,一般与偏航圈统的解缆一般分为初级解缆和终极解缆。初级解缆是在一定的条件下进行的,这个装置的控制逻纽缆保护装置是风力发电机组偏航系统必须具有的装置,数和风速相关。辑应具有最高级别的权限,一旦这个装置被触发,则风力发电机组必须进行紧急停机。偏航转速 1.5. 1 对于并网型风力发电机组的运行状态来说,风轮轴和叶片轴在机组的正常运行时不可避免的产生陀螺力矩,这个力矩过大将对风力发电机组的寿命和安全造成影响。为减少这个力矩对风力发

风力发电机叶片工艺流程

风力发电机叶片制作工艺流程 传统能源资源的大量使用带来了许多的环境问题和社会问题,并且其存储量大大降低,因而风能作为一种清洁的可循环再生的能源,越来越受到世界各国的广泛关注。风力发电机叶片是接受风能的最主要部件,其良好的设计、可靠的质量和优越的性能是保证发电机组正常稳定运行的决定因素,其成本约为整个机组成本的15%-20%。根据“风机功价比法则”,风力发电机的功率与叶片长度的平方成正比,增加长度可以提高单机容量,但同时会造成发电机的体积和质量的增加,使其造价大幅度增加。并且,随着叶片的增大,刚度也成为主要问题。为了实现风力的大功率发电,既要减轻叶片的重量,又要满足强度与刚度要求,这就对叶片材料提出了很高的要求。 1 碳纤维在风力发电机叶片中的应用 叶片材料的发展经历了木制、铝合金的应用,进入了纤维复合材料时代。纤维材料比重轻,疲劳强度和机械性能好,能够承载恶劣环境条件和随机负荷,目前最普遍采用的是玻璃纤维增强聚酯(环氧)树脂。但随着大功率发电机组的发展,叶片长度不断增加,为了防止叶尖在极端风载下碰到塔架,就要求叶片具有更高的刚度。国外专家认为,玻璃纤维复合材料的性能已经趋于极限,不能满足大型叶片的要求,因此有效的办法是采用性能更佳的碳纤维复合材料。 1)提高叶片刚度,减轻叶片质量 碳纤维的密度比玻璃纤维小约30%,强度大40%,尤其是模量高3~8倍。大型叶片采用碳纤维增强可充分发挥其高弹轻质的优点。荷兰戴尔弗理工大学研究表明,一个旋转直径为120m的风机的叶片,由于梁的质量超过叶片总质量的一半,梁结构采用碳纤维,和采用全玻璃纤维的相比,质量可减轻40%左右;碳纤维复合材料叶片刚度是玻璃纤维复合材料叶片的2倍。据分析,采用碳纤维/玻璃纤维混杂增强方案,叶片可减轻20%~30%。Vesta Wind System 公司的V90型3.0 MW发电机的叶片长44m,采用碳纤维代替玻璃纤维的构件,叶片质量与该公司V80 型2.0MW发电机且为39m长的叶片质量相同。同样是34 m长的叶片,采用玻璃纤维增强聚脂树脂时质量为5800kg,采用玻璃纤维增强环氧树脂时质量为5200kg,而采用碳纤维增强环氧树脂时质量只有3800kg。其他的研究也表明,添加碳纤维所制得的风机叶片质量比采用玻璃纤维的轻约32%,而且成本下降约16%。 2)提高叶片抗疲劳性能 风机总是处在条件恶劣的环境中,并且24h处于工作状态。这就使材料易于受到损害。相关研究表明,碳纤维合成材料具有良好的抗疲劳特性,当与树脂材料混合时,则成为了风力机适应恶劣气候条件的最佳材料之一。 3)使风机的输出功率更平滑更均衡,提高风能利用效率 使用碳纤维后,叶片质量的降低和刚度的增加改善了叶片的空气动力学性能,减少对塔和轮轴的负载,从而使风机的输出功率更平滑更均衡,提高能量效率。同时,碳纤维叶片更薄,外形设计更有效,叶片更细长,也提高了能量的输出效率。 4)可制造低风速叶片 碳纤维的应用可以减少负载和增加叶片长度,从而制造适合于低风速地区的大直径风叶,使风能成本下降。 5)可制造自适应叶片 叶片装在发电机的轮轴上,叶片的角度可调。目前主动型调节风机的设计风速为13~15m/s(29~33英里/h),当风速超过时,则调节风叶斜度来分散超过的风力,防止对风机的损害。斜度控制系统对逐步改变的风速是有效的。但对狂风的反应太慢了,自适应的各向异性叶片可帮助斜度控制系统,在突然的、瞬间的和局部的风速改变时保持电流的稳定。自适应叶片充分利用了纤维增强材料的特性,能产生非对称性和各向异性的材料,采用弯曲/扭曲叶片设计,使叶片在强风中旋转时可减少瞬时负载。美国Sandia National Laboratories致力于自适应叶片研究,使1.5MW风机的发电成本降到4.9美分/(kW?h),价格可和燃料发电相比。 6)利用导电性能避免雷击

