当前位置:文档之家› 2.2 初等复变函数

2.2 初等复变函数

第二章复变函数第二节初等解析函数(1)

3、指数函数

4、三角函数

5、幅角函数

指数函数的定义:

;

)(,1x e x f R x =∈?、我们首先把指数函数的定义扩充到整个复平面。

要求复变数z=x +iy 的函数f (z )满足下列条件:上解析;

在、C z f )(2);()()(,,3212121z f z f z z f C z z =+∈?、);

()()( iy f e iy x f z f x

=+=首先,),()()( y iB y A iy f +=设

由解析性,我们利用柯西-黎曼条件,有),

()()( y B ie y A e z f x

x +=则),

()('),(')(y B y A y B y A -==所以,

,sin )(,cos )(y y B y y A ==因此,).

sin (cos y i y e e x z +=y

i y e iy sin cos +=我们也重新得到欧拉公式:指数函数的对应法则

面上的解析拓广;

是实变指数函数在复平、指数函数z

e w =2指数函数的基本性质

且有:在整个复平面是解析,在整个复平面有定义,

、指数函数z e w =1z z e

e =)'(

,2,1,02

||±±=+==k k y Arge e e z x z ,π、从定义知道,3.04≠z e 、

的周期函数:

是周期为、指数函数i e w z π26=,则

若加法定理):

、指数函数代数性质(222111,5iy x z iy x z +=+=1212

1122(cos sin )(cos sin )z z x x e e e y i y e y i y =+?+。即2121z e z z z e e +=极限,但有

时,无:、指数函数的渐进性态∞→z 7)]

sin()[cos(212121y y i y y e x x +++=+21z z e +=2i 2 e (cos 2sin 2)z z i z z e e e i e ππππ+==+=即。

+∞==+∞→>=∞→x x x z z e lim e lim z 00lim e lim z 0==-∞→<=∞→x

x x z z e

、指数函数的几何性态8{}Re ,0Im 2z

w e z z w p =-¥<<+¥£<-把映照为整个平面;{}00Im {arg }z y w w y =-=把直线映照为平面的射线;{}00Re ,0Im 2{||}.x z x z w e p =£<=把线段映照为平面的圆y

x z-平面u w-平面v

i

π2z e w =i

y 00x L

'L B 'B

.

sin )(cos ,cos )(sin 1z z z z z -='='平面上解析,并且

、在正弦函数和余弦函数的性质:

是偶函数。

是奇函数,、z z cos sin 2.

sin sin cos cos )cos(,sin cos cos sin )sin(,

1cos sin 32121212121212

2z z z z z z z z z z z z z z -=++=+=+、周期的函数。是以为和、π2cos sin 4z z

幅角函数:

因为复变多值函数的多值性是由于辐角的多值性引起的,所以我们先研究辐角函数:

=z

z

Arg∈

w

(

0{\

C

}),

它本身不是一般意义下的初等函数。

函数w=Arg z有无穷个不同的值:

k

=z

Z

=

z

z

k

arg

),

+

(

Arg≠

2

其中arg z表示Arg z的主值:(我们也把Arg z的任意一个确定的值记为arg z)

π

π≤

arg

<

-z

为了研究方便起见,我们把幅角函数在某些区域内分解为一些单值连续函数,每一个单值连续函数称为幅角函数在这区域内的一个单值连续分支。考虑z-平面除去负实轴(包括0)而得的区域D 。显然,在区域D 内,Arg z 的主值arg z 满足

w =arg z 是一个单值连续函数。

arg z ππ

-<<注:z-平面除去负实轴得到区域D,其实就是限定了函数w =arg z 的定义域。

对一个固定的整数k ,

也是一个单值连续函数。

因此,w=Arg z 在z-平面的区域D 内可以分解成无穷多个单值连续函数,它们都是w=Arg z 在D 内的单值连续分支。

为了看清“限定”的本质,我们首先研究下图的情形:

π

k z 2arg +

沿负实轴的割线:

上沿

下沿

π

π

-=+=下沿上沿|arg |arg z z

一般区域:

不变。

一圈时,

绕时,z z z z arg 000≠π

2arg 000增加或减少一圈时,

绕时,z z z z =0

0≠z 0

0=z

一般区域(含无穷远点):

00arg 2z z z z π

=∞时,绕一圈时,

增加或减少∞

=0z

结论:

对于幅角函数w=Arg z,原点O和无穷远点是特殊的两点。

在z-平面上,取连接O和无穷远点的一条无界简单连续曲线L作为割线,得到一个区域D,其边界就是曲线L。则可以将Arg z分解成一些

单值连续分支.

幅角函数w=Arg z可以分解成无穷个单值连续分支arg2.

+

z k p

Arg z在C内任一点(非原点)的各值之间的联系:

通过作一条简单连续曲线围绕O或无穷远点,让z从该点按一定方向沿曲线连续变动若干周后,回到该点时,Arg z相应地可从幅角函数的一值连续变动到它在预先指定的其它任一值,即从Arg z的一个单值连续分支在该点的值,连续变动到预先指定的其它单值连续分支在该点的值。

例:

在复平面C 上作割线

得到区域D=C-K ,取Arg z 在D 内的一个单值连续分支f (z )=arg z (arg1=0),那么

)

5,(}0Im ,1|4||{ )

2,3(}0Im ,1|1||{--∞?≤=+?--?≥=+=z z z z z z K .

