当前位置:文档之家› 6脉冲和12脉冲的比较

6脉冲和12脉冲的比较

6脉冲和12脉冲的比较
6脉冲和12脉冲的比较

(一)6脉冲整流器的原理。参照图1A图1B

图1A为电流源型变频器中常用的6脉波晶闸管电流源型蒸馏电路结构,图1B为该电路典型的输入波形,输入电流中含有很好的谐波分量,输入电流的5次谐波可达20%,7次谐波可达12%(见图3)。由于晶闸管的快速换相,还会产生一定的高次谐波,可达35次谐波以上,高次谐波会对电话等通信线路产生一定的干扰。整流电路总的谐波电流失真约为30%,所以一般要设置输入谐波滤波器。滤波器体积庞大且影响系统的效率,额外增加投资,滤波器的设计与电网参数和负载工况都有关系,一旦参数和工况发生变化,滤波器又得重新调整,十分不便,且影响滤波效果。

(二)12脉波整流器的原理

在图2A中,整流器由两组晶闸整流串联而成,分别由输入变压器的两组二次绕组(星形和三角形互差30°电角度)供电。

这种整流电路的优点是把整流电路的脉波数由6提高到12,从而大大改善输入电流波形(见图2B),降低输入谐波电流,总谐波电流失真约10%左右(见图3)。虽然12脉波整流电路的谐波电流必然谐波结构的大大下降,但还不能达到IEEE519—1992标准规定的在电网短路电流小于20倍负载电流时,总谐波电流失真小于5%的要求。因此,一般也要安装谐波滤波装置。

三12脉冲整流器与6脉冲的优势差异分析

(一)比6脉冲更具有环保概念

1 电流高谐波成份少,所以不电网电源。

2 有12脉冲整流装置,故输入功因率高大约≥0.85,因此总体效率亦比6脉冲整流器高。

(二)成本较高

1 由图1 A及图2A所示,12脉冲整流器必须加Δ及у双硫组变压器,故变压器成本较高。

2 控制电路较复杂及元件亦较6脉冲整流,因此施工成本亦较高。

(三)安全顾虑

电场为十分重要的场所,DCS的控制影响电厂操作的安全,如果谐波电信过大会造成辐射及干预,易使设备错误动作,及降低寿命。

6脉冲12脉冲可控硅整流器原理与区别

6脉冲、12脉冲可控硅整流器原理与区别 2007-2-8 10:36:00文/厂商稿出处:https://www.doczj.com/doc/6a7395515.html, 摘要:本文从理论推导、实测数据分析、谐波分析和改善对策、性能对比四个方面详细阐述6脉冲和12脉冲整流器的原理和区别。对大功率UPS的整流技术有一个深入全面的剖析。 一、理论推导 1、6脉冲整流器原理: 6脉冲指以6个可控硅(晶闸管)组成的全桥整流,由于有6个开关脉冲对6个可控硅分别控制,所以叫6脉冲整流。 当忽略三相桥式可控硅整流电路换相过程和电流脉动,假定交流侧电抗为零,直流电感为无穷大,延迟触发角a为零,则交流侧电流傅里叶级数展开为:

(1-1) 由公式(1-1)可得以下结论: 电流中含6K?1(k为正整数)次谐波,即5、7、11、13...等各次谐波,各次谐波的有效值与谐波次数成反比,且与基波有效值的比值为谐波次数的倒数。 图1.1 计算机仿真的6脉冲A相的输入电压、电流波形2、12脉冲整流器原理: 12脉冲是指在原有6脉冲整流的基础上,在输入端、增加移

相变压器后在增加一组6脉冲整流器,使直流母线电流由12个可控硅整流完成,因此又称为12脉冲整流。 下图所示I和II两个三相整流电路就是通过变压器的不同联结构成12相整流电路。 12脉冲整流器示意图(由2个6脉冲并联组成) 桥1的网侧电流傅立叶级数展开为: (1-2) 桥II网侧线电压比桥I超前30?,因网侧线电流比桥I超前30? (1-3) 故合成的网侧线电流

(1-4) 可见,两个整流桥产生的5、7、17、19、...次谐波相互抵消,注入电网的只有12k?1(k为正整数)次谐波,即11、13、23、25等各次谐波,且其有效值与与谐波次数成反比,而与基波有效值的比值为谐波次数的倒数。 图1.2 计算机仿真的12脉冲UPS A相的输入电压、电流波形二、实测数据分析。 以上计算为理想状态,忽略了很多因数,如换相过程、直流侧电流脉动、触发延迟角,交流侧电抗等。因此实测值与计算值有一定出入。

6脉冲和12脉冲的比较

(一) 6脉冲整流器的原理。参照图1A 图1B 图1A 为电流源型变频器中常用的6脉波晶闸管电流源型蒸馏电路结构,图1B 为该电路典型的输入波形,输入电流中含有很好的谐波分量,输入电流的5次谐波可达20%,7次谐波可达12%(见图3)。由于晶闸管的快速换相,还会产生一定的高次谐波,可达35次谐波以上,高次谐波会对电话等通信线路产生一定的干扰。整流电路总的谐波电流失真约为30%,所以一般要设置输入谐波滤波器。滤波器体积庞大且影响系统的效率,额外增加投资,滤波器的设计与电网参数和负载工况都有关系,一旦参数和工况发生变化,滤波器又得重新调整,十分不便,且影响滤波效果。 (二)12脉波整流器的原理 在图2A 中,整流器由两组晶闸整流串联而成,分别由输入变压器的两组二次绕组(星形和三角形互差30°电角度)供电。 这种整流电路的优点是把整流电路的脉波数由6提高到12,从而大大改善输入电流波形(见图2B ),降低输入谐波电流,总谐波电流失真约10%左右(见图3)。虽然12脉波整流电路的谐波电流必然谐波结构的大大下降,但还不能达到IEEE519—1992标准规定的在电网短路电流小于20倍负载电流时,总谐波电流失真小于5%的要求。因此,一般也要安装谐波滤波装置。 三 12脉冲整流器与6脉冲的优势差异分析 (一)比6脉冲更具有环保概念 1 电流高谐波成份少,所以不电网电源。 2 有12脉冲整流装置,故输入功因率高大约≥0.85,因此总体效率亦比6脉冲整流器高。 (二)成本较高 1 由图1 A 及图2A 所示,12脉冲整流器必须加Δ及у双硫组变压器,故变压器成本较高。 2 控制电路较复杂及元件亦较6脉冲整流,因此施工成本亦较高。 (三)安全顾虑 电场为十分重要的场所,DCS 的控制影响电厂操作的安全,如果谐波电信过大会造成辐射及干预,