风力发电机组风轮叶片型式试验方案要求

风力发电机组风轮叶片产品认证实施规则北京鉴衡认证中心 编号:CGC-R46002:2012 风力发电机组风轮叶片 产品认证实施规则 北京鉴衡认证中心 2012年06月

目录 1. 适用范围 (1) 2. 认证模式 (1) 3. 认证实施的基本要求 (1) 3.1 认证申请 (1) 3.3 型式试验 (1) 3.4 工厂审查 (2) 3.5认证结果评价与批准 (3) 3.6获证后监督 (4) 4. 认证证书 (5) 4.1 认证证书的保持 (5) 4.2 认证证书覆盖产品的扩展 (5) 4.3认证证书的暂停、注销和撤销 (6) 5. 产品认证标志的使用规定 (6) 5.1 准许使用的标志样式 (6) 5.2 变形认证标志的使用 (6) 5.3 加施方式 (6) 5.4 加施位置 (6) 6. 认证收费 (6) 附件1 风力发电机组风轮叶片产品认证申请所需提交文件资料清单 (7) 附件2 风力发电机组风轮叶片设计文档要求 (9) 附件3 风力发电机组风轮叶片型式试验方案要求 (10) 附件4 产品认证工厂质量保证能力要求 (12) 附件5 评估资料企业代管申请表 (16) 附件6 代管资料证明书 (17)

1. 适用范围 本规则适用于风轮扫掠面积等于或大于200m2的水平轴风力发电机组风轮叶片产品认证。 2. 认证模式 设计评估+ 型式试验+ 工厂审查+ 获证后监督 3. 认证实施的基本要求 3.1 认证申请 3.1.1认证申请单元划分 认证单元的划分按照产品型号进行划分。同一制造商、同一产品型号,不同生产场地生产的产品应作为不同的申请单元。但不同生产场地生产的相同产品可只做一次型式试验。 3.1.2 申请时需要提交的技术文件资料 产品认证申请所需提交的图纸和文件资料见“风力发电机组风轮叶片产品认证申请所需提交文件资料清单”(附件1)。 3.1.3 评估资料企业代管申请(适用时) 对于附件1“风力发电机组风轮叶片产品认证申请所需提交文件资料清单”的部分文件资料,如果申请认证的单位出于“技术保密”的理由,不方便移交我方带走封存的,可以由申请认证的单位提出认证评估资料代管申请(见附件5)“评估资料企业代管申请表”,并列出代管资料清单,经过我方审批申请、审查资料、加盖审批章/备查章以及加封(贴封条)后,由申请认证的单位保管、出具代管资料证明书(见附件6)“代管资料证明书”。申请认证的单位在认证有效期内务必妥善保管资料,不得拆封、挪用、修改、损坏,以备我方随时查阅。 3.2设计评估 鉴衡认证中心将依据GB/T 25383-2010 《风力发电机组风轮叶片》,或鉴衡认证中心认可的其他标准和适用技术要求,并结合产品的设计条件和预定用途,对所收到的图纸和文件进行符合性审查。 设计文档内容应满足“设计文档要求”(附件2)。 3.3 型式试验 3.3.1型式试验方案(以下简称试验方案)的确定 申请方应根据认证依据的标准和适用技术要求,拟定试验方案,提交认证机构审查。试验方案应明确检测项目、方法、条件及合格判定依据的标准、技术要

