当前位置:文档之家› 第12章 领域建模

第12章 领域建模

第12章 领域建模
第12章 领域建模

第12章 领域建模

状态图具有很强的表达能力。(https://www.doczj.com/doc/656714071.html,)

等形 式;

银行领域模型的凭证相关部分

12.2领域建模在软件过程中所处的位置

领域模型和需求分析的关系

项目启动

需求分析 为交流提供公领域建模

共的领域词汇

领域建模需求分析

提供探索问题

领域的语境架构设计

领域建模和需求获取之间应详细设计详细设计详细设计该是同时产生、交叠进行的。

12.2领域建模在软件过程中所处的位置

领域模型对整个软件开发活动的重要作用: ? 为需求定义提供了领域知识和领域词汇。

域模型 最

新需求:

最初的人事管理

统领域模型之一角色

图12-12领域模型的类图部分

图12-13领域模型的状

考虑分工的建模改任务

多项目管理

占用

资源项目人设备 材料

目、任务、资源的关

系越来越清晰了

数学建模知识及常用方法

数学建模知识——之新手上路 一、数学模型的定义现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。不过我们可以给出如下定义:“数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。”具体来说,数学模型就是为了某种目的,用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图像、框图等描述客观事物的特征及其内在联系的数学结构表达式。一般来说数学建模过程可用如下框图来表明:数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典范。今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。因此数学建模被时代赋予更为重要的意义。二、建立数学模型的方法和步骤 1. 模型准备要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。 2. 模型假设根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。 3. 模型构成根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。 4. 模型求解可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。 5. 模型分析 对模型解答进行数学上的分析。“横看成岭侧成峰,远近高低各不同”,能否对模型结果作出细致精当的分析,决定了你的模型能否达到更高的档次。还要记住,不论那种情况都需进行误差分析,数据稳定性分析。例题:一个笼子里装有鸡和兔若干只,已知它们共有 8 个头和 22 只脚,问该笼子中有多少只鸡和多少只兔?解:设笼中有鸡 x 只,有兔 y 只,由已知条件有 x+y=8 2x+4y=22 求解如上二元方程后,得解 x=5,y=3,即该笼子中有鸡 5 只,有兔 3 只。将此结果代入原题进行验证可知所求结果正确。根据例题可以得出如下的数学建模步骤: 1)根据问题的背景和建模的目的做出假设(本题隐含假设鸡兔是正常的,畸形的鸡兔除外) 2)用字母表示要求的未知量 3)根据已知的常识列出数学式子或图形(本题中常识为鸡兔都有一个头且鸡有 2 只脚,兔有 4 只脚) 4)求出数学式子的解答 5)验证所得结果的正确性这就是数学建模的一般步骤三、数模竞赛出题的指导思想传统的数学竞赛一般偏重理论知识,它要考查的内容单一,数据简单明确,不允许用计算器完成。对此而言,数模竞赛题是一个“课题”,大部分都源于生产实际或者科学研究的过程中,它是一个综合性的问题,数据庞大,需要用计算机来完成。其答案往往不是唯一的(数学模型是实际的模拟,是实际问题的近似表达,它的完成是在某种合理的假设下,因此其只能是较优的,不唯一的),呈报的成果是一篇论文。由此可见“数模竞赛”偏重于应用,它是以数学知识为引导计算机运用能力及文章的写作能力为辅的综合能力的竞赛。四、竞赛中的常见题型赛题题型结构形式有三个基本组成部分: 1. 实际问题背景涉及面宽——有社会,经济,管理,生活,环境,自然现象,工程技术,现代科学中出现的新问题等。一般都有一个

Powerdesigner数据库建模--概念模型--ER图

目标: 本文主要介绍PowerDesigner中概念数据模型CDM的基本概念。 一、概念数据模型概述 数据模型是现实世界中数据特征的抽象。数据模型应该满足三个方面的要求:1)能够比较真实地模拟现实世界 2)容易为人所理解 3)便于计算机实现 概念数据模型也称信息模型,它以实体-联系(Entity-RelationShip,简称E-R)理论为基础,并对这一理论进行了扩充。它从用户的观点出发对信息进行建模,主要用于数据库的概念级设计。 通常人们先将现实世界抽象为概念世界,然后再将概念世界转为机器世界。换句话说,就是先将现实世界中的客观对象抽象为实体(Entity)和联系(Relationship),它并不依赖于具体的计算机系统或某个DBMS系统,这种模型就是我们所说的CDM;然后再将CDM转换为计算机上某个DBMS所支持的数据模型,这样的模型就是物理数据模型,即PDM。 CDM是一组严格定义的模型元素的集合,这些模型元素精确地描述了系统的静态特性、动态特性以及完整性约束条件等,其中包括了数据结构、数据操作和完整性约束三部分。 1)数据结构表达为实体和属性; 2)数据操作表达为实体中的记录的插入、删除、修改、查询等操作; 3)完整性约束表达为数据的自身完整性约束(如数据类型、检查、规则等)和数据间的参照完整性约束(如联系、继承联系等); 二、实体、属性及标识符的定义 实体(Entity),也称为实例,对应现实世界中可区别于其他对象的“事件”或“事物”。例如,学校中的每个学生,医院中的每个手术。 每个实体都有用来描述实体特征的一组性质,称之为属性,一个实体由若干个属性来描述。如学生实体可由学号、姓名、性别、出生年月、所在系别、入学年份等属性组成。 实体集(Entity Set)是具体相同类型及相同性质实体的集合。例如学校所有学生的集合可定义为“学生”实体集,“学生”实体集中的每个实体均具有学号、姓名、性别、出生年月、所在系别、入学年份等性质。 实体类型(Entity Type)是实体集中每个实体所具有的共同性质的集合,例如“患者”实体类型为:患者{门诊号,姓名,性别,年龄,身份证号.............}。实体是实体类型的一个实例,在含义明确的情况下,实体、实体类型通常互换使用。