12脉波整流

https://www.doczj.com/doc/6a7395515.html,/view/f05a78d850e2524de5187e4 2.html 串联型12脉波二极管整流器 摘要:串联型12脉波二极管整流器是由两个相同的6脉波二极管整流器在直流输出侧串联得到的。该类型整流器一般用作中压传动系统的变频器的前端。但一般情况下,12脉波的二极管整流器的总谐波畸变率不能满足IEEE 标准。 关键词:串联型、二极管、整流器 变频调速是当今理想的调速方法之一,也是重要的节能措施。交—直—交变频方式因其优势受到越来越广泛的应用。大多数的交—直—交变流装置的前置输入部分都采用二极管整流。随着多脉波整流技术的兴起,各种大功率设备都越来越多的采用多脉波二极管整流器。 1.理论分析 假定直流滤波电容d C 足够大,从而可以忽略直流电源d V 中的纹波含量。 在任何时刻(换相过程除外),上、下两个6脉波二极管整流器中各有两个二极管导通,d i 同时经过4个二极管形成回路。由于两个6脉波二极管整流器的输出为串联连接,二次侧绕组的漏电感也可以认为是串联连接,直流电流的纹波相对较小。 输出直流电流d i 连续,且在每个供电频率周期内包含有12个脉波。变压器二次侧星形连接的绕组中的电流a i 近似为梯形波,只是在顶端有4个纹波。变压器二次侧三角形连接的绕组中的电流~ a i 和a i 的波形形状相同,只是在相位上相差 30 。 由于变压器一次侧和二次侧上面的绕组都为星形连接,折合后的电流' a i 和折 合前的电流a i 波形形状应该相同,只是幅值将减少一半(可根据两个绕组匝数比计算得到)。而二次侧三角形绕组中折合前的电流~ a i 和折合后的电流' ~ a i 波形会不 同。且一次侧电流与二次侧电流之间存在如下关系: ' ' ~ a a A i i i += 2. 仿真结果

6与12脉冲整流器原理

一、理论推导 1、6脉冲整流器原理: 6脉冲指以6个可控硅(晶闸管)组成的全桥整流,由于有6个开关脉冲对6个可控硅分别控制,所以叫6脉冲整流。 当忽略三相桥式可控硅整流电路换相过程和电流脉动,假定交流侧电抗为零,直流电感为无穷大,延迟触发角a为零,则交流侧电流傅里叶级数展开为: (1-1) 由公式(1-1)可得以下结论: 电流中含6K?1(k为正整数)次谐波,即5、7、11、13...等各次谐波,各次谐波的有效值与谐波次数成反比,且与基波有效值的比值为谐波次数的倒数。

图1.1 计算机仿真的6脉冲A相的输入电压、电流波形 2、12脉冲整流器原理: 12脉冲是指在原有6脉冲整流的基础上,在输入端、增加移相变压器后在增加一组6脉冲整流器,使直流母线电流由12个可控硅整流完成,因此又称为12脉冲整流。 下图所示I和II两个三相整流电路就是通过变压器的不同联结构成12相整流电路。 12脉冲整流器示意图(由2个6脉冲并联组成) 桥1的网侧电流傅立叶级数展开为:

(1-2) 桥II网侧线电压比桥I超前30?,因网侧线电流比桥I超前30? (1-3) 故合成的网侧线电流 (1-4) 可见,两个整流桥产生的5、7、17、19、...次谐波相互抵消,注入电网的只有12k?1(k为正整数)次谐波,即11、13、23、25等各次谐波,且其有效值与与谐波次数成反比,而与基波有效值的比值为谐波次数的倒数。 图1.2 计算机仿真的12脉冲UPS A相的输入电压、电流波形

二、实测数据分析。 以上计算为理想状态,忽略了很多因数,如换相过程、直流侧电流脉动、触发延迟角,交流侧电抗等。因此实测值与计算值有一定出入。 理论计算谐波表: 某型号大功率UPS谐波实测数据表: 从以上两表对比可得,6脉整流器谐波含量最大为5次谐波、12脉整流器强度最大为11次谐波,与理论计算结果一致。6脉5次谐波实测值较计算值偏大,12脉11次谐波实测值与计算值相同。 三、谐波分析和改良对策 谐波可能造成配电线缆、变压器发热,降低通话质量,空气开关误动作,发电机喘振等不良后果;谐波按电流相序分为+序(3k+1次,k为0和正整数)、-序(3k+2次,k为0和正整数)、0序(3k次,k为正整数)。 +序电流使损耗加重,-序电流使电机反转、发热,0序电流使中线电流异常增大。 从实测值可见,6脉整流器5次谐波最大,可加装5次滤波器来抑制谐波;12脉整流器11次谐波最大,可加装11次滤波器来抑制谐波。滤波器原理图如下:

艾默生UPS电源专项培训-6脉冲和12脉冲技术差别

120KVA 机型6脉冲和12脉冲的技术差别 6脉冲指以6个可控硅(晶闸管)组成的全桥整流,由于有6个开关脉冲对6个可控硅分别控制,所以叫6脉冲整流。一般三相电使用6脉冲整流时,由于晶闸管只在交流电压波形幅值大于直流母线电压时才导通,输入电流不连续呈脉冲状,谐波含量很高,不加额外的滤波方式如无源滤波(电感)、有源滤波(PFC )时,输入反馈回电网的谐波电流总THD 超过30%,即总谐波电流含量超过总电流的33%,有可能造成配电线缆、变压器发热,空气开关误动作,发电机喘振等。 6脉冲整流原理图和电流电压效果图: 加入无源滤波器即校正电感后,才可将输入电流谐波含量降至10%左右。但这仅仅是满载情况下的指标。实际上,越是轻载情况,6脉冲整流器的输入谐波电流含量就越大,比如50%负载情况下,6脉冲整流器的输入谐波电流总含量超过56%;25%负载情况下,则超过78%。也就是说,谐波的绝对值基本不随负载量的减轻而减少。 12脉冲是指在原有6脉冲整流的基础上,在输入端增加移相变压器后在增加一组6脉冲整流器,使直流母线电流由12个可控硅整流完成,因此又称为12脉冲整流。它使整流器导通角大幅增加,输入电流更平滑,谐波电流含量减少,一般可达到10%左右,在增加无源电感滤波后,输入谐波电流可降至4%以下。而且,即使轻载工作,其良好的输入电流特性也不会大幅下降。比如50%负载情况下,12脉冲整流器的输入谐波电流总含量<12%;25%负载情况下,则<15%。可以有效减少谐波的绝对值。 12脉冲整流UPS 原理如下图: UPS 中有并联冗余的2个6脉冲整流器,所以,其工作时即使有一个整流器故障,也不会影响UPS 正常工作,提高了UPS 系统的故障容错能力。 由于使用了全功率的移相变压器和6脉冲整流器,所以同厂家的12脉冲整流器的UPS 比6脉冲整流器的UPS 体积、重量都要大至少1/3。相应的成本也更高。 有的厂家采用IGBT 高频整流技术也能够实现更好的输入谐波电流特性,其整流器可靠性等同於采用一个6脉冲整流器的UPS ,相对于采用12脉冲整流器的UPS 其整流器的容错能力

