当前位置:文档之家› 油气管道基于应变的设计及抗大变形管线钢的开发与应用

油气管道基于应变的设计及抗大变形管线钢的开发与应用

油气管道基于应变的设计及抗大变形管线钢的开发与应用
油气管道基于应变的设计及抗大变形管线钢的开发与应用

油气输送管道与铁路交汇工程技术及管理规定(精编版)

油气输送管道与铁路交汇工程技术及管理规定 Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:___________________ 日期:___________________

油气输送管道与铁路交汇工程技术及管理规定 温馨提示:该文件为本公司员工进行生产和各项管理工作共同的技术依据,通过对具体的工作环节进行规范、约束,以确保生产、管理活动的正常、有序、优质进行。 本文档可根据实际情况进行修改和使用。 第一章总则第一条为统一油气输送管道(以下简称“管道”)与铁路相互交叉、并行工程的技术和管理要求, 保障管道和铁路设施的安全, 依据《中华人民共和国石油天然气管道保护法》、《中华人民共和国铁路法》和《铁路安全管理条例》, 制定本规定。 第二条本规定适用于管道与铁路相互交叉、并行的工程(以下统称“交汇工程”)。油、气田集输管道与铁路相互交叉、并行, 其条件相近时可参照执行。 第三条管道与铁路交汇时应遵循以下原则: 1. 安全第一、预防为主。交汇工程应确保铁路运输安全和管道运行安全, 特别是高速铁路、城际铁路等旅客列车的运输安全。 2. 后建服从先建, 尽量减少对既有设施的改建。 3. 综合考虑铁路和管道行业规划。 4. 保护环境, 节约资源, 经济合理。 5. 平等协商、互相支持。 第四条交汇工程除应执行本规定外, 尚应符合国家相关法律、法规和强制性标准的规定。

油气管道腐蚀检测

油气管道腐蚀的检测 摘要:油气管道运输中的泄漏事故,不仅损失油气和污染环境,还有可能带来重大的人身伤亡。近些年来,管道泄漏事故频繁发生,为保障管道安全运行和将泄漏事故造成的危害减少到最小,需要研究泄漏检测技术以获得更高的泄漏检测灵敏度和更准确的泄漏点定位精度。本文介绍几种检测方法并针对具体情况进行具体分析。 关键字:腐蚀检测涡流漏磁超声波 引言: 在油气管道运输中管道损坏导致的泄漏事故不仅浪费了石油和天然气,而且泄露的有毒气体不仅污染环境,而且对人和动物造成重大的伤害,因此直接有效的检测技术是十分必要的,油气管道检测是直接利用仪器对管壁进行测试,国内外主要以超声波、漏磁和祸流等领域的发展为代表。[1] 1、涡流检测 电涡流效应的产生机理是电磁感应. 电涡流是垂直于磁力线平面的封闭的旋涡!状感应电流, 与激励线圈平面平行, 且范围局限于感应磁场所能涉及的区域. 电涡流的透射深度见图1, 电涡流集中在靠近激励线圈的金属表面, 其强度随透射深度的增加而呈指数衰减, 此即所谓的趋肤效应. [1] 电涡流检测金属表面裂纹的原理是: 检测线圈所产生的磁场在金属中产生电涡流, 电涡流的强度与相位将影响线圈的负载情况, 进而影响线圈的阻抗. 如果表面存在裂纹, 则会切断或降低电涡流, 即增大电涡流的阻抗, 降低线圈负载. 通过检测线圈两端的电压, 即可检测到材料中的损伤. 电涡流检测裂纹原理见图2.[2]

涡流检测是一种无损检测方法,它适用于导电材料。涡流检测系统适应于核电厂、炼油厂、石化厂、化学工厂、海洋石油行业、油气管道、食品饮料加工厂、酒厂、通风系统检查、市政工程、钢铁治炼厂、航空航天工业、造船厂、警察/军队、发电厂等各方面的需求.[2] 涡流检测的优点为:1.对导电材料和表面缺陷的检测灵敏度较高;2.检测结果以电信号输出,可以进行白动化检测;3.涡流检测仪器重量轻,操作轻便、简单;4.采用双频技术可区分上下表面的缺陷:5.不需要祸合介质,非接触检测;6.可以白动对准_!:件探伤;7.应用范围广,可检测非铁磁性材料。 涡流检测的缺点为:1.只适用于检测导电材料;2.受集肤效应影响,探伤深度与检测灵敏度相矛盾,不易两全:3.穿过式线圈不能判断缺陷在管道圆周上所处的具体位置;4.要有参考标准才能进行检测:5.难以判断缺陷的种类。[1] 2、超声波检测 超声波检测的基本原理基本原理见图3所示。 垂直于管道壁的超声波探头对管道壁发出一组超声波脉冲后,探头首先接收到由管道壁内表面反射的回波(前波),随后接收到由管道壁缺陷或管道壁外表面反射的回波(缺陷波或底波)。于是,探头至管道壁内表面的距离A与管道壁厚度T可以通过前波时间以及前波和缺陷波(或底波)的时间差来确定:

输油管道泄漏监测技术及应用

输油管道泄漏监测技术及应用 摘要:文章对国内外输油管道泄漏检测方法进行了分析,对油田输油管道防盗监测的方法进行了探讨。针对油田输油管道防盗监测问题,指出了油田输油管道防盗监测系统的关键技术是管道泄漏检测报警及泄漏点的精确定位,并介绍了胜利油田输油管道泄漏监测系统的应用情况。 主题词:输油管道泄漏监测防盗