建立数学模型的方法、步骤、特点及分类

建立数学模型的方法、步骤、特点及分类 [学习目标] 1.能表述建立数学模型的方法、步骤; 2.能表述建立数学模型的逼真性、可行性、渐进性、强健性、可转移性、非 预制性、条理性、技艺性和局限性等特点;; 3.能表述数学建模的分类; 4.会采用灵活的表述方法建立数学模型; 5.培养建模的想象力和洞察力。 一、建立数学模型的方法和步骤 —般说来建立数学模型的方法大体上可分为两大类、一类是机理分析方法,一类是测试分析方法.机理分析是根据对现实对象特性的认识、分析其因果关系,找出反映内部机理的规律,建立的模型常有明确的物理或现实意义.测试分折将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,可以测量系统的输人输出数据、并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个与数据拟合得最好的模型。这种方法称为系统辨识(System Identification).将这两种方法结合起来也是常用的建模方法。即用机理分析建立模型的结构,用系统辨识确定模型的参数. 可以看出,用上面的哪一类方法建模主要是根据我们对研究对象的了解程度和建模目的决定的.如果掌握了机理方面的一定知识,模型也要求具有反映内部特性的物理意义。那么应该以机理分析方法为主.当然,若需要模型参数的具体数值,还可以用系统辨识或其他统计方法得到.如果对象的内部机理基本上没掌握,模型也不用于分析内部特性,譬如仅用来做输出预报,则可以系统辩识方法为主.系统辨识是一门专门学科,需要一定的控制理论和随机过程方面的知识.以下所谓建模方法只指机理分析。 建模要经过哪些步骤并没有一定的模式,通常与实际问题的性质、建模的目的等有关,从 §16.2节的几个例子也可以看出这点.下面给出建模的—般步骤,如图16-5所示. 图16-5 建模步骤示意图 模型准备首先要了解问题的实际背景,明确建模的目的搜集建模必需的各种信息如现象、数据等,尽量弄清对象的特征,由此初步确定用哪一类模型,总之是做好建模的准备工作.情况明才能方法对,这一步一定不能忽视,碰到问题要虚心向从事实际工作的同志请教,尽量掌握第一手资料. 模型假设根据对象的特征和建模的目的,对问题进行必要的、合理的简化,用精确的语言做出假设,可以说是建模的关键一步.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理、化学、生物、经济等方面的知识,又要充分发挥想象力、洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化、均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样.

多领域建模理论与方法

XXX理工大学 CHANGSHA UNIVERSITY OF TECHNOLOGY&TECHNOLGY 题目:多领域建模理论与方法 学院: XXX 学生: XXX 学号: XXX 指导教师: XXX 2015年7月2日

多领域建模理论和方法 The theories and methods of Multi-domain Modeling Student:XXX Teacher:XXX 摘要 建模理论和方法是推动仿真技术进步和发展的重要因素,也是系统仿真可持续发展的基础[1]文中综述了多领域建模主要采用的四种方法,并重点对基于云制造的多领域建模和仿真进行了叙述,并对其发展进行了展望。 关键词:多领域建模仿真;云制造;展望 Abstract:The theory and method of system model building is not only the key factor to stimulate the development and improvement of simulation technique but also the base of system simulation. This paper analysis four prevails way in Multi-domain Modeling, especially to the Multi-domain Modeling and Simulation in cloud manufacturing environment. We give a detail on its development and future. Keywords: Multi-domain Modeling and simulation; Cloud manufacturing; Future development 一引言 随着科学技术的发展进步和产品的升级需求,对产品提出了更高的要求,使得建模对象的组成更加复杂,涉及到各个学科、进程的复杂性以及设计方法的多元化。这些需求都是以前单领域建模方案无法满足的,因此,必须建立一个建模方式在设计过程中完成对繁杂目标的多领域建模、结构仿真、多元化分析等。 多领域建模是将机械、控制、电子等不同学科领域的模型“组装”成一个更大的模型进行仿真。根据需要的不同,实际建模过程中,可以将模型层层分解。将不同领域的仿真模型“零件”组装成“部件”,“子系统”则是由不同学科下的部件装配而成,与此同时装配完成的不同学科的分子系统还能再装配成为一个全面仿真模型,称之为“系统”,由此可见多领域建模技术在繁杂产品设计过程中具有出众的优势。 本文对多领域建模常用的四种方法:基于各领域商用仿真软件接口的建模方法;基于高层体系结构的建模方法;基于统一建模语言的多领域建模方法和基于云制造环境下多领域建模的方法进行了分析并对基于云制造环境下多领域建模方法进行了展望。