中国风能的利用现状及发展

中国风能的利用现状及发展 摘要:随着化石能源的不断消耗,新能源的开发利用引起了世界各国的重视。新能源具有污染少、储量大、永续性等特点。我国新能源产业呈现强劲发展势头,其中,风电发展最为迅猛。我国风能资源丰富,目前中国风电技术的开发利用取得了巨大进步。但中国的风能资源开发利用仍然存在诸多问题,如风电的并网消纳难、电力市场不完善、相关配套法规不健全和风机制造技术基础薄弱等,这些制约因素严重阻碍了我国风电的可持续发展。本文着重阐述了中国新能源风能的资源条件、我国风能发展现状及制约中国风能发展的因素并对我国风能发电的发展前景进行了展望。 能源是人类生存和发展的重要物质基础,是人类从事各种经济活动的原动力。由于化石能源(如煤、石油、天然气等能源)自然储量的有限性以及人类对其需求的无限性,随着人类对化石燃料无节制的开采和利用,化石能源短缺的矛盾日益突出。长期以来,我国以化石能源为主的能源构成形式加剧了对化石能源的依赖,据统计,2007 -2010年我国能源消耗总量不断上升,增长率分别为7. 8%、4. 0%、6. 3%、5. 9%;2011年能源消耗总量达34. 8亿t标准煤,比2010年增长7%。能源消耗总量中,煤、石油、天然气这些化石能源在2007-2010年所占比例分别为93. 2%、92.3%、92.2%、91.4%,是能源消费的主要部分。人均资源量少、资源消耗量大、能源供需矛盾尖锐以及利用效率低下、环境污染严重、能源结构不合理[2]已成为制约我国经济社会可持续发展的重要因素。 同时,化石能源的使用也给环境带来了许多负面影响,CO2等温室气体的排放导致全球气候变暖,并引发了气候的极端变化和一系列的自然灾害。在这种情况下,人类必须另辟蹊径,积极寻求能够替代化石能源的新能源和可再生能源,逐步摆脱对传统化石能源的依赖。 以水能、太阳能、风能、地热能、海洋能、生物质能和核能等为代表的新能源又称非化石能源,不但取之不尽、用之不竭,而且低碳、清洁、环保,既有利于保障能源供给,又可极大地减少温室气体的排放。新能源被认为是能够同时解决能源危机、金融危机和气候危机的战略性支点,因而成为新一轮国际竞争的热点。 新能源特别是风能,是一种清洁、廉价、储量极为丰富的可再生能源,它与

风力发电机结构介绍

风力发电机结构介绍 风力发电机组是由风轮、传动系统、偏航系统、液压系统、制动系统、发电机、控制与安全系统、机舱、塔架和基础等组成。该机组通过风力推动叶轮旋转,再通过传动系统增速来达到发电机的转速后来驱动发电机发电,有效的将风能转化成电能。风力发电机组结构示意图如下。 1、叶片 2、变浆轴承 3、主轴 4、机舱吊 5、齿轮箱 6、高速轴制动器 7、发电机 8、轴流风机 9、机座 10、滑环 11、偏航轴承 12、偏航驱动 13、轮毂系统 各主要组成部分功能简述如下 (1)叶片叶片是吸收风能的单元,用于将空气的动能转换为叶轮转动的机械能。叶轮的转动是风作用在叶片上产生的升力导致。由叶片、轮毂、变桨系统组成。每个叶片有一套独立的变桨机构,主动对叶片进行调节。叶片配备雷电保护系统。风机维护时,叶轮可通过锁定销进行锁定。 (2)变浆系统变浆系统通过改变叶片的桨距角,使叶片在不同风速时处于最佳的吸收风能的状态,当风速超过切出风速时,使叶片顺桨刹车。 (3)齿轮箱齿轮箱是将风轮在风力作用下所产生的动力传递给发电机,并使其得到相应的转速。 (4)发电机发电机是将叶轮转动的机械动能转换为电能的部件。明阳se