泄漏是输油管道运行的主要故障。特别是近年来,输油管道被打孔盗油以及腐蚀穿孔造成泄漏事故屡有发生,严重干扰了正常生产,造成巨大的经济损失,仅胜利油田每年经济损失就高达上千万元。因此,输油管道泄漏监测系统的研究与应用成为油田亟待解决的问题。先进的管道泄漏自动监测技术,可以及时发现泄漏,迅速采取措施,从而大大减少盗油案件发生,减少漏油损失,具有明显的经济效益和社会效益。 1 国内外输油管道泄漏监测技术的现状 输油管道泄漏自动监测技术在国外得到了广泛的应用,美国等发达国家立法要求管道必须采取有效的泄漏监测系统。 输油管道检漏方法主要有三类:生物方法、硬件方法和软件方法。 1.1 生物方法 这是一种传统的泄漏检测方法,主要是用人或经过训练的动物(狗)沿管线行走查看管道附件的异常情况、闻管道中释放出的气味、听声音等,这种方法直接准确,但实时性差,耗费大量的人力。 1.2 硬件方法 主要有直观检测器、声学检测器、气体检测器、压力检测器等,直观检测器是利用温度传感器测定泄漏处的温度变化,如用沿管道铺设的多传感器电缆。声学检测器是当泄漏发生时流体流出管道会发出声音,声波按照管道内流体的物理性质决定的速度传播,声音检测器检测出这种波而发现泄漏。如美国休斯顿声学系统公司(ASI)根据此原理研制的声学检漏系统(wavealert),

2011版输油管道设计与管理习题

《输油管道设计与管理》习题 一、等温输油管道工艺计算习题 1、某φ355.6×6的长输管道按“密闭输油”方式输送汽油,输量为310万吨/年,年工作日按350天计算。管壁粗糙度e =0.1mm ,计算温度为15℃。油品的物性参数:υ15=0.82×10-6 m 2/s ,ρ20=746.2 kg/m 3。密度按以下公式换算: ρt =ρ20-ξ(t -20) kg/m 3 ξ=1.825-0.00l315ρ20 kg/m 3℃ 试做: (1)判断管内流态. (2)选择《输油管道工程设计规范》中相应的公式计算水力摩阻系数,如果有一个以上的计算公式,需比较计算结果的相对差值。 2、某φ323.9×6的等温输油管道,全线设有两座泵站,管道全长150km ,管线纵断面数据见下表,计算该管道输量可达多少? 己知:全线为水力光滑区,站内阻力忽略不计,翻越点或终点的动水压力按20m 油柱计算。 油品计算粘度6 6.410ν-=?m 2/s 首站进站压力201=S H 米油柱 首站和中间站两台同型号的离心泵并联工作,每台泵的特性方程为: 1.755902165H Q =- 米 (Q :m 3/s ,H :m ) 二、加热输送管道工艺计算习题 某长距离输油管道长280km ,采用φ273.1×6钢管,管道中心埋深1.4m ,沿线全年最低月平均 地温2℃,最低月平均气温-10℃。管壁粗糙度e =0.1mm 。土壤导热系数0.96W/m ℃,防腐层导热系数0.15 W/m ℃,聚氨脂泡沫导热系数0.05 W/m ℃,防水层导热系数0.17 W/m ℃。 1、计算管道埋地保温与不保温时的总传热系数【埋地不保温管道防腐绝缘层厚度3mm ,保温管道的结构:钢管外为环氧粉末防腐层(由于厚度很小,热阻可忽略不计),防腐层外是聚氨酯泡沫塑料保温层,保温层外是防水层。40mm 厚的保温层,3mm 厚的防水层,忽略管内壁对流换热热阻及钢管热阻】。 2、计算架空保温管道的总传热系数(冬季计算风速5m/s ,管外壁至大气的幅射放热系数可取为αar =3.5W/m 2℃)。 3、若输量为200万吨/年,输送ρ20为870kg/m 3的原油,设计出站油温60℃、进站温油35℃,原油品比热2.1kJ/kg ℃,粘温方程 υ=37.338×10 -6e -0.041t m 2/s ,计算上述管道埋地保温时所需的

油气管线无损检测技术{zx}

油气管道无损检测技术 管道作为大量输送石油、气体等能源的安全经济的运输手段,在世界各地得到了广泛应用,为了保障油气管道安全运行,延长使用寿命,应对其定期进行检测,以便发现问题,采取措施。 一、管道元件的无损检测 (一)管道用钢管的检测 埋地管道用管材包括无缝钢管和焊接钢管。对于无缝钢管采用液浸法或接触法超声波检测主要来发现纵向缺陷。液浸法使用线聚焦或点聚焦探头,接触法使用与钢管表面吻合良好的斜探头或聚焦斜探头。所有类型的金属管材都可采用涡流方法来检测它们的表面和近表面缺陷。对于焊接钢管,焊缝采用射线抽查或检测,对于检测,通常采用射线实时成像检测技术。(二)管道用螺栓件 对于直径> 的钢螺栓件需采用超声来检测螺栓杆内存在的冶金缺陷。超声检测采用单晶直探头或双晶直探头的纵波检测方法。 二、管道项目建设周期中的无损检测 (一)各种无损检测方法在焊管生产中的配置 国外在生产中常规的主要无损检测配置如下图一中的、、、、、、工序。我国目前生产中的检测配置主要岗位如下图中的、、、、、、工序。 图一大口径埋弧焊街钢管生产无损检测岗位配置

(二)超声检测 全自动超声检测技术目前在国外已被大量应用于长输管线的环焊缝检测,与传统手动超声检测和射线检测相比,其在检测速度、缺陷定量准确性、减少环境污染和降低作业强度等方面有着明显的优越性。 全自动相控阵超声检测系统采用区域划分方法,将焊缝分成垂直方向上的若干个区,再由电子系统控制相控阵探头对其进行分区扫查,检测结果以双门带状图的形式显示,再辅以 (衍射时差法)和扫描功能,对焊缝内部存在的缺陷进行分析和判断。 全自动超声波现场检测时情况复杂,尤其是轨道位置安放的精确度、试块的校准效果、现场扫查温度等因素会对检测结果产生强烈的影响,因此对检测结果的评判需要对多方面情况进行综合考虑,收集各种信息,才能减少失误。 (三)射线检测 射线检测一般使用射线周向曝光机或γ射线源,用管道内爬行器将射线源送入管道内部环焊缝的位置,从外部采用胶片一次曝光,但胶片处理和评价需要较长的进度,往往影响管道施工的进度,因此,近年来国内外均开发出专门用于管道环焊缝检测的射线实时成像检测设备。 图二管道环焊缝自动扫描射线实时成像系统