业务流程管理中建模方法比较研究

业务流程管理中建模方法比较研究 在当今经济迅速发展的时代,企业需要面对瞬息万变的市场,重新梳理自 己的业务流程。造就卓越的流程,凝练出自己的核心竞争力,于是出现了业务 流程管理热潮。 业务流程再造/重组(business process reengineering,BPR)理论由迈克尔·哈默首先于1990年提出以来受到广为关注。BPR的实质是对业务流程的一种系统变革,其根本目标就是要对被专业分工和官僚体制分割得支离破碎的流 程进行重新设计和再造。由于BPR项目实施的成功率较低,据统计70%的BPR项目五年后均归于失败,所以人们把目光渐渐转向业务流程管理,它更强调循环的、可持续的方法论,更包含了BPR的思想。 1业务流程管理的概念 流程管理(process management),是一种以规范化的构造端到端的卓越 业务流程为中心,以持续的提高组织业务绩效为目的的系统化方法。 流程管理的核心是流程,流程管理的本质就是构造卓越的业务流程。流程管理首先保证了流程是厩向客户的流程,流程中的活动都应该是增值的活动,从而保证了流程中的每个活动都是经过深思熟虑后的结果,且活动之间相互配合。 与BPR的定义相似,流程管理的定义也包含了几个关键词:规范化、流程、持续性和系统化。可以看出,流程管理将原来BPR定义中的彻底性、根本性融

进了规范化、系统化中,指出不一定全是彻底的重新设计业务流程,而是应该规范的对流程进行设计,需要进行重新设计的就进行重新设计,不需要的就进行改进。 要想进行业务流程管理,企业需要对流程的描述、分析、再设计及优化等进行研究,而解决这些问题的前提之一就是对流程进行建模,从而对流程有清晰的理解,为以后的分析和优化工作提供很好的帮助。现在实践中存在的对于流程分析和建模的方法体系不健全,分析工具使用的不得力,或者选择不得体,这些都是业务流程管理实施的障碍。因此,本文从业务流程建模方法出发,对几种常用的建模方法先进行简单介绍后,选择3种经典的方法对其进行着重分析,最后综合比较几种常用建模方法,力求推进业务流程管理更好地实施。 2业务流程建模方法概述 企业利用业务流程建模思想,用图形化的语言来描述业务过程,通过建立图形化的业务流程模型,使企业各层次的人员都能够很清楚的了解企业的业务流程,使他们能参与到业务过程变革中,为变革提出自己的想法。 业务流程模型的主要目的是建立结构化模型元素及规范,使其能够对复杂的流程结构与关系予以抽象表达,并通过所建模型使读者可对业务流程达成一致的理解。目前常用于流程管理的建模方法有:①流程图建模法(process map modeling)是一种传统的流程表达方式,它经过扩展后可以显示流程各环节的部门属性及性能。该方法优点在于可理解性好,但同时存在不确定性太大,无法清楚界定流程界限等缺点,特别是流程图中的输入、输出不能模型化,所以可能失去关于流程的细节信息。②角色行为图(roleactivitty diagram,RAD)方法的原型是由美国学者Holt等提出的,用以表述协同工作中存在的问题。

数学建模方法详解种最常用算法

数学建模方法详解--三种最常用算法 一、层次分析法 层次分析法[1] (analytic hierarchy process,AHP)是美国著名的运筹学家T.L.Saaty教授于20世纪70年代初首先提出的一种定性与定量分析相结合的多准则决策方法[2,3,4].该方法是社会、经济系统决策的有效工具,目前在工程计划、资源分配、方案 排序、政策制定、冲突问题、性能评价等方面都有广泛的应用. (一) 层次分析法的基本原理 层次分析法的核心问题是排序,包括递阶层次结构原理、测度原理和排序原理[5].下面分别予以介绍. 1.递阶层次结构原理 一个复杂的结构问题可以分解为它的组成部分或因素,即目标、准则、方案等.每一个因素称为元素.按照属性的不同把这 些元素分组形成互不相交的层次,上一层的元素对相邻的下一层的全部或部分元素起支配作用,形成按层次自上而下的逐层支配 关系.具有这种性质的层次称为递阶层次. 2.测度原理 决策就是要从一组已知的方案中选择理想方案,而理想方案一般是在一定的准则下通过使效用函数极大化而产生的.然而对 于社会、经济系统的决策模型来说,常常难以定量测度.因此,层次分析法的核心是决策模型中各因素的测度化.3.排序原理