机组采用是带滑环三相双馈异步发电机。转子与变频器连接,可向转子回路提供可调频率的电压,输出转速可以在同步转速±30%范围内调节。 (5)偏航系统偏航系统采用主动对风齿轮驱动形式,与控制系统相配合,使叶轮始终处于迎风状态,充分利用风能,提高发电效率。同时提供必要的锁紧力矩,以保障机组安全运行。 (6)轮毂系统轮毂的作用是将叶片固定在一起,并且承受叶片上传递的各种载荷,然后传递到发电机转动轴上。轮毂结构是3个放射形喇叭口拟合在一起的。 (7)底座总成底座总成主要有底座、下平台总成、内平台总成、机舱梯子等组成。通过偏航轴承与塔架相连,并通过偏航系统带动机舱总成、发电机总成、变浆系统总成。 se型风电机组主要技术参数如下: (1)机组: 机组额定功率:1500kw 机组起动风速:3m/s 机组停机风速: 25m/s 机组额定风速: m/s (2)叶轮: 叶轮直径: 叶轮扫掠面积:5316m2 叶轮速度: 叶轮倾角: 5o 叶片长度: 叶片材质:玻璃纤维增强树脂 (3)齿轮箱: 齿轮箱额定功率:1663kw 齿轮箱转速比: (4)发电机: 发电机额定功率:1550kw

风力发电机组叶片的故障分析及维护毕业设计

酒泉职业技术学院 毕业设计(论文) 10 ___ 级风能与动力技术专业 s:风力发电机组叶片的故障分析及维护 毕业时间:二0 — 0年六月 学生姓名: 指导教师: 班级:风能与动力技术(1)班 2012 年H 月20 R

摘要 一、风机叶片简介 二、维护叶片的目的 三、叶片产生问题的原因及故障分析 (一)叶片产生问题的原因类型 (二)风机叶片的常见损坏类型及诊断方法 四、叶片的维护13 总结 (一)叶片裂纹维护(二)叶片砂眼形成与维护 (三)叶尖的维 护 参考文献致谢13 13 13 14 14 15

风力发电机组叶片的故障分析及维护 扌商要:风机叶片是发电机组的动力源泉,是风电机组的关键部件之一,叶片状态的好坏直接影响到整机的性能和发电效率,应该引起风电企业的高度重视。风机多是安装在 环境恶劣、海拔高、气候复杂的地区,而叶片乂恰恰是工作在高空、全天候条件下, 经常受到空气介质.大气射线、沙尘、雳电、暴雨、冰雪的侵袭,其故障率在整机中约占三分之一以上。定期检査,早期发现,尽快采取措施,把问题解决在萌芽状态是避免事故、减少风险、稳定电场收益的最有效方武。如果对问题的萌芽和苗头不重视,时间越长,问题积累 越多,后果就越严Mo ih于叶片的事故多发在盛风期,停机修复必将带 来很大的经济损失,如果是叶片彻底失效,不得不更换,造价昂贵的叶片,加上定货、运输、安装、调试……,企业将面临发电损失、高额的叶片费用和维修费用。叶片的设计寿命应该与主机一样至少工作20年,但是只有对叶片进行定期维护、维修,精心呵护,才能保证叶片与风机的其他部件一样长期稳定的丄作,才能为电场安全运行提供有力的保障。 关键词:叶片:故障分析:维护 一、风机叶片简介 风力发电机叶片是一个复合材料制成的薄壳结构,结构上分根部、外壳、龙骨三个部分。类型多种,有尖头、平头、钩头、带襟翼的尖部等。制造工艺主要包括阳模一翻阴模 f铺层f加热固化一脱模一打磨表面一喷漆等。设讣难点包括叶型的空气动力学设 IN强度、披劳、噪声设计、复合材料铺层设计。工艺难点主要包括阳模加工、模翻制、 树脂系统选用。叶片是一个大型的复合材料结构,其重量的90%以上山复合材料组成,每 台发电机一般有三支叶片,每台发电机需要用复合材料达四吨之多。 二.维护叶片的目的 风机叶片是风电机组关键部件之一,其性能直接影响到整个系统的性能。叶片工作在高空,环境十分恶劣,空气中各种介质儿乎每时每刻都在侵蚀着叶片,春夏秋冬、酷?昌严寒、雳电、冰雹、雨雪、沙尘随时都有可能对风机产生危害,隐患每天都有可能演变成事故。据统讣,风电场的事故多发期多是在盛风发电期,而山叶片产生的事故要占到事故的三分之一,叶片发生事故电场必须停止发电,开始抢修,严重的还必须更换叶片,这必将导致高额的维修费用,也给风电场带来很大的经济损失。在我国风电开发还 处于一个发展阶段,风场管理和配套服务机制尚不完善,尤其是风电企业对叶片的维护还 没有引起充分认识,投入严重不足,风电场运转存在许多隐患,随时都会出现许多意想不 到的事故,直接影响到风电场的送电和经济效益。根据对风电场的调査和有关数据分析, 并参阅了许多国外风电场维护的成功经验,我们对风电场的日常维护的必要性有了更深刻 的了解。我认为,建立良好的叶片正常维护制度是保证风电场效益的基础,以少量的投入 避免巨大的损失、换取最佳经济效益的最好方式。