油气管道泄漏检测技术综述

油气管道泄漏检测技术综述 摘要: 石油是维持我国经济高速发展的战略性资源,石油管道则是是保障能源供给、关系国计民生的基础性设施。管道运输具有平稳连续,安全性好,运输量大,质量易保证,物料损失小以及占地少,运赞低等特点,已经成为石油运输的首选方式,但是随着管道的广泛应用、运行时间的延长,由于各种原因导致的管道泄漏也逐渐增多,不仅造成资源的浪费和环境污染,而且有火灾爆炸的危险,对周围居民的生产生活带来较大的威胁。因此,建立管道泄漏检测系统,及时准确地报告事故的范围和程度,可以最大限度地减少经济损失和环境污染,防止事故的发生。本文主要总结国内外近几十年来发展起来的管道泄漏检测和定位的主要方法,原理及优缺点。 关键词: 管道泄漏事故检测定位原理 正文: 1、事故案例 (1)、事故经过 2008年3月14日凌晨3时30分左右, 4名协勤人员在回兴镇兴科一路巡逻时,发现郑伟集资楼17# “小精点发廊”门市附近有较浓的天然气异味,在隔壁经营夜宵店的王祥金,就去敲门告知该户可能有天然气泄漏,当该门市人员开灯时随即发生爆炸。 (2)、事故原因 直接原因 临街PE(d110)燃气管线被拉裂,导致天然气泄漏,泄漏天然气通过地下疏松回填土层窜入室内,形成爆炸性混合气体,遇开关电器产生的火花引起爆炸。 间接原因 A、管线回填未对地基进行处理或采取防沉降措施,回填土层在雨水的浸润作用下产生沉降。 B、管线在外部载荷应力叠加作用下,对管线热熔焊缝产生一定影响,导致管线拉裂。 C、对管线走向不明,巡管不到位。 泄漏是输油管道运行的主要故障。目前,国内外出现多种输油管线泄漏检测及定位方法,其中包括:生物方法、硬件方法和软件方法。本文主要介绍硬件方法和软件方法,生物方法

输油管道工程设计规范版

1总则 1. 0. 1为在输油管道工程设计中贯彻执行国家现行的有关方针政策,保证设计质量,提高设计水平,以使工程达到技术先进、经济合理、安全可靠及运行、管理、维护方便,制定本规范。 1.0.2本规范适用于陆上新建、扩建或改建的输送原油、成品油、液态液化石油气管道工程的设计。 1. 0. 3输油管道工程设计应在管道建设、营运经验和吸取国内外先进科技成果的基础上合理选择设计参数,优化设计。 1. 0. 4输油管道工程设计除应符合本规范外,尚应符合国家现行的有关强制性标准的规定。 2术语 2. 0. 1输油管道工程oil pipeline project 用管道输送原油、成品油及液态液化石油气的建设工程。一 般包括输油管线、输油站及辅助设施等。 2.0.2管道系统pipeline system 各类型输油站、管线及输送烃类液体有关设施的统称。 2.0.3输油站oil transport station 输油管道工程中各类工艺站场的统称。 2.0. 4首站initial station 输油管道的起点站。 2. 0. 5末站terminal 输油管道的终点站。 2. 4. 6中间站intermediate station 在输油首站、末站之间设有各类站场的统称。 2. 0. 7中间热泵站intermediate heating and pumping station 在输油首站、末站之间设有加热、加压设施的输油站。 2. 0. 8中间泵站intermediate pumping station 在输油首站、末站之间只设有加压设施的输油站。

2.0.9中间加热站intermediate heating station 在输油首站、末站之间只设有加热设施的输油站。 2. 0. 10输人站input station 向管道输入油品的站。 2. 0. 11分输站off-take station 在输油管道沿线,为分输油品至用户而设置的站。 2. 0. 12减压站pressure reducing station 由于位差形成的管内压力大于管道设计压力或由于动压过大,超过下一站的允许进口压力而设置减压装置的站。 2. 0.13弹性弯曲elastic bending 管道在外力或自重作用下产生的弹性限度范围内的弯曲变形。 顺序输送hatch transportation 多种油品用同一管道依次输送的方式。 2. 0.15翻越点turnatrer point 输油管道线路上可能导致后面管段内不满流(slack f low)的某高点。 一站控制系统,ration control system 对全站工艺设备及辅助设施实行自动控制的系统。 2. 0. 17管件pipe fittings 弯头、弯管、三通、异径接头和管封头等管道上各种异形连接件的统称。 2. 0. 18管道附件pipe accessories 管件、法兰、阀门及其组合件,绝缘法兰、绝缘接头、清管器收发筒等管道专用部件的统称。 2. 0. 19最大许用操作压力maximum allowable operating pressure(MADP) 管道内的油品处于稳态(非瞬态)时的最大允许操作压力。其值应等于站间的位差、摩阻损失以及所需进站剩余压力之和。 2. 0. 20 U管道设计内压力pipeline internal design pressure 在相应的设计温度下,管道或管段的设计内压力不应小于管道在操作过程中管内流体可能产生的最大内压力。 2. 0. 21线路截断阀line block valve 为防止管道事故扩大、减少环境污染与管内油品损失及维修方便在管道沿线安装