层次分析法的排序问题,实质上是一组元素两两比较其重要性,计算元素相对重要性的测度问题.(二) 层次分析法的基本步骤 层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一致的[1] . 1.成对比较矩阵和权向量 为了能够尽可能地减少性质不同的诸因素相互比较的困难,提高结果的准确度.T .L .Saaty 等人的作法,一是不把所有因 素放在一起比较,而是两两相互对比,二是对比时采用相对尺度. 假设要比较某一层n 个因素n C C ,,1对上层一个因素O 的影响,每次取两个因素i C 和j C ,用ij a 表示i C 和j C 对O 的影响之比, 全部比较 结 果 可 用 成 对 比 较 阵 1 ,0,ij ij ji n n ij A a a a a 表示,A 称为正互反矩阵.一般地,如果一个正互反阵 A 满足: , ij jk ik a a a ,,1,2,,i j k n (1) 则A 称为一致性矩阵,简称一致阵.容易证明n 阶一致阵A 有下列性质: ①A 的秩为1,A 的唯一非零特征根为n ;②A 的任一列向量都是对应于特征根 n 的特征向量. 如果得到的成对比较阵是一致阵,自然应取对应于特征根n 的、归一化的特征向量(即分量之和为1)表示诸因素n C C ,, 1对 上层因素O 的权重,这个向量称为权向量.如果成对比较阵A 不是一致阵,但在不一致的容许范围内,用对应于A 最大特征根(记

数学建模常用的十种解题方法

数学建模常用的十种解题方法 摘要 当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个建立数学模型的全过程就称为数学建模。数学建模的十种常用方法有蒙特卡罗算法;数据拟合、参数估计、插值等数据处理算法;解决线性规划、整数规划、多元规划、二次规划等规划类问题的数学规划算法;图论算法;动态规划、回溯搜索、分治算法、分支定界等计算机算法;最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法;网格算法和穷举法;一些连续离散化方法;数值分析算法;图象处理算法。 关键词:数学建模;蒙特卡罗算法;数据处理算法;数学规划算法;图论算法 一、蒙特卡罗算法 蒙特卡罗算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法。在工程、通讯、金融等技术问题中, 实验数据很难获取, 或实验数据的获取需耗费很多的人力、物力, 对此, 用计算机随机模拟就是最简单、经济、实用的方法; 此外, 对一些复杂的计算问题, 如非线性议程组求解、最优化、积分微分方程及一些偏微分方程的解⑿, 蒙特卡罗方法也是非常有效的。 一般情况下, 蒙特卜罗算法在二重积分中用均匀随机数计算积分比较简单, 但精度不太理想。通过方差分析, 论证了利用有利随机数, 可以使积分计算的精度达到最优。本文给出算例, 并用MA TA LA B 实现。 1蒙特卡罗计算重积分的最简算法-------均匀随机数法 二重积分的蒙特卡罗方法(均匀随机数) 实际计算中常常要遇到如()dxdy y x f D ??,的二重积分, 也常常发现许多时候被积函数的原函数很难求出, 或者原函数根本就不是初等函数, 对于这样的重积分, 可以设计一种蒙特卡罗的方法计算。 定理 1 )1( 设式()y x f ,区域 D 上的有界函数, 用均匀随机数计算()??D dxdy y x f ,的方法: (l) 取一个包含D 的矩形区域Ω,a ≦x ≦b, c ≦y ≦d , 其面积A =(b 一a) (d 一c) ; ()j i y x ,,i=1,…,n 在Ω上的均匀分布随机数列,不妨设()j i y x ,, j=1,…k 为落在D 中的k 个随机数, 则n 充分大时, 有

数据建模目前有两种比较通用的方式

数据建模目前有两种比较通用的方式1983年,数学建模作为一门独立的课程进入我国高等学校,在清华大学首次开设。1987年高等教育出版社出版了国内第一本《数学模型》教材。20多年来,数学建模工作发展的非常快,许多高校相继开设了数学建模课程,我国从1989年起参加美国数学建模竞赛,1992年国家教委高教司提出在全国普通高等学校开展数学建模竞赛,旨在“培养学生解决实际问题的能力和创新精神,全面提高学生的综合素质”。近年来,数学模型和数学建模这两个术语使用的频率越来越高,而数学模型和数学建模也被广泛地应用于其他学科和社会的各个领域。本文主要介绍了数学建模中常用的方法。 一、数学建模的相关概念 原型就是人们在社会实践中所关心和研究的现实世界中的事物或对象。模型是指为了某个特定目的将原型所具有的本质属性的某一部分信息经过简化、提炼而构造的原型替代物。一个原型,为了不同的目的可以有多种不同的模型。数学模型是指对于现实世界的某一特定对象,为了某个特定目的,进行一些必要的抽象、简化和假设,借助数学语言,运用数学工具建立起来的一个数学结构。 数学建模是指对特定的客观对象建立数学模型的过程,是现实的现象通过心智活动构造出能抓住其重要且有用的特征的表示,常常是形象化的或符号的表示,是构造刻画客观事物原型的数学模型并用以分析、研究和解决实际问题的一种科学方法。 二、教学模型的分类 数学模型从不同的角度可以分成不同的类型,从数学的角度,按建立模型的数学方法主要分为以下几种模型:几何模型、代数模型、规划模型、优化模型、微分方程模型、统计模型、概率模型、图论模型、决策模型等。 三、数学建模的常用方法 1.类比法 数学建模的过程就是把实际问题经过分析、抽象、概括后,用数学语言、数学概念和数学符号表述成数学问题,而表述成什么样的问题取决于思考者解决问题的意图。类比法建模一般在具体分析该实际问题的各个因素的基础上,通过联想、归纳对各因素进行分析,并且与已知模型比较,把未知关系化为已知关系,