12脉冲与IGBT高频整流器

电源招聘专家12脉冲与IGBT高频整流器 一、概述整流器的由来 对于直流来说不存在什么功率因数问题,因为直流的电流和电压永远是同相的。而对于交流而言就出现了这个问题,功率因数是由于电压电流不同相造成的,如图 1所示,电流和电压有一个相位差q,图中的黑粗线表示电流和电压同相位时产生的有功功率,而其他部分则是无功功率,功率因数就是表征有功功率和无功功率含量情况的,它是相位差的函数,如式(1)所示。 Pf =cos (1) 无功功率的出现不是一件好事,因为作为负载来说,它不能将由电网送来的能量全部吸收,只吸收有功功率部分,而无功功率部分则在电网线路中串来串去,白白占据着电网的有效线路而不做功。以后由于非线性负载的出现,如整流脉冲负载,虽然电流不是和电压不同相的的正弦波,但由于对正弦电压波形的破坏也同样出现了无功功率,而且这种整流式脉冲负载已是当前影响功率因数的主要来源。为了节能、有效利用能源和降低干扰,国家对企业的输入功率因数限值做出了规定,如何提高用电设备的输入功率因数已成当务之急。 图1 电流电压不同相时的相对位置关系 二、12脉冲整流器的提出和解决方法 早期的IT设备供电电源多为单相220V,如果用电设备是电阻负载,其上面的电流和电压波形是连续的,如图2中的左边波形。但一般IT设备又有内部自备电源,这些电源的输入都是一个整流滤波器,使得电流呈脉冲状,使得对应脉冲电流的电压波形部分出现了失真,如图2的中间波形就是单相整流时的破坏情况,这时的输入功率因数只有0.6-0.7。但如果能够将中间图形中的一个大电流脉冲变成布满整个半周的小电流脉冲,也就相当于与电压同相的连续电流了,此时的电压波形就几乎没有失真了,如图中的右图所示,此时的输入功率因数九可以接近于1。

脉冲与12脉冲区别

大功率UPS 6脉冲与12脉冲可控硅整流器原理与区别 一、理论推导 1、6脉冲整流器原理: 6脉冲指以6个可控硅(晶闸管)组成得全桥整流,由于有6个开关脉冲对6个可控硅分别控制,所以叫6脉冲整流、 当忽略三相桥式可控硅整流电路换相过程与电流脉动,假定交流侧电抗为零,直流电感为无穷大,延迟触发角a为零,则交流侧电流傅里叶级数展开为: (1-1) 由公式(1-1)可得以下结论:电流中含6K?1(k为正整数)次谐波,即5、7、11、13.。.等各次谐波,各次谐波得有效值与谐波次数成反比,且与基波有效值得比值为谐波次数得倒 数。 图1。1计算机仿真得6脉冲A相得输入电压、电流波形 2、12脉冲整流器原理: 12脉冲就是指在原有6脉冲整流得基础上,在输入端、增加移相变压器后在增加一组6脉冲整流器,使直流母线电流由12个可控硅整流完成,因此又称为12脉冲整流、 下图所示I与II两个三相整流电路就就是通过变压器得不同联结构成12相整流电路。

12脉冲整流器示意图(由2个6脉冲并联组成) 桥1得网侧电流傅立叶级数展开为: (1-2) 桥II网侧线电压比桥I超前30?,因网侧线电流比桥I超前30? (1—3) 故合成得网侧线电流 (1-4) 可见,两个整流桥产生得5、7、17、19、、、、次谐波相互抵消,注入电网得只有12k?1(k为正整数)次谐波,即11、13、23、25等各次谐波,且其有效值与与谐波次数成反比,而与基波有效值得比值为谐波次数得倒数。 图1.2 计算机仿真得12脉冲UPS A相得输入电压、电流波形

二、实测数据分析。 以上计算为理想状态,忽略了很多因数,如换相过程、直流侧电流脉动、触发延迟角,交流侧电抗等。因此实测值与计算值有一定出入。 理论计算谐波表: 某型号大功率UPS谐波实测数据表: 从以上两表对比可得,6脉整流器谐波含量最大为5次谐波、12脉整流器强度最大为11次谐波,与理论计算结果一致、6脉5次谐波实测值较计算值偏大,12脉11次谐波实测值与计算值相同。 三、谐波分析与改良对策 谐波可能造成配电线缆、变压器发热,降低通话质量,空气开关误动作,发电机喘振等不良后果;谐波按电流相序分为+序(3k+1次,k为0与正整数)、-序(3k+2次,k为0与正整数)、0序(3k次,k为正整数)。 +序电流使损耗加重,—序电流使电机反转、发热,0序电流使中线电流异常增大。 从实测值可见,6脉整流器5次谐波最大,可加装5次滤波器来抑制谐波;12脉整流器11次谐波最大,可加装11次滤波器来抑制谐波。滤波器原理图如下: 图:常用得LC滤波器原理图 某型号大功率UPS加装滤波器后谐波对比表如下:

基于MATLAB的三相全控全波整流电路(12脉冲)