)4(,)1(ππ=--=-f f O 2-1-3-5-4

-

第三章 复变函数得积分(答案)

复变函数练习题第三章复变函数得积分 系专业班姓名学号 §1 复变函数积分得概念§4原函数与不定积分 一.选择题 1.设为从原点沿至得弧段,则[ ] (A) (B) (C) (D) 2、设就是,从1到2得线段,则[ ] (A) (B) (C) (D) 3.设就是从到得直线段,则[ ] (A) (B)(C)(D) 4.设在复平面处处解析且,则积分[ ] (A) (B) (C) (D)不能确定 二.填空题 1.设为沿原点到点得直线段,则 2 。 2.设为正向圆周,则 三.解答题 1.计算下列积分。 (1) (2) (3) (4) 2.计算积分得值,其中为正向圆周: (1) (2) 3.分别沿与算出积分得值。 解:(1)沿y=x得积分曲线方程为 则原积分 (2)沿得积分曲线方程为 则原积分

1 20 1 1 3224300 [()](12)3112 [32(1)][()]2.2233I i t it it dt t t i t dt t t i t t i =--+=--+-=--+-=-+?? 4.计算下列积分 (1) ,C:从到得直线段; C 得方程: 则原积分 (2) ,C:上沿正向从1到。 C 得方程: 则原积分 复变函数练习题 第三章 复变函数得积分 系 专业 班 姓名 学号 §2 柯西-古萨基本定理 §3 基本定理得推广-复合闭路定理 一、选择题 1. 设在单连通区域内解析,为内任一闭路,则必有 [ ] (A) (B) (C) (D ) 2.设为正向圆周,则 [ ] (A) (B ) (C) (D) 3.设在单连通域内处处解析且不为零,为内任何一条简单闭曲线,则积分 [ ] (A) (B) (C ) (D)不能确定 二、填空题 1.设为正向圆周,则 2.闭曲线取正方向,则积分 0 。 三、解答题 利用柯西积分公式求复积分 (1)判断被积函数具有几个奇点; (2)找出奇点中含在积分曲线内部得, 若全都在积分曲线外部,则由柯西积分定理可得积分等零; 若只有一个含在积分曲线内部,则直接利用柯西积分公式; 若有多个含在积分曲线内部,则先利用复合闭路定理,再利用柯西积分公式、 1.计算下列积分 (1) 、

(完整版)复变函数知识点梳理解读

第一章:复数与复变函数 这一章主要是解释复数和复变函数的相关概念,大部分内容与实变函数近似,不难理解。 一、复数及其表示法 介绍复数和几种新的表示方法,其实就是把表示形式变来变去,方便和其他的数学知识联系起来。 二、复数的运算 高中知识,加减乘除,乘方开方等。主要是用新的表示方法来解释了运算的几何意义。 三、复数形式的代数方程和平面几何图形 就是把实数替换成复数,因为复数的性质,所以平面图形的方程式二元的。 四、复数域的几何模型——复球面 将复平面上的点,一一映射到球面上,意义是扩充了复数域和复平面,就是多了一个无穷远点,现在还不知道有什么意义,猜想应该是方便将微积分的思想用到复变函数上。 五、复变函数 不同于实变函数是一个或一组坐标对应一个坐标,复变函数是一组或多组坐标对应一组坐标,所以看起来好像是映射在另一个坐标系里。 六、复变函数的极限和连续性 与实变函数的极限、连续性相同。 第二章:解析函数

这一章主要介绍解析函数这个概念,将实变函数中导数、初等函数等概念移植到复变函数体系中。 一、解析函数的概念 介绍复变函数的导数,类似于实变二元函数的导数,求导法则与实变函数相同。 所谓的解析函数,就是函数处处可导换了个说法,而且只适用于复变函数。而复变函数可以解析的条件就是:μ对x与ν对y的偏微分相等且μ对y和ν对x的偏微分互为相反数,这就是柯西黎曼方程。二、解析函数和调和函数的关系 出现了新的概念:调和函数。就是对同一个未知数的二阶偏导数互为相反数的实变函数。而解析函数的实部函数和虚部函数都是调和函数。而满足柯西黎曼方程的两个调和函数可以组成一个解析函数,而这两个调和函数互为共轭调和函数。 三、初等函数 和实变函数中的初等函数形式一样,但是变量成为复数,所以有一些不同的性质。 第三章:复变函数的积分 这一章,主要是将实变函数的积分问题,在复变函数这个体系里进行了系统的转化,让复变函数有独立的积分体系。但是很多知识都和实变函数的知识是类似的。可以理解为实变函数积分问题的一个兄弟。 一、复积分的概念 复积分就是复变函数的积分,实质是两个实二型线积分。所以应该具有相应的实二型线积分的性质。复积分存在的充分条件是实部函数和虚部函数都连续。 二、柯西积分定理

(完整版)【工程数学】复变函数复习重点

复变函数复习重点 (一)复数的概念 1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:一般两个复数不比较大小,但其模(为实数)有大小. 2.复数的表示 1) 模:z = 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数); 主值()arg z 是位于(,]ππ-中的幅角。 3)()arg z 与arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ? ≥=+??