数学建模的基本步骤

数学建模的基本步骤 一、数学建模题目 1)以社会,经济,管理,环境,自然现象等现代科学中出现的新问题为背景,一般都有一个比较确切的现实问题。 2)给出若干假设条件: 1. 只有过程、规则等定性假设; 2. 给出若干实测或统计数据; 3. 给出若干参数或图形等。 根据问题要求给出问题的优化解决方案或预测结果等。根据问题要求题目一般可分为优化问题、统计问题或者二者结合的统计优化问题,优化问题一般需要对问题进行优化求解找出最优或近似最优方案,统计问题一般具有大量的数据需要处理,寻找一个好的处理方法非常重要。 二、建模思路方法 1、机理分析根据问题的要求、限制条件、规则假设建立规划模型,寻找合适的寻优算法进行求解或利用比例分析、代数方法、微分方程等分析方法从基本物理规律以及给出的资料数据来推导出变量之间函数关系。 2、数据分析法对大量的观测数据进行统计分析,寻求规律建立数学模型,采用的分析方法一般有: 1). 回归分析法(数理统计方法)-用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式。 2). 时序分析法--处理的是动态的时间序列相关数据,又称为过程统计方法。 3)、多元统计分析(聚类分析、判别分析、因子分析、主成分分析、生存数据分析)。 3、计算机仿真(又称统计估计方法):根据实际问题的要求由计算机产生随机变量对动态行为进行比较逼真的模仿,观察在某种规则限制下的仿真结果(如蒙特卡罗模拟)。 三、模型求解: 模型建好了,模型的求解也是一个重要的方面,一个好的求解算法与一个合

适的求解软件的选择至关重要,常用求解软件有matlab,mathematica,lingo,lindo,spss,sas等数学软件以及c/c++等编程工具。 Lingo、lindo一般用于优化问题的求解,spss,sas一般用于统计问题的求解,matlab,mathematica功能较为综合,分别擅长数值运算与符号运算。 常用算法有:数据拟合、参数估计、插值等数据处理算法,通常使用spss、sas、Matlab作为工具. 线性规划、整数规划、多元规划、二次规划、动态规划等通常使用Lindo、Lingo,Matlab软件。 图论算法,、回溯搜索、分治算法、分支定界等计算机算法, 模拟退火法、神经网络、遗传算法。 四、自学能力和查找资料文献的能力: 建模过程中资料的查找也具有相当重要的作用,在现行方案不令人满意或难以进展时,一个合适的资料往往会令人豁然开朗。常用文献资料查找中文网站:CNKI、VIP、万方。 五、论文结构: 0、摘要 1、问题的重述,背景分析 2、问题的分析 3、模型的假设,符号说明 4、模型的建立(局部问题分析,公式推导,基本模型,最终模型等) 5、模型的求解 6、模型检验:模型的结果分析与检验,误差分析 7、模型评价:优缺点,模型的推广与改进 8、参考文献 9、附录 六、需要重视的问题 数学建模的所有工作最终都要通过论文来体现,因此论文的写法至关重要:

三维建模在各个领域的应用

三维建模在各个领域的应用 (武汉纺织大学工程造价11403王博) 摘要:自上世纪五十年代马特龙把地质统计学引用地质研究以来三维建模已经在多个领域得到应用,本文通过对前人的文献进行分析整理得出三维建模在各个领域中的应用及其发展始末。 关键词:三维设计;三维建模;技术应用 Application of three dimensional modeling in various Fields Abstract:since the1950s matalon applied geological statistics to the geology,the study of geological3D modeling has got application in many areas.In this paper,we give a sight on the application of3D modeling in various fields and the development of the whole story through the previous literature collation and analysis Keywords:3D design;3D modeling;application technology 1引言 随着社会经济的迅速发展,人民生活水平的不断提高和三维建模技术的不断完善,人们对三维建模产品的需求急剧增加。而三维建模技术在对交通、能源、动画、影视、通讯等各个项目中的利用也急剧增加。本文从三维建模的发展历史及其应用和意义三个方面对三维建模进行綜述。 根据百度百科的定义,三维模型是物体的多边形表示,通常用计算机或者其它视频设备进行显示。显示的物体是可以是现实世界的实体,也可以是虚构的物体。任何物理自然界存在的东西都可以用三维模型表示。回顾一下地质建模在油田开发中的作用,可以发现目前的三维建模主要有两个作用:一个是为数值模拟提供基础模型,第二是用于油藏的整体评价,例如油藏勘探开发的风险评价。但三维建模一直没能深入到油田的生产中。 油田开发地质研究工作中,目前还没有十分有效、先进的技术。油藏地质研究还主要依靠手工编制的厚度图、油藏剖面图、连通图等。十分需要新的技术的补充与提高。在整个开发阶段地质研究工作中,唯一可以称为新技术的就是三维建模。因此三维建模完全可以在开发阶段地质研究中起到更为突出的作用。实际上,三维建模应该,也完全可以成为油藏开发阶段油藏精细描述和生产措施部署的核心技术。 现在,三维模型已经用于各种不同的领域。在医疗行业使用它们制作器官的精确模型;电影行业将它们用于活动的人物、物体以及现实电影;视频游戏产业将它们作为计算机与视频游戏中的资源;在科学领域将它们作为化合物的精确模型;建筑业将它们用来展示提议的建筑物或者风景表现;工程界将它们用于设计新设备、交通工具、结构以及其它应用领域;在最近几十年,地球科学领域开始构建三维地质模型。 2.三维建模的发展历史