基于MATLAB的三相全控整流建模与仿真 萧飞河北惠仁医疗设备 2015年1月 摘要本文在对三相桥式全控整流电路理论分析的基础上,建立了基于Simulink的三 相桥式全控整流电路的仿真模型,并对其带电阻负载时的工作情况进行了仿真分析与研究。通过仿真分析也验证了本文所建模型的正确性。 关键词Simulink建模 仿真 三相桥式全控整流 对于三相对称电源系统而言,单相可控整流电路为不对称负载,可影响电源三相负载 的平衡性和系统的对称性。故在负载容量较大的场合,通常采用三相或多相整流电路。三 相或多相电源可控整流电路是三相电源系统的对称负载,输出整流电压的脉动小、控制响 应快,因此被广泛应用于众多工业场合。 本文在Simulink仿真环境下,运用PowerSystemBlockset的各种元件模型建立三相桥式 全控整流电路的仿真模型,并对其进行仿真研究。 一、 MATLAB基础 MATLAB 是一种科学计算软件。MATLAB 是 Matrix Laboratory(矩阵实验室)的缩写,这是一种以矩阵为基础的交互式程序计算语言。早期的 MATLAB 主 要用于解决科学和工程的复杂数学计算问题。由于它使用方便、输入便捷、运算 高效、适应科技人员的思维方式,并且有绘图功能,有用户自行扩展的空间,因 此受到用户的欢迎,使它成为在科技界广为使用的软件,也是国内外高校教学和 科学研究的常用软件。MATLAB 由美国 Mathworks 公司于 1984 年开始推出,历经升级,到 2001 年已经有了6.0 版,现在 MATLAB 6.5、7.1、7.8版都 已相继面世。早期的 MATLAB 在 DOS 环境下运行,1990 年推出了Windows 版本。1993年,Mathworks 公司又推出了MATLAB 的微机版,充分支持在MicrosoftWindows 界面下的编程,它的功能越来越强大,在科技和工程界广为 传播,是各种科学计算软件中用频率最高的软件。1993 年出现了 SIMULINK, 这是基于框图的仿真平台,SIMULINK 挂接在 MATLAB 环境上,以MATLAB 的强大计算功能为基础,以直观的模块框图进行仿真和计算。SIMULINK 提供了各种仿真工具,尤其是它不断扩展的、内容丰富的模块库, 为系统的仿真提供了极大便利。在 SIMULINK平台上,拖拉和连接典型模块就 可以绘制仿真对象的模型框图,并对模型进行仿真。在 SIMULINK 平台上,仿 真模型的可读性很强,这就避免了在 MATLAB 窗口使用 MATLAB 命令和函 数仿真时,需要熟悉记忆大量 M 函数的麻烦,对广大工程技术人员来说,这无 疑是最好的福音。现在的 MATLAB都同时捆绑了SIMULINK,SIMULINK 的 版本也在不断地升级,从 1993 年的 MATLAB 4.0/SIMULINK 1.0 版 到 2001 年的 MATLAB 6.1/SIMULINK 4.1 版,2002 年即推出了 MATLAB 6.5 /SIMULINK 5.0 版。MATLAB 已经不再是单纯的"矩阵实验室"了, 它已经成为一个高级计算和仿真平台。 SIMULINK 原本是为控制系统的仿真而 建立的工具箱,在使用中易编程、易拓展,并且可以解决 MATLAB 不易解决

6脉冲与12脉冲区别

大功率UPS 6脉冲与12脉冲可控硅整流器原理与区别 一、理论推导 1、6脉冲整流器原理: 6脉冲指以6个可控硅(晶闸管)组成的全桥整流,由于有6个开关脉冲对6个可控硅分别控制,所以叫6脉冲整流。 当忽略三相桥式可控硅整流电路换相过程和电流脉动,假定交流侧电抗为零,直流电感为无穷大,延迟触发角a为零,则交流侧电流傅里叶级数展开为: (1-1) 由公式(1-1)可得以下结论:电流中含6K?1(k为正整数)次谐波,即5、7、11、13...等各次谐波,各次谐波的有效值与谐波次数成反比,且与基波有效值的比值为谐波次数的倒 数。

图1.1 计算机仿真的6脉冲A相的输入电压、电流波形 2、12脉冲整流器原理: 12脉冲是指在原有6脉冲整流的基础上,在输入端、增加移相变压器后在增加一组6脉冲整流器,使直流母线电流由12个可控硅整流完成,因此又称为12脉冲整流。 下图所示I和II两个三相整流电路就是通过变压器的不同联结构成12相整流电路。 12脉冲整流器示意图(由2个6脉冲并联组成) 桥1的网侧电流傅立叶级数展开为: (1-2) 桥II网侧线电压比桥I超前30?,因网侧线电流比桥I超前30? (1-3) 故合成的网侧线电流 (1-4)

可见,两个整流桥产生的5、7、17、19、...次谐波相互抵消,注入电网的只有12k?1(k为正整数)次谐波,即11、13、23、25等各次谐波,且其有效值与与谐波次数成反比,而与基波有效值的比值为谐波次数的倒数。 图1.2 计算机仿真的12脉冲UPS A相的输入电压、电流波形 二、实测数据分析。 以上计算为理想状态,忽略了很多因数,如换相过程、直流侧电流脉动、触发延迟角,交流侧电抗等。因此实测值与计算值有一定出入。 理论计算谐波表: 谐波次数5th 7th 11th 13th 17th 19th 23th 6脉冲谐波含量20% 14% 9% 8% 6% 5% 4% 0% 0% 9% 8% 0% 0% 4% 12脉冲谐波含 量 某型号大功率UPS谐波实测数据表: 谐波次数5th 7th 11th 13th 17th 19th 23th 6脉冲谐波含量32% 3% 8% 3% 4% 2% 2% 1% 1% 9% 4% 1% 1% 2% 12脉冲谐波含 量 从以上两表对比可得,6脉整流器谐波含量最大为5次谐波、12脉整流器强度最大为11次谐波,与理论计算结果一致。6脉5次谐波实测值较计算值偏大,12脉11次谐波实测值与计算值相同。 三、谐波分析和改良对策