第三章 复变函数的积分习题与解答

第三章 复变函数的积分习题与解答 3.1 如果函数()f z 是在【1】单连通区域;【2】复通区域中的解析函数,问其积分值与路径有无关系? 【答案 单连通 无关,复连通 有关】 3.2 计算积分 ||z ? 【答案 0】 3.3 计算积分 22d L z z a -? :其中0a >.设 L 分别为 (1)(1)||/2; ||; (3)||z a z a a z a a =-=+= 【答案 (1)0;(2)πi a ; (3)πi a -】 3.4 计算积分 Im d C z z ?,其中积分曲线C 为 (1)从原点到2i +的直线段; (2)上半圆周 ||1z =,起点为1,终点为1-; (3)圆周|| (0)z a R R -=>的正方向(逆时针方向) 【答案 2(1)1i /2;(2)π/2;(3)πR +--】 3.5 计算积分 d ||C z z z ? 的值, (1)||2; (2)||4;z z == 【答案(1)4πi;(2)8πi 】 3.6 计算积分的值 π2i 0 cos d 2z z +? 【答案 1/e e +】 3.7计算下列积分的值 (1) ||1d cos z z z =? ;(2)2||2d z ze z =? 21||1||12i d d (3); (4)24()(2)z z z z z z z z ==++++?? 【答案(1)0;(2) 0;(3) 0;(4) 4πi 4i +】 3.8 计算 2||2||232|i|1||1522||1|i|2(1)d ; (2)d ;3(1)(21)cos (3)d ; (4)d (i)(2)d (5)d ; (6)(4)z z z z z z z z z e z z z z z z z e z z z z z e z z z z z ==-===-=--+--+?????? 【答案 (1)0;(2)0;(3)πicosi -;(4)3πi 2-;(5)πi 12(6)π8-】 3.9 计算积分 (1)π61i i 000(1)sin d ; (2)ch3d ; (3)(1)d z z z z z z z e z --??? 【答案 13(1)s i n 1c o s 1; (2)i ; (3)1c o s 1i [s i n (1)1]- -+-】

复变函数习题答案第3章习题详解

第三章习题详解 1. 沿下列路线计算积分 ? +i dz z 30 2。 1) 自原点至i +3的直线段; 解:连接自原点至i +3的直线段的参数方程为:()t i z +=3 10≤≤t ()dt i dz +=3 ()()()?? +=??????+=+=+1 3 1 0332 3 30 2 33 13313i t i dt t i dz z i 2) 自原点沿实轴至3,再由3铅直向上至i +3; 解:连接自原点沿实轴至3的参数方程为:t z = 10≤≤t dt dz = 33 0330 2 3 2 33 131=??? ???==?? t dt t dz z 连接自3铅直向上至i +3的参数方程为:it z +=3 10≤≤t idt dz = ()()()33 1 031 0233 233133 13313-+=??????+=+=?? +i it idt it dz z i ()()()3 3331 02 3 0230233 133********i i idt it dt t dz z i +=-++= ++= ∴??? + 3) 自原点沿虚轴至i ,再由i 沿水平方向向右至i +3。 解:连接自原点沿虚轴至i 的参数方程为:it z = 10≤≤t idt dz = ()()31 031 202 3 131i it idt it dz z i =??????==?? 连接自i 沿水平方向向右至i +3的参数方程为:i t z += 10≤≤t dt dz = ()()()33 1 031 02 32 3113 131i i i t dt i t dz z i i -+=??????+=+=?? + ()()3 333320 2 30 2 13 13113131i i i i dz z dz z dz z i i i i +=-++= += ∴? ? ? ++ 2. 分别沿x y =与2 x y =算出积分 ()?++i dz iy x 10 2 的值。 解:x y = ix x iy x +=+∴2 2 ()dx i dz +=∴1 ()()()()()??? ??++=????? ???? ??++=++=+∴ ?? +i i x i x i dx ix x i dz iy x i 213112131111 0231 0210 2 2 x y = ()2 2 2 2 1x i ix x iy x +=+=+∴ ()dx x i dz 21+=∴ ()()()()()? ???? ??++=????? ???? ??++=++=+∴ +1 1 043210 2 2131142311211i i x i x i dx x i x i dz iy x i

复变函数总结完整版

第一章复数 1 i 2=-1 i = ?, -1 欧拉公式z=x+iy 实部Re Z 虚部Im Z 2运算① z1≡z2^ Rez1=Rez2Imz1=Imz2 ②(z1±z2)=Re(z1±z2)+lm(z1±z2)= (Rez1±Rez2)+(lm z1+ Im Z2) 乙Z2 ③=χ1 iy1 χ2 iy2 X1X2iχ1y2iχ2y1- y1y2 =X1X2 -y』2 i χ1y2 χ2y1 ④z1 _ z1z2 一χ1 i y1 χ2 -iy2 _ χ1χ2 y1y2 i y1χ2 -χ1y2 2 2 2 2 Z2 Z2Z2 χ2 iy2 χ2 -iy2 χ2 y2 χ2 y2 ⑤z = X - iy 共轭复数 z z =(x+iy I x — iy )=χ2+ y2共轭技巧 运算律P1页 3代数,几何表示 ^X iy Z与平面点χ,y-------- 对应,与向量--- 对应 辐角当z≠0时,向量Z和X轴正向之间的夹角θ ,记作θ =Arg z= V0■ 2k二k= ± 1 ± 2± 3… 把位于-∏v二0≤∏的厲叫做Arg Z辐角主值记作^0= argz0 4如何寻找arg Z π 例:z=1-i 4 π z=i 2 π z=1+i 4 z=-1 π 5 极坐标: X = r CoSr , y = r sin 二Z=Xiy = r COSr isin