数学建模常用方法

数学建模常用方法 建模常用算法,仅供参考: 1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必 用的方法) 2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用M a t l a b作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通 常使用L i n d o、L i n g o软件实现) 4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种 暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计 算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用) 10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文 中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用M a t l a b进行处理) 一、在数学建模中常用的方法: 1.类比法 2.二分法 3.量纲分析法 4.差分法 5.变分法 6.图论法 7.层次分析法 8.数据拟合法 9.回归分析法 10.数学规划(线性规划、非线性规划、整数规划、动态规划、目标规划) 11.机理分析 12.排队方法

领域知识模型

领域知识模型——企业应用系统的智慧中枢 摘要:企业应用系统有海量的领域对象和丰富的领域知识,这些领域知识一般被作为领域对象的业务逻辑或规则定义。本文认为领域知识是领域模型的一个知识切面且自成体系,结合领域驱动设计[DDD]和面向方面编程[AOP]的方法,对领域知识进行建模和应用,让面向业务活动的领域应用对象只需关注业务过程的组织和管理,用AOP技术把领域知识应用到具体的业务处理策略中,使领域应用对象和领域知识对象有更好内聚性且更轻量,不仅可大幅提升它们的可管理性和复用性,而且对系统开发效率、动态业务建模和装配能力也大有益处。 关键词:领域知识、领域模型、领域驱动设计、企业应用架构、DDD、AOP 1.前言 领域模型[Domain Model]和领域驱动设计[Domain-Driven Design][1]是目前在应用软件行业非常热门和前沿的话题,普遍认为这是构建高质量复杂系统最有效的方法和技术。领域模型在业界比较认可的定义是:领域模型是领域内的概念或者现实世界中对象的可视化表示,又称为概念模型、领域对象模型、分析对象模型,它专注于分析领域问题本身,领域对象是与技术无关的纯业务对象。领域建模的核心理念是把业务对象的属性、规则和职能封装在领域对象中,而不是被分散在用户界面层、应用层和持久化层中。 领域建模一般情况下是从应用功能或用例[Use Case]入手,因此,领域模型中的领域对象也是直接与应用功能或用例相关的业务对象,而这些领域对象模型涉及的领域知识,一般都作为领域对象的逻辑或者规则而存在。知识是应用领域问题的本质,是特定领域中一系列业务对象共有的知识切面,这个知识切面自成体系,本文中把这个知识体系的模型称为领域知识模型,与具体应用功能或者活动相关的领域对象模型称为领域应用模型。为了便于理解这些概念,我用一个与企业管理无关的通俗的例子来说明知识模型和应用模型的关系,比如对我喜欢的台球运动进行游戏建模,美式九球模型或者英式斯诺克模型是具体的领域应用模型,球台、球、球杆、运动员等是应用领域模型的核心领域对象,但要做出好玩的仿真游戏,台球碰撞中的基本物理知识是不可或缺的,用牛顿理论作为领域知识模型就涉及到质量、速度、动量等概念和动量守恒及能量守恒模型。知识模型是高度抽象并且可独立存在的模型,也是可以在各种业务情景中复用的模型,就如前面提到的台球游戏用到的牛顿理论模型,同样可以应用到保龄球游戏以及任何一款涉及到碰撞的游戏场景。企业管理领域也同样存在大量的知识模型,本文笔者致力于把企业管理领域涉及的领域知识进行分离、建模和应用的可行性分析和实践,希望以此进一步提升大型复杂企业应用系统的质量、动态业务建模和装配能力及组件复用水平。 2.企业应用系统中的领域知识问题分析 企业应用系统已逐渐成为企业经营管理的一体化应用平台,面向业务流程的行业深度应用