谈12脉冲与IGBT高频整流器

谈12脉冲与IGBT高频整流器 2009-06-15 16:33作者:wuhp出处:IT365责任编辑:吴红萍【文字大小:大中小】 一、概述12脉冲整流器的由来 对于直流来说不存在什么功率因数问题,因为直流的电流和电压永远是同相的。而对于交流而言就出现了这个问题,功率因数是由于电压电流不同相造成的,如图1所示,电流和电压有一个相位差q ,图中的黑粗线表示电流和电压同相位时产生的有功功率,而其他部分则是无功功率,功率因数就是表征有功功率和无功功率含量情况的,它是相位差的函数,如式(1)所示。 Pf =cosq (1) 无功功率的出现不是一件好事,因为作为负载来说,它不能将由电网送来的能量全部吸收,只吸收有功功率部分,而无功功率部分则在电网线路中串来串去,白白占据着电网的有效线路而不做功。以后由于非线性负载的出现,如整流脉冲负载,虽然电流不是和电压不同 图1 电流电压不同相时的相对位置关系 相的的正弦波,但由于对正弦电压波形的破坏也同样出现了无功功率,而且这种整流式脉冲负载已是当前影响功率因数的主要来源。为了节能、有效利用能源和降低干扰,国家对企业的输入功率因数限值做出了规定,如何提高用电设备的输入功率因数已成当务之急。 二、12脉冲整流器的提出和解决方法 早期的IT设备供电电源多为单相220V,如果用电设备是电阻负载,其上面的电流和电压波形是连续的,如图2中的左边波形。但一般IT设备又有内部自备电源,这些电源的输 图2 几种负载情况对电压正弦波形的影响情况 入都是一个整流滤波器,使得电流呈脉冲状,使得对应脉冲电流的电压波形部分出现了失真,如图2的中间波形就是单相整流时的破坏情况,这时的输入功率因数只有0.6~0.7。但如果能够将中间图形中的一个大电流脉冲变成布满整个半周的小电流脉冲,也就相当于与电压同相的连续电流了,此时的电压波形就几乎没有失真了,如图中的右图所示,此时的输入功率因数九可以接近于1。

UPS_6脉冲整流器、12脉冲整流器和IGBT整流器技术区别

UPS 6脉冲整流器、12脉冲整流器和IGBT 整流器技术区别 6脉冲指以6个可控硅(晶闸管)组成的全桥整流,由于有6个开关脉冲对6个可控硅分别控制,所以叫6脉冲整流。 三相桥式整流电路忽略换相过程和电流脉动,假定交流侧电抗为零,直流电感为无穷大,延迟触发角a 为零,则交流侧电流傅里叶级数展开为: iA=2?31/2/π?Id( sinwt -1/5sin5wt -1/7sin7wt +1/11sin11wt +1/13sin13wt - 1/17Sin17wt -1/19sinwt +…) (1-1) 由此可得以下简洁的结论:电流中含6k ±1(k 为正整数)次谐波,各次谐波有效值与谐波次数成反比,且与基波有效值的比值为谐波次数的倒数。 2、12脉冲整流器 12脉冲是指在原有6脉冲整流的基础上,在输入端增加移相变压器后在增加一组6脉冲整流器,使直流母线电流由12个可控硅整流完成,因此又称为12脉冲整流。 下图所示I 和II 两个三相整流电路就是通过变压器的不同联结构成12相整流电路。 电池及 逆变器 输入 电池及 逆变器 输入 II

桥1的网侧电流傅立叶级数展开为: iIA=iIa=2?31/2/π?Id( sinwt-1/5sin5wt-1/7sin7wt+1/11sin11wt+ 1/13sin13wt-1/17Sin17wt-1/19sinwt+…) (1-2) 桥II网侧线电压比桥I超前30?,因网侧线电流比桥I超前30?。 iIA=2?31/2/π?Id( sinwt+1/5sin5wt+1/7sin7wt+1/11sin11wt+ 1/13sin13wt+1/17Sin17wt+1/19sinwt+…) (1-3) 故合成的网侧线电流 iA=iIA+iIIA=4?31/2/π(sinwt+1/11sinwt+1/13sin13wt+…) 可见,两个整流桥产生的5、7、17、19、…次谐波相互抵消,注入电网的只有12k±1(k为正整数)次谐波,且其有效值与与谐波次数成反比,而与基波有效值的比值为谐波次数的倒数。 3、IGBT整流器 IGBT整流器电气图如下: IGBT整流是和6脉、12脉冲整流器完全不同的架构,其特点是: (1)采用三相半桥式SPWM逆变器构成输入Boost开关整流器与输出逆变器,这是高频化UPS的典型特征。 (2)不用(也不能用)输出隔离变压器及ZVS软开关技术。 (3)用高频IGBT作开关管,开关频率大于或等于20kHz。

12脉波整流变压器结构型式的选择

12脉波整流变压器结构型式的选择 在大型的电化学或电冶金用直流电源系统中,同相逆并联12脉波整流机组是组成24相、36相、48相整流系统的基本组成单元。12脉波整流机组主电路的连接型式有两种方案:一种是由一台整流变压器与两台整流装置整流装置组成的单机组12脉波整流电路整流电路(简称“单机组12脉波整流电路”);另一种是由置于同一油箱内的两台完全独立的整流变压器与两台整流装置组成的双机组等值12脉波整流电路(简称“等值12脉波整流电路”)。二者的连接方式。 上述两种连接方式的整流电路,对12脉波整流输出电压(电流)波形的对称性以及对网侧谐波电流谐波电流的影响是不同的,应引起设计人员和用户的注意。 1两种连接方式对谐波电流的影响 理想情况下,12脉波整流电路运行过程中,不会在网侧产生5次和7次谐波电流。但单机组12脉波整流电路,由于变压器两个阀侧绕组的输出电压和阻抗不容易做到很一致,使得运行时存在着严重的负荷分配不均的问题。需要通过晶闸管相控或饱和电抗器的励磁调节来纠正这种偏差,从而导致二个三相桥晶闸管导通的相位差不能严格地保持为30°,使得网侧仍然存在5次和7次谐波电流。 对于等值12脉波整流电路,由于变压器两个阀侧绕组的输出电压和阻抗容易做到一致,而不会破坏12脉波的对称性。 图1单机组12脉波整流电路 图2等值12脉波整流电路 2阀侧绕组之间负荷电流分配不均的问题 2.1单机组12脉波整流电路单机组12脉波整流电路,其整流变压器网侧只有一组绕组,导致两组阀侧绕组间负荷分配不均的原因是Y接和△接这两组绕组间匝比NY/N△偏离1/,彼此理想空载直流电压Udio不相等,因此,负荷分配不可能平均。整流变压器阀侧两组绕组间的匝比NY/N△值接近1/的可取整数比为4/7(偏差1.04%)、7/12(偏差1.02%)、11/19(偏差0.27%)。由此可见,将NY/N△做成11/19,可使△Udio偏差减到最小,改善电流分配不均问题。但由于变压器结构上的合理性和制造方面(变压器变比越大尤其如此)的原因,这样的匝比实际上是不容易做到的。 对于三相桥式整流电路,整流变压器阀侧绕组间匝比NY/N△=4/7时,理想空载直流电压之差△Udio=1.04%。但两组整流器的负载电流负载电流分配却相差很大。因为变压器网侧绕组的电抗X1*为各整流桥整流桥公有,对整流桥间的负载电流分配没有调节作用。负载电流分配完全取决于各组阀侧绕组电抗值X2*=XY*+X△*和阀侧连接母线的电抗XM*。(其中XY*为Y形连接绕组的电抗值,X△*为△形连接绕组的电抗值)。根据有关资料计算结果表明:当变压器二次电抗X△*=XY*=5%时, IdY=0.2928IdnId△=0.7072Idn 当变压器二次电抗X△*=XY*=10%时, IdY=0.3964IdnId△=0.6036Idn 由此可见,变压器二次电抗数值愈小,负载分配相差就愈大。有实际例子可以证明这一点。兰州有一用户采用这种单机组12脉波二极管整流电路,投运后发现,其中一整流桥直流电流达到12000A(额定值)时,另一整流桥的直流电流只有4500A。导致设备无法正常运行,后来被迫重新改造。 理论计算表明:增大整流变压器二次电抗X2*=X△*+XY*,可以部分减小负载电流分配