利用欧拉公式e i 71 =COS71 i Sin71 例2 f Z = C 时有(C )=0

可得到z= re° Z z2=r1e i J r2e i72=r1r2e iτe i72= r1r2e i 71'y^ 6高次幂及n次方 n n in 「n Z Z Z Z ............ z=re r COS 1 Sin nv 凡是满足方程国=Z的ω值称为Z的n次方根,记作CO =^Z ☆当丄二f Z o时,连续 例1 证明f Z =Z在每一点都连续 证:f(Z f(Z o )= Z - Z o = Z - Z o τ 0ZT Z o 所以f z = Z在每一点都连续 3导数 f Z o Jm fZ 一 f z o z-?z°Z-Z o ,2 n 第二章解析函数 1极限 2函数极限 ①复变函数 对于任一Z- D都有W FP与其对应川=f Z 注:与实际情况相比,定义域,值域变化 例f z = z Z—Z o 称f Z当Z-:Z o时以A为极限 df(z l Z=Zo 1

第三章复变函数的积分(答案)

复变函数练习题 第三章 复变函数的积分 系 专业 班 姓名 学号 §1 复变函数积分的概念 §4 原函数与不定积分 一.选择题 1.设C 为从原点沿2 y x =至1i +的弧段,则2()C x iy dz +=? [ ] (A ) 1566i - (B )1566i -+ (C )1566i -- (D )15 66 i + 2. 设C 是(1)z i t =+,t 从1到2的线段,则arg C zdz =? [ ] (A ) 4 π (B )4i π (C )(1)4i π+ (D )1i + 3.设C 是从0到12 i π+的直线段,则z C ze dz =? [ ] (A )12e π- (B )12e π-- (C )12ei π+ (D )12 ei π - 4.设()f z 在复平面处处解析且 ()2i i f z dz i ππ π-=?,则积分()i i f z dz ππ--=? [ ] (A )2i π (B )2i π- (C )0 (D )不能确定 二.填空题 1. 设C 为沿原点0z =到点1z i =+的直线段,则 2C zdz =? 2 。 2. 设C 为正向圆周|4|1z -=,则22 32 (4) C z z dz z -+=-? 10.i π 三.解答题 1.计算下列积分。 (1) 323262121 ()02i z i i z i i i e dz e e e ππππππ---= =-=?

(2) 2 2222sin 1cos2sin 222 4sin 2.244i i i i i i zdz z z z dz i e e e e i i i i ππππππππππ ππππ------?? ==- ????? --=-=-=+ ?? ? ?? (3) 1 1 0sin (sin cos )sin1cos1. z zdz z z z =-=-? (4) 20 222 cos sin 1sin sin().2 22 i i z z dz z i ππππ= =?=-? 2.计算积分 ||C z dz z ?的值,其中C 为正向圆周: (1)

复变函数习题解答(第3章)

p141第三章习题 (一)[ 5, 7, 13, 14, 15, 17, 18 ] 5.由积分 C1/(z+ 2)dz之值证明 [0,](1 + 2 cos)/(5 + 4cos)d= 0,其中C取单位圆周|z| = 1. 【解】因为1/(z+ 2)在圆|z内解析,故 C1/(z+ 2)dz= 0. 设C: z()= ei ,[0, 2]. 则 C1/(z+ 2)dz= C1/(z+ 2)dz= [0, 2]iei /(ei + 2)d = [0, 2]i(cos+isin)/(cos+isin+ 2)d =

[0, 2]( 2 sin+i(1 + 2cos))/(5 + 4cos)d = [0, 2]( 2 sin)/(5 + 4cos)d+i [0, 2](1 + 2cos)/(5 + 4cos)d. 所以 [0, 2](1 + 2cos)/(5 + 4cos)d= 0. 因(1 + 2cos))/(5 + 4cos)以2为周期,故 [,](1 + 2cos)/(5 + 4cos)d= 0;因(1 + 2cos))/(5 + 4cos)为偶函数,故[0,](1 + 2 cos)/(5 + 4cos)d [,](1 + 2cos)/(5 + 4cos)d= 0. 7. (分部积分法)设函数f(z),g(z)在单连通区域D内解析,,是D内两点,试证 [,]f(z)g’(z)dz= (f(z)g(z))| [,] [,]g(z)f’(z)dz. 【解】因f(z),g(z)区域D内解析,故f(z)g’(z),g(z)f’(z),以及(f(z)g(z))’都在D 内解析.因区域D是单连通的,所以f(z)g’(z),g(z)f’(z),以及(f(z)g(z))’的积分都与路径无关.[,]f(z)g’(z)dz+ [,]g(z)f’(z)dz= [,](f(z)g’(z)dz+g(z)f’(z))dz

复变函数积分方法总结

复变函数积分方法总结The final revision was on November 23, 2020

复变函数积分方法总结 经营教育 乐享 [选取日期] 复变函数积分方法总结 数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,也就会有相应的积分函数求解方法。就复变函数: z=x+iy i2=-1 ,x,y分别称为z的实部和虚部,记作x=Re(z),y=Im(z)。arg z=θθ称为主值 -π<θ≤π,Arg=argz+2kπ。利用直角坐标和极坐标的关系式x=rcosθ,y=rsinθ,故z= rcosθ+i rsinθ;利用欧拉公式 e iθ=cosθ+isinθ。z=re iθ。 1.定义法求积分: 定义:设函数w=f(z)定义在区域D内,C为区域D内起点为A终点为B 的一条光滑的有向曲线,把曲线C任意分成n个弧段,设分点为A=z0,