项目名称油气管道变形内检测设备开发及应用推荐奖种科学技术

项目名称:油气管道变形内检测设备开发及应用 推荐奖种:科学技术进步奖 候选单位:1、中机生产力促进中心;2、中油管道检测技术有限责任公司;3、清华大学 候选人:1、刘红旗;2、胡铁华;3、曹崇珍;4、赵晓光;5、郭静波;6、汪华军;7、张永江;8、吴哲;9、白港生;10、张俊杰;11、李育忠;12、黄平江;13、 黄凯;14、王淳;15、金虹 项目简介: 油气管道运输是国际能源大动脉,70%的石油、100%的天然气都是采用管道输送的。长输油气管道沿途多为埋地、穿水域、过海底、翻山等多变地质、气候环境,地震、海水冲涮、河床变迁、山体滑坡、农业水利、建筑施工等均可造成管道变形。管道变形不仅影响管道运输能力,而且会造成局部压力剧增,重则引起爆管、火灾,伤及生命财产、破坏生态环境。我国现有长输油气管道近6万公里,其监检工作一直由国外公司所把控,并形成了市场垄断、技术封锁状况。在此大背景下,提出了自主研发管道变形内检测设备。 油气管道变形内检测设备,能检测管道变形(管道凹陷、椭圆、错位)及管道特征(环焊缝、直焊缝、螺旋焊缝、阀门、法兰、三通等);能用在新建管道试压前、试压后等基线管道验收检测中;也能用在在役管道在线管道变形检测,为后续投放管道腐蚀检测设备、裂纹检测设备、管道维护及管道完整性管理提供科学依据;本项目研究成果形成专有成套技术,可以推广应用到现有各种管道所需设备中;所形成的技术开发理念,能对具有机械、电磁、电子、软件等机电一体化装备研发有指导及提升作用;直观可视化的数据分析系统,能自动给出管道径向变形量、周向变形方位及轴向变形位置,能自动分析、量化及生成用户报告,指导现场开挖、维护、维修;设备在管道内运行情况,在管外地面能跟踪定标,且可实现远程监视设备所运行的位置。 管道变形检测系统可实现对管道凹陷变形:±0.5%OD;椭圆度变形:±0.5%OD ;灵敏度:0.5mm,周向±15°等有效识别;主探头数量及精度都超过了国外同类型设备。 本项目的创新点:1、多通道三维传感探测系统及设备的研制和应用,解决了管道内一次投放检测设备,同时获得管道变形缺陷及特征等管道信息,改变了原有引进检测设备的单通道检测理念(只能测径),实现了多参数一次性高精度检测。2、极低频发射定标跟踪系统的研制,解决了大管径厚壁管道的内检测设备、清管设备等管外跟踪定标问题。3、三维管道缺陷重构系统的研制,直观再现管道形态与缺陷,自动识别管道特征及缺陷量化,为管道安全运营管理提供科学依据。 管道变形内检测设备研发已经形成专有技术,其技术成果获得了国家重点新产品项目,项目证书编号:2010GRA00089;获得机械科学研究总院科技成果1等奖,证书编号:2009027;获得北京市科技进步1等奖,获奖编号:2011电-1-001;获得发明专利“极

《输油管道设计与管理》要点

《输油管道设计与管理》 一、名词解释(本大题╳╳分,每小题╳╳分) 1可行性研究:是一种分析、评价各种建设方案和生产经营决策的一种科学方法。 2等温输送:管道输送原油过程中,如果不人为地向原油增加热量,提高原油的温度,而是使原油输送过程中基本保持接近管道周围土壤的温度,这种输送方式称为等温输送。 4、线路纵断面图:在直角坐标上表示管道长度与沿线高程变化的图形称为线路纵断面图。 5、管路工作特性:是指管长、管内径和粘度等一定时,管路能量损失H与流量Q之间的关系。 6、泵站工作特性:是指在转速一定的情况下,泵站提供的扬程H和排量Q之间的相互关系。 7、工作点:管路特性曲线与泵站特性曲线的交点,称为工作点。 8、水力坡降:管道单位长度上的水力摩阻损失,叫做水力坡降。 10、翻越点:在地形起伏变化较大的管道线路上,从线路上某一凸起高点,管道中的原油如果能按设计量自流到达管道的终点,这个凸起高点就是管道的翻越点。 11、计算长度:从管道起点到翻越点的线路长度叫做计算长度。 12、总传热系数K:指油流与周围介质温差为1℃时,单位时间内通过管道单位传热表面所传递的热量。 13、析蜡点:蜡晶开始析出的温度,称为析蜡点。 14、反常点:牛顿流体转变为非牛顿流体的温度,称为反常点。 15、结蜡:是指在管道内壁上逐渐沉积了某一厚度的石蜡、胶质、凝油、砂和其它机械杂质的混合物。 19、顺序输送:在一条管道内,按照一定批量和次序,连续地输送不同种类油品的输送方法。 20、压力越站:指油流不经过输油泵流程。 21、热力越站:指油流不经过加热炉的流程。 25.混油长度:混油段所占管道的长度。 26.起始接触面:前后两种(或A、B)油品开始接触且垂直于管轴的平面。 27、动水压力:油流沿管道流动过程中各点的剩余压力。 二、填空题 1、由于在层流状态时,两种油品在管道内交替所形成的混油量比紊流时大得多,因而顺序输送管道运行时,一般应控制在紊流状态下运行。