UPS12脉冲与LC比较

1,12脉冲整流器与LC滤波器配置在各个方面的比较 谐波解决方案12 pulse 6 pulse + LC filter 100 % 负载率时的性能 THDI Power factor < 10- 12 % 0.85 < 5- 6 % up to .94 25-50-75 %负载率时的性能 THDI Power factor increase up to 20 % quite constant > 0.80 constant THDI < 16 % constant > 0.90 是否满足 IEC 61000-3-4标准不满足11次谐 波严重超标,13 谐波超标 11次微量超标 连接方式串联在系统中串联在系统中系统可升级性能不可以不可以 系统可靠性较好,但整流器 故障时 UPS运行将不正 常非常高,增加的配置对系统的可靠性没有影响 发电机或与低压配电系统的兼容性 一般 12脉冲整流器 由于配置有设 备容量的移相 变压器。UPS 上电时有严重 电流浪涌的问 题影响低压配 电系统的稳定 运行,) 同时,THDI水 平比较高) 很好 (采用智能形的LC Filter能够避免配置普 通LC Filter在UPS低 负荷水平时的容性电流 问题) UPS 系统效率的影响average : good : loss of

loss of 2- 3% 0.5 % 2,12脉冲整流器与其他系统配置的谐波水平的比较 3,12脉冲整流器与其他系统配置谐波水平与IEC 标准的比较 4,结论: 12脉冲整流器存在输入启动电流浪涌严重和功率因数比较低的问题。尤其是输入启动电流浪涌问题,对整个配电系统的安全 性可靠性不利。

12脉波整流

12脉波整流变压器结构型式的选择 摘要:介绍了12脉波整流机组中整流变压器两种结构型式的特点和在方案选择中需要注意的问题。 在大型的电化学或电冶金用直流电源系统中,同相逆并联12脉波整流机组是组成24相、36相、48相整流系统的基本组成单元。12脉波整流机组主电路的连接型式有两种方案:一种是由一台整流变压器与两台整流装置组成的单机组12脉波整流电路(简称“单机组12脉波整流电路”);另一种是由置于同一油箱内的两台完全独立的整流变压器与两台整流装置组成的双机组等值12脉波整流电路(简称“等值12脉波整流电路”)。 上述两种连接方式的整流电路,对12脉波整流输出电压(电流)波形的对称性以及对网侧谐波电流的影响是不同的,应引起设计人员和用户的注意。 1两种连接方式对谐波电流的影响 理想情况下,12脉波整流电路运行过程中,不会在网侧产生5次和7次谐波电流。但单机组12脉波整流电路,由于变压器两个阀侧绕组的输出电压和阻抗不容易做到很一致,使得运行时存在着严重的负荷分配不均的问题。需要通过晶闸管相控或饱和电抗器的励磁调节来纠正这种偏差,从而导致二个三相桥晶闸管导通的相位差不能严格地保持为30°,使得网侧仍然存在5次和7次谐波电流。 对于等值12脉波整流电路,由于变压器两个阀侧绕组的输出电压和阻抗容易做到一致,而不会破坏1 2脉波的对称性。 2阀侧绕组之间负荷电流分配不均的问题 2.1单机组12脉波整流电路 单机组12脉波整流电路,其整流变压器网侧只有一组绕组,导致两组阀侧绕组间负荷分配不均的原因是Y接和△接这两组绕组间匝比NY/N△偏离,彼此理想空载直流电压Udio不相等,因此,负荷分配不可能平均。 整流变压器阀侧两组绕组间的匝比NY/N△值接近的可取整数比为4/7(偏差1.04%)、7/12(偏差1.02%)、11/19(偏差0.27%)。由此可见,将NY/N△做成11/19,可使△Udio偏差减到最小,改善电流分配不均问题。但由于变压器结构上的合理性和制造方面(变压器变比越大尤其如此)的原因,这样的匝比实际上是不容易做到的。 对于三相桥式整流电路,整流变压器阀侧绕组间匝比NY/N△=4/7时,理想空载直流电压之差△Udi o=1.04%。但两组整流器的负载电流分配却相差很大。因为变压器网侧绕组的电抗X1*为各整流桥公有,对整流桥间的负载电流分配没有调节作用。负载电流分配完全取决于各组阀侧绕组电抗值X2*=XY*+X △*和阀侧连接母线的电抗XM*。(其中XY*为Y形连接绕组的电抗值,X△*为△形连接绕组的电抗值)。根据有关资料计算结果表明: 当变压器二次电抗X△*=XY*=5%时, IdY=0.2928Idn Id△=0.7072Idn

6脉冲、12脉冲可控硅整流器原理与区别

6脉冲、12脉冲可控硅整流器原理与区别 摘要:本文从理论推导、实测数据分析、谐波分析和改善对策、性能对比四个方面详细阐述6脉冲和12脉冲整流器的原理和区别。对大功率的整流技术有一个深入全面的剖析。 一、理论推导 1、6脉冲整流器原理: 6脉冲指以6个可控硅(晶闸管)组成的全桥整流,由于有6个开 关脉冲对6个可控硅分别控制,所以叫6脉冲整流。 当忽略三相桥式可控硅整流电路换相过程和电流脉动,假定交流侧电 抗为零,直流电感为无穷大,延迟触发角a为零,则交流侧电流傅里 叶级数展开为: (1-1) 由公式(1-1)可得以下结论: 电流中含6K?1(k为正整数) 次谐波,即5、7、11、13...等各次 谐波,各次谐波的有效值与谐波次 数成反比,且与基波有效值的比值 为谐波次数的倒数。 图1.1 计算机仿真的6脉冲A相 的输入电压、电流波形 2、12脉冲整流器原理: 12脉冲是指在原有6脉冲整流 的基础上,在输入端、增加移相变 压器后在增加一组6脉冲整流器, 使直流母线电流由12个可控硅整流完成,因此又称为12脉冲整流。 下图所示I和II两个三相整流电路就是通过变压器的不同联结构成12相整流电路。 12脉冲整流器示意图(由2个6脉冲并联组成) 桥1的网侧电流傅立叶级数展开为: (1-2) 桥II网侧线电压比桥I超前300, 因网侧线电流比桥I超前300 (1-3) 故合成的网侧线电流