中国风力发电的发展现状及未来前景.

中国风电发展现状及前景 前言 随着能源与环境问题的日益突出,世界各国正在把更多目光投向可再生能源,其中风能因其自身优势,作为可再生能源的重要类别,在地球上是最古老、最重要的能源之一,具有巨大蕴藏量、可再生、分布广、无污染的特性,成为全球普遍欢迎的清洁能源,风力发电成为目前最具规模化开发条件和商业化发展前景的可再生能源发电方式。 风,来无影、去无踪,是无污染、可再生能源。一台单机容量为1兆瓦的风电装机与同容量火电装机相比,每年可减排2000吨二氧化碳、10吨二氧化硫、6吨二氧化氮。随着《可再生能源法》的颁布,中国已把风能利用放在重要位置。 一、国内外风电市场现状 1.国外风机发展现状 随着世界各国对环境问题认识的不断深入,可再生能源综合利用的技术也在不断发展。在各国政府制订的相应政策支持和推动下,风力发电产业也在高速发展。截至2011年底,世界风电装机量达到237669MW,新增装机量43279MW,增长率22.3%,增速与2010年持平,低于2009年32%的增速。由表一,可以看出中国风电装机量62364MW,远远超过世界其他各国装机量,而德国依然是欧洲装机量最多的国家。从图表三中,很明显的看出,从2001年到2004年,风电装机增速是在下降的,2004年到2009年风电有处于一个快速发展期,直到近两年风电装机的增速又降为22%左右,可见风电的发展正处在一个由快速扩张到技术提

升的阶段。 图表 1 世界风电装机总量图 图表 2 世界近10年新增装机量示意图

图表 3 世界风电每年装机量增速

图表 4 总装机量各国所占份额

图表 5 2011年新增装机量各国所占份额 2.国内风电发展现状 中国的风电产业更是突飞猛进:2009年当年的装机容量已超过欧洲各国,名列世界第二。2010年将新增1892.7万kW,超越美国,成为世界第一。2011年装机总量到达惊人的62364MW。在图6中可以看出,中国风电正经历一个跨越式发展,这对世界风电的发展起到了至关重要的作用。然而,图8 中,我们能够清楚的看出自2007年以后,虽然新增装机量很大,但增速却明显下降,而其他国家,比如美国、德国,这些年维持着一个稳定的增速。由此,我们应该意识到,我国风电,尤其是陆上风电,正在进入一个转型期,从发展期进入成熟期,从量的追求进入到对质的提升。 图表 6 中国每年风电装机量示意图