某输油管道工程施工方案

某输油管道工程施工方案

一、工程概况 根据XX成品油管道进行点对点送油的需求,需在密闭输送管线350-P-60501-A2B-N与进泄放罐的泄压管线200-P-60505-A2B-N之间增加热膨胀泄压DN80管线。 两条管线均为新建管线,由于密闭输送管线350-P-60501-A2B-N的阀门HV1161左侧、阀门MOV1205右侧、泄压管线200-P-60505-A2B-N的1号阀门左侧管线已通油,为确保管线的安全和有序施工,特编制本施工方案。 二、施工组织机构 项目经理:XXX 现场负责人:XXX HSE监督官:XXX 技术员:XXX 质检员:XXX 材料员:XXX 火焊工:1人电焊工:2人管工2人起重工:1人 电工:1人普工:10人 三、施工进度保证 1、施工工期:1天 2、确保工期措施 1)配备强有力的项目管理班子,选择技术素质好、责任心强的施工班组施工。 2)提前做好一切施工准备工作,安排好施工设备及施工机具。 四、施工技术措施 1、施工前准备; 1)施工前与设计及油库管理部门结合,确定新建管线的工艺流程、位置、用途等。 2)施工人员、设备、机具、材料按时进场。 3)各种出入证件办理到位,一般作业、动火证、用电证等证件办理到位。 4)施工前进行安全、技术交底。 5)施工区域设立警戒线,动火点设置8Kg灭火器4个,设专人进行监护。 6)施工前确认管道内进行清理干净,两端阀门关闭。在得到相关部门确认,方可以连头施工。 2、管线现场施工方案 1)管线动火连头准备 详见动火连头示意图 A 将350-P-60501-A2B-N管线两端的阀门HV-1161、HV-1162、MOV1205在靠近动火点侧的法兰断开,在断开端加石棉板进行隔离,在200-P-60505-A2B-N管线的1号阀门(DN200)法兰处断开,采用石棉板进行隔离。由于MOV1205为电动阀,为防止在施工作业时自动开启,在断开前需将此阀门调至手动。(阀门法兰断开位置见附图所示) B 在动火点附近打接地桩,并连接现场接地线。将L45的角铁打入地面以下800mm处,用6

最新整理石油天然气钢质管道无损检测(最终版)演示教学

一、概述 1 SY/T4109-2005 编制背景和简要经过随着我国石油天然气管道工程建设的发展,管道无损检测技术也得到了很大的发展。同时管道工程施工技术,特别是管道焊接技术的发展,对无损检测技术提出了新的要求。为确保工程质量,进一步完善无损检测标准,根据原国家石油和化学工业局《关于下达2001 年石油天然气、石油化工行业标准、修订项目计划的通知》(国石化政发(2000)410 号)文件要求,由石油天然气管道局盘锦北方无损检测公司负责对SY4056-93《石油天然气管道对接焊缝射线照相及质量分级》、SY4065-93《石油天然气管道对接焊缝超 声波探伤及质量分级》、SY/T 0444-98 《常压钢制焊接储罐及管道磁粉检测技术标准》及SY/T 0443-98 《常压钢制焊接储罐及管道渗透检测技术标准》进行了整合修订,修订后标准名称为《石油天然气钢质管道无损检测》。 本标准在修订过程中,编制人员遵照国家有关方针政策,进行了比较广泛的调查研究,在全面总结和吸纳多年石油天然气钢质管道无损检测经验和技术,充分考虑石油天然气钢质管道工程施工实际特点的基础上,积极参照采用国外有关先进标准,并多次以发函或会议形式征求相关方意见,经反复修改形成送审稿,于2004 年12 月在海南三亚通过了由石油工程建设专业标准化委员会施工分标委组织的标准审查会的审查。 2 SY/T4109-2005 修订的指导思想 (1)目前石油天然气管道(含集输管道及其站场),特别是油气长输管道正向着大口径、大壁厚、高 钢级及高压力方向发展,而与之相配套的先进的焊接和无损检测技术及设备也在广泛采用。作为无损检测标准,必须适应和满足这种变化。另外,管道施工建设不仅要占领国内市场,而且还要走向世界。因此,与国外标准接轨也是本次标准修订应考虑的的一个重要因素。 (2)在检测工艺方面,应总结我国石油天然气企业在国内外长输管道施工检测的成功经验,积极吸纳国内外相关标准的长处来修订。修改后标准,应具有科学性、先进性、简单实用、可操作性强的特点。 (3)验收标准部分应在原标准的基础上,充分考虑我国油气管道,特别是长输管道的实际情况,在满足和确保工程质量实际需要的前提下,参照国外先进标准来修订。 3 与原标准相比,SY/T4109-2005 检测技术部分的特点(1)射线检测部分 ①本标准增加了下列内容: a明确了本标准不仅适用于长输、集输管道的X、丫射线检测,也适用于其站场的检测,特别引进了 Se75 丫射线的检测技术。明确本标准不适用于工业和公用压力管道环焊缝的检测,也不适用于油气管道制管焊缝的检测。 b明确了本标准照相技术等级相当于GB3323-1987的AB级。 c针对长输管道采用低合金高强钢的特点,纳入了K值的概念,重视对横向缺欠的检出。对于公称直 径小于250 mm管道环缝双壁单影透照时,K值和一次透照长度给予适当放宽。 d 引入了新的辐射防护标准,划定控制区和管理区,并设置防护标志,严格规定检测人员及公众的安全防护。 e 明确了射线源和能量控制。 f明确了曝光量推荐值与焦距的关系及丫射线最短曝光时间的控制。 g 明确了像质计放于胶片侧应提高一个像质指数。 ②简化完善了原标准的相关条款: a适用管壁厚度由2 m?30 m修改为2 m?50 m。 b更新了胶片的分类方法,对于丫射线检测,由于能量偏高,工件对比度低,选用T2或T3胶片。用提 高胶片对比度的方法弥补工件对比度的不足。 c将原标准双壁双影透照的界限由原来的①114 m改为①89 m,这与GB3323-1987和API std 1104 相一致,并明确了小径管检测的要点。 d 根据长输管道检测的类型,完善了底片上的标记。

油气管道泄漏检测技术综述(新版)

油气管道泄漏检测技术综述 (新版) Safety work has only a starting point and no end. Only the leadership can really pay attention to it, measures are implemented, and assessments are in place. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0015