(1-4) 可见,两个整流桥产生的5、7、17、19、...次谐波相互抵消,注入电网的只有12k?1(k为正整数)次谐波,即11、13、23、25等各次谐波,且其有效值与谐波次数成反比,而与基波有效值的比值为谐波次数的倒数。 图1.2 计算机仿真的12脉冲UPS A相的 输入电压、电流波形 二、实测数据分析。 以上计算为理想状态,忽略了很 多因数,如换相过程、直流侧电流脉 动、触发延迟角,交流侧电抗等。因 此实测值与计算值有一定出入。 理论计算谐波表: 某型号大功率UPS谐波实测数据表: 从以上两表对比可得,6脉整流器谐波含量最大为5次谐波、12脉整流器强度最大为11次谐波,与理论计算结果一致。

6脉冲与12脉冲浅析

电子信息系统机房典型用电设备的谐波特性 1.PC机、网关、服务器、交换机等IT设备:输入电流谐波分量<65~77%r ; 2.带PFC校正功能的PC机、高中档服务器、磁盘等IT设备:输入电流谐波 分量<18~27%r ; 3.IGBT脉宽调制整流型UPS:输入电流谐波分量<3%r(满载); 4.6脉冲整流器:输入电流谐波分量<30%r (满载); 5.12脉冲整流器:输入电流谐波分量<9%r (满载); 6.6脉冲整流器+5次谐波滤波器:输入电流谐波分量<9%r (满载); 7.12脉冲整流器+11次谐波滤波器:输入电流谐波分量<4.5%r (满载); 8.6脉冲整流器+有源滤波器:输入电流谐波分量<3~5%r (满载); 9.节能灯:输入电流谐波分量<10~34%r.。

6脉冲与12脉冲UPS的浅析 摘要:本文从理论推导、实测数据分析、谐波分析和改善对策、性能对比四个方面详细阐述6脉冲和12脉冲整流器的原理和区别。对大功率UPS的整流技术有一个深入全面的剖析。 一、理论推导 1、6脉冲整流器原理: 6脉冲指以6个可控硅(晶闸管)组成的全桥整流,由于有6个开关脉冲对6个可控硅分别控制,所以叫6脉冲整流。 当忽略三相桥式可控硅整流电路换相过程和电流脉动,假定交流侧电抗为零,直流电感为无穷大,延迟触发角a为零,则交流侧电流傅里叶级数展开为: (1-1) 由公式(1-1)可得以下结论: 电流中含6K1(k为正整数)次谐波,即5、7、11、13…等各次谐波,各次谐波的有效值与谐波次数成反比,且与基波有效值的比值为谐波次数的倒数。 图1.1 计算机仿真的6脉冲A相的输入电压、电流波形 2、12脉冲整流器原理: 12脉冲是指在原有6脉冲整流的基础上,在输入端、增加移相变压器后在增加一组6脉冲整流器,使直流母线电流由12个可控硅整流完成,因此又称为12脉冲整流。 下图所示I和II两个三相整流电路就是通过变压器的不同联结构成12相整流电路。 12脉冲整流器示意图(由2个6脉冲并联组成) 桥1的网侧电流傅立叶级数展开为: (1-2) 桥II网侧线电压比桥I超前30,因网侧线电流比桥I超前30 (1-3) 故合成的网侧线电流 (1-4) 可见,两个整流桥产生的5、7、17、19、…次谐波相互抵消,注入电网的只有12k1(k 为正整数)次谐波,即11、13、23、25等各次谐波,且其有效值与与谐波次数成反比,而

6脉冲与12脉冲整流

6脉冲、12脉冲整流器原理与区别 摘要:本文从理论推导、实测数据分析、谐波分析和改善对策、性能对比四个方面详细阐述6脉冲和12脉冲整流器的原理和区别。对大功率UPS的整流技术有一个深入全面的剖析。 一、理论推导 1、6脉冲整流器原理: 6脉冲指以6个可控硅(晶闸管)组成的全桥整流,由于有6个开关脉冲对6个可控硅分别控制,所以叫6脉冲整流。 当忽略三相桥式可控硅整流电路换相过程和电流脉动,假定交流侧电抗为零,直流电感为无穷大,延迟触发角a为零,则交流侧电流傅里叶级数展开为: (1-1) 由公式(1-1)可得以下结论: 电流中含6K?1(k为正整数)次谐波,即5、7、11、13...等各次谐波,各次谐波的有效值与谐波次数成反比,且与基波有效值的比值为谐波次数的倒数。

图1.1 计算机仿真的6脉冲A相的输入电压、电流波形 2、12脉冲整流器原理: 12脉冲是指在原有6脉冲整流的基础上,在输入端、增加移相变压器后在增加一组6脉冲整流器,使直流母线电流由12个可控硅整流完成,因此又称为12脉冲整流。 下图所示I和II两个三相整流电路就是通过变压器的不同联结构成12相整流电路。 12脉冲整流器示意图(由2个6脉冲并联组成) 桥1的网侧电流傅立叶级数展开为: (1-2)

桥II网侧线电压比桥I超前30?,因网侧线电流比桥I超前30? (1-3) 故合成的网侧线电流 (1-4) 可见,两个整流桥产生的5、7、17、19、...次谐波相互抵消,注入电网的只有12k?1(k为正整数)次谐波,即11、13、23、25等各次谐波,且其有效值与与谐波次数成反比,而与基波有效值的比值为谐波次数的倒数。 图1.2 计算机仿真的12脉冲UPS A相的输入电压、电流波形 二、实测数据分析。 以上计算为理想状态,忽略了很多因数,如换相过程、直流侧电流脉动、触发延迟角,交流侧电抗等。因此实测值与计算值有一定出入。 理论计算谐波表:

脉冲整流器和12脉冲整流器介绍

6脉冲整流器和12脉冲整流器介绍 由于不断电系统之输入端需进行交、直流电压转换,而传统UPS 一般均采用可控硅整流器构成的6脉冲整流器整流电路。此电路的问题在于将造成系统输入功率因数恶化及输入电流谐波失真率增加等负面影响。对此相关问题,亦可利用功率因数矫正电路技术进行改善。然而受限于成本因素,目前该项技术仍较适合应用于中低功率型系统。较大容量之交、直流整流器设计,尚需藉由可控硅整流器予以达成,对此一般可以可采用12脉冲整流器和主动电力滤波器补偿,下文主要介绍6脉冲和12脉冲整流器的结构 图1绘出一典型的3相6脉冲整流器架构,当系统处于理想的运转状况下,市电电感L S 可假设为零,且视直流电感L d 足够大使得直流输出电流无涟波成分,今如令整流器触发角为α,则自市电引入之电流i s 可表示为: ())sinh()sin(21αωαω-+-=t i t i i h S (1) o h I h i π6 =, h =6n ±1, (n=1, 2, 3,…) (2) 其中i h 为市电谐波电流。由上式可看出,3相6脉冲整流器主要之谐波电流成分为5次谐波,而其总谐波含量约为30%。为达到提高功因及降低谐波成分的目的,可在不断电系统之电源输入侧并联LC 滤波器使用。至于谐波滤波器之设计方式可根据下式决定: LC f h π21= (3) 其中f h 为谐波频率、L 为滤波电感、C 为电容值。由于6脉波型整流器所产生之最低阶谐波为5次谐波,目前该型不断电系统机种常采5阶及(或)7阶型滤波器设计。 相控整流器直流 電容器 三相電源L s L d 濾波器濾波器 補償器驅動器α ?* α+++-相控整流器2 直流電容均流迴路相控整流器1 市電端相移變壓器驅動器 图1:三相6脉冲整流器 图2:三相12脉冲整流器及均流控制回路 另一方面,为进一步提高相控整流器所产生之谐波电流阶数,亦可采行12脉冲整流技术,其电路架构如图2所示。主要原理为利用两组变压器将交流电压移相,各自整流后,再于直流侧予以合成,产生12步阶直流涟波效果。由数学理论推导,12脉冲相控整流器所需引入之市电线电流为: ())sin()sin(21αωαωh t h i t i i h S -+-= (4) o h I h i π6 =, h =12n ±1, (n=1, 2, 3,…) (5) 由(4)、(5)式可看出,12脉冲整流电路所产生之谐波电流最低为11次谐波,其远高于6脉冲整流技术产生之5次谐波,且其总谐波含量亦较6脉冲为低;然而该12脉冲机种需额外加入一输入相移变压器,为有效减少相移变压器的生产成本,变压器可采自耦型设计(如图1所示),惟其需注意系统是否有输出入电压隔离的问题。另鉴于12脉冲整流电路在实现时可能因两组整

12脉波二极管整流器

串联型12脉波二极管整流器 摘要:串联型12脉波二极管整流器是由两个相同的6脉波二极管整流器在直流输出侧串联得到的。该类型整流器一般用作中压传动系统的变频器的前端。但一般情况下,12脉波的二极管整流器的总谐波畸变率不能满足IEEE 标准。 关键词:串联型、二极管、整流器 变频调速是当今理想的调速方法之一,也是重要的节能措施。交—直—交变频方式因其优势受到越来越广泛的应用。大多数的交—直—交变流装置的前置输入部分都采用二极管整流。随着多脉波整流技术的兴起,各种大功率设备都越来越多的采用多脉波二极管整流器。 多脉波二极管整流器有两种类型:串联型多脉波二极管整流器和并联型多脉波二极管整流器。前者的所有6脉波二极管整流器的直流侧串联输出,主要用在仅需要一个直流供电的中压传动系统的变频器的前端;后者的每一个6脉波二极管整流器给一个单独的直流负载供电,可以用在需要多个独立直流供电电源的串联H 桥多电平逆变器中。本文主要介绍串联型12脉波二极管整流器。 1.串联型12脉波二极管整流器 1.1整流器的结构 图1 12脉波串联型二极管整流器简化结构框图 12脉波串联型二极管整流器的典型结构简化框图如图1所示,它由两个完全相同的6脉波二极管整流器构成,移相变压器二次侧两个三相对称绕组分别给其供电。两个整流器的直流输出串联连接。为了消除网侧电流A i 中的低次谐波,可令变压器二次侧星形连接的绕组的线电压ab V 与变压器一次侧绕组线电压AB V 同相,而变压器 三角形连接的绕组的线电压~~ab v 超前AB v 一个相角,即 30~~ =∠-∠=AB ab v v δ

二次侧绕组线电压的有效值为 2/~~AB ab ab V V V == 则变压器的绕组匝数比为 221=N N 3 231=N N 图1中的s L 表示供电电源和变压器之间总的线路电感,变压器总的漏电感可在变压器内部设置。 1.2 理论分析 假定直流滤波电容d C 足够大,从而可以忽略直流电源d V 中的纹波含量。 在任何时刻(换相过程除外),上、下两个6脉波二极管整流器中各有两个二极管导通,d i 同时经过4个二极管形成回路。由于两个6脉波二极管整流器的输出为串联连接,二次侧绕组的漏电感也可以认为是串联连接,直流电流的纹波相对较小。 输出直流电流d i 连续,且在每个供电频率周期内包含有12个脉波。变压器二次侧星形连接的绕组中的电流a i 近似为梯形波,只是在顶端有4个纹波。变压器二次侧三角形连接的绕组中的电流~a i 和a i 的波形形状相同,只是在相位上相差 30。 由于变压器一次侧和二次侧上面的绕组都为星形连接,折合后的电流'a i 和折合前的电流a i 波形形状应该相同,只是幅值将减少一半(可根据两个绕组匝数比计算得到)。而二次侧三角形绕组中折合前的电流~a i 和折合后的电流'~a i 波形会不同。且一次侧电流与二次侧电流之间存在如下关系: ' '~a a A i i i += 1.3 参数计算 已知额定输入线电压R V 有效值为4000V ,额定输出功率R S 为1MW ,变压器初次级绕组总漏电感为0.8pu ,电源和变压器之间线路总电感为0.8pu 。 基准相电压3/40003 ==R B V V V

相关主题
文本预览
相关文档 最新文档