三维建模软件概述

三维建模软件概述 三维建模软件概述 一、市面上软件概览(一)国外软件1.CATIA CATIA是英文Computer Aided Tri-Dimensional Interface Application 的缩写。是世界上一种主流的CAD/CAE/CAM一体化软件。在70年代Dassault Aviation 成为了第一个用户,CATIA 也应运而生。从1982年到1988年,CATIA 相继发布了1版本、2版本、3版本,并于1993年发布了功能强大的4版本,现在的CATIA 软件分为V4版本和V5版本两个系列。V4版本应用于UNIX 平台,V5版本应用于UNIX和Windows 两种平台。V5版本的开发开始于1994年。为了使软件能够易学易用,Dassault System 于94年开始重新开发全新的CATIA V5版本,新的V5版本界面更加友好,功能也日趋强大,并且开创了CAD/CAE/CAM 软件的一种全新风格。法国Dassault Aviation 是世界著名的航空航天企业。其产品以幻影2000和阵风战斗机最为著名。CATIA的产品开发商Dassault System 成立于1981年。而如今其在CAD/CAE/CAM 以及PDM 领域内的领导地位,已得到世界范围内的承认。其销售利润从最开始的一百万美圆增长到现在的近二十亿美圆。雇员人数由20人发展到2,000多人。CATIA是法国Dassault System公司的CAD/CAE/CAM一体化软件,居世界CAD/CAE/CAM领域的领导地位,广泛应用于航空航天、汽车制造、造船、机械制造、电子\电器、消费品行业,它的集成解决方案覆盖所有的产品设计与制造领域,其特有的DMU电子样机模块功能及混合建模技术更是推动着企业竞争力和生产力的提高。CATIA 提供方便的解决方案,迎合所有工业领域的大、中、小型企业需要。包括:从大型的波音747飞机、火箭发动机到化妆品的包装盒,几乎涵盖了所有的制造业产品。在世界上有超过13,000的用户选择了CATIA。CATIA 源于航空航天业,但其强大的功能以得到各行业的认可,在欧洲汽车业,已成为事实上的标准。CATIA 的著名用户包括波音、克莱斯勒、宝马、奔驰等一大批知名企业。其用户群体在世界制造业中具有举足轻重的地位。波音飞机公司使用CATIA完成了整个波音777的电子装配,创造了业界的一个奇迹,从而也确定了CATIA 在CAD/CAE/CAM 行业内的领先地位。CATIA V5版本是IBM和达索系统公司长期以来在为数字化企业服务过程中不断探索的结晶。围绕数字化产品和电子商务集成概念进行系统结构设计的CATIA V5版本,可为数字化企业建立一个针对产品整个开发过程的工作环境。在这个环境中,可以对产品开发过程的各个方面进行仿真,并能够实现工程人员和非工程人员之间的电子通信。产品整个开发过程包括概念设计、详细设计、工程分析、成品定义和制造乃至成品在整个生命周期中的使用和维护。CATIA V5版本具有:1.重新构造的新一代体系结构为确保CATIA产品系列的发展,CATIA V5新的体系结构突破传统的设计技术,采用了新一代的技术和标准,可快速地适应企业的业务发展需求,使客户具有更大的竞争优势。2.支持不同应用层次的可扩充性CATIA V5对于开发过程、功能和硬件平台可以进行灵活的搭配组合,可为产品开发链中的每个专业成员配置最合理的解决方案。允许任意配置的解决方案可满足从最小的供货商到最大的跨国公司的需要。3.与NT和UNIX硬件平台的独立性CATIA V5是在Windows NT平台和UNIX平台上开发完成的,并在所有所支持的硬件平台上具有统一的数据、功能、版本发放日期、操作环境和应用支持。CATIA V5在Windows平台的应用可使设计师更加简便地同办公应用系统共享数据;而UNIX平台上NT风格的用户界面,可使用户在UNIX平台上高效地处理复杂的工作。4.专用知识的捕捉和重复使用CATIA V5结合了显式知识规则的优点,可在设计过程中交互式捕捉设计意图,定义产品的性能和变化。隐式的经验知识变成了显式的专用知识,提高了设计的自动化程度,降低了设计错误的风险。5.给现存客户平稳升级CATIA V4和V5具有兼容性,两个系统可并行使用。对于现有的CATIA V4用户,V5年引领他们迈向NT

数据库概念设计及数据建模(一)有答案

数据库概念设计及数据建模(一) 一、选择题 1. 数据库概念设计需要对一个企业或组织的应用所涉及的数据进行分析和组织。现有下列设计内容 Ⅰ.分析数据,确定实体集 Ⅰ.分析数据,确定实体集之间的联系 Ⅰ.分析数据,确定每个实体集的存储方式 Ⅰ.分析数据,确定实体集之间联系的基数 Ⅰ.分析数据,确定每个实体集的数据量 Ⅰ.分析数据,确定每个实体集包含的属性 以上内容不属于数据库概念设计的是______。 A.仅Ⅰ、Ⅰ和Ⅰ B.仅Ⅰ和Ⅰ C.仅Ⅰ、Ⅰ和Ⅰ D.仅Ⅰ和Ⅰ 答案:D [解答] 数据库概念设计主要是理解和获取引用领域中的数据需求,分析,抽取,描述和表示清楚目标系统需要储存和管理什么数据,这些数据共有什么样的属性特征以及组成格式,数据之间存在什么样的依赖关系,同时也要说明数据的完整性与安全性。而数据的储存方式和数据量不是概念设计阶段所考虑的。 2. 关于数据库概念设计阶段的工作目标,下列说法错误的是______。 A.定义和描述应用系统设计的信息结构和范围