油气管道泄漏检测技术综述(新版) 摘要:简单说明了油气长输管道泄漏的原因和泄漏的危害,简单回顾了国内外油气长输管道泄漏检测技术发展的历史,详细介绍了热红外线成像、探地雷达、气体成像、传感器法、探测球法、半渗透检测管检漏法、GPS时间标签法、放射性示踪剂法、体积或质量平衡法、压力波法、小波变换法、相关分析法、状态估计法、系统辨识法、神经网络法、统计检漏法和水力坡降法等20多种管道泄漏检测技术方法,同时介绍了泄漏检测方法的诊断性能指标和综合性能指标,最后指出了现在存在的问题和发展的趋势。 关键词:油气;长输管道;泄漏;原因;检测方法;性能指标;问题;发展;趋势 油气长输管道发生泄漏的原因多种多样,但大致可以分为:(1)管道腐蚀:防护层老化、阴极保护失效,以及腐蚀性介质对管道外壁

造成的腐蚀和传输介质的腐蚀成分对管道内壁造成的腐蚀;(2)自然破坏:由于地震、滑坡等自然灾害以及气候变化使管道发生翘曲变形导致应力破坏;(3)第三方破坏:不法分子的盗窃破坏,施工人员违章操作,野蛮施工造成的破坏;(4)管道自身缺陷:包括管道焊接质量缺陷,管道连接部位密封不良,未设计管道伸缩节,材料等原因。油气管道泄漏不仅给生产、运营单位造成巨大的经济损失,而且会对环境造成破坏、严重影响沿线居民的身体健康和生命安全。 1检漏技术发展历史 国外从上个世纪70年代就开始对管道泄漏检测技术进行了研究。早在1976年德国学者R.Isermann和H.Siebert就提出以输入输出的流量和压力信号经过处理后进行互相关分析的泄漏检测方法;1979年ToslhioFukuda提出了一种基于压力梯度时间序列的管道泄漏检测方法;L.Billman和R.Isermann在1987年提出采用非线性模型的非线性状态观测器的检漏方法;A.Benkherouf在1988年提出了卡尔曼滤波器方法;1991年Kurmer等人开发了基于Sagnac光纤干涉仪原理的管道流体泄漏检测定位系统;1993年荷兰壳牌

石油天然气管道第三方施工技术要求

与天然气管道相遇后建工程处理技术要求 1阀室、输气站(含放空管)与周围建筑控制距离 1.1公司在运输气站、阀室,除春晓站外,均按五级站考虑。一般情况下,与周边建筑防火间距(安全间距)按照《石油天然气工程设计防火规范》(GB50183-2004)表4.0.4处理(详见表一,已针对公司进行换算)。 表一天然气场站、阀室放空区与周围建筑防火间距(米) 1.2* 不能满足防火规范要求,但地方政府已经立项,难以协调的情况下。应委托第三方专业单位进行热辐射计算,并经政府主管部门组织的专家评审通过后,按照安评报告要求实施。 2 埋地管线与天然气管道间距控制

2.1埋地管线处理参照《钢质管道外腐蚀控制规范》(GB21447-2008T)执行。公司管道按照强制电流阴极保护方式管道考虑。 2.2自来水管、污水管、燃气、热力管线 2.2.1埋设原则:一般情况下管径较大管线应埋设于较小管径管道下方。热力管道一般埋设在天然气管道上方。 2.2.2埋设间距:0.3m。 2.2.3地形受限情况下,两者间距小于0.3m时,两管道间应有坚固的绝缘物隔离,确保交叉管道的电绝缘,一般使用橡胶垫、废旧轮胎等。后建管道应保证交叉点两端各10米绝缘层无破损。 2.2.4* 参照省安监局组织的甬台温天然气管道与甬台温成品油管道同沟敷设间距,平行敷设间距一般不应小于1.5米。 2.3电力管线、通信管线 2.3.1 天然气管道正上方或正下方,严禁有直埋敷设的电缆。 2.3.2 与天然气管道平行敷设的直埋电缆,间距不得小于1米。 2.3.3 与天然气管道交叉敷设的直埋电缆、通信管线,间距不得小于0.5米,用隔板分隔或电缆穿管时,间距不得小于0.25米。 2.3.4 水下电缆与天然气管道敷设间距不得小于50米,受条件限制时不得小于15米。 3 架空管线、建筑

油气管道无损检测方法选择_雷晓青

石油工业技术监督·2013年7月 无损检测工作的可靠与否直接关系到管道的安全运行。现行施工及验收规范对无损检测方法的选择有相应的规定,但有些规定比较笼统。为了提高焊接缺陷的检出率,检测单位应当根据被检管道的材质、焊接方法以及可能产生的缺陷等,选择几种无损检测方法,相互补充和验证。因为任何一种无损检测方法都不是万能的,每种无损检测方法都有自身的优点与不足,不同的检测部位需要选择不同的无损检测方法。综合利用各种无损检测方法才能够保证不同的检测方法相互取长补短,更准确的反映焊接缺陷。 1无损检测概述 所谓无损检测,是在不损坏试件的条件下,以物理或化学方法为手段,借助先进的技术和器材,对试件的内部及表面的结构、性质状态进行检测和测试的方法。油气管道常用的无损检测方法有射线检测、超声波检测、磁粉检测和渗透检测。 1.1射线检测 利用射线(X射线、γ射线、中子射线等)穿过材料或工件时的强度衰减,检测其内部结构不连续性的检测技术[1]。1.2超声检测 超声波在被检测材料中传播时,材料的声学特性和内部组织的变化对超声波的传播产生一定的影响,通过对超声波受影响的程度和状况,探测了解材料性能和结构变化的检测技术[2]。 1.3磁粉检测 利用漏磁(场)和合适的检验介质发现试件表面和近表面的不连续性特征的无损检测方法。 1.4渗透检测 利用液体的毛细管作用,将渗透液渗入固体材料表面开口缺陷处。再通过显象剂将渗入的渗透液吸出到表面,显示缺陷的影像的无损检测方法。 磁粉检测和渗透检测统称为表面检测。 2油气管道常用无损检测方法的特点 2.1射线检测 2.1.1优点 检测结果可用底片直接记录;可以获得缺陷的投影图像,缺陷定性定量准确。 2.1.2局限性 体积型缺陷检出率高,而面积型缺陷的检出率受多种因素影响;适宜检验厚度较薄的工件而不适 油气管道无损检测方法选择 雷晓青 中国石油长庆油田分公司技术监测中心(陕西西安710018) 摘要分析了油气管道常用无损检测方法的特点,结合多年以来工作经验,提出了油气管道无损检测的选择方法。指出,应根据施工及质量验收及规范、无损检测标准适用范围、被检焊缝型式和检测部位、可能产生的缺陷种类等方面,选择无损检测方法。 关键词射线检测超声波检测磁粉检测渗透检测油气管道 Abstract The features of the commonly used NDT methods for oil/gas-pipeline testing are analyzed,Combined with working experi-ence over the years,how to select the NDT method for oil/gas-pipeline are introduced.The NDT method shall be selected in accor-dance with the construction acceptance criteria and specification,the applicable scope of NDT standard,the to-be-tested welding seam type and testing area,and the possible defect types etc.. Key words radiograph inspection;ultrasonic inspection;magnetic particle inspection;fluorescent penetrant inspection;oil/gas pipeline 工程质量监督 28 TECHNOLOGY SUPERVISION IN PETROLEUM INDUSTRY