风力发电机组的分类及各自特点

风力发电机组的分类及各自特点 风力发电机组的分类及各自特点 风力发电机组主要由两大部分组成: 风力机部分――它将风能转换为机械能; 发电机部分――它将机械能转换为电能。 根据风机这两大部分采用的不同结构类型、以及它们分别采用的技术方案的不同特征,再加上它们的不同组 合,风力发电机组可以有多种多样的分类。 (1) 如依风机旋转主轴的方向(即主轴与地面相对位置)分类,可分为: “水平轴式风机”――转动轴与地面平行,叶轮需随风向变化而调整位置; “垂直轴式风机”――转动轴与地面垂直,设计较简单,叶轮不必随风向改变而调整方向。 (2) 按照桨叶受力方式可分成“升力型风机”或“阻力型风机”。 (3) 按照桨叶数量分类可分为“单叶片”﹑“双叶片”﹑“三叶片”和“多叶片”型风机;叶片的数目由很 多因素决定,其中包括空气动力效率、复杂度、成本、噪音、美学要求等等。 大型风力发电机可由1、2 或者3 片叶片构成。 叶片较少的风力发电机通常需要更高的转速以提取风中的能量,因此噪音比较大。而如果叶片太多,它们之 间会相互作用而降低系统效率。目前3 叶片风电机是主流。从美学角度上看,3 叶片的风电机看上去较为平衡和美观。 (4) 按照风机接受风的方向分类,则有“上风向型”――叶轮正面迎着风向(即在塔架的前面迎风旋转)和 “下风向型”――叶轮背顺着风向,两种类型。 上风向风机一般需要有某种调向装置来保持叶轮迎风。 而下风向风机则能够自动对准风向, 从而免除了调向装置。但对于下风向风机, 由于一部分空气通过塔架后再吹向叶轮, 这样, 塔架就干扰了流过叶片的气流而形成所谓塔影效应,使性能有所降低。 (5) 按照功率传递的机械连接方式的不同,可分为“有齿轮箱型风机”和无齿轮箱的“直驱型风机”。 有齿轮箱型风机的桨叶通过齿轮箱及其高速轴及万能弹性联轴节将转矩传递到发电机的传动轴,联轴节具有很 好的吸收阻尼和震动的特性,可吸收适量的径向、轴向和一定角度的偏移,并且联轴器可阻止机械装置的过载。 而直驱型风机则另辟蹊径,配合采用了多项先进技术,桨叶的转矩可以不通过齿轮箱增速而直接传递到发电 机的传动轴,使风机发出的电能同样能并网输出。这样的设计简化了装置的结构,减少了故障几率,优点很多,现多用于大型机组上。 (6) 根据按桨叶接受风能的功率调节方式可分为: “定桨距(失速型)机组”――桨叶与轮毂的连接是固定的。当风速变化时,桨叶的迎风角度不能随之变化 。由于定桨距(失速型)机组结构简单、性能可靠,在20 年来的风能开发利用中一直占据主导地位。 “变桨距机组”――叶片可以绕叶片中心轴旋转,使叶片攻角可在一定范围内(一般0-90度)调节变化,其

风力发电机叶片材料选用介绍

风力发电机叶片材料选用介绍 叶片是风力发电机组的重要构件。它将风能传递给发电机的转子,使之旋转切割磁力线而发电。为确保在野外极其恶劣环境中长期不停、安全地运行,对叶片材料的要求是:①密度小且具有最佳的疲劳强度和力学性能,能经受住极端恶劣条件和随机的负荷(如暴风等)的考验,确保安全运转20年以上;②成本(精确说为分摊到每度电的成本)低;③叶片的弹性、旋转时的惯性及其振动频率特性曲红都正常,传递给整个发电系统的负荷稳定性好;④耐腐蚀、耐紫外线(UV)照射和抗雷击性好;⑤维护费用低。 FRP完全可以满足以上要求,是最佳的风力发电机叶片材料。 1.1 GFRP 目前商品化的大型风机叶片大多采用玻璃纤维增强塑料(GFRP)制造。GFRP叶片的特点为: ①可根据风机叶片的受力特点来设计强度与刚度 风机叶片主要是纵向受力,即气动弯曲和离心力,气动弯曲载荷比离心力大得多,由剪切与扭转产生的剪应力不大。利用玻璃纤维(GF)受力为主的受力理论,可将主要GF布置在叶片的纵向,这样就可使叶片轻量化。 ②翼型容易成型,可达到最大气动效率 为了达到最佳气动效果,利用叶片复杂的气动外形,在风轮的不同半径处设计不同的叶片弦长、厚度、扭角和翼型,如用金属制造则十分困难。同时GFRP叶片可实现批量生产。 ③使用时间长达20年,能经受108以上疲劳交变载荷GFRP疲劳强度较高,缺口敏感性低,内阻尼大,抗震性能较好。 ④耐腐蚀性好 由于GFRP具有耐酸、碱、水汽的性能,可将风机安装在户外,特别对于近年来大力发展的离岸风电场来说,能将风机安装在海上,使风力机组及其叶片经受各种气候环境的考验。 为了提高GFRP的性能,还可通过表面处理,上浆和涂覆等对GF进行改性。美国的研究表明,采用射电频率等离子体沉积去涂覆E-GF,其拉伸及耐疲劳性可达到碳纤维(CF)的水平。 1.2 CFRP