B.定义和描述应用系统中数据的属性特征和数据之间的联系 C.描述应用系统的数据需求 D.描述需要存储的记录及其数量 答案:D [解答] 数据库概念设计阶段的工作目标包括定义和描述应用领域涉及的数据范围;获取应用领域或问题域的信息模型;描述清楚数据的属性特征;描述清楚数据之间的关系;定义和描述数据的约束;说明数据的安全性要求;支持用户的各种数据处理需求;保证信息模型方便地转换成数据库的逻辑结构(数据库模式),同时也便于用户理解。 3. 需求分析阶段的文档不包括______。 A.需求说明书 B.功能模型 C.各类报表 D.可行性分析报告 答案:D [解答] 数据库概念设计的依据是需求分析阶段的文档;包括需求说明书、功能模型(数据流程图或IDEF0图)以及在需求分析阶段收集到的应用领域或问题域中的各类报表等,因此本题答案为D。 4. 数据库概念设计的依据不包括______。

数学建模的几种常用方法

枝正在绽放的教研之花,一定会在教育的百花园中,开放得更加灿烂多姿。 参考文献: [1]陈遒臣.教育哲学[M].台湾心理出版社,1996. [2]王天一.外国教育史[M].北京:北师大出版社,1996. [3]陈长前.如何培养学生学习数学的兴趣[J].中学数学教学,1998,(5).[4]丁锦辉.有效备课.初中数学[M].长春:东北师范大学出版 社,2008. [5]刘晓明.生本备课—— —备课与师德行为[M].长春:东北师范大学出版社,2008. [6]刘湘溶.创新教师教育新模式[M].北京:经济科学出版社, 2004. [7]华同旭.教育创新与发展[M].北京:经济科学出版社,2007. 第30卷2012年5月 太原大学教育学院学报 JOURNAL OF EDUCATION INSTITUTE OF TAIYUAN UNIVERSITY Vol.30 May.2012数学建模的几种常用方法 张婧 (太原大学教育学院,山西太原030001) 〔摘要〕文章介绍了数学建模的一些主要术语,讨论了数学建模的常用方法以及这些方法的适用情况、使用步骤和主要思想。 〔关键词〕数学建模;数学模型;思想;问题 1983年,数学建模作为一门独立的课程进入我国高等学校,在清华大学首次开设。1987年高等教育出版社出版了国内第一本《数学模型》教材。20多年来,数学建模工作发展的非常快,许多高校相继开设了数学建模课程,我国从1989年起参加美国数学建模竞赛,1992年国家教委高教司提出在全国普通高等学校开展数学建模竞赛,旨在“培养学生解决实际问题的能力和创新精神,全面提高学生的综合素质”。近年来,数学模型和数学建模这两个术语使用的频率越来越高,而数学模型和数学建模也被广泛地应用于其他学科和社会的各个领域。本文主要介绍了数学建模中常用的方法。 一、数学建模的相关概念 原型就是人们在社会实践中所关心和研究的现实世界中的事物或对象。 模型是指为了某个特定目的将原型所具有的本质属性的某一部分信息经过简化、提炼而构造的原型替代物。一个原型,为了不同的目的可以有多种不同的模型。 数学模型是指对于现实世界的某一特定对象,为了某个特定目的,进行一些必要的抽象、简化和假设,借助数学语言,运用数学工具建立起来的一个数学结构。 数学建模是指对特定的客观对象建立数学模型的过程,是现实的现象通过心智活动构造出能抓住其重要且有用的特征的表示,常常是形象化的或符号的表示,是构造刻画客观事物原型的数学模型并用以分析、研究和解决实际问题的一种科学方法 二、教学模型的分类 数学模型从不同的角度可以分成不同的类型,从数学的角度,按建立模型的数学方法主要分为以下几种模型:几何模型、代数模型、规划模型、优化模型、微分方程模型、统计模型、概率模型、图论模型、决策模型等。 三、数学建模的常用方法 1.类比法 数学建模的过程就是把实际问题经过分析、抽象、概括后,用数学语言、数学概念和数学符号表述成数学问题,而表述成什么样的问题取决于思考者解决问题的意图。类比法建模一般在具体分析该实际问题的各个因素的基础上,通过联想、归纳对各因素进行分析,并且与已知模型比较,把未知关系化为已知关系,在不同的对象或完全不相关的对象中找出同样的或相似的关系,用已知模型的某些结论类比得到解决该“类似”问题的数学方法,最终建立起解决问题的模型。 2.量纲分析法 量纲分析是20世纪初提出的在物理领域中建立数学模型的一种方法,它是在经验和实验的基础上,利用物理定律的量纲齐次性,确定各物理量之间的关系。它是一种数学分析方法,通过量纲分析,可以正确地分析各变量之间的关系,简化实验和便于成果整理。 在国际单位制中,有七个基本量:质量、长度、时间、电流、温度、光强度和物质的量,它们的量纲分别为M、L、T、I、H、J和N,称为基本量纲。 量纲分析法常常用于定性地研究某些关系和性质,利用量纲齐次原则寻求物理量之间的关系,在数学建模过程中常常进行无量纲化,无量纲化是根据量纲分析思想,恰当地选择特征尺度将有量纲量化为无量纲量,从而达到减 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,38 ——

相关主题
文本预览
相关文档 最新文档