输油管道泄漏检测方法综述

输油管道泄漏检测方法综述 2 检漏系统的性能指标 对一种泄漏检测方法优劣或一个检漏系统性能的评价 ,应从以下几个方面加以考虑 1 泄漏位置定位精度当发生不同等级的泄漏时 ,对泄漏点位置确定的误差范围。 2 检测时间管道从泄漏开始到系统检测到泄漏的时间长度。 3 泄漏检测的范围系统所能检测管道泄漏的大小范围 ,特别是系统所能检测的最小泄漏量。 4 误报警率误报警指管道未发生泄漏而给出报警信号。它们发生的次数在总的报警次数中所占比例。 5 适应性适应性是指检漏方法能否对不同的管道环境 ,不同的输送介质及管道发生变化时 ,是否具有通用性。 6 可维护性可维护性是指系统运行时对操作者有多大要求 , 及当系统发生故障时 ,能否简单快速地进行维修。 7 性价比,性价比是指系统建设、运行及维护的花费与系统所能提供性能的比值。 3 检漏方法 管道的泄漏检测技术基本上可分为两类 ,一类是基于硬件的方法 ,另一类方法是基于软件的方法。基于硬件的方法是指对泄漏物进行直接检测。如直接观察法、检漏电缆法、油溶性压力管法、放射性示踪法、光纤检漏法等。基于软件的方法是指检测因泄漏而造成的影响 ,如流体压力、流量的变化来判断泄漏是否发生及泄漏位置。这类方法有压力/ 流量突变法、质量/ 体积平衡法、实时模型法、统计检漏法、 PPA (压力点分析)法等。除上述两类主要方法外 ,还有其他的一些检漏法 ,如清管器检漏法。各类方法都有一定的适用范围。 3. 1 基于硬件的检漏法 3. 1. 1 直接观察法有经验的管道工人或经过训练的动物巡查管道。通过看、闻、听或其他方式来判断是否有泄漏发生。近年美国 OIL TON 公司开发出一种机载红外检测技术。由直升飞机带一高精度红外摄象机沿管道飞行 ,通过分析输送物

油气管道内检测新技术举例

油气管道内检测新技术举例 摘要管道检测技术是完整性的一部分,也是获取管道有关信息的最佳手段。管道检测可以监测管道受到的危害或潜在危害,在管道未发生事故前进行有计划的修理,可以避免大量的不必要维修,节约资金,在管道的日常维护中占有非常重要的地位。本文主要针对管道检测技术中的常用的几种内检测技术作了简要的介绍,并指出了各种技术的要点。 关键词:管道内检测新技术 1.内检测器的分类 管道是输送危险液体和气体最为安全有效的方式。但随着时间的推移和周围环境的变化,会出现缺陷,也会导致事故的发生。 管道中可以被检测到的缺陷可以分为三个主要类型: ①几何形状异常(凹陷、椭圆变形、位移等); ②金属损失(疲劳、划伤等); ③裂纹(疲劳裂纹、应力腐蚀开裂等)。 管道内检测技术通过装有无损检测设备及数据采集、处理和存储系统的智能清管器在管道中运行,完成对管体的逐级扫描,达到对缺陷大小、位臵的检测目的。 针对上述三种缺陷类型,各大检测专业公司都根据市场和用户的需要研发了多种检测器,并不断更新换代。内检测器按其功能可分为用于检测管道几何形状异常的变形检测器,用于检测管道金属损失的金属损失检测器,用于裂纹、应力腐蚀开裂检测的裂纹检测器。 2.几何形状异常的检测技术 管道几何形状的异常多因受到外部机械力或焊接残余应力等原因造成,通过使用适当的检测装臵可以检测各种原因造成的、影响管道有效内径的几何异常现象并确定其程度和位臵。 测径器是用于检测、定位和测量管壁几何形状异常的大小。正常的管线,应当有一个圆环形横断面。在管道铺设过程或长期运行中,第三方的干扰可以造成