中国风电发展现状与潜力分析

中国风电发展现状与潜力分析 风能资源作为一种可再生能源取之不尽,中国更是风能大国,据统计中国风能的技术开发量可达3亿千瓦-6亿千瓦,而且中国风能资源分布集中,有利于大规模的开发和利用。 据考察中国的风能资源主要集中在两个带状地区,一条是“三北(东北、华北、西北)地 区丰富带”即西北、华北和东北的草原和戈壁地带;另一条是“沿海及其岛屿地丰富带”,即东部和东南沿海及岛屿地带。这些地区一般都缺少煤炭等常规能源并且在时间上冬春季风大、降雨量少,夏季风小、降雨量大,而风电正好能够弥补火电的缺陷并与水电的枯水期 和丰水期有较好的互补性。 一、风电发展现状 据统计,从2017年开始,中国的风电总装机连续5年实现翻番,截至2017年底,中国 以约4182.7万千瓦的累积风电装机容量首次超越美国位居世界第一,较 瓦,到2020年可达1.5亿千瓦。 (二)风电投资企业 风电投资企业包括开发商与风电装机制造企业。从风电开发商的分布来看,更向能源投资企业集中,2017年能源投资企业风电装机在已经建成的风电装机中的比例已高达90%, 其中中央能源投资企业的比例超过了80%,五大电力集团超过了50%。其他国有投资商、外资和民企比例的总和还不到10%,地方国有非能源企业、外企和民企大都退出,仅剩下中国风电、天润等少数企业在“苦苦挣扎”,当年新增和累计在全国中的份额也很小。从风 电装机制造企业来看,主要是国内风电整机企业为主,2017年累计和新增的市场份额中,前3名、前5名和前10名的企业的市场占有率,分别达到了55.5%和 发电;由沈阳工业大学研制的3mw风电机组也已经成功下线。此外,中国华锐、金风、 东汽、海装、湘电等企业已开始研制单机容量为5mw的风电机组。中国开始全面迈进多mw级风电机组研制的领域。2017年,国际上公认中国很难建成自主化的海上风电项目,然而,华锐风电科技集团中标的上海东海大桥项目,用完全中国自主的技术和产品,用两 年的时间实现了装机,并于2017年成功投产运营,令世界风电行业震惊。 (四)风电场并网运行管理 目前,风电并网主要存在两大问题:风电异地发电机组技术对电网安全稳定产生影响、风 的波动性使风电场的输出功率的波动性难以对风电场制定和实施准确的发电计划。它们使 得风电发展受到严重影响。对于这种电力上网“不给力”的现况,国家和电网企业都在积极 努力地解决好风电基地电力外送问题,除东北的风电基地全部由东北电网消纳和江苏沿海 等近海和海上风电基地主要是就地消纳之外,其余各大风电基地就近消费一部分电力和电 量之外的电力外送的基本考虑是:河北风电基地和蒙西风电基地近期主要送入华北电网;

相关主题
文本预览
相关文档 最新文档