z 1,…,z k-1,z k ,…,z n =B ,在每个弧段z k-1 z k (k=1,2…n)上任取一点k 并作和式S n =∑f( k )n k?1(z k -z k-1)= ∑f( k )n k?1z k 记 z k = z k - z k-1,弧段z k-1 z k 的长 度 δ=max 1≤k≤n {S k }(k=1,2…,n),当 δ→0时,不论对c 的分发即k 的取法如何,S n 有唯一的极限,则称该极限值为函数f(z)沿曲线C 的积分为: ∫f(z)dz c =lim δ 0 ∑f(k )n k?1z k 设C 负方向(即B 到A 的积分记作) ∫f(z)dz c?.当C 为闭曲线时,f(z)的积分记作∮f(z)dz c (C 圆周正方向为逆时针方向) 例题:计算积分1)∫dz c 2) ∫2zdz c ,其中C 表示a 到b 的任一曲线。 (1) 解:当C 为闭合曲线时,∫dz c =0. ∵f(z)=1 S n =∑f(k)n k?1(z k -z k-1)=b-a ∴lim n 0 Sn =b-a,即1)∫dz c =b-a. (2)当C 为闭曲线时,∫dz c =0. f(z)=2z;沿C 连续,则积分∫zdz c 存在,设k =z k-1,则 ∑1= ∑Z n k?1(k ?1)(z k -z k-1) 有可设k =z k ,则 ∑2= ∑Z n k?1(k ?1)(z k -z k-1) 因为S n 的极限存在,且应与∑1及∑2极限相等。所以 S n = (∑1+∑2)= ∑k?1n z k (z k 2?z k?12)=b 2-a 2 ∴ ∫2zdz c =b 2-a 2 定义衍生1:参数法: f(z)=u(x,y)+iv(x,y), z=x+iy 带入∫f(z)dz c 得:

复变函数习题答案第3章习题详解

第三章习题详解 1. 沿下列路线计算积分? +i dz z 30 2 。 1) 自原点至i +3的直线段; 解:连接自原点至i +3的直线段的参数方程为:()t i z +=3 10≤≤t ()dt i dz +=3 () ()()?? +=??????+=+= +1 3 1 332 3 30 2 3313313i t i dt t i dz z i 2) 自原点沿实轴至3,再由3铅直向上至i +3; 解:连接自原点沿实轴至3的参数方程为:t z = 10≤≤t dt dz = 33 33 2 3 2 33131=??? ???== ? ? t dt t dz z 连接自3铅直向上至i +3的参数方程为:it z +=3 10≤≤t i d t dz = () ()()33 1 31 2 33 2 3313313313-+=??????+=+= ?? +i it idt it dz z i ()()()33 3 3 1 02 30 2 30 2 33 13 3 133 133 13i i idt it dt t dz z i += - ++ = ++ = ∴ ?? ? + 3) 自原点沿虚轴至i ,再由i 沿水平方向向右至i +3。 解:连接自原点沿虚轴至i 的参数方程为:it z = 10≤≤t i d t dz = ()()31 31 20 2 3131i it idt it dz z i =??? ???== ? ? 连接自i 沿水平方向向右至i +3的参数方程为:i t z += 10≤≤t dt dz = () ()()33 1 31 2 32 3113131i i i t dt i t dz z i i -+=??????+=+= ?? + ()()33 3 3 32 2 30 2 13 13 113 13 1i i i i dz z dz z dz z i i i i += - ++ = + = ∴ ? ? ? ++ 2. 分别沿x y =与2 x y =算出积分()? ++i dz iy x 10 2 的值。 解:x y = ix x iy x +=+∴2 2 ()dx i dz +=∴1 ()()()()()??? ??++=? ???? ???? ??++=++=+∴ ? ?+i i x i x i dx ix x i dz iy x i 213112131111 0231 210 2 2 x y = ()2 2 2 2 1x i ix x iy x +=+=+∴ ()dx x i dz 21+=∴ ()()()()()? ???? ??++=????? ???? ??++=++=+∴ +1 1 0432 10 2 2131142311211i i x i x i dx x i x i dz iy x i 而()i i i i i 6 5 6121213131213 11+-=-++=??? ??+ +

《复变函数》总结

复变小结 1.幅角(不赞成死记,学会分析) .2 argtg 20,0,0,0,arctg 0,0,20,arctg arg ππ πππ<<-???? ?????=<≠<±≠=±>=x y y x y x x y y x x x y z 其中 -∏

b.对于P12例题 1.11可理解为高中所学的平面上三点(A,B,C )共线所满足的公式: (向量) OC=tOA+(1-t )OB=OB+tBA c.对于P15例题1.14中可直接转换成X 和Y 的表达式后判断正负号来确定其图像。 d.判断函数f(z)在区域D 内是否连续可借助课本P17定义1.8 4.解析函数,指数,对数,幂、三角双曲函数的定义及表达式,能熟练计算,能熟练解初等函数方程 a.在某个区域内可导与解析是等价的。但在某一点解析一定可导,可导不一定解析。 b.柯西——黎曼条件,自己牢记:(注意那个加负那个不加) c.指数函数:复数转换成三角的定义。 d.只需记住:Lnz=ln[z]+i(argz+2k π) e.幂函数:底数为e 时直接运算(一般转换成三角形式) 当底数不为e 时,w= z a = e aLnz (幂指数为Ln 而非ln) 能够区分: 的计算。 f.三角函数和双曲函数: 只需记住: 及 其他可自己试着去推导一下。 反三角中前三个最好自己记住,特别 iz iz i z -+-=11Ln 2Arctg 因为下一章求积分会用到 11)(arctan ,2+=z z (如第三章的习题9) 5.复变函数的积分 ,,,i e e i i e i ππ+)15.2(.2e e sin ,2e e cos i z z iz iz iz iz ---=+=???????=-==+=--y i i iy y iy y y y y sh 2e e sin ch 2e e cos