凹陷。合格的测经器应可对任何管段横断面的临界变化进行检测并确定大小,是进行管道金属损失或裂纹内检测之前非常重要的一步。 常用的测径器使用一定排列的机械抓手或有机械抓手的辐射架。机械抓手压着管道内壁并会因横断面的任何变化引起偏移。这些偏移可能是由于一个凹陷、偏圆、褶皱或附着在管壁上的碎屑引起的。捕捉到的偏移信号被转换为电子信号存储到机载的存储器上。讲一次运行后的数据取出并使用合适的软件加以分析和显示,从而确定那些可影响到管道完整性的异常点。目前,市场上的测径器,提供的被测管径范围从100-1500mm不等,其灵敏度通常为管段直径的0.2%~1%,精度大约为0. 1%-2%。 3.金属损失检测技术 漏磁(MFL)技术因其可检测出腐蚀或擦伤造成的管道金属损失缺陷,甚至能够检测到那些不足以威胁管道结构完整性的小缺陷(硬斑点、毛刺、结疤、夹杂物和各种其他异常和缺陷),偶尔也可检测到裂纹缺陷、凹痕和起皱。漏磁技术应用相对较为简单,对检测环境的要求不高,具有很高的可信度,而且可兼用于输油和输气管道,所以,这种技术被广泛应用并在不断的发展。 对于很浅、长且窄的金属损失缺陷,MFL信号就难以检测出来。检测精度也受多种因素的影响。在对管道进行检测时,要求管壁达到完全磁性饱和,因此测试精度与管壁厚度有关,厚度越大,精度越低,其使用的壁厚范围通常在12mm 以下。另外,检测器在管道中的运行速度也可影响检测结果的准确性。有关研究机构正在研究其速度控制技术,指在不影响正常输量的前提下提高检测的准确性。 近来,美国哥伦比亚输气公司结合现场经验及有关研究发现并已证实了MFL 数据的采集受管内废杂物的影响,影响有三个:损坏设备、速度偏差、检测器脱离管壁。设备损坏、脱离管壁和速度过高的现象可同时发生,也可互不相干,可对磁通泄露数据和结果分析产生很多影响。这些影响可能导致缺陷几何形状的确定及位臵估算错误,也可能失去探测腐蚀和管道特征的能力。为了确保能获得良好的检测结果,在管道内检测之前,进行清管作业是极为重要的,尤其对于含蜡高的原油管线、所有含铁锈的流体管线、含极细粉尘的干燥气管线等更为关键。

《输油管道设计与管理》

《输油管道设计与管理》

- 、2 _m Q1 IQ 2L L _x(1 八) h e,输量为Q/2时各泵站的扬程均为hd, 常有倍增泵站、铺设副管和变径管,如果要求提高的输送能力大于22-倍,则可以采用既倍增泵 站又铺设副管的综合方法,试证明此时所需要的副管长度为x =上(1 _盒)。(其中:?? = Q l, Q i f )。 i 证明:倍增泵站并铺副管前的能量平衡式为: N(H c -h m H fQ"L (1) 倍增泵站并铺副管后的能量平衡式为: 2N(H C -h m) = fQ;』L -x(1 - ?)](2) 联立解(1 )和(2 )得 Q 1 一Q x= ±(1-侖) 3、某等温输油管道,地形平坦沿线高程均相等,三个泵站等间距布置,每站二台相同型号的离 心泵并联工作,输量为Q;现由于油田来油量减少,输量降为Q/2,问可对运行的泵组合及泵站 出口阀进行哪些调节?哪种方案最好?说明理由(已知管线流态均为水力光滑区,忽约 H s1,H t, h m)。 解:设:管线长为L,输量为Q时各泵站的扬程均为输量为Q 时的能量平衡方程为: 2-m H“+3(h e—h m) = fLQ +H t 输量为Q/2时的能量平衡方程为:

H s1 + 3(hd 比较①和②可得: 2- m )+H t 、2— m ) =0.2973

所以,按题意可知只需一个泵站的一台泵即可完成 Q/2的输量。当然,还可采取把泵站出口关 小节流、调节泵机组速度、换用离心泵的叶轮直径等措施。但以全线能耗费用最低为基本原则考 虑,前者为最优。 4、在管道建设中,常为某种目的而铺设副管或变径管来降低摩阻,在流态相同(如水力光滑 区)的情况下, 试分析降低相同水力摩阻时,采用铺设副管还是变径管在经济上更为合理?(设 铺设副管与变径管的长度均为 解:因为在水力光滑区,且 据题意有I 0=0.298 I , 钢材耗量分别为:副管为 变径管为 可见铺设变径管可节约钢材 L f ;副管的管径与干线管径相同,即 d=d f ;变径管直径为d 。) 1 75 d= d f , i f = o i = i /2 . = 0.298 1 4 75 即 Q =(d/d 0). =0.298,解得 d 0=1.29 d 2 n d S L f p 1.29 n d S L f p 35.5%,所以铺设变径管比铺设副管在经济上更为合理。 四、计算题 1、某埋地原油管道等温输送管线, 任务输量2500X 104t/a ,管内径D=0.703m;年平均地温T o =19 C 6 2 (0=82.2 X 10- m/s );油温 20C 时的密度为874Kg/m 3 ;钢管绝对粗糙度 e 取0.1mm 全线 长176Km 求全线的沿程摩阻损失 h 。 解:(1)、计算输送温度下的流量 油品19C 时的密度为::爲=『20-二(T 0-20) '=1.825 -0.001315 鳥0 =1.825 -0.01315 874 = 0.6757 Kg/m 3C 「19=874.68 Kg/m 3C G 103 体积流量:Q 19 0.9452 m/s 气异 8400^3600 (2)、计算雷诺数 4Q 19 R e ——'■-20826 ■D1 ^19 (3)、 用列宾宗公式计算沿程摩阻 3、某管线 J0D 1 J0 吧论。。 e 0.1 10 ■ 3000 R e 70300 故流态为水力光滑区,即 m=0.25 人叮叽=0.0246 O.945, 75 (82 ;25 10 冷 °25 17600^ 1992m D ; 0.7034 D ° =325mm ,站间距32Km ,总传热系数 K=1.8W/m 2 .C ,输量G=98Kg/S,出站温度

相关主题
文本预览
相关文档 最新文档