1-2复变函数基本概念

§1.2 复数函数 授课要点:区域的概念,闭区域,复变函数的极限,连续的概念。 难点:极限概念及其与实变函数中相关概念的区别 1、 邻域:以0z 为圆心,以任意小ε半径作圆,则圆内所有点的集合称为0z 的邻域。 注意,这里说的是“圆内”,“圆边”上的不算。 内点、外点和边界点: 设有一个点集E ,若0z 及其领域均属于点集E ,则称0z 为E 的“内” ,若0z 及其邻域均不属于E ,则0z 为外点,若0z 的每个领域内,既有属于E 的点,也有不属于E 的点,则称0z 为E 的边界点,边界点的全体称为E 的边界线。 区域:(1)全由内点组成 (2)具有连通性,即点集中任意两点都可以用一条折线连起来,且折线上的点全都 属于该点集。 闭区域:区域B 及其边界线所组成的点集称为闭区域,用B 表示。 练习: 下面几个图所示的,哪个是区域? 答:(a),(b)皆为区域,(a)为单通区域,(b)为复连通区域,(c)不是区域. 例子: ||z r <代表一个圆内区域 ||z r <代表一个圆外区域 12||r z r <<代表一个圆环区域 将上面三个式中的 < 换成 ≤, > 换成 ≥,则变成闭区域。 注意:区域的边界并不属于区域,闭区域和区域是两个概念 2、复变函数 定义:形式和实变函数一样,()w f z =

复变函数的定义域不再限于实轴上某个区间,而是复平面上的某个区域. 函数的值域也可以对应复平面上的某个区域(也可能不是): 变量:z x iy =+ 函数:()(,)(,,)w f z u x y iv x y ==+ 复变函数的实部和虚部都是一个二元函数(实函数),关于二元实变函数的很多理论都可用于复变函数中(形式可能有所变化) 极限: 设函数f (z )在0z 点的领域内有定义,如果存在复数A ,对于任意的0ε>,总能找到一个()0δε>,使得:当0||z z δ-<时,恒有|()|f z A ε-<,则称0z z →时f (z )的极限为A ,即 0lim ()z z f z A →= 对于非数学专业的学生而言,这段话略显晦涩,一个不太严格但直观的表述是: 当z 以任意方式逼近0z ,()f z 都逼近A 不会因为z 逼近方式之不同,而导致()f z 逼近不同的值,或者发散 举例:(1)222()()xy f z i x y x y =+++ 222(,)xy u x y x y =+ 2222 lim 22(,)010 kx k u x y x x ky k y ==→++→ 结果将因k 之不同而不同,故极限不存在. (2)实变函数例子1()f x x = 0lim ()x f x +→=+∞, lim ()x x f x -→=-∞ 连续:0 0lim ()()z z f z A f z →== 因为()(,)(,)f z u x y iv x y =+,所以,复变函数的连续问题,可以归结为两个二元实变函数的连续问题。 几个简单的复变函数 (1) 多项式:2012n n a a z a z a z +++ (其中n 为整数) (2) 有理分式:20122012n n n n a a z a z a z b b z b z b z ++++++

(完整版)复变函数第六章留数理论及其应用知识点总结

第六章留数理论及其应用 §1.留数 1.(定理6.1 柯西留数定理): ∫f(z)dz=2πi∑Res(f(z),a k) n k=1 C 2.(定理6.2):设a为f(z)的m阶极点, f(z)= φ(z) (z?a)n , 其中φ(z)在点a解析,φ(a)≠0,则 Res(f(z),a)=φ(n?1)(a) (n?1)! 3.(推论6.3):设a为f(z)的一阶极点, φ(z)=(z?a)f(z),则 Res(f(z),a)=φ(a) 4.(推论6.4):设a为f(z)的二阶极点 φ(z)=(z?a)2f(z)则 Res(f(z),a)=φ′(a) 5.本质奇点处的留数:可以利用洛朗展式 6.无穷远点的留数: Res(f(z),∞)= 1 2πi ∫f(z)dz Γ? =?c?1 即,Res(f(z),∞)等于f(z)在点∞的洛朗展式中1 z 这一项系数的反号 7.(定理6.6)如果函数f(z)在扩充z平面上只有有限个孤立奇点(包括无穷远点在内),设为a1,a2,…,a n,∞,则f(z)在各点的留数总和为零。 注:虽然f(z)在有限可去奇点a处,必有Res(f(z),∞)=0,但是,如果点∞为f(z)的可去奇点(或解析点),则Res(f(z),∞)可以不为零。 8.计算留数的另一公式:

Res (f (z ),∞)=?Res (f (1t )1t 2,0) §2.用留数定理计算实积分 一.∫R (cosθ,sinθ)dθ2π0型积分 → 引入z =e iθ 注:注意偶函数 二.∫P(x)Q(x)dx +∞?∞型积分 1.(引理6.1 大弧引理):S R 上 lim R→+∞zf (z )=λ 则 lim R→+∞∫f(z)dz S R =i(θ2?θ1)λ 2.(定理6.7)设f (z )=P (z )Q (z )为有理分式,其中 P (z )=c 0z m +c 1z m?1+?+c m (c 0≠0) Q (z )=b 0z n +b 1z n?1+?+b n (b 0≠0) 为互质多项式,且符合条件: (1)n-m ≥2; (2)Q(z)没有实零点 于是有 ∫ f (x )dx =2πi ∑Res(f (z ),a k )Ima k >0 +∞ ?∞ 注:lim R→R+∞ ∫f(x)dx +R ?R 可记为P.V.∫f(x)dx +∞?∞ 三. ∫P(x)Q(x)e imx dx +∞?∞ 型积分 3.(引理6.2 若尔当引理):设函数g(z)沿半圆周ΓR :z =Re iθ(0≤θ≤π,R 充分大)上连续,且 lim R→+∞g (z )=0 在ΓR 上一致成立。则 lim R→+∞ ∫g(z)e imz dz ΓR =0 4.(定理6.8):设g (z )=P (z )Q (z ),其中P(z)及Q(z)为互质多项式,且符合条件:

复变函数考试试题与答案各种总结

《复变函数》考试试题(一) 一、 判断题(20分): 1.若f(z)在z 0的某个邻域内可导,则函数f(z)在z 0解析. ( ) 2.有界整函数必在整个复平面为常数. ( ) 3.若 } {n z 收敛,则 } {Re n z 与 } {Im n z 都收敛. ( ) 4.若f(z)在区域D 内解析,且 0)('≡z f ,则C z f ≡)((常数). ( ) 5.若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( ) 6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( ) 7.若 ) (lim 0 z f z z →存在且有限,则z 0是函数f(z)的可去奇点. ( ) 8.若函数f(z)在是区域D 内的单叶函数,则)(0)('D z z f ∈?≠. ( ) 9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=? C dz z f . ( ) 10.若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数.( ) 二.填空题(20分) 1、 =-?=-1||0 0)(z z n z z dz __________.(n 为自然数) 2. =+z z 22cos sin _________. 3.函数z sin 的周期为___________. 4.设 11 )(2+= z z f ,则)(z f 的孤立奇点有__________. 5.幂级数 n n nz ∞ =∑的收敛半径为__________. 6.若函数f(z)在整个平面上处处解析,则称它是__________. 7.若ξ =∞ →n n z lim ,则= +++∞→n z z z n n (i) 21______________. = )0,(Re n z z e s ,其中n 为自然数.

学习复变函数与积分变换的心得

学习复变函数与积分变换的心得 这个学期我们学习了复变函数与积分变换这门课程,虽然它同概率统计一样也是考查课,但它的应用及延伸远比概率统计广,复杂得多。我从中学到了很多,上课也感受到了这门课程的魅力及授课老师的精彩的讲课。 每周二都很空闲,除了体育课就没课了,又因为这门课程是公共考查课,是四个班级在一起上课,所以有时候经常想逃课,但自从上了梁老师的一堂课,就感觉到了他是一个很负责的老师,他每次来教室都来得很早,他很喜欢点名,上课上的也很生动,他经常会叫同学上黑板做题目,来检查学生学得怎么样,他不希望同学带早餐进教室。以后的星期二基本上都没逃过课,我深深地被复变函数与积分变换这门课程给吸引住了。 关于这门课程,首先,它作为一门工科类各专业的重要基础理论课程,它与工程力学、电工技术、电磁学、无线电技术、信号系统和自动控制等课程的联系十分密切,其理论方法应用广泛。同时,作为一门工程数学的课程,它主要是以工程背景为依托来展开讨论和研究的,其前提就是为了服务于实际工程。其次,复变函数与积分变换作为一门工程数学课程,概念晦涩难懂、计算繁琐和逻辑推理不易理解。它既具有传统数学的一些特点,又具有与实际工程相结合才能理解的特点。传统数学主要注重对于基本概念的理解和对理论的讲解,要求理论推导具有严密的逻辑性,而不太注重其实际应用。而工程数学在推导定理或概念的过程中就会出现一些不完全符合严密逻辑的推理,但在现实中又是实实在在存在的一些特殊情况。如单位脉冲函数,对于集中于一点或一瞬时的量如点电荷、脉冲电流等,这些物理量都可以用通常的函数形式来描述。 复变函数是在实变函数的基础上产生和发展起来的一个分支,复变函数与积分变换中的理论和方法不仅是数学的许多后续课程如数理方程泛函分析多复变函数调和分析等课程的基础,而且在其它自然科学和各种工程技术领域特别是信号处理以及流体力学电磁学热学等的研究方面有着广泛的应用,可以说复变函数与积分变换既是一门理论性较强的课程,又是解决实际问题的有力工具各高校普遍将复变函数与积分变换课程作为工科各专业的一门重要的必修科来开设,尤其作为电子、机电自动化等电力专业的学生而言,该课程更是一门必不可少的专业基础类必修课,它为电路分析信号与系统以及自动控制原理等后续专业课程的学

复变函数积分方法总结

复变函数积分方法总结 经营教育 乐享 [选取日期] 复变函数积分方法总结 数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,也就会有相应的积分函数求解方法。就复变函数: z=x+iy i2=-1 ,x,y分别称为z的实部和虚部,记作x=Re(z),y=Im(z)。arg z=θ? θ?称为主值-π<θ?≤π,Arg=argz+2kπ。利用直角坐标和极坐标的关系式x=rcosθ,y=rsinθ,故z= rcosθ+i rsinθ;利用欧拉公式 e iθ=cosθ+isinθ。z=re iθ。 1.定义法求积分: 定义:设函数w=f(z)定义在区域D内,C为区域D内起点为A终点为B 的一条光滑的有向曲线,把曲线C任意分成n个弧段,设分点为A=z0,z1,…,

z k-1,z k,…,z n=B,在每个弧段z k-1 z k(k=1,2…n)上任取一点?k并作和式S n=?(z k-z k-1)=??z k记?z k= z k- z k-1,弧段z k-1 z k的长度 ={?S k}(k=1,2…,n),当0时,不论对c的分发即?k的取法如何,S n 有唯一的极限,则称该极限值为函数f(z)沿曲线C的积分为: =??z k 设C负方向(即B到A的积分记作).当C为闭曲线时,f(z)的积分记作(C圆周正方向为逆时针方向) 例题:计算积分,其中C表示a到b的任一曲线。(1)解:当C为闭合曲线时,=0. ∵f(z)=1 S n=?(z k-z k-1)=b-a ∴=b-a,即=b-a. (2)当C为闭曲线时,=0. f(z)=2z;沿C连续,则积分存在,设?k=z k-1,则 ∑1= ()(z k-z k-1) 有可设?k=z k,则 ∑2= ()(z k-z k-1) 因为S n的极限存在,且应与∑1及∑2极限相等。所以 S n= (∑1+∑2)==b2-a2 ∴=b2-a2 1.2 定义衍生1:参数法: f(z)=u(x,y)+iv(x,y), z=x+iy带入得:

复变函数与积分变换 学习笔记

第二章解析函数 一、复变函数的导数及微分 1、导数的定义 2、可导与连续 3、求导法则 实变函数的求导法则可以不加更改地推广到复变函数中来 4、微分的概念 与一元实变函数的微分概念完全一致 二、解析函数的概念 1、解析函数的定义 如果函数f(z)在z0及z0的邻域内处处可导,那么称f(z)在z0解析。 如果函数f(z)在区域D内每一点解析,则称f(z)在区域D内解析。或称f(z)是区域D 内的一个解析函数(全纯函数或正则函数) 2、奇点的定义 如果函数f(z)在z0不解析,那么称z0为f(z)的奇点。 根据定义可知,函数在区域内解析和区域内可导是等价的。但是,函数在一点处解析和一点处可导是不等价的,即在一点处可导,不一定在该点处解析。 函数在一点处解析比在该点处可导的要求高得多。 定理 (1)在区域D内解析的两个函数f(z)和g(z)的和、差、积、商(除去分母为零的点)在D内解析。 (2)设函数h=g(z)在z平面上的区域D内解析,函数w=f(h)在h平面上的区域G内解析。如果对于D内的每个点z,函数g(z)的对应值h都属于G,那么复合函数w=f|g(z)|在D内解析。 根据定理可知: (1)所有多项式在复平面内是处处解析的。 (2)任何一个有理分式函数P(z)/Q(z)在不含分母为零的点的区域内是解析的,使分母为零的点是它的奇点。 注意:复变函数的导数定义与一元实变函数的导数定义在形式上是完全一样的,它们的求导公式与求导法则也一样,然而复变函数极限存在要求与z趋于零的方式无关,这表明它在一点可导的条件比实变函数严格得多。 第二节、函数解析的充要条件 一、主要定理 定理一:设函数f(z)=u(x,y)+iv(x,y)定义在区域D内,则f(z)在D内一点z=x+yi 可导的充要条件是:u(x,y)与v(x,y)在点(x,y)可微,并在该点满足柯西-黎曼方 程:=,=。 根据定理一,可得函数f(z)=u(x,y)+iv(x,y)在点z=x+yi处的导数公式:f'(z)=+=+。 定理二:函数f(z)=u(x,y)+iv(x,y)在其定义域D内解析的充要条件是:u(x,y)与v(x,y)在D内可微,并满足柯西-黎曼方程。

(完整版)复变函数积分方法总结

复变函数积分方法总结 [键入文档副标题] acer [选取日期]

复变函数积分方法总结 数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,也就会有相应的积分函数求解方法。就复变函数: z=x+iy i2=-1 ,x,y 分别称为z 的实部和虚部,记作x=Re(z),y=Im(z)。 arg z =θ? θ?称为主值 -π<θ?≤π ,Arg=argz+2k π 。利用直角坐标和极坐标的关系式x=rcos θ ,y=rsin θ,故z= rcos θ+i rsin θ;利用欧拉公式e i θ=cos θ+isin θ。z=re i θ。 1.定义法求积分: 定义:设函数w=f(z)定义在区域D 内,C 为区域D 内起点为A 终点为B 的一条光滑的有向曲线,把曲线C 任意分成n 个弧段,设分点为A=z 0 ,z 1,…,z k-1,z k ,…,z n =B ,在每个弧段z k-1 z k (k=1,2… n)上任取一点ξk 并作和式S n =∑f(ξk )n k?1(z k -z k-1)= ∑f(ξk )n k?1?z k 记?z k = z k - z k-1,弧段z k-1 z k 的长度 δ=max 1≤k≤n {?S k }(k=1,2…,n),当 δ→0 时,不论对c 的分发即ξk 的取法如何,S n 有唯一的极限,则称该极限值为函数f(z)沿曲线C 的积分为: ∫f(z)dz c =lim δ 0 ∑f(ξk )n k?1?z k 设C 负方向(即B 到A 的积分记作) ∫f(z)dz c?.当C 为闭曲线时,f(z)的积分记作∮f(z)dz c (C 圆周正方向为逆时针方向) 例题:计算积分1)∫dz c 2) ∫2zdz c ,其中C 表示a 到b 的任一曲线。 (1) 解:当C 为闭合曲线时,∫dz c =0.

相关主题
文本预览
相关文档 